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Spectral transitions for the square Fibonacci Hamiltonian

David Damanik1 and Anton Gorodetski2

Abstract. We study the spectrum and the density of states measure of the square Fibonacci

Hamiltonian. We describe where the transitions from positive-measure to zero-measure

spectrum and from absolutely continuous to singular density of states measure occur. This

shows in particular that for almost every parameter from some open set, a positive-measure

spectrum and a singular density of states measure coexist. This provides the first physically

relevant example exhibiting this phenomenon.
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1. Introduction

The square Fibonacci Hamiltonian is the bounded self-adjoint operator

ŒH
.2/

�1;�2;!1;!2
 �.m; n/

D  .mC 1; n/C  .m � 1; n/C  .m; nC 1/C  .m; n� 1/

C .�1�Œ1�˛;1/.m˛ C !1 mod 1/C �2�Œ1�˛;1/.n˛ C !2 mod 1// .m; n/

in `2.Z2/, with ˛ D
p

5�1
2

, coupling constants �1; �2 > 0 and phases !1; !2 2

T D R=Z.

The square Fibonacci Hamiltonian is the natural two-dimensional analog of

the standard Fibonacci Hamiltonian, which is the bounded self-adjoint operator

ŒH
.1/

�;!
 �.n/ D  .nC 1/C  .n� 1/C ��Œ1�˛;1/.n˛ C ! mod 1/ .n/

in `2.Z/, again with the coupling constant � > 0 and the phase ! 2 T.
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The origin of these operators is twofold. On the one hand, the Fibonacci

Hamiltonian was proposed in 1983 as a model whose self-similarity leads to an

exact renormalization group approach [26, 41], connecting its spectral properties

to dynamical properties of the associated renormalization map. On the other hand,

since the discovery of quasicrystals in 1982 (published in 1984; see [48]), the

Fibonacci Hamiltonian has served as the most prominent model for the study of

electronic transport properties in one-dimensional quasi-crystalline environments.

There is obvious interest in removing the restriction to one dimension, and a

natural analogous model in two dimensions is given by the square Fibonacci

Hamiltonian. It is then straightforward to generalize this construction to higher

dimensions. For the sake of simplicity we will limit our discussion to the case

of two dimensions in this paper. For a recent survey of the spectral theory of the

Fibonacci Hamiltonian and the square Fibonacci Hamiltonian, see [8].

Using the minimality of an irrational rotation and strong operator convergence,

one can readily see that the spectra of these operators are phase-independent. That

is, there are compact subsets †� and †�1;�2
of R such that

�.H
.1/

�;!
/ D †� for every ! 2 T;

�.H
.2/

�1;�2;!1;!2
/ D †�1;�2

for every !1; !2 2 T:

The density of states measures associated with these operator families are

defined as follows,
Z

R

g.E/ d��1;�2
.E/ D

Z

T

Z

T

hı0; g.H
.2/

�1;�2;!1;!2
/ı0i`2.Z2/ d!1 d!2:

and
Z

R

g.E/ d��.E/ D

Z

T

hı0; g.H
.1/

�;!
/ı0i`2.Z/ d!:

It is a standard result from the theory of ergodic Schrödinger operators that

†� D supp �� and †�1;�2
D supp ��1;�2

, where supp � denotes the topological

support of the measure �.

The theory of separable operators (see, e.g., [13, Appendix] and [46, Sec-

tions II.4 and VIII.10]) quickly implies that

†�1;�2
D †�1

C†�2
(1)

and

��1;�2
D ��1

� ��2
; (2)

where the convolution of measures is defined by
Z

R

g.E/ d.� � �/.E/ D

Z

R

Z

R

g.E1 CE2/ d�.E1/ d�.E2/:
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The rigorous spectral analysis of the Fibonacci Hamiltonian was begun in the

1986 paper [6] by Casdagli and the 1987 paper [53] by Sütő and, in a certain sense,

it was recently completed in [14]. The latter paper proved many of the (then)

remaining conjectures about this operator and in particular gave rise to a global

picture in that it proved results for all values of the coupling constant, while most of

the previous results were restricted to either sufficiently small or sufficiently large

values of the coupling constant. The fact that these results are now known globally

is crucial to what we do in this paper. For example, it was shown in [14] that for

every � > 0, the spectrum †� is a dynamically defined Cantor set. In particular,

its box counting dimension exists, coincides with its Hausdorff dimension, and the

common value belongs to .0; 1/. Moreover, it was also shown in [14] that for every

