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Abstract. We characterize the spectrum (and its parts) of operators which can be repre-

sented as “G D ACBC ” for a “simpler” operatorA and a structured perturbationBC . The

interest in this kind of perturbations is motivated, e.g., by perturbations of the domain of an

operator A but also arises in the theory of closed-loop systems in control theory. In many

cases our results yield the spectral values of G as zeros of a “characteristic equation.”
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1. Introduction

The spectrum

�.G/ WD ¹� 2 CW� �G is not invertible in L.X/º

as a subset of C, and its finer subdivisions (cf. Definition A.6) reflect much

information about a (possibly unbounded) linear operator GWD.G/ � X ! X

on a (generally infinite dimensional) Banach space X . Here we only mention (for
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details see [7, Chapter V]) that for generatorsG of strongly continuous semigroups

the location of �.G/ in the complex plane determines to a great part the asymptotic

behavior of the solutions of the associated abstract Cauchy problem

8

ˆ

<

ˆ

:

d

dt
x.t/ D Gx.t/; t � 0;

x.0/ D x0:

(ACP)

However, in many applications it is difficult to determine �.G/ by direct com-

putations. One approach to overcome this difficulty is to split G into a suitable

sum “G D AC P ” of a well understood operator A and a perturbation P . Then

one tries to characterize spectral values ofG by “simple” conditions involving the

operators A and P .

In this paper we elaborate this idea for “structured perturbations,” i.e., pertur-

bations which can be written as a product P D BC . First we setup our general

framework. For a summary of our notation we refer to Appendix A.1.

Assumptions 1.1. We assume that

(i) U , X , Z and Z�1 are Banach spaces such that Z ,! X ,! Z�1;

(ii) AZWZ � Z�1 ! Z�1 is a linear operator satisfying �.AZ/ ¤ ; and

AZ 2 L.Z;Z�1/;

(iii) B 2 L.U;Z�1/ and C 2 L.Z; U /.

We are then interested in the operator G D ABC WD.ABC / � X ! X given

by

ABC WD .AZ C BC/jX with domain D.ABC / WD ¹x 2 ZW .AZ C BC/x 2 Xº;
(1.1)

where the sum is initially taken in Z�1. This setting is summarized in Diagram 1.

For the main cases fitting into this setup see Sections 3–4 and Remark A.5.(ii).

D.ABC / � Z X Z�1
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Diagram 1. The operators defining ABC in (1.1).
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If we define the operator AWD.A/ � X ! X by

A WD AZjX with domain D.A/ WD ¹x 2 ZWAZx 2 Xº; (1.2)

then we can considerABC as a perturbation ofA, where Assumption 1.1.(iii) limits

the unboundedness of the structured perturbation P WD BC 2 L.Z;Z�1/. Now

Lemma A.7.(vi)–(vii) gives the following result.

Lemma 1.2. Let A be given by (1.2). Then

�.A/ D �.AZ/ and R.�; A/ D R.�; AZ/jX for all � 2 �.A/: (1.3)

In [1, 2] we studied in detail the generator property ofABC , cf. Remark A.5.(ii).

In the present paper we characterize the various types of spectral values in terms of

an operator�W .�/ defined on some, in general “smaller”, spaceW . In particular,

if dim.W / < C1, this yields the spectral values in �.ABC / \ �.A/ as zeros of a

(nonlinear) characteristic equation, cf. (2.3) in Theorem 2.3.

Our interest in operators ABC given by (1.1) is, among other, motivated by

perturbations of the domain of operators in the spirit of Greiner, cf. [8]. For this

reason, in Subsection 3 we first apply our main abstract result Theorem 2.3 to this

generic situation. The usefulness of our approach is then demonstrated by a series

of further concrete examples in Section 4.

In Appendix A we summarize the notation, give a short introduction to the

extrapolation of spaces and operators, prove some results concerning the spectral

theory of parts of operators and present so-called Schur complements for operator

matrices needed for our approach.

We mention that related problems have already been studied by, e.g., Salamon,

Weiss–Xu and Curtain–Jacob in the context of closed loop systems in control

theory, cf. [16, Lemma 4.4], [19, theorems 1.1 and 1.2] and [6, Theorem 6.2].

Our Theorem 2.3 generalizes these results since it does not rely on admissibility

conditions for the operators B , C , a Hilbert space structure ofX or the closedness

or a dense domain of ABC . Moreover, we study not only the spectrum and point

spectrum but characterize also other parts as the approximate point-, continuous-,

residual- and essential spectrum of ABC .

2. Spectral theory for ABC

In this section we investigate the spectrum of the perturbed operator ABC from

eq. (1.1) limiting the hypotheses to Assumption 1.1. In particular, we do not assume
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X to be a Hilbert space or ABC to be closed or densely defined. Moreover, we do

not impose any kind of “admissibility condition” on the triple .A; B; C /. The proof

of our main result Theorem 2.3 is based on two ingredients: spectral properties of

the part of an operator in a subspace, see Appendix A.3, and Schur complements

for operator matrices, cf. Appendix A.4.

To start our investigations, we define the operator

AZBC WD.AZBC / � Z�1 �! Z�1

by

AZBC WD AZ C BC with domain D.AZBC / WD Z;

for which the following holds.

Lemma 2.1. We have AZBC 2 L.Z;Z�1/. Moreover, if AZBC is closed, e.g.,

�.AZBC / ¤ ;, then the norm of Z and the graph norm of AZBC are equivalent

on Z, i.e.,

k�kZ ' k�kAZ
BC
; (2.1)

where

kxkAZ
BC

WD kxkZ�1
C kAZBCxkZ�1

for x 2 Z.

In other words, Z ' .Z�1/
AZ

BC

1 .

Proof. By assumption BC 2 L.Z;Z�1/ and AZ 2 L.Z;Z�1/, hence AZBC 2
L.Z;Z�1/. Moreover, Z ,! Z�1 and therefore k�kZ is finer than k�kAZ

BC
. Now,

if AZBC is closed then .Z; k�kAZ
BC
/ is a Banach space and the equivalence in (2.1)

follows from the open mapping theorem. �

The following operators will be the main tool in the sequel. Recall that

�.A/ D �.AZ/ by (1.3).

Definition 2.2. For � 2 �.A/ define the operators

�U .�/ WD CR.�; AZ/B 2 L.U / and �Z.�/ WD R.�; AZ/BC 2 L.Z/:

Here the boundedness of�W .�/ forW 2 ¹U;Zº follows from Assumption 1.1,

the closed graph theorem and the resolvent equation. Using these operators, the

spectral values of ABC can be characterized in the following way. For the notions

concerning the finer division of the spectrum, see Definition A.6.
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Theorem 2.3. Let � 2 �.A/ and W 2 ¹U;Zº.

(a) The following spectral inclusions always hold.

�.ABC /� �.AZBC /; �p.ABC /D �p.A
Z
BC /;

�a.ABC /� �a.A
Z
BC /; �ess.ABC / � �ess.A

Z
BC /:

IfD.A/C rg.IdZ ��Z.�// is dense in Z for some (hence all) � 2 �.A/ then

also

�c.ABC /� �c.A
Z
BC /; �r.ABC / � �r.A

Z
BC /:

(b) The following spectral characterizations always hold:

� 2 �.AZBC / () 1 2 �.�W .�//;

� 2 ��.A
Z
BC / () 1 2 ��.�W .�//

for all � 2 ¹p, a, r, c, essº. Moreover,

� 2 �.ABC / H) 1 2 �.�W .�//;

� 2 �p.ABC / () 1 2 �p.�W .�//;

� 2 �a.ABC / H) 1 2 �a.�W .�//;

� 2 �ess.ABC / H) 1 2 �ess.�W .�//:

IfD.A/C rg.IdZ ��Z.�// is dense in Z for some (hence all) � 2 �.A/ then

also

� 2 �c.ABC / H) 1 2 �c.�W .�//;

� 2 �r.ABC / (H 1 2 �r.�W .�//:

(c) If �W .�/ 2 L.W / is compact, then

� 2 �.ABC / () � 2 �p.ABC / () 1 2 �p.�W .�//: (2.2)

In particular, if dim.U / < 1, then

� 2 �.ABC / () � 2 �p.ABC / () det.IdU ��U .�// D 0: (2.3)
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(d) If the condition

1 2 �.�W .�// for some � 2 �.A/ (2.4a)

or, equivalently,

�.A/\ �.AZBC / ¤ ; (2.4b)

holds, then for all � 2 ¹a, r ,c, essº

� 2 �.ABC / () 1 2 �.�W .�//; (2.5)

� 2 ��.ABC / () 1 2 ��.�W .�//: (2.6)

(e) If 1 2 �.�W .�//, then � 2 �.ABC / and the resolvent of ABC is given by

R.�; ABC / D R.�; A/CR.�; AZ/B � .IdU ��U .�//�1 � CR.�; A/ (2.7)

D .IdZ ��Z.�//�1 �R.�; A/: (2.8)

Proof. (a) follows from Lemma A.9 by choosing the spaces F WD Z�1, E WD X

and operators T WD AZBC , T1 WD T jE D ABC . The assumption

E C rg.T / D X C rg.AZBC / is dense in F D Z�1;

which is needed for the last two inclusions follows by hypothesis. In fact, for

� 2 �.A/ the operator .� � AZ/WZ ! Z�1 is an isomorphism, hence the set

X C rg.AZBC / D X C .� � AZBC /Z D .� � AZ/.D.A/C .IdZ �R.�; AZ/BC/Z/

is dense in Z�1 if and only if D.A/C .IdZ �R.�; AZ/BC/Z is dense in Z.

We proceed by verifying (b)–(d) forW D U and then return to the caseW D Z

at the end.

To prove (b) we define for � 2 �.A/ the operator matrix

T WD
�

� � AZ B

C IdU

�

2 L.Z � U;Z�1 � U/: (2.9)

Then the Schur complements of T from Appendix A.4 are given by

�1 D � � AZBC 2 L.Z;Z�1/; �2 D IdU ��U .�/ 2 L.U /:

Hence, from Lemma A.10.(iv)–(vi) it follows that ��AZBC is injective/has closed

range/has dense range/has finite dimensional kernel/has range with finite co-

dimension/is invertible if and only if IdU ��U .�/ has the same property, respec-

tively. Since these properties characterize the various parts of the spectrum, this

implies the first two equivalences in (b). The remaining ones then follow imme-

diately from part (a).
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For (c) assume that �U .�/ is compact. Then using (a) and (b) we conclude

� 2 �.ABC / H) � 2 �.AZBC / () 1 2 �.�U .�// () 1 2 �p.�U .�//

() � 2 �p.A
Z
BC / () � 2 �p.ABC / H) � 2 �.ABC /:

Therefore, all conditions are equivalent which proves the first chain of equiva-

lences. If U is finite dimensional, then �U .�/ is compact for all � 2 �.A/ imply-

ing the second chain in (c).

For (d) assume that there exists � 2 �.A/ such that 1 2 �.�U .�//which, by the

first equivalence in (b), is equivalent to the existence of some � 2 �.A/\�.AZBC /.
Then AZBC is closed and by Lemma 2.1 we conclude

.Z�1/
AZ

BC

1 ' Z ,�! X ,�! Z�1:

Hence, for F , E, T and T1 as in the proof of (a) we have

.Z�1/
AZ

BC

1 D F T1 ,�! E D X:

By Corollary A.9.(vii) this implies all equivalences for the various parts of the

spectra.

To prove (e) assume that 1 2 �.�U .�//, i.e., � 2 �.AZBC /. Lemma A.7.(vi)

yields R.�; ABC / D ��1
1 jX . The formula for ��1

1 in Lemma A.10.(vi) then

gives (2.7).

Finally, all assertions concerning W D Z follow from Corollary A.12 applied

to E D U , F D Z and the operators R WD R.�; AZ/B 2 L.U;Z/ and

Q WD C 2 L.Z; U /. �

Remarks 2.4. (i) As main outcome, the previous result establishes that we always

have

� 2 �p.ABC / () 1 2 �p.�W .�//

while for the whole spectrum and its other parts only one implication holds in

general. To obtain equivalence as for the point spectrum an additional assumption

is necessary, e.g., that Z�1 D X , �W .�/ 2 L.W / is compact or that (2.4) is

satisfied. As Examples 2.5 and 3.11 show, such an extra assumption cannot be

omitted in general.
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(ii) If U is finite dimensional, then (2.3) determines the spectral values ofABC

in �.A/ as zeros of the characteristic equation

F.�/ WD det.IdU ��U .�// D 0:

Since F.�/ is holomorphic on �.A/, this implies that a connected component �

of �.A/ is either contained in �.ABC / (i.e. F � 0 on �) or that �.ABC / has

no accumulation in � (i.e., F 6� 0 on �). We note that even if U is not finite

dimensional but only a product space with a finite dimensional factor, using Schur

complements might yield a characteristic equation as well. For concrete examples

see Sections 4.3 and 4.4.

(iii) Note that by the previous result ABC is closed if 1 2 �.�W .�// for some

� 2 �.A/ (or, more generally, 1 2 �.�W .�0; �// for some .�0; �/ 2 �.A/ � C,

cf. Corollary 2.7 below). This condition is in particular satisfied if P D BC is a

Weiss–Staffans perturbation of A, cf. [1, Definition 9], or if kCR.�; AZ/Bk < 1

for some � 2 �.A/.
(iv) We mention that by definition of ABC , Lemma A.7, Lemma A.10.(i)–(ii)

and Corollary A.12 for � 2 �.A/ and W 2 ¹U;Zº we also have

� � AZBC surjective () IdW ��W .�/ surjective

H) � � ABC surjective:

(v) We note that the operatorT in (2.9) shows similarities to the system operator

S†.�/ studied in some detail in [17].

The equivalences in (2.5) and (2.6) only hold with some extra assumption

like (2.4) or compactness of �W .�/. In fact, there are operators AZ, B and C

such that AZBC is not closed, hence �.AZBC / D C, whereas �.ABC / might be

rather small.

Example 2.5. For an unbounded, densely defined operator .A;D.A//on a Banach

space X define on X WD X �X the operator

G WD
�

A 0

0 A

�

�
�

IdX IdX

IdX IdX

�

; D.G/ WD
²�

x

y

�

2 X �X W x C y 2 D.A/
³

:

Since the matrices
�

1 1

1 1

�

and

�

2 0

0 0

�

are similar, a simple computation shows that G is similar to

D WD
�

2A 0

0 0

�

; D.D/ WD D.A/�X:

In particular, this implies that G is closed and �.G/ D �.D/ D �.2A/ [ ¹0º.
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A natural attempt to represent G as G D .AZ C BC/jX is to choose the spaces

Z WD U WD X D X �X , Z�1 WD X�1 �X�1 and the operators

AZ WD
�

A�1 0

0 A�1

�

WZ � Z�1 �! Z�1;

B WD
�

0 A�1
A�1 0

�

2 L.U;Z�1/ and CWD IdX 2 L.Z;U/:;

whereA�1WX � X�1 ! X�1 denotes the extrapolated operator from Section A.2.

Then a simple computation shows that �.AZ/ D �.A/ and G D .AZ C BC/jX.

However, neither there exists � 2 �.AZ

BC
/, nor 1 2 �.CR.�;AZ/B/ for some

� 2 �.A/. In fact,

AZ

BC
D
�

A�1 A�1
A�1 A�1

�

WZ � Z�1 �! Z�1

is not closed, hence �.AZ

BC
/ D C. On the other hand, for � 2 �.A/

CR.�;AZ/B D
�

0 IdX ��R.�; A/
IdX ��R.�; A/ 0

�

2 L.U/

is never compact on X. Moreover, IdU �CR.�;AZ/B is invertible if and only if

1 2 �..�R.�; A/� IdX/
2/ () 0 2 �.�2R.�; A/2 � 2�R.�; A//:

However, �2R.�; A/2 � 2�R.�; A/ is never surjective, thus 1 2 �.CR.�;AZ/B/

as claimed.

Nevertheless, the matrix G can be treated also within our framework. To this

end choose the spaces Z WD U WD X D X �X and

Z�1 D
²�

x

y

�

2 X�1 �X�1W x � y 2 X
³

equipped with the norm induced by X�1 �X�1. Then we consider the operators

AZ WD
�

2A�1 0

2A�1 0

�

WZ � Z�1 �! Z�1;

B WD
�

A�1 0

A�1 0

�

2 L.U;Z�1/ and CWD
�

� IdX IdX

0 0

�

2 L.Z;U/:

For this choice we obtain �.AZ/ D �.2A/ n ¹0º with resolvent

R.�;AZ/ D
�

R.�; 2A/ 0

R.�; 2A/� 1
�

1
�

�

; � 2 �.AZ/:
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Next one easily verifies that G D .AZ C BC/jX. Moreover, IdU �CR.�;AZ/B D
IdU which is invertible for all � 2 �.A/ D �.2A/ n ¹0º. Hence, we can apply

Theorem 2.3.(d) and conclude that �.G/ � �.2A/ [ ¹0º. We note that using

Corollary 2.7 one could also show that �.G/ D �.2A/[ ¹0º.

By applying Lemma A.10.(iii) to T in (2.9) we obtain using Corollary A.12 the

following result generalizing [19, Theorem 1.1] and parts of [6, Lemma 6.4].

Corollary 2.6. For � 2 �.A/ we have

ker.� � ABC / D R.�; AZ/B ker.IdU ��U .�// D ker.IdZ ��Z.�//;

ker.IdU ��U .�// D C ker.� � ABC /:

One drawback of Theorem 2.3 is that it can be applied only to points � 2 �.A/.
If one wants to determine the spectrum of a given operator G it is therefore

important to represent it asG D ABC for an operator A having “small” spectrum.

In many cases this is possible due to the great freedom in the choices of AZ, B

and C which only have to verify the Assumptions 1.1.

Nevertheless, we now present several approaches which allow to deal with

points in � 2 �.A/, too. The first one is based on the decomposition

� � ABC D �0 � .AZ C .BC C �0 � �//jX (2.10)

for some fixed �0 2 �.A/ and arbitrary � 2 C. Define the “extended” space

U WD X � U and for � 2 C the “extended” operators

B WD .IdX ; B/ 2 L.U; Z�1/; C� WD
�

� � IdZ

C

�

2 L.Z;U/: (2.11)

Then for � WD �0 � � we obtain

BC� D BC C �0 � � 2 L.Z;Z�1/

which implies

ABC�
D .AZ C .BC C �0 � �//jX :

Hence, by (2.10) we have � � ABC D �0 � ABC�
and therefore

� 2 �.ABC / () �0 2 �.ABC�
/;

� 2 ��.ABC / () �0 2 ��.ABC�
/
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for � 2 ¹p, a, r, c, essº, where now �0 2 �.A/. In order to apply our previous

results to this situation we define the operators

�U.�0; �/ WD C�R.�0; A
Z/B

D
�

.�0 � �/ �R.�0; A/ .�0 � �/ �R.�0; AZ/B
CR.�0; A/ �U .�0/

�

2 L.U/;

�Z.�0; �/ WD R.�0; A
Z/BC�

D �Z.�0/C .�0 � �/R.�0; A/ 2 L.Z/

for � D �0 � �. Then by Theorem 2.3 the following holds.

Corollary 2.7. Let �0 2 �.A/, � 2 C and W 2 ¹U; Zº.
(a) The following spectral implications always hold.

� 2 �.ABC / H) 1 2 �.�W .�0; �//;

� 2 �p.ABC / () 1 2 �p.�W .�0; �//;

� 2 �a.ABC / H) 1 2 �a.�W .�0; �//;

� 2 �ess.ABC / H) 1 2 �ess.�W .�0; �//:

IfD.A/C rg.IdZ ��Z.�// is dense in Z for some (hence all) � 2 �.A/ then

also

� 2 �c.ABC / H) 1 2 �c.�W .�0; �//;

� 2 �r.ABC / (H 1 2 �r.�W .�0; �//:

(b) If �W .�0; �/ 2 L.W / is compact, then

� 2 �.ABC / () � 2 �p.ABC / () 1 2 �p.�W .�0; �//:

In particular, if dim.U / < 1, then

� 2 �.ABC / () � 2 �p.ABC / () det.IdU ��U .�0; �// D 0:

(c) If there exist �0 2 �.A/ and � 2 C such that 1 2 �.�W .�0; �//, i.e., if

�.AZBC / ¤ ;, then

� 2 �.ABC / () 1 2 �.�W .�0; �//;

� 2 ��.ABC / () 1 2 ��.�W .�0; �//

for all � 2 ¹a, r, c, essº.
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(d) If 1 2 �.�W .�0; �//, then � 2 �.ABC / and the resolvent of ABC is given by

R.�; ABC / D R.�0; A/CR.�0; A
Z/B � .IdU ��U.�0; �//

�1 � C�R.�0; A/
D .IdZ ��Z.�0; �//�1 � R.�0; A/;

where � WD �0 � �.

In order to check the condition 1 2 �.�U.�0; �// appearing above one might

be tempted to use Schur complements, cf. Corollary A.12. To do so 1 has to be an

element of the resolvent set of one of the diagonal entries of�U.�0; �/. However,

the condition 1 2 �..�0 � �/ � R.�0; A// is, by the spectral mapping theorem for

the resolvent, see [7, IV.1.13], equivalent to � 2 �.A/. This case is already covered

by Theorem 2.3. On the other hand, 1 2 �.�U .�0// is equivalent to �0 2 �.ABC /.
We now describe two other approaches which allow to deal with boundary

points �0 2 @�.A/. This is in particular useful if �.A/ D @�.A/, e.g., if �.A/ is

discrete in C, e.g., if A has compact resolvent. But also in other cases this might

be very helpful since @�.A/ already determines the spectral bound

s.A/ WD sup¹Re�W� 2 �.A/º

of an operator A which is closely related to the asymptotic behavior of the solu-

tions of the abstract Cauchy problem (ACP), cf. [7, Corollary IV.3.12].

Corollary 2.8. Let �0 2 @�.A/. If �Z.�/ D R.�; AZ/BC W �.A/ ! L.Z/ has a

continuous extension N�Z.�/ in �0, then �0 2 �.ABC /.

Proof. By contradiction assume that �0 2 �.ABC /. Define

R.�/W .�.A/\ �.ABC //[ ¹�0º �! L.X/; R.�/ WD .IdZ � N�Z.�// �R.�; ABC /:

Then by (2.8) we conclude R.�/ D R.�; A/ for all � 2 � WD �.A/\ �.ABC /, i.e.,

for all � 2 � we have

R.�/.�� A/x D x for all x 2 D.A/;
.� � AZ/R.�/x D x for all x 2 X:

Since �0 2 N�, by continuity these relations remain valid for � D �0. This implies

R.�0/x 2 D.A/ and therefore R.�0/ D R.�0; A/ 2 L.X/. This proves �0 2 �.A/
which contradicts the assumption that � 2 @�.A/ � �.A/. Hence, �0 2 �.ABC /

as claimed. �



Spectral theory for structured perturbations of linear operators 1405

The following result is a “local” version of the previous one. In fact, we do

not suppose that �Z.�/ has a continuous extension to some spectral value on the

boundary of �.A/ but only �Z.�/f for an associated eigenvector f of A.

Corollary 2.9. Let �0 2 @�.A/ \ �p.A/. If for some 0 ¤ f 2 ker.�0 � A/ the

limit

lim
�.A/3�!�0

�Z.�/f DW g

converges in X such that g 2 Z and Cg D 0, then �0 2 �p.ABC /.