� > 0, the density of states measure �� is exact-dimensional, and the respective

dimensions obey

0 < dimH �� < dimH†� < 1: (3)

The spectral analysis of the square Fibonacci Hamiltonian, on the other hand,

is still in its early stages. The first rigorous result was obtained in 2011 in [11],

where it was shown that for � sufficiently small, †�;� has no gaps at all; compare

Figure 1. While not stated in [11] explicitly, the results there (in particular, Theorem

1.2 and Lemma 6.2) also imply that for �1; �2 sufficiently small, the set †�1;�2

is an interval. Moreover, it is not hard to show that for any given �1 and then

�2 sufficiently small, the set †�1;�2
has at most one gap. That is, while Cantor

spectrum is persistent in one dimension, the spectrum fails to be a Cantor set in

two dimensions if the coupling constants are sufficiently small. On the other hand,

even in two dimensions, the spectrum is a Cantor set of zero Lebesgue measure

if both �1; �2 are sufficiently large. This follows quickly from the fact, shown

in [9], that the dimension of †� goes to zero as � ! 1. In particular, †�1;�2

undergoes two interesting transitions as the coupling constants are increased: from

non-Cantor to Cantor, and from positive measure to zero measure. This shows that

the two-dimensional case is richer and more interesting than the one-dimensional

case, where no such transitions occur. In this paper we will study the transition

from positive-measure spectrum to zero-measure spectrum and describe precisely

where it occurs.

Let us now turn to the density of states measure ��1;�2
. Given the fact that the

spectrum †�1;�2
is the topological support of ��1;�2

and in the regime of small

�1; �2 this set is a non-degenerate interval as discussed above, folk wisdom should

lead one to expect that ��1;�2
is absolutely continuous. On the other hand, since

both measures ��1
, ��2

are singular and it is notoriously difficult to establish the

absolute continuity of a convolution of two singular measures, it is initially far
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from obvious how to establish this property. Nevertheless, by developing new

tools in the study of convolutions of singular measures, it was shown in [13] that

for Lebesgue almost all pairs .�1; �2/ in the small coupling regime, the density of

states measure ��1;�2
is absolutely continuous.

Figure 1. The spectrum†�;� of the square Fibonacci Hamiltonian; image courtesy of Mark

Embree.

However, and this fact will be a central theme of this paper, a nice structure of

the spectrum, while often indicative of the absolute continuity of the density of

states measure, is in fact in general not sufficient to ensure the absolute continuity

of this measure.

In the regime of large �1; �2, the density of states measure ��1;�2
is clearly

singular since its topological support †�1;�2
has zero Lebesgue measure as dis-

cussed above. This gives again rise to an interesting transition as the coupling

constants are increased: from an absolutely continuous density of states measure

to a singular one, and this transition is again a phenomenon that was not present

in the one-dimensional case.

We are now ready to formulate our main result. Note that it follows from (3)

that the sets

¹.�1; �2/ 2 R
2
CW dimH ��1

C dimH ��2
D 1º
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and

¹.�1; �2/ 2 R
2
CW dimH†�1

C dimH†�2
D 1º

are disjoint. The complement of the union of these sets consists of three regions,

in which we have three different kinds of spectral behavior.

Theorem 1.1. Consider the following three regions in R
2
C:

Uacds D ¹.�1; �2/ 2 R
2
CW dimH ��1

C dimH ��2
> 1º;

Upmsd D ¹.�1; �2/ 2 R
2
CW dimH†�1

C dimH†�2
> 1

and dimH ��1
C dimH ��2

< 1º;

Uzmsp D ¹.�1; �2/ 2 R
2
CW dimH†�1

C dimH†�2
< 1º:

Then, the following statements hold:

(a) The regions Uacds, Upmsd, Uzmsp are disjoint and the union of their closures
covers the parameter space R

2
C.

(b) each of the regions Uacds, Upmsd, Uzmsp is open and non-empty;

(c) for Lebesgue almost every .�1; �2/ 2 Uacds, ��1;�2
is absolutely continuous,

and hence †�1;�2
has positive Lebesgue measure;

(d) for every .�1; �2/ 2 Upmsd, ��1;�2
is singular, but for Lebesgue almost every

.�1; �2/ 2 Upmsd, †�1;�2
has positive Lebesgue measure;

(e) for every .�1; �2/ 2 Uzmsp, †�1;�2
has zero Lebesgue measure, and hence

��1;�2
is singular.