Proof. We first show that f Cg 2 ker.�0�ABC /. Indeed, f Cg 2 Z D D.AZBC /

and

.�0 � AZBC /.f C g/ D .�0 � AZ/g � BCf
D .�0 � AZ/.g ��Z.�/f /C .�0 � �/ ��Z.�/f
�! 0 in Z�1 as �.A/ 3 � ! �0;

(2.12)

where we used that AZ 2 L.X;Z�1/. This implies f C g 2 ker.�0 � AZBC / D
ker.�0 � ABC / as claimed. Now, if f C g ¤ 0 it follows immediately that

�0 2 �p.ABC /. On the other hand, if f C g D 0, i.e., f D �g, then by the

assumptions Cg D 0 and 0 ¤ f 2 ker.�0 � A/ we obtain

.�0 � ABC /f D .�0 � AZ � BC/f D 0:

This implies again �0 2 �p.ABC /, hence the proof is complete. �

3. The generic example

In this section we introduce a general setting which generalizes “boundary” per-

turbations of operators in the sense of Greiner, cf. [8], and then apply to it the

theory developed in Section 2. Concrete application fitting into this framework

can be found in Section 4.

3.1. The operator Aˆ
P

. We start with a Banach space X and a linear “maximal

operator” (maximal in the sense of a “big” domain, e.g., a differential operator

without boundary conditions) AmWD.Am/ � X ! X . In order to single out a

restriction A ofAm we take a Banach spaces @X , called “space of boundary condi-

tions”, and a linear “boundary operator”, e.g. a “trace” operator,LWD.Am/ ! @X

and define on X

A � Am; D.A/ D ¹f 2 D.Am/WLf D 0º D ker.L/: (3.1)
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Next we perturb A in the following way. For operators P WD.Am/ ! X and

ˆWD.Am/ ! @X we introduce AˆP WD.AˆP / � X ! X given by

AˆP � Am C P; D.AˆP / WD ¹f 2 D.Am/WLf D f̂ º D ker.L�ˆ/: (3.2)

Hence, AˆP can be considered as a twofold perturbation of A,

� by the operator P to change its action, and

� by the operator ˆ to change its domain,

cf. Diagram 2.

X � D.Am/ X

@X

..........................................................................................................................................................................................................................................................................................................................
..
.

.....
..
..
.
..

Am; P
.............................................................................................................................................................................................................................................................................................................................

...
..
..
..
.
..L; ˆ

Diagram 2. The operators defining Aˆ
P

in (3.2).

We note that in [8] the operator ˆWX ! @X has to be bounded and P D 0.

Under the Assumptions 3.5 below, which cover unbounded ˆ and P , the

spectral properties of AˆP can be studied using our results from Section 2. As a

first step towards this goal we introduce in the next subsection so-called “abstract

Dirichlet operators” and then study their existence and basic properties.

3.2. Abstract Dirichlet operators. If for some � 2 C the restriction

Ljker.��Am/W ker.� � Am/ �! @X

is invertible with inverse

L� WD .Ljker.��Am//
�1W @X �! X;

then we call L� the abstract Dirichlet operator associated to �, Am and L. This

notion is motivated by the fact that for a given “boundary value” x 2 @X the

“function” f D L�x is the unique solution of the “abstract Dirichlet Problem”

´

.� � Am/f D 0;

Lf D x:
(aDP)

Our approach is mainly based on these Dirichlet operators L� and in general

we do not have to know the resolvent R.�; A/ explicitly. Therefore, the following

result characterizing resolvent points of A in terms of the existence of L� might

be helpful in applications.
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Lemma 3.1. Let A be given by (3.1) and assume that LWD.Am/ ! @X is

surjective. Then � 2 �.A/ if and only if

(i) A is closed,

(ii) � � AmWD.Am/ ! X is surjective,

(iii) L�W @X ! X exists (algebraically), i.e., for every x 2 @X the abstract

Dirichlet Problem (aDP) has a unique solution f D L�x 2 D.Am/.

Proof. If � 2 �.A/ then clearly A is closed and ��Am is surjective. To show (iii)

fix some x 2 @X . Then there exists h 2 D.Am/ such that Lh D x. Define

f WD .IdX �R.�; A/.�� Am//h 2 D.Am/:

Since D.A/ D ker.L/, we have Lf D x. Moreover, from .� � Am/R.�; A/ D
IdX we conclude f 2 ker.� � Am/, i.e., f solves (aDP). Now assume that

f1; f2 2 D.Am/ are both solutions of (aDP). Then .� � Am/.f1 � f2/ D 0 and

L.f1 � f0/ D 0, i.e., f1 � f2 2 ker.� � A/ D ¹0º which shows uniqueness.

Conversely, assume that (i)–(iii) hold. First we show that � � A is surjective.

Let g 2 X , then by (ii) there exist h 2 D.Am/ such that .� � Am/h D g. Let

f WD .IdX �L�L/h. Then Lf D 0, i.e., f 2 D.A/ and

.� � A/f D .� � Am/.IdX �L�L/h D g

showing surjectivity. To prove injectivity let .��A/f D 0 for some f 2 D.A/ D
ker.L/. Then f 2 ker.� � Am/ and Lf D 0. Since the same holds for f D 0, by

the uniqueness assumption in (iii) we conclude f D 0. Summing up, this shows

that ��A is bijective and sinceA by (i) is closed, the closed graph theorem implies

� 2 �.A/ as claimed. �

Next we give a closedness condition ensuring existence and boundedness of

the Dirichlet operators. More precisely, let

A WD
�

Am

L

�

WD.Am/ � X �! X � @X (3.3)

and define Z WD .D.Am/; k�kA/ D ŒD.A/�. Then the following holds.

Lemma 3.2. Assume that LWD.Am/ ! @X is surjective and �.A/ ¤ ;. Then the

following conditions are equivalent:

(a) the operator A in (3.3) is closed, i.e., Z is a Banach space;

(b) the Dirichlet operator L� 2 L.@X;X/ exists for all � 2 �.A/;
(c) the Dirichlet operator L� 2 L.@X;X/ exists for some � 2 �.A/.
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Proof. (a) H) (b) is shown in [5, Lemma 2.2] while (b) H) (c) is trivially

satisfied. To prove (c) H) (a) take a sequence .fn/n2N � D.Am/ such that

fn ! f0 2 X and

�

Am

L

�

fn �!
�

g0

x0

�

2 X � @X as n ! C1:

Since L� is bounded, this impliesD.A/ D ker.L/ 3 .Id �L�L/fn ! f0�L�x0
and

.� � A/.Id �L�L/fn D .� � Am/fn ! �f0 � g0:

Hence, by the closedness of � � A we conclude that f0 � L�x0 2 D.A/ and

.��A/.f0�L�x0/ D �f0�g0. Using this we obtain f0 2 ker.��Am/CD.A/ �
D.Am/ and .��Am/f0 D �f0 � g0, i.e., Amf0 D g0. Finally, from f0 �L�x0 2
D.A/ D ker.L/ it follows that Lf0 D x0. Summing up this proves (a). �

Remark 3.3. Note that if the operator AmWD.Am/ � X ! X is closed and

L 2 L.ŒD.Am/�; @X/ is bounded then
�

Am

L

�

WD.Am/ ! X � @X is closed. Hence,

by the previous result, closedness of Am and relative boundedness of L imply the

existence of the Dirichlet operators L� for all � 2 �.A/.

We need two more facts concerning the Dirichlet operators which follow as in

[2, Proposition 3.2] and [8, Lemma 1.2], respectively.

Lemma 3.4. Assume that for some �2C the Dirichlet operatorL�WD.Am/ ! @X

exists. Then

(i) for every � 2 �.A/ also L�WD.Am/ ! @X exists and is given by

L� D .� � A/R.�; A/L�I (3.4)

(ii) the domain of Am can be decomposed as algebraically direct sum

D.Am/ D D.A/˚ ker.� � A/

with projection P� WD L�L satisfying rg.P�/ D ker.� � A/ and ker.P�/ D
D.A/.

3.3. How to represent Aˆ
P

as ABC ? In order to apply the results of Section 2

to the generic example we have to represent AˆP from (3.2) as .AZ C BC/jX like

in (1.1) for suitable operators AZ , B and C satisfying Assumptions 1.1. In order

to do so we make in the remaining part of this section the following standing.
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Assumptions 3.5. (i) AWD.A/ � X ! X satisfies �.A/ ¤ ;.

(ii) LWD.Am/ ! @X is surjective.

(iii) One of the (equivalent) conditions (a)–(c) in Lemma 3.2 is satisfied.

(iv) ˆ 2 L.Z; @X/ and P 2 L.Z;X/ for the Banach space Z WD ŒD.A/�,

cf. (3.3).

Note that assumption (iv) is equivalent to the existence of M � 0 such that

k f̂ k@X � M � .kAmf kX C kLf k@X C kf kX/;

kPf kX � M � .kAmf kX C kLf k@X C kf kX/;

for all f 2 D.Am/.
Our first aim is now to extend the operator AWD.A/ � X ! X to AZ WZ �

Z�1 ! Z�1 for Z D D.Am/ and a space Z�1 containing X .

Consider on ker.� � Am/ the norm

kf kL WD kf kX C kLf k@X :

Then the following holds.

Lemma 3.6. For every � 2 C the space .ker.� � Am/; k�kL/ is complete.

Proof. By Assumption 3.5.(iii) the operator A WD
�

Am

L

�

is closed, hence Z WD
.D.Am/; k�kA/ is complete. Moreover, � � AmWZ ! X is bounded, hence

ker.� � Am/ is closed in Z. However, on ker.� � Am/ the norms k�kA and k�kL
are equivalent which implies the claim. �

We proceed and define for some fixed �0 2 �.A/ the Banach space

Z�1 WD X � ker.�0 � Am/

equipped with the norm

k
�

f
k

�

kZ�1
WD kf kX C kkkL:

Identifying X by X � ¹0º, i.e., f 2 X by .f; 0/> 2 Z�1, we obtain X ,! Z�1.
Recall that by Lemma 3.4.(ii) we have Z D D.Am/ D D.A/ ˚ ker.�0 � Am/

with corresponding projection P�0
D L�0

L 2 L.Z/. Using this we define the

extension AZWZ � Z�1 ! Z�1 by

AZf WD
�

A.Id �P�0
/f

P�0
f

�
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cf. Diagram 3.

Z D D.A/ ˚ ker.�0 � Am/

Z�1 D X � ker.�0 � Am/
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Id

Diagram 3. The extension AZ of A to Z.

Lemma 3.7. We have A D AZjX and R.�; A/ D R.�; AZ/jX for all � 2 �.A/ D
�.AZ/.

Proof. The first assertion follows from the fact that P�0
f D 0 if and only if

f 2 D.A/. To show the remaining assertions we first prove that �0 2 �.AZ/.

To this end define RWZ�1 ! Z�1 by

R
�

f
k

�

WD R.�0; A/.f C �0k/ � k 2 Z D D.AZ/:

Using that P�0
jker.�0�Am/ D Id and P�0

R.�0; A/ D 0 we obtain

.�0 � AZ/ �R
�

f

k

�

D
 

.�0 � A.Id �P�0
//.R.�0; A/.f C �0k/ � k/

�P�0
.R.�0; A/.f C �0k/ � k/

!

D
�

f

k

�

for all
�

f
k

�

2 Z�1; and

R � .�0 � AZ/f D R.�0; A/ � .�0f � A.Id �P�0
/f � �0P�0

f /C P�0
f D f

for all f 2 Z, i.e., R D .�0 � AZ/�1 is the algebraic inverse. Moreover,

R 2 L.Z�1/ and hence �0 2 �.AZ/ ¤ ;. Since Z D D.AZ/ ,! X ,

Lemma A.7.(vi)–(vii) applied to E D X , F D Z�1 and T D AZ then implies

�.AZ/ D �..AZ/1/ D �.A/ and R.�; A/ D R.�; AZ/jX as claimed. �

To proceed we define the operator

LA WD .� � AZ/L� 2 L.@X;Z�1/ (3.5)

which by (3.4) is independent of � 2 �.A/. Moreover, we introduce U WD X �@X
and

B WD .IdX ; LA/ 2 L.U;Z�1/ and C� WD
�

P C � � IdZ

ˆ

�

2 L.Z; U / (3.6)

for � 2 C. Then we obtain the following representation of AˆP , cf. Diagram 4.
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Diagram 4. The operators appearing in the representation Aˆ
P

D .AZ C P CLAˆ/jX .

Lemma 3.8. Let �0; � 2 C and � WD �0 � �. Then for AˆP given by (3.2) one has

� � AˆP D �0 � .AZ C P C .�0 � �/C LAˆ/
ˇ

ˇ

X
D �0 � ABC�

: (3.7)

Proof. To prove (3.7) it suffices to consider the case � D �0 D � D 0, i.e., to

verify that

AˆP D .AZ C P C LAˆ/jX : (3.8)

Denote by G the operator defined by the right-hand-side of (3.8) and fix some

� 2 �.A/. Then for f 2 D.Am/ we have

f 2 D.G/ () .AZ � �/.Id �L�ˆ/f C .P C �/f 2 X
() .Id �L�ˆ/f 2 D.A/ D ker.L/

() Lf D f̂

() f 2 D.AˆP /:

Moreover, for f 2 D.AˆP / we obtain

Gf D .A � �/.Id �L�ˆ/f C .P C �/f

D .Am � �/f C .P C �/f

D .Am C P /f D AˆPf;

hence AˆP D G as claimed. �

Under suitable assumptions the spectra of AZ CP CLAˆWD.Am/ � Z�1 !
Z�1 and its restriction AˆP to X coincide. More precisely we have the following

which generalizes Lemma 3.7.
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Lemma 3.9. Assume that L�ˆWD.Am/ ! @X is surjective and that

�

Am C P

L�ˆ

�

WD.Am/ � X �! X � @X

is closed. Then

�.AˆP / D �.AZ C P C LAˆ/:

Proof. The inclusion “�” is clear by Lemma A.7.(vi). Hence we only have to

verify that � 2 �.AˆP / implies � 2 �.AZ C P C LAˆ/. To this end note that the

pair Am C P WD.Am/ � X ! X , L � ˆWD.Am/ ! @X satisfies assumption (a)

of Lemma 3.2. Hence, the corresponding Dirichlet operator

K� WD ..L �ˆ/jker.��Am�P//
�1 2 L.@X;X/

exists. Using this we define R� 2 L.Z�1/ by

R�
�

f
k

�

W D R.�; AˆP /.f C �0k/ �K�Lk 2 Z D D.AZ C P C LAˆ/:

Then a simple computation as in the proof of Lemma 3.7 shows that R� D
R.�; AZ C P C LAˆ/, i.e., � 2 �.AZ C P C LAˆ/ as claimed. �

3.4. Spectral theory for Aˆ
P

. By applying Theorem 2.3 to the representa-

tion (3.7) of � � AˆP we easily obtain the following result where part (c) follows

by using also Lemma 3.9.

Corollary 3.10. For �0 2 �.A/, � 2 C and � WD �0 � � define on U WD X � @X
and Z the operators

�U.�0; �/ WD C�R.�0; A
Z/B

D
�

.P C � � IdZ/R.�0; A/ .P C � � IdZ/L�0

ˆR.�0; A/ ˆL�0

�

2 L.U/;

�Z.�0; �/ WD R.�0; A
Z/BC�

D R.�0; A/.P C � � IdZ/C L�0
ˆ 2 L.Z/:

Then for W 2 ¹U; Zº the following holds.
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(a) We always have

� 2 �.AˆP / H) 1 2 �.�W .�0; �//;

� 2 �p.A
ˆ
P / () 1 2 �p.�W .�0; �//;

� 2 �a.A
ˆ
P / H) 1 2 �a.�W .�0; �//;

� 2 �ess.A
ˆ
P / H) 1 2 �ess.�W .�0; �//:

If D.A/C rg.IdZ �L�ˆ/ is dense in Z for some (hence all) � 2 �.A/ then

also

� 2 �c.A
ˆ
P / H) 1 2 �c.�W .�0; �//;

� 2 �r.A
ˆ
P / (H 1 2 �r.�W .�0; �//:

(b) If �W .�0; �/ 2 L.W / is compact, then

� 2 �.AˆP / () � 2 �p.A
ˆ
P / () 1 2 �p.�W .�0; �//:

(c) If L � ˆWD.Am/ ! @X is surjective and
�

AmCP
L�ˆ

�

WD.Am/ � X ! X � @X
is closed, then

� 2 �.AˆP / () 1 2 �.�W .�0; �//: (3.9)

(d) If there exist �0 2 �.A/, � 2 C such that 1 2 �.�W .�0; �//, then for all

� 2 ¹a, r, c, essº

� 2 �.AˆP / () 1 2 �.�W .�0; �//;

� 2 ��.A
ˆ
P / () 1 2 ��.�W .�0; �//:

(e) If 1 2 �.�W .�0; �//, then � 2 �.AˆP / and the resolvent of AˆP is given by

R.�; AˆP / D R.�0; A/

C .R.�0; A/; L�0
/ � .IdU ��U.�0; �//

�1

�
�

.P C � � IdZ/R.�0; A/

ˆR.�0; A/

�

D .IdZ �R.�0; A/.P C � � IdZ/ � L�0
ˆ/�1 �R.�0; A/;

where � D �0 � �.

The following simple example shows that the equivalence in part (c) does not

hold without the surjectivity assumption on L�ˆ.
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Example 3.11. On X WD Lp.RC/ consider Am WD d
ds

with domain D.Am/ WD
W1;p.RC/. Moreover, take @X WD C and L WD ı0WD.Am/ ! @X . Then Am is

closed, L is surjective and for A WD Amjker.L/ we have �.A/ D ¹� 2 CW Re � � 0º.
Next, choose P D 0 and ˆ D ı0 D L which gives Aˆ0 DW Aˆ D Amjker.L�ˆ/ D
Am and �.Aˆ/ D ¹� 2 CW Re � � 0º.

In this case we obtain for arbitrary �0 2 �.A/ and � 2 C

�U.�0; �/ D
�

.�0 � �/R.�0; A/ .�0 � �/L�0

0 1

�

:

This implies that 1 2 �.�U.�0; �// for all �0 2 �.A/, � 2 C while � 2 �.Aˆ/ if

and only if Re� � 0. However, in this case L�ˆ D 0 is not surjective and hence

these facts do not contradict part (c) of the previous result.

Next we give a simple condition ensuring that L � ˆ is surjective. For an

application in the context of delay equations see Corollary 4.11.

Lemma 3.12. If there exists �0 2 �.A/ such that

ˆ.ker.�0 � Am// � ˆ.D.A//; (3.10)

then L �ˆWD.Am/ ! @X is surjective.

Proof. It suffices to show that for each x 2 @X there exists f 2 D.Am/ such that
´

Lf D x;

f̂ D 0:
(3.11)

Let x 2 @X . Then by (3.10) there exists f0 2 D.A/ D ker.L/ such that

ˆ.L�0
x C f0/ D 0. This implies that f WD L�0

x C f0 solves (3.11) and the

proof is complete. �

By choosing ˆ D ˛L for some ˛ ¤ 1 it is clear that (3.11) is only sufficient

but not necessary for L�ˆ to be surjective.

If P D 0, we obtain the operator Aˆ WD Aˆ0 � Am with domain D.Aˆ/ D
ker.L �ˆ/. If also � D �0 2 �.A/ we can cancel out the unnecessary terms and

consider U D @X , B D LA and C D ˆ. Then Aˆ D ABC and the previous result

simplifies as follows.

Corollary 3.13. For � 2 �.A/ define the operators

�@X .�/ D CR.�; AZ/B D ˆL� 2 L.@X/;

�Z.�/ D R.�; AZ/BC D L�ˆ 2 L.Z/:
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Then for W 2 ¹@X;Zº the following holds.

(a) We always have

� 2 �.Aˆ/ H) 1 2 �.�W .�//;

� 2 �p.A
ˆ/ () 1 2 �p.�W .�//;

� 2 �a.A
ˆ/ H) 1 2 �a.�W .�//;

� 2 �ess.A
ˆ/ H) 1 2 �ess.�W .�//:

If D.A/C rg.IdZ �L�ˆ/ is dense in Z for some (hence all) � 2 �.A/ then

also

� 2 �c.A
ˆ/ H) 1 2 �c.�W .�//;

� 2 �r.A
ˆ/ (H 1 2 �r.�W .�//:

(b) If �W .�/ 2 L.W / is compact, then

� 2 �.Aˆ/ () � 2 �p.A
ˆ/ () 1 2 �p.�W .�//: (3.12)

In particular, if dim.@X/ < 1, then

� 2 �.Aˆ/ () � 2 �p.A
ˆ/ () det.Id@X ��@X.�// D 0: (3.13)

(c) If L �ˆWD.Am/ ! @X is surjective and
�

Am

L�ˆ
�

WD.Am/ � X ! X � @X is

closed, then

� 2 �.Aˆ/ () 1 2 �.�W .�//:

(d) If there exist �0 2 �.A/ such that 1 2 �.�W .�0//, then for all � 2
¹a, r, c, essº

� 2 �.Aˆ/ () 1 2 �.�W .�//;

� 2 ��.A
ˆ/ () 1 2 ��.�W .�//:

(e) If 1 2 �.�W .�//, then � 2 �.Aˆ/ and the resolvent of Aˆ is given by

R.�; Aˆ/ D R.�; A/C L� � .Id@X �ˆL�/�1 �ˆR.�; A/

D .IdZ �L�ˆ/�1 �R.�; A/:

Remark 3.14. Note that by definition LL� D Id@X . Hence, the condition

1 2 �.�@X/ appearing in the previous result is equivalent to the fact that ‰L�
is invertible where ‰ WD L �ˆ determines the domain D.Aˆ/ D ker.L �ˆ/ D
ker.‰/.
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Corollaries 2.8 and 2.9 read in the context of the generic example as follows.

Corollary 3.15. Let �0 2 @�.A/.
(a) If the map �.A/ 3 � 7! L�ˆ 2 L.Z/ has a continuous extension in �0, then

�0 2 �.Aˆ/.
(b) If for some 0 ¤ f 2 ker.�0 � A/ the limit

lim
�.A/3�!�0

L� f̂ DW g

converges in X such that g 2 Z and ˆg D 0, then �0 2 �p.A
ˆ/.

We mention that the operatorAˆ for boundedˆ 2 L.X; @X/was already stud-

ied by Greiner in [8]. In case dim.@X/ < C1, [8, Proposition 3.1] characterizes

the spectral values of Aˆ lying in the component of �.A/ which is unbounded to

the right as the zeros of the analytic function F.�/ WD det.Id@X ��@X.�//, cf.

Corollary 3.13. Moreover, in [13] Nagel studied domain perturbations for operator

matrices and arrives in [13, Theorem 2.7] at conditions similar to (3.12) assuming

compactness of operators corresponding to our �Z.�/ 2 L.Z/.

In Section 4 we consider a series of concrete applications, most of which fit

into the setting of the generic example above.

4. Applications

In this section we will apply our abstract results from Sections 2–3 to

(i) the first derivative with general boundary conditions,

(ii) the second derivative with general boundary conditions,

(iii) a second derivative with Nonlocal Neumann boundary conditions,

(iv) a second order differential operator with point delay at the boundary, and

(v) the Laplacian with dynamical boundary conditions.

Moreover, we use them to investigate the spectral theory of

(vi) delay equations,

(vii) complete second order Cauchy problems.

We note that in the examples (i)–(ii) a direct computation of the spectrum

is also possible. Nevertheless, these examples illustrate in a simple context our

results.

Finally, we mention that our approach can also be used for spectral investiga-

tions of flows in networks (cf. [11, Proposition 3.3]) and in various other situations

like [10, Section II] and [14, Section 3].
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4.1. The first derivative with general B.Cs. The aim of this example is to

illustrate our results in a very simple but typical context. Let X D LpŒ0; 1� and

‰ 2 .W1;p Œ0; 1�/0 for some 1 � p < 1. We show how the operator

G D d

ds
with domain D.G/ WD ¹f 2 W1;pŒ0; 1�W‰f D 0º (4.1)

fits into the framework of our generic example from the previous section. In fact,

it suffices to choose the maximal operator Am WD d
ds

with domain D.Am/ D
W1;p Œ0; 1�, the boundary space @X WD C and L D ı0WD.Am/ ! @X where

ı0f WD f .0/. This yields

A D d

ds
with domain D.A/ WD ¹f 2 W1;pŒ0; 1�W f .0/ D 0º D ker.L/:

Moreover, let Z WD ŒD.Am/� D W1;pŒ0; 1�, then ˆ WD L �‰ 2 L.Z; @X/ and by

definition it follows that G D Aˆ.