Remark 1.2. (a) The coexistence of positive measure spectrum and singular

density of states measure is a rather unusual phenomenon. Until very recently

it was an open problem whether this can even occur in the context of Schrödinger

operators. The existence of Schrödinger operators with quasi-periodic potentials

exhibiting this phenomenon was shown in [2]. However, the examples given in that

paper are somewhat artificial, and “typical” quasi-periodic Schrödinger operators

are not expected to have these two properties. The examples provided by the

square Fibonacci Hamiltonian with parameters in Upmsd, on the other hand, are

not artificial at all, but rather correspond to operators that are arguably physically

relevant. Moreover the phenomenon is made possible by and is closely connected

to the strict inequality between dimH �� and dimH†�, as stated in (3), which was

originally conjectured by Barry Simon and finally proved in [14] (see [12] for an

earlier partial result for sufficiently small values of �).
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(b) The potential of the Fibonacci Hamiltonian may be generated by the Fi-

bonacci substitution a 7! ab, b 7! a. This substitution is the most prominent

example of an invertible two-letter substitution. We believe that, using [22, 32],

the results above may be generalized to the case where the Fibonacci substitution

is replaced by a general primitive invertible two-letter substitution.

(c) We expect that similar phenomena can appear also in other models, such

as for example the labyrinth model, or the square off-diagonal (or tridiagonal)

Fibonacci Hamiltonian, see [54, 55] for the description of the models and some

partial results.

(d) For other work on the square Fibonacci Hamiltonian and related models,

see [16, 17, 18, 21, 50, 51, 56, 57, 59].

(e) Results analogous to Theorem 1.1 also hold for the cubic Fibonacci Hamil-

tonian (and even higher dimensional versions of operators with separable Fi-

bonacci potential). Indeed, due to [24], the sum of two dynamically defined Cantor

sets C1 and C2 with dimH C1 C dimH C2 < 1 generically must be a dynamically

defined Cantor set with dimH.C1 C C2/ D dimH C1 C dimH C2. Similarly, the

Hausdorff dimension of the convolution of two singular measures of maximal en-

tropy (that correspond to the density of states measures) is typically equal to the

sum of dimensions of the initial measures. This reduces the consideration of the

cubic Fibonacci Hamiltonian to the results of the current paper.

(f) It would be interesting to understand the topological structure of the

spectrum of the Square Fibonacci Hamiltonian in the “intermediate coupling”

regime. We conjecture that there exists an open set in the space of parameters

.�1; �2/ 2 R
2
C for which the spectrum of the corresponding Square Fibonacci

Hamiltonian is a Cantorval1. The conjecture is supported by the results from [35].

They claim that there is an open set U in the space of dynamically defined Cantor

sets such that for generic C1; C2 2 U, the sum C1 C C2 is a Cantorval. Unfortu-

nately, this result does not provide any specific and verifiable genericity conditions

that would allow one to check that the sum of two given specific Cantor sets is in-

deed a Cantorval.

The structure of the paper is as follows. In Section 2 we discuss sums of

dynamically defined Cantor sets, and in particular the question of when such a sum

has positive Lebesgue measure. The main result, Theorem 2.1, provides sufficient

conditions and may be of independent interest since this question arises in a

variety of settings, not only in the study of the spectrum of the square Fibonacci

1 A compact set C � R1 is a Cantorval if it has a dense interior, i.e., int.C/ D C , has a

continuum of connected components, and none of them are isolated.
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Hamiltonian. Then, in Section 3, we return to our discussion of the square

Fibonacci Hamiltonian and show that Theorem 2.3, which is a generalization of

Theorem 2.1, is applicable in this context and yields the key input in our study

of the transition from positive-measure spectrum to zero-measure spectrum. We

also discuss the transition of the type of the density of states measure and then

conclude the section with a proof of Theorem 1.1.

2. Sums of Dynamically Defined Cantor sets

In this section we work in a general setting and prove a result that provides criteria

for certain sum sets to have positive Lebesgue measure. We will eventually apply

this to the spectrum of the square Fibonacci Hamiltonian which, as pointed out

in the previous section, is given by the sum of two spectra of one-dimensional

operators, but as this result may be of independent interest, we present it in the

appropriate general setting, where it becomes clear what precisely is needed in

the proof.

The study of the structure and the properties of sums of Cantor sets is motivated

by applications in dynamical systems [38, 39, 40, 42], number theory [7, 27, 33],

harmonic analysis [3, 4], and spectral theory [16, 17, 18, 21, 59]. In many cases

dynamically defined Cantor sets are of special interest.