Next one easily verifies that �.A/ D C and that for � 2 C the Dirichlet

operators L� 2 L.C; X/ are given by

L�z D z e��; z 2 C:

Hence, Corollary 3.13 implies the following.

Corollary 4.1. The spectrum of G in (4.1) is characterized by

� 2 �.G/ () � 2 �p.G/ () ‰.e�
�
/ D 0:

For example ‰ D ı0 � ı1 implies � 2 �.G/ () e� D 1, i.e., �.G/ D
�p.G/ D 2�iZ.

Remark 4.2. We note that the choice of the unperturbed operator A � Am with

domain D.A/ D ker.L/ in the example above (as well as in the following ones)

is rather arbitrary. As already mentioned, due to the freedom of the perturbation

ˆ 2 .W1;pŒ0; 1�/0 it is convenient to chooseA having small spectrum to obtain the

least possible points � 2 �.A/which have to be investigated separately using, e.g.,

Corollary 3.15. This fact is quite different from perturbation results for generators

where in most cases the perturbationˆ has to be “small” in order that the generator

property of A is inherited to Aˆ.

4.2. The second derivative with general B.Cs. On the state space X D CŒ0; 1�

we consider for some  1;  2 2 .C2Œ0; 1�/0 the second derivative

G D d2

ds2 with domain D.G/ WD ¹f 2 C2Œ0; 1�W 1.f / D 0 D  2.f /º: (4.2)
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To compute �.G/ we consider the maximal operator Am WD d2

ds2 with domain

D.Am/ WD C2Œ0; 1�, the boundary space @X D C
2 and L WD

�ı0

ı0
0

�

WD.Am/ ! @X

where ı0
0f WD f 0.0/. This gives the second derivative

A D d2

ds2
with domain D.A/ WD ¹f 2 C2Œ0; 1�WLf D 0º D ker.L/:

Moreover, for Z WD ŒD.Am/� D C2Œ0; 1� we have ˆ D
�

'1

'2

�

WD L �
�

 1

 2

�

2
L.Z; @X/ and by definition it follows G D Aˆ.

Since by Arzela–Ascoli’s theorem the embedding ŒD.A/� ,! X is compact,

the operatorA has compact resolvent, which implies �.A/ D �p.A/. Now a simple

computations shows that

�p.A/ D ;:

Next, by solving for � 2 C and x WD
�

z1

z2

�

2 @X D C
2 the Dirichlet problem

´

.� � Am/f D 0;

Lf D x;
()

8

<

:

�

� � d2

ds2

�

f D 0;

f .0/ D z1; f
0.0/ D z2;

we obtain the Dirichlet operators L� 2 L.@X;X/ D L.C2;CŒ0; 1�/ given by

.L�
�

z1

z2

�

/.s/ D

8

<

:

z1 � cosh.
p
�s/C z2�sinh.

p
�s/p

�
if � ¤ 0,

z1 C z2 � s if � D 0,

for
�

z1

z1

�

2 @X and s 2 Œ0; 1�. Now Corollary 3.13 applied to this situation gives the

following.

Corollary 4.3. For G given by (4.2) we have � 2 �.G/ D �p.G/ if and only if

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

det

�

 1.cosh.
p
� �//;  1.sinh.

p
� �//

 2.cosh.
p
� �//;  2.sinh.

p
� �//

�

D 0 for � ¤ 0,

det

�

 1.1/  1.s/

 2.1/  2.s/

�

D 0 for � D 0,

(4.3)

where 1.s/ D 1 and s.s/ D s for all s 2 Œ0; 1�.

For particular choices of the boundary functionals  1,  2 the characteristic

equation (4.3) might simplify considerably. For example, if we consider the

second derivative G D d2

ds2 with Wentzell-type boundary conditions f 00.j / D
f 0.j /, j D 0; 1, we obtain the following.
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Corollary 4.4. For ‰ D
�ı00

0
�ı0

0

ı00
1

�ı0
1

�

we obtain �.G/ D �p.G/ D ¹�n2 � �2W n 2
N0º [ ¹1º.

Proof. By (4.3) we have � 2 �.G/ if and only if

� � .� � 1/ � sinh.
p
�/ D 0: �

4.3. The second derivative with nonlocal Neumann B.Cs. This example deals

with an operator associated to a heat equation with distributed unbounded and

delayed feedback at the boundary, cf. [9, 2].

For 1 � p < C1 let X WD LpŒ0; 1� and Y WD Lp.Œ�1; 0�; X/, which by [4,

Theorem A.6] is isometrically isomorphic to Lp.Œ�1; 0��Œ0; 1�/. For this reason in

the sequel we will use the notation v.r; s/ WD .v.r//.s/ for v 2 Y and r 2 Œ�1; 0�,
s 2 Œ0; 1�. Then on the product space X WD X �Y we consider the operator matrix

G WD

0

B

@

d2

ds2
0

0
d

dr

1

C

A
;

D.G/ WD
²�

f

v

�

2 W2;p Œ0; 1� � W1;p.Œ�1; 0�; X/W v.0/D f; f .1/ D 0;

f 0.0/ D
1
Z

0

0
Z

�1

v.r; s/d�.r/ ds

³

where �W Œ�1; 0� ! R is a function of bounded variation. This operator appears

in [9, Example 5.2] (for p D 2) and in [2, Section 3.3], where it is shown that it

generates a C0-semigroup.

Here we are interested in characterizing the spectrum ofG. In order to represent

G as Aˆ we first introduce the following operators and spaces. Consider

� Am WD d2

ds2 with domain D.Am/ D ¹f 2 W2;pŒ0; 1�W f .1/ D 0º on X ,

� L WD ı0
1WD.Am/ ! @X WD C, i.e., Lf D f 0.1/,

� Dm WD d
dr

with domain D.Dm/ D W1;p.Œ�1; 0�; X/ on Y ,

� K WD ı0WD.Dm/ ! @Y WD X , i.e., Kv D v.0/,

� A D AmjkerL, D WD DmjkerK .

Next we define the maximal operator matrix

Am WD
�

Am 0

0 Dm

�

; D.Am/ WD D.Am/ �D.Dm/:
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Moreover, let @X WD @X � @Y ,

L WD
�

L 0

0 K

�

WD.Am/ �! @X

and A � Am with domain D.A/ WD ker.L/ D D.A/ � D.D/. Finally, we take

Z WD X � ŒD.Dm/� and define

ˆ WD
�

ı0
1 � ı0

0 '

IdX 0

�

2 L.Z; @X/ where '.v/ WD
1
Z

0

0
Z

�1

v.r; s/ d�.r/ ds:

Then by definition we obtain G D Aˆ. In order to characterize the spectrum of Aˆ

we first note that �.A/ D �.D/ D ;. Moreover, for � 2 C the Dirichlet operators

L� 2 L.@X;X/ and K� 2 L.@Y ; Y / relatively to the pairs Am, L and Dm, K are

given by

.L�z/.s/D

8

ˆ

<

ˆ

:

z � sinh.
p
�.s � 1//p
�

if � ¤ 0;

z � .s � 1/ if � D 0;

z 2 @X; s 2 Œ0; 1�;

.K�f /.r/D e�r � f; f 2 @Y ; r 2 Œ�1; 0�:

Thus, for � 2 C we obtain the Dirichlet operator for the pair Am, L as

L� WD
�

L� 0

0 K�

�

2 L.@X;X/:

Now we are in the position to apply Corollary 3.13 and obtain the following

characterization of the spectral values of G D Aˆ.

Corollary 4.5. Let � 2 C. Then for l� WD L�1 we have

� 2 �.Aˆ/ D �p.A
ˆ/ ()

1
Z

0

0
Z

�1

e�r � l�.s/ d�.r/ ds D cosh.
p
�/:

In particular, if � D ı�1 then

� 2 �p.A
ˆ/ () .� � e� C 1/ � cosh.

p
�/ D 1:

Proof. For � 2 C we have

ˆL� D
�

1 � cosh.
p
�/ 'K�

L� 0

�

2 L.@X/ D L.C � LpŒ0; 1�/:
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By Corollary 3.13 and Lemma A.10 this implies that

� 2 �.Aˆ/ H) 1 2 �.ˆL�/

() 0 2 �.cosh.
p
�/ � 'K�L�/

() 0 2 �p.cosh.
p
�/ � 'K�L�/

() 1 2 �p.ˆL�/

() � 2 �p.A
ˆ/

H) � 2 �.Aˆ/;

where we used that dim.@X/ is finite (in fact one) dimensional. The assertions

then follows by computing 'K�L�WC ! C. �

4.4. A second order differential operator with point delay at the boundary.

This example treats an operator associated to a one-dimensional reaction-diffusion

equation modeling a delayed chemical reaction.

Let X WD LpŒ0; 1� and Y WD Lp.Œ�1; 0�; @Y / for @Y WD W1;p Œ0; 1�. Then on

the product space X WD X � Y we consider for some fixed c; k 2 C the operator

matrix

G WD

0

B

@

d2

ds2
� 2c � d

ds
C k � IdX 0

0
d

dr

1

C

A
;

D.G/ WD
²�

f

v

�

2 W2;p Œ0; 1�� W1;p.Œ�1; 0�; @Y /W
�

f 0.0/
f 0.1/

�

D
�

f .0/

0

�

�
�

v.�1; 1/
0

�

; v.0/ D f

³

:

Using [2, corollaries 3.6 and 3.7] one can show that G generates a C0-semigroup

on X. In order to compute �.G/ we introduce the following operators and spaces.

� Am WD d2

ds2 �2c � d
ds

Ck�IdX with domainD.Am/D¹f 2W2;pŒ0; 1�W f 0.1/ D 0º
on X ,

� L WD ı1WD.Am/ ! @X WD C, i.e., Lf D f .1/,

� Dm WD d
dr

with domain D.Dm/ D W1;p.Œ�1; 0�; @Y / on Y ,

� K WD ı0WD.Dm/ ! @Y , i.e., Kv D v.0/,

� A D AmjkerL, D WD DmjkerK .
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Next we define the maximal operator matrix

Am WD
�

Am 0

0 Dm

�

; D.Am/ WD D.Am/ �D.Dm/:

Moreover, let @X WD @X � @Y ,

L WD
�

L 0

0 K

�

WD.Am/ �! @X

and A � Am with domain D.A/ WD ker.L/ D D.A/ �D.D/. Finally, we define

the spaces ZX WD W1;pŒ0; 1�, ZY WD W1;p.Œ�1; 0�; @Y /, Z WD ZX � ZY and

consider

ˆ WD
�

'  

IdZX
0

�

2 L.Z; @X/;

where

' WD ı0 C ı1 � ı0
0 2 L.ZX ; @X/; i.e., '.f / D f .0/C f .1/ � f 0.0/;

 WD �ı�1 ˝ ı1 2 L.ZY ; @X/; i.e.,  .v/ D �v.�1; 1/:

Then by definition we obtain G D Aˆ. In order to characterize the spectrum

of Aˆ we first note that �.A/ D �.D/ D ;. Moreover, the Dirichlet operators

L� 2 L.@X;X/ and K� 2 L.@Y ; Y / relatively to the pairs Am, L and Dm, K are

explicitly given by

.L�z/.s/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

ec.s�1/ �
�

cosh..s � 1/ �
p

�C c2 � k/

� c sinh..s � 1/ �
p
�C c2 � k/p

�C c2 � k

�

� z if � ¤ k � c2,

ec.s�1/ � .1C c � cs/ � z if � D k � c2,

.K�f /.r/ D e�r � f;

where z 2 @X D C, s 2 Œ0; 1�, f 2 @Y D W1;pŒ0; 1� and r 2 Œ�1; 0�. Thus, for

� 2 C we obtain the Dirichlet operator for the pair Am, L as

L� WD
�

L� 0

0 K�

�

2 L.@X;X/:

Now by Corollary 3.13 we obtain the following characterization of the spectral

values of G D Aˆ.
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Corollary 4.6. Let � 2 C. Then we have � 2 �.G/ D �p.G/ if and only if

e�� � l�.0/C l 0�.0/ D 0; (4.4)

where l�.s/ WD .L�1/.s/, s 2 Œ0; 1�.

Proof. For arbitrary � 2 C we have

Id@X �ˆL� D
�

l 0
�
.0/ � l�.0/ e�� � ı1

�L� Id@Y

�

2 L.@X/:

Using Schur complements from Appendix A.4, this matrix is not invertible if and

only if (4.4) holds. The assertion then follows from Corollary 3.13. �

4.5. The Laplacian with dynamical boundary conditions. Let X WD L2.�/

and Y WD L2.@�/ for some open, bounded domain � � R
n with smooth

boundary @�. We consider the Laplace operator �� on X and the Laplace-

Beltrami operator �@� on Y with domains

D.��/ WD ¹f 2 H
3
2 .�/ \ H2loc.�/W�f 2 L2.�/º;

D.�@�/ WD ¹f 2 L2.@�/W�f 2 L2.@�/º:

Then as in [5, sections 3 and 6] we define on the spaceX WD X�Y the operator

matrix

G WD
�

�� 0

C �@�

�

; (4.5)

with domain

D.G/ WD
²�

f

g

�

2 D.��/ �D.�@�/W
@f

@�

ˇ

ˇ

ˇ

@�
D g

³

for some operator C 2 L.H1.�/;L2.@�//, e.g., Cg D
R

� k.s; �/rg.s/ ds 2
L2.@�/ for a L2-function kW� � @� ! C

n.

In order to embed G in our setting we could either write it as G D Aˆ
P

like we

did in the previous examples or represent it as G D ABC. Here we use the second

alternative and introduce to this end the following operators and spaces:

� the operator LWD.��/ ! L2.@�/, Lf WD @f
@�

ˇ

ˇ

@�
;

� the Neumann Laplacian A WD �N � �� with domain D.A/ WD kerL which

satisfies �.A/ � ¹� 2 CW Re.�/ � 0º;
� Z WD H1.�/ and Z�1 WD .�0 � A�1/Z for some �0 > 0, cf. Section A.2;

� AZ WD A�1jZ�1
WZ � Z�1 ! Z�1;

� Z WD H 1.�/ �D.�@�/, Z�1WZ�1 � Y and U WD Y � Y .
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Then we define the operator matrices

AZ WD
�

AZ 0

0 �@�

�

WZ � Z�1 ! Z�1

and

B WD
�

LA 0

0 IdY

�

2 L.U;XA

�1/; C WD
�

0 IdY

C 0

�

2 L.Z;U/:

Here LA WD .�0 � AZ/L�0
2 L.Y; Z�1/ where the Dirichlet operator L�0

2
L.Y; Z/ exists by [5, p. 298–299]. Then one easily verifies that G D ABC. By

applying Theorem 2.3 we obtain the following characterization of the spectral

values of G.

Corollary 4.7. For G given by (4.5) and � 2 �.A/ D �.�N/ \ �.�@�/ we have

� 2 �.G/ () � 2 �p.G/ () � 2 �p.�@� C CL�/:

Proof. Let � 2 �.A/ D �.A/\�.�@�/. Then by (3.4) we haveR.�; AZ/LA D L�
which implies

�U.�/ D CR.�;AZ/B D
�

0 R.�;�@�/

CL� 0

�

2 L.Y � Y /:

By Theorem 2.3 and Lemma A.10 this gives

� 2 �.G/ H) 1 2 �.�U.�//

() 1 2 �.CL�R.�;�@�// D �p.CL�R.�;�@�//

() � 2 �p.�U/ (4.6)

() � 2 �p.G/;

H) � 2 �.G/;

where the equality in (4.6) holds since the operator �@� has compact resolvent,

yielding the compactness of R.�;�@�/CL�. This proves that all the above con-

ditions are equivalent. Since

� ��@� � CL� D .IdY �CL�R.�;�@�// � .� ��@�/

where � � �@�WD.�@�/ ! Y is bijective, we finally conclude that we have

� 2 �p.�@� C CL�/ if and only if 1 2 �.CL�R.�;�@�// as claimed. �
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4.6. Spectral theory for delay equations. In this section we will apply our

results to delay equations of the form
8

ˆ

ˆ

<

ˆ

ˆ

:

Pu.t/ D Au.t/C ' ut ; t � 0;

u.0/ D x;

u.t/ D f .t/; t 2 Œ�1; 0�:
(DE)

Here uW Œ�1;C1/ ! X is a Banach space valued function, ut .�/ WD u.� C t /,

A; ' are linear operators and x; f are given initial values. There exist several

approaches to (DE) depending on the underlying function space. Here we will

consider the treatment on the spaces of p-integrable and continuous functions.

4.6.a. Spectral theory for the reduction matrix in Lp.Œ�1; 0�; Y /. The Lp-ap-

proach to delay equations (DE) yields to the operator matrix

G WD

0

@

A '

0
d

ds

1

A (4.7)

with domain

D.G/ WD
²�

x

f

�

2 D.A/� W1;p.Œ�1; 0�; Y /W f .0/ D x

³

(4.8)

on X WD X � Lp.Œ�1; 0�; Y / for some 1 � p < C1, cf. [4, Chapter 3]. Here

� AWD.A/ � X ! X is a linear operator on a Banach space X satisfying

�.A/ ¤ ;,

� Y is a Banach space such that ŒD.A/� ,! Y ,! X ,

� ' 2 L.W1;p.Œ�1; 0�; Y /; X/.
In order to represent G as in our generic example we introduce the following

operators and spaces. By diag.: : :/ we denote a diagonal matrix with the given

entries.

� Am WD diag
�

A; d
ds

�

WD.Am/ � X ! X with domain D.Am/ WD D.A/ �
W1;p.Œ�1; 0�; Y /,

� Z WD ŒD.Am/�, @X WD Y ,

� L D .0; ı0/ 2 L.Z; @X/, i.e., L.x; f /> D f .0/,

� A WD Amjker.L/,

� P WD
�

0 '
0 0

�

2 L.Z;X/,

� ˆ D .IdY ; 0/ 2 L.Z; @X/ i.e., ˆ.x; f /> D x.
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Then �.A/ D �.A/ ¤ ;, L is surjective and Am is closed, hence the Assump-

tions 3.5 are satisfied. Moreover, one easily verifies that

G D Aˆ
P
:

From the results of Subsection 3.4 we now obtain the following spectral charac-

terizations, cf. [4, Proposition 3.19 and Lemma 3.20].

Corollary 4.8. For all � 2 C and 1 � p < C1 we have

� 2 �.G/ () � 2 �.AC 'L�/;

� 2 �p.G/ () � 2 �p.AC 'L�/;

where L� 2 L.X;W1;p.Œ�1; 0�; Y // is given by .L�x/.s/ WD e�sx for x 2 X and

s 2 Œ�1; 0�. Moreover, if �.G/ ¤ ; then

� 2 ��.G/ () � 2 ��.AC 'L�/

for all � 2 ¹a, r, c, essº.

Proof. We apply Corollary 3.10. To this end fix some �0 2 �.A/. Then for � 2 C

we obtain

�Z.�0; �/ D
�

.�0 � �/R.�0; A/ R.�0; A/'

L�0
.�0 � �/R.�0; D/

�

2 L.Z/

for D WD d
ds

with domain D.D/ WD W
1;p
0 .Œ�1; 0�; Y / D ker.ı0/ which satisfies

�.D/ D C. Since Am CP is closed and L�ˆ is surjective, by (3.9) we conclude

that

� 2 �.G/ () 1 2 �.�Z.�0; �//

()
�

Id �.�0 � �/R.�0; A/ �R.�0; A/'
�L�0

.� �D/R.�0; D/

�

is invertible in L.Z/

() Id �R.�0; A/ � .�0 � �C ' � .�0 �D/R.�;D/ � L�0
/

is invertible in L.ŒD.A/�/

() Id �.�0 � �C ' � L�/ �R.�0; A/
is invertible in L.X/

() � � A � ' � L�WD.A/ � X ! X

is invertible in L.X/,
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where we used the resolvent equation, the Schur complement in ŒD.A/�, (3.4) and

Corollary A.12. The assertions concerning the subdivision of the spectrum then

follows from Corollary 3.9.(d). �

Remark 4.9. By [4, Theorem 3.12] the delay equation (DE) is well posed if and

only if G generates aC0-semigroup onX. In this case �.G/ ¤ ;, hence the previous

result gives a complete description of the spectrum and its finer subdivisions.

4.6.b. Spectral theory for the first derivative in C.Œ�1; 0�; X/. If one treats

the delay equation (DE) within a framework of continuous functions then its initial

values x; f always satisfy f .0/ D x, i.e. this condition is superfluous. For this

reason the reduction to an abstract Cauchy problem does not yield an operator

matrix as in the previous subsection. Instead, one obtains the operator

G WD d

ds
(4.9)

with domain

D.G/ WD ¹f 2 C1.Œ�1; 0�; X/W f .0/ 2 D.A/; f 0.0/ D Af .0/C 'f º

on X WD C.Œ�1; 0�; X/ equipped with the sup-norm k�k1, cf. [7, Section VI.6].

Here we assume that

� AWD.A/ � X ! X is a linear operator on a Banach space X satisfying

�.A/ ¤ ;,

� ' 2 L.Z; X/ for Z WD C1.Œ�1; 0�; X/.

In order to represent G as in our generic example we first observe that for

�0 2 �.A/ we have f 2 D.G/ if and only if

f .0/ D R.�0; A/.'f C �0f .0/ � f 0.0//: (4.10)

Next we introduce the following operators and spaces.

� Am WD d
ds

WD.Am/ � X ! X with domain D.Am/ WD C1.Œ�1; 0�; X/,

� L D ı0 2 L.Z; @X/, i.e., Lf D f .0/, for @X WD X ,

� A WD Amjker.L/,

� ˆ WD R.�0; A/.' C �0ı0 � ı0
0/ 2 L.Z; @X/ i.e., f̂ D R.�0; A/.'f C

�0f .0/ � f 0.0//.
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Then �.A/ D C, L is surjective and Am is closed, hence the Assumptions 3.5

are satisfied. Moreover, using (4.10), one easily verifies that

G D Aˆ:

Before applying the results from Subsection 3.4 to G, we study the surjectivity of

L �ˆ. Here we define for � 2 C the functions "� 2 C1Œ�1; 0� by "�.s/ WD e�s.

Lemma 4.10. If there exists �0 2 �.A/ and � 2 C, � ¤ �0, such that

k'.."�0
� "�/˝ Id/kL.X/ < j�0 � �j; (4.11)

then L � ˆ is surjective. This is the case if there exist �n 2 C, n 2 N, such that

j�nj ! C1 and

lim
n!C1

k'."�n
˝ Id/kL.X/
j�nj

< 1:

In particular, if ' 2 L.X; X/ then L �ˆ is always surjective.

Proof. We show that (4.11) implies the inclusion (3.10), henceL�ˆ is surjective

by Lemma 3.12. In fact, since ker.�0�Am/ D "�0
˝X and ."�0

�"�/˝X � D.A/,

(3.10) follows if for each x 2 X there exists y 2 X such that

ˆ."�0
˝ x/ D ˆ.."�0

� "�/˝ y/

() '."�0
˝ x/ D '.."�0

� "�/˝ y/ � .�0 � �/ � y

()
�

Id �'.."�0
� "�/˝ Id/

�0 � �

�

� y D '."�0
˝ x/

� � �0

() y D
�

Id �'.."�0
� "�/˝ Id/

�0 � �

��1
� '."�0

˝ x/

� � �0
;

where the invertibility of the operator in the last equivalence follows by assump-

tion (4.11). The remaining two assertions follow easily by considering (4.11) for

� D �n for sufficiently big n 2 N. �

Combining the previous result with Corollary 3.13 we immediately obtain the

following spectral characterizations which significantly generalizes [7, Proposi-

tion VI.6.7].
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Corollary 4.11. For� 2 C defineL� 2 L.X;C1.Œ�1; 0�; X//by .L�x/.s/ WD e�sx

for x 2 X and s 2 Œ�1; 0�. Then for G defined in (4.9) we have

� 2 �p.G/ () � 2 �p.AC 'L�/:

Moreover, if (4.11) is satisfied then

� 2 �.G/ () � 2 �.AC 'L�/:

Finally, if in addition �.G/ ¤ ; then

� 2 ��.G/ () � 2 ��.AC 'L�/

for all � 2 ¹a, r, c, essº.

Remark 4.12. By [7, Corollary VI.6.3] the delay equation (DE) is well posed

if and only if G generates a C0-semigroup on X. In this case �.G/ ¤ ;, hence

the previous result gives a complete description of the spectrum and its finer

subdivisions.

4.7. Spectral theory for complete second order Cauchy problems. We now

apply our results to the reduction matrix

G WD
�

0 Id

A P

�

(4.12)

associated to the complete second order Cauchy problem

Ru.t/ D P Pu.t/C Au.t/: (ACP2)

We note that only in case P D 0 there is a satisfactory theory for (ACP2), see,

e.g., [3, Section 3.14]. In the complete case, i.e. if P ¤ 0, there are many partial

results and we refer to [7, Section VI.2] for a review of some of them.

Here we consider the following setting. For the definition of the extrapolated

operator AZ on the extrapolation space Z�1 see Proposition A.2.

� U , X , Z are Banach spaces and X WD Z �X ,

� AWD.A/ � X ! X is an operator on X satisfying Assumption A.1,

� ŒD.A/� ,! Z ,! X ,

� P D BC 2 L.Z;Z�1/ where B 2 L.U;Z�1/ and C 2 L.Z; U /.
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Under these hypotheses we consider the operator matrix GWD.G/ � X ! X

in (4.12) equipped with the domain

D.G/ WD
²�

z

x

�

2 Z �ZWAZz C BCx 2 X
³

:

As a first step towards the description of the spectrum of G we represent it as

G D ABC. Define Z WD Z � Z ,! X D Z � X ,! Z�1 WD Z � Z�1 and

U WD Z � U . Moreover, for some fixed �0 2 �.A/ consider the operators

AZ WD
�

0 Id

AZ � �0 0

�

WZ � Z�1 �! Z�1

and

BW D
�

0 0

Id B

�

2 L.U;Z�1/; C WD
�

�0 0

0 C

�

2 L.Z;U/:

Then 0 2 �.AZ/ with resolvent

R.0;AZ/ D
�

0 R.�0; A
Z/

� Id 0

�

: (4.13)

In particular, �.AZ/ ¤ ;, hence the Assumptions 1.1 are satisfied. Let

GZ WD AZ C BC D
�

0 Id

AZ BC

�

WZ � Z�1 �! Z�1;

then GZ
�

z
x

�

2 X if and only if
�

z
x

�

2 D.G/ which proves G D GZjX D ABC. Using

this representation we obtain the following result, where for � 2 C we put

Q.�/ WD �2 � � � BC � AZ WZ � Z�1 �! Z�1:

Corollary 4.13. Let � 2 C. Then

� 2 �p.G/ () 0 2 �p.Q.�//:

Moreover, if there exists � 2 C such that 0 2 �.Q.�//, then

� 2 �.G/ () 0 2 �.Q.�//;

� 2 ��.G/ () 0 2 ��.Q.�//

for all � 2 ¹a, r, c, essº.
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Proof. We apply Corollary 2.7 for �0 D 0 2 �.AZ/ and W D Z. To this end we

first compute

�Z.0; �/ D R.0;AZ/ � .IdX;B/ �
�

�� � IdZ

C

�

D
�

0 R.�0; A
Z/

� Id 0

�

�
�

Id 0 0 0
0 Id Id B

�

�

0

B

@

�� 0
0 ��
�0 0

0 C

1

C

A

D
�

�0R.�0; A
Z/ R.�0; A

Z/ � .BC � �/
� 0

�

2 L.Z/;

where we applied (4.13) and (2.11). Using Corollary 2.7.(a), Schur complements

from Lemma A.9.(i) and the resolvent equation we conclude

� 2 �p.G/ () 1 2 �p.�Z.0; �//

() Id ��0R.�0; AZ/ � �R.�0; AZ/ � .BC � �/

D R.�0; A
Z/ �Q.�/WZ ! Z is injective

() 0 2 �p.Q.�//:

Finally, if 0 2 �.Q.�// for some � 2 C, then by a similar reasoning we conclude

1 2 �.�Z.0; �// and the remaining assertion follows from Corollary 2.7.(c). �

5. Conclusion

Our main result Theorem 2.3 characterizes spectral values of operators ABC WD
.AZ C BC/jX for triples .AZ; B; C / 2 L.Z;Z�1/ � L.U;Z�1/ � L.Z; U /

which might perturb both the action and the boundary conditions of an operator

A D AZ jX on a Banach space X . Due to its generality this allows to study

systematically and in a unified way spectral properties of various operators, thus

furnishing an important tool for the analysis of the asymptotic behavior of the

associated abstract Cauchy problem (ACP). For our results we impose only

minimal assumptions, in particular we do not rely on admissibility conditions,

denseness or closedness assumptions or a Hilbert space structure as used in [6, 16,

19]. Our approach is based on an extrapolated operator AZBC WZ � Z�1 ! Z�1
to which we associate an operator matrix having essentially the same spectral

properties. The invertibility of this matrix is then investigated by using Schur

complements which gives information on the spectral values of AZBC . Finally, we

use a result on the spectrum of the part of an operator to return to ABC D AZBC jX .
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Appendix A

In this appendix we introduce our notation, provide some results on extrapolated

operators, consider spectral properties of parts of operators and study the invert-

ibility of operator matrices by means of so-called Schur complements.

A.1. Notation. Besides the common notions for sets of numbers we use the

abbreviations N WD ¹1; 2; 3; : : :º, N0 WD ¹0; 1; 2; : : :º and RC WD Œ0;C1/. By

.X; k�kX /� we intend the completion of the normed space X . For normed spaces

X and Y we denote by L.X; Y / the normed space of all bounded linear operators

from X to Y and set L.X/ WD L.X;X/. Moreover, by X ,! Y we indicate a

continuous embedding of X in Y . For an operator T WD.T / � X ! Y between

Banach spaces X and Y we define ŒD.T /� WD .D.T /; k�kT / for the graph norm

given by kxkT WD kxkX C kT xkY . Then ŒD.T /� is complete if and only if T is

closed. The transposed of a vector is denoted by .� � � />, while diag.� � � / indicates

a diagonal matrix.

For notions related to the spectrum and resolvent of a linear operator, see

Definition A.6.

A.2. Abstract extrapolation spaces. To apply our abstract results to a given

operator G we have to represent it as G D .AZ C BC/jX for suitable operators

AZ ; B; C between spaces Z;Z�1; U , cf. Diagram 1. Here the first step is usually

to extend an operator A with domain D.A/ on X to AZ with bigger domain

Z � D.A/ on a bigger space Z�1 � X .

In Section 3 we showed how this can be achieved in the context of our generic

example. In this section we will introduce “abstract extrapolation spaces” to do so.

This approach is more general as the construction ofZ�1 andAZ in Subsection 3.3

since it does not rely on a special form of the operators B and C . However, it has

the drawback that we will need some kind of denseness assumption on A, cf.

Assumption A.1.

For a linear operator AWD.A/ � X ! X on a Banach space X we define for

n 2 N the Banach spaces

Xn WD D.An/
k�kX

equipped with the norm induced by X . Moreover, we consider the operator

Pn WD AnjXn
WD.Pn/ � Xn �! Xn

with domain

D.Pn/ WD ¹x 2 D.An/WAnx 2 Xnº:
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Assumption A.1. Suppose that AWD.A/ � X ! X satisfies

(i) �.A/ ¤ ;,

(ii) there exists n0 2 N such that Pn0
is densely defined, i.e., for all x 2 Xn0

and

" > 0 there exists z 2 D.An0/ such that An0z 2 Xn0
and kx � zkX < ".

Under this assumption A can be extended from D.A/ to a bigger domain Z

without changing its spectrum. More precisely, the following holds.

Proposition A.2. Let Assumption A.1 be satisfied. Then for every Banach space

Z satisfying ŒD.A/� ,! Z ,! X there exists a Banach space Z�1 satisfying

X ,! Z�1 and an “extrapolated” operator AZWZ � Z�1 ! Z�1 such that

AZ jX D A and �.A/ D �.AZ/.

Proof. Fix some �0 2 �.A/ and define for n 2 N the Banach spaces

X�n WD .X; k�k�n/
�

where

kxk�n WD kR.�0; A/nxkX for x 2 X:

Let x 2 X and " > 0. Then R.�0; A/
n0x 2 D.An0/ � Xn0

, hence by

Assumption A.1 there exists z 2 D.Pn0
/ such that

kR.�0; A/n0x � zkX D kx � .�0 � A/n0zk�n0
< ":

Since .�0 � A/n0z 2 Xn0
this shows that Xn0

� .X; k�k�n0
/ is dense. Moreover,

by definition X is dense in X�n0
, hence Xn0

is dense in X�n0
. Next from

Xn0
D D.An0/

k�kX � D.A/
k�k�n0 � X�n0

we conclude that also D.A/ is dense in X�n0
. Moreover, a simple computation

shows that

.�0 � A/WD.A/ � X�n0
! X�.n0C1/

is an isometry with dense range, hence admits a unique bounded extension

.�0 � A�.n0C1// 2 L.X�n0
; X�.n0C1//

which is a surjective isometry, hence invertible. Now consider the Banach spaces

Z�1 WD ..�0 � A�.n0C1//Z; k�kZ�1
/

where

kzkZ�1
WD k.�0 � A�.n0C1//

�1zkZ ;
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and

X�1 WD ..�0 � A�.n0C1//X; k�k�1/

where

kxk�1 WD k.�0 � A�.n0C1//
�1xkX ;

and the operators

AZ WD A�.n0C1/jZ�1
WZ � Z�1 ! Z�1;

A�1 WD A�.n0C1/jX�1
WX � X�1 ! X�1;

cf. Diagram 5.
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Diagram 5. Extrapolation of a linear operator A.

Since by construction A�.n0C1/ extends A we have that AZjX D A and

A�1jZ D AZ. Moreover, by definition .�0 � A�1/WX ! X�1 is a surjective

isometry and one easily verifies that

A D .�0 � A�1/
�1 � A�1 � .�0 � A�1/:

Thus, A and A�1 are similar which implies �.A�1/ D �.A/ ¤ ;. Finally, by

Lemma A.7.(vii) applied to F D X�1, E D Z�1 and T D A�1 we conclude that

�.AZ/ D �.A/ as claimed. �
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Example A.3. On X WD CŒ0; 1� consider the operator A WD d
ds

with (non-dense)

domain D.A/ WD ¹f 2 C1Œ0; 1�W
R 1

0
f .s/ ds D 0º. Then Pn is densely defined on

Xn if and only if n � 2, i.e., A verifies Assumption A.1 for n0 D 2 (but not for

n0 D 1).

Finally, we give a sufficient resolvent condition implying Assumption A.1

which is in particular satisfied for Hille–Yosida operators, cf. [15].

Lemma A.4. If there exists a sequence �n 2 �.A/ such that

lim
n!C1

R.�n; A/x D 0 for all x 2 X

then Assumption A.1 is verified for n0 D 1.

Proof. Let x 2 D.A/. Then the resolvent equation implies

x D x C lim
n!C1

R.�n; A/Ax D lim
n!C1

�nR.�n; A/x:

Since �nR.�n; A/x 2 D.A2/ � D.P1/ this shows that D.P1/ is dense in D.A/.

Moreover, D.A/ is dense in X1 by definition and hence D.P1/ is dense in X1 as

claimed. �

Remark A.5. (i) If A is densely defined, the above construction can be simplified

considerably. In particular, one can define X�1 WD .X; k�k�1/� for the norm

kxk�1 WD kR.�0; A/xkX and then immediately extend A continuously to A�1 2
L.X;X�1/. For the details and more facts on inter- and extrapolation spaces as

well as the associated abstract “Sobolev towers,” see [7, Section II.5].

(ii) If a pair .B; C / 2 L.U; X�1/ � L.Z; U / satisfies for some �0 2 �.A/ the

condition

rg.R.�0; A�1/B/ � Z D D.C/; (A.1)

then it is called compatible with respect to A. In this case, by the resolvent

equation, (A.1) holds for all �0 2 �.A/. Moreover, (A.1) implies rg.B/ � Z�1 and

by the closed graph theorem we obtain B 2 L.U;Z�1/. For results concerning

the generator property of ABC for compatible pairs with respect to a generator A,

see [1, 2].

(iii) Extrapolated spaces and operators are mainly used to give sense to calcu-

lations which are not defined a priori. The amazing fact is that in most cases one

only needs to know their existence but not an explicit representation for them.
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A.3. Spectral theory for parts of operators. For convenience, we first recall

the following notions from spectral theory.

Definition A.6. For a linear operator T WD.T / � F ! F on a Banach space F

we define

�.T / WD ¹� 2 CW� � T is not invertible in L.F /º (spectrum);

�.T / WD C n �.T / (resolvent set);

�p.T / WD ¹� 2 CW� � T is not injectiveº ( point spectrum);

�a.T / WD
²

� 2 CW � � T is not injective or
has non-closed range

³

(approximative
point spectrum);

�c.T / WD
²

� 2 CW � � T is injective with
dense, non-closed range

³

(continuous spectrum);

�r.T / WD
²

� 2 CW � � T is injective with
non-dense range

³

(residual spectrum);

�ess.T / WD
²

� 2 CW dim.ker.� � T // D C1 or
codim.rg.� � T // D C1

³

(essential spectrum):

Finally, for � 2 �.A/ we define the resolvent operator R.�; T / WD .� � T /�1 2
L.F /.

The next result generalizes [7, propositions IV.1.15 and IV.2.17] and connects

some spectral properties of an operator T on F to those of its part T jE in a

subspace E of F .

Lemma A.7. Let T WD.T / � F ! F be a linear operator on a Banach space F ,

let E be a Banach space satisfying D.T / � E ,! F and let

T1 WD T jE WD.T1/ � E �! E with domain dD.T1/ WD ¹x 2 D.T /WT x 2 Eº:

Then the following holds.

(i) ker.T / D ker.T1/; in particular T is injective () T1 is injective.

(ii) rg.T1/ D rg.T / \ E; in particular T is surjective H) T1 is surjective.

(iii) rg.T / is closed in F H) rg.T1/ is closed in E.

(iv) codim.rg.T // < C1 H) codim.rg.T1// < C1.

(v) If E C rg.T / is dense in F , then rg.T1/ is dense in E H) rg.T / is dense

in F .
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(vi) If T is closed, then T1 is closed, and

�.T / � �.T1/ and R.�; T1/ D R.�; T /jE for all � 2 �.T /.

(vii) If �.T / ¤ ; and F T1 ,! E, then in (ii)–(v) always equivalence holds. In

particular, in this case �.T / D �.T1/.

Proof. While one inclusion in both cases (i) and (ii) is clear, the respective other

inclusion follows by the definition of D.T1/ using the fact that D.T / � E.

To show (iii) take yn 2 rg.T1/ such that yn ! y 2 E as n ! C1. Since

E ,! F and rg.T / is closed in F , this implies y 2 rg.T / \ E D rg.T1/, i.e.,

rg.T1/ is closed in E.

For (iv) assume that codim.rg.T1// D C1. Then there exists an infinite,

linearly independent subset S � E n rg.T1/. Since by (ii), rg.T1/ D rg.T /\E we

conclude S � F n rg.T /, i.e., codim.rg.T // D C1.

To show (v) we assume that rg.T / is not dense in F . Then there exists

0 ¤  2 F 0 such that  jrg.T / D 0. Let ' WD  jE 2 E 0. If ' D 0,

then  jECrg.T / D 0 and by the denseness assumption it follows that  D 0

contradicting the choice of  . Hence, ' ¤ 0 and 'jrg.T1/ D 0 which implies

that rg.T1/ is not dense in E.

For (vi) take xn 2 D.T1/ such that xn ! x 2 E and T1xn ! y 2 E as

n ! C1. Since E ,! F this implies xn ! x in F and T xn ! y in F as

n ! C1. By the closedness of T this gives x 2 D.T / and T x D y. From y 2 E
it follows that x 2 D.T1/ and T1x D y, i.e., T1 is closed. Now take � 2 �.T /.

Then R WD R.�; T /jE is a closed algebraic inverse of � � T1 defined on all of E

and having range in E. By the closed graph theorem this implies R 2 L.E/, i.e.,

� 2 �.T1/ and R D R.�; T1/. This shows (i)–(vi).

To verify (vii) we first define

T2 WD T1jF T
1

WD.T2/ � F T1 �! F T1

with domain

D.T2/ WD ¹x 2 D.T1/WT1x 2 F T1 º:
Then the pair T2; T1 satisfies the assumptions made for T1; T , hence we can repeat

the reasoning in (ii)-(v) with T1; T replaced by T2; T1, respectively. For (v) note

that for � 2 �.T / � �.T1/ we always have E D rg.� � T1/ � F T1 C rg T1,

hence the denseness assumption is automatically satisfied. Moreover, for such �

the operator � � T1 2 L.F T1 ; F / is an isomorphism which induces a similarity

transformation between T2 and T . This implies that T2 is surjective/has closed

range/has range with finite co-dimension/has dense range, respectively, if and only

if T has. Summing up, this shows equivalence in (ii)–(v) if �.T / ¤ ;. �
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Remark A.8. Without the denseness assumption on E C rg.T / the assertion in

Lemma A.7.(v) does not hold. To see this take an operator S WD.S/ � E ! E

with dense range. Then for a Banach space G ¤ ¹0º define F WD E ˚ G and

the operator T WD.T / � F ! F by T x WD Sx for x 2 D.T / WD D.S/. Then

T1 WD T jE D S has dense range inE while rg.T / D rg.S/ � E is not dense in F .

Clearly, in this case E C rg.T / D E is not dense in F . Note that in this example

T is closed on F if S is closed on E.

The following is the main result of this section.

Corollary A.9. In the situation of Lemma A.7 the following relations hold.

(i) �p.T1/ D �p.T /.

(ii) �.T1/ � �.T /.

(iii) �a.T1/ � �a.T /.

(iv) �c.T1/ � �c.T / if E C rg.T / is dense in F .

(v) �r.T1/ � �r.T / if E C rg.T / is dense in F .

(vi) �ess.T1/ � �ess.T /.

(vii) If �.T / ¤ ; and F T1 ,! E, then in (ii)–(vi) always equality holds.

Proof. All assertions follow easily from Definition A.6 and the previous lemma

applied to �� T for � 2 C instead of T . For (iv) & (v) note that EC rg.�� T / is

independent of � 2 C. �

A.4. Schur complements for operator matrices. In this section we give condi-

tions characterizing various spectral properties of an operator matrix. This yields

to the notion of “Schur complement” which in a certain sense generalizes the con-

cept of determinant of scalar matrices to matrices with non-commuting entries.

Lemma A.10. For Banach spacesE;F;G;H and linear operatorsP 2 L.E;G/,

Q 2 L.F; G/, R 2 L.E;H/, S 2 L.F;H/ define the operator matrix

T WD
�

P Q

R S

�

2 L.E � F;G �H/:

Then the following holds.
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(i) If S 2 L.F;H/ is invertible then for�1 WD P �QS�1R 2 L.E;G/ we have

T D
�

IdG QS�1

0 IdH

�

�
�

�1 0

0 S

�

�
�

IdE 0

S�1R IdF

�

: (A.2)

Hence, T 2 L.E � F;G � H/ is injective/surjective/has closed range/has

dense range, resp., if and only if �1 2 L.E;G/ is injective/surjective/has

closed range/has dense range, resp. In particular, T is invertible if and only

if �1 is invertible and in this case

T�1D
�

��1
1 ���1

1 �QS�1

�S�1R ���1
1 S�1 C S�1R ���1

1 �QS�1

�

2L.G �H;E � F /:

Moreover, dim.ker.T//Ddim.ker.�1// and codim.rg.T//Dcodim.rg.�1//.

(ii) If P 2 L.E;G/ is invertible then for�2 WD S�RP�1Q 2 L.F;H/we have

T D
�

IdG 0

RP�1 IdH

�

�
�

P 0

0 �2

�

�
�

IdE P�1Q
0 IdF

�

: (A.3)

Hence, T 2 L.E � F;G � H/ is injective/surjective/has closed range/has

dense range, resp., if and only if �2 2 L.F;H/ is injective/surjective/has

closed range/has dense range, resp.

In particular, T is invertible if and only if �2 is invertible and in this case

T�1D
�

P�1 C P�1Q ���1
2 �RP�1 �P�1Q ���1

2

���1
2 �RP�1 ��1

2

�

2L.G �H;E � F /:

Moreover, dim.ker.T//Ddim.ker.�2// and codim.rg.T//Dcodim.rg.�2//.

If P and S are both invertible, then the following holds.

(iii) ker.�1/ D P�1Q ker.�2/ and ker.�2/ D S�1R ker.�1/.

(iv) �1 is injective/surjective/has closed range/has dense range, resp., if and only

if �2 is injective/surjective/has closed range/has dense range, resp.

(v) dim.ker.�1// D dim.ker.�2// and codim.rg.�1// D codim.rg.�2//.

(vi) �1 is invertible if and only if �2 is invertible and in this case

��1
1 D P�1 C P�1Q ���1

2 �RP�1 2 L.G;E/;

��1
2 D S�1 C S�1R ���1

1 �QS�1 2 L.H; F /:

Proof. (i)–(v) are simple consequences of the factorizations of T given in (A.2)

and (A.3) using the fact that the upper/lower triangular matrices involved are all

isomorphisms. The boundedness of the inverses of T, �1 and �2 follows from

the closed graph theorem. (vi) follows from (i) and (ii) by comparing the diagonal

entries of the representations of T�1. �
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Remark A.11. The operators

�1 D P �QS�1RWE �! G and �2 D S �RP�1QWF �! H

appearing above are frequently called Schur complements of the matrix T, cf. [12],

[18, definitions 1.6.1 and 2.2.12].

The previous result has the following useful application.

Corollary A.12. Let E, F be Banach spaces and Q 2 L.F; E/, R 2 L.E; F /.

Then

1 2 �.QR/ () 1 2 �.RQ/; 1 2 ��.QR/ () 1 2 ��.RQ/

for all � 2 ¹p, a, r ,c, essº. Moreover, ker.IdE �QR/ D Q ker.IdF �RQ/ and

ker.IdF �RQ/ D R ker.IdE �QR/. Finally, if 1 2 �.RQ/ or, equivalently,

1 2 �.QR/, then

.IdE �QR/�1 D IdE CQ.IdF �RQ/�1R; (A.4a)

.IdF �RQ/�1 D IdF CR.IdE �QR/�1Q: (A.4b)

Proof. In the situation of Lemma A.10 chooseG D E,H D F , P D IdE andS D
IdF . Then�1 D IdE �QR and�2 D IdF �RQ. Hence, all assertions concerning

the spectra follow easily from the characterizations of the corresponding spectral

properties (cf. Definition A.6) of T, �1 and �2 in Lemma A.10.(iii)–(v). Finally,

(A.4) follows from Lemma A.10.(vi). �
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