Definition 1. A dynamically defined (or regular) Cantor set of classC r is a Cantor
subset C � R of the real line such that there are disjoint compact intervals
I1; : : : ; Il � R and an expanding C k function ˆW I1 [ � � � [ Il ! I from the
disjoint union I1 [ � � � [ Il to its convex hull I with

C D
\

n2N
ˆ�n.I /:

In the case when the restriction of the map ˆ to each of the intervals Ij ; j D

1; : : : ; l; is affine, the corresponding Cantor set is also called affine. If all these

affine maps have the same expansion rate (i.e., jˆ0.x/j D const for all x 2 I1[� � �[

Il ), the Cantor set is called homogeneous. A specific example of a homogeneous

Cantor set, a middle-˛ Cantor set2 Ca, is defined by ˆW Œ0; a�[ Œ1� a; 1� ! Œ0; 1�,

where ˆ.x/ D x
a

for x 2 Œ0; a�, and ˆ.x/ D x
a

� 1
a

C 1 for x 2 Œ1 � a; 1�. For

example, C1=3 is the standard middle-third Cantor set.

Considering the sum C C C 0 of two Cantor sets C; C 0, defined by

C C C 0 D ¹c C c0W c 2 C; c0 2 C 0º;

2 It is standard to denote the middle-˛ Cantor set by Ca , where a D 1

2
.1 � ˛/.
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it is not hard to show (see, e.g., Chapter 4 in [42]) that if the Cantor sets C and C 0

are dynamically defined, one has dimH.C C C 0/ � min.dimH C C dimH C
0; 1/.

Hence in the case dimH C C dimH C
0 < 1, the sum C C C 0 must be a Cantor

set, and an interesting question here is whether the identity dimH.C C C 0/ D

dimH C C dimH C
0 holds. This question was addressed for homogeneous Cantor

sets in [44] (see also [37]), and some explicit criteria were provided in [24].

In the case when dimH C C dimH C
0 > 1, a major result was obtained by

Moreira and Yoccoz in [36]. They showed that for a generic pair of Cantor sets

.C; C 0/ in this regime, the sum C C C 0 contains an interval. The genericity

assumptions there are quite non-explicit, and cannot be verified in a specific case.

This does not allow one to apply this result when a specific pair or a specific family

of Cantor sets is given (which is often the case in applications), which therefore

motivates further investigations in this direction. For example, while [36] solves

one part of the Palis conjecture on sums of Cantor sets (“generically the sum of two

dynamically defined Cantor sets either has zero measure or contains an interval”),

the second part of the conjecture (“generically the sum of two affine Cantor sets

either has zero measure or contains an interval”) is still open.

An important characteristic of a Cantor set related to questions about inter-

sections and sum sets is the thickness, usually denoted by �.C /. This notion was

introduced by Newhouse in [38]; for a detailed discussion, see [42]. The famous

Newhouse Gap Lemma asserts that if �.C / � �.C 0/ > 1, then C C C 0 contains an

interval. This allowed for essential progress in dynamics [39, 40, 15], and found

an application in number theory [1]. Nevertheless, in some cases �.C / ��.C 0/ < 1,
while dimH C C dimH C

0 > 1, and other arguments are needed.

In [52] Solomyak studied the sums Ca C Cb of middle-˛ type Cantor sets.

He showed that in the regime when dimH Ca C dimH Cb > 1, for almost every

pair of parameters .a; b/, one has Leb.Ca C Cb/ > 0. Similar results for sums

of homogeneous Cantor sets (parameterized by the expansion rate) with a fixed

compact set were obtained in [44].

In this paper we are able to work in far greater generality and prove the

following:

Theorem 2.1. Let ¹C�º be a family of dynamically defined Cantor sets of class
C 2 (i.e., C� D C.ˆ�/, whereˆ� is an expansion of class C 2 both in x 2 R and in
� 2 J D .�0; �1/) such that d

d�
dimH C� ¤ 0 for � 2 J . LetK � R be a compact

set such that
dimH C� C dimHK > 1 for all � 2 J:

Then Leb.C� CK/ > 0 for a.e. � 2 J .



Spectral transitions for the square Fibonacci Hamiltonian 1495

Remark 2.2. It would be interesting to relax the assumptions in Theorem 2.1 and

to show that the same statement holds for C 1C˛ Cantor sets. We conjecture that

this is indeed the case (possibly under some extra conditions on the dependence

of ˆ and @
@x
ˆ on �).

In the case when the dynamically defined Cantor sets ¹C�º are affine (or non-

linear, but C 2-close to affine), a statement analogous to Theorem 2.1 was obtained

in [23]. The case of a sum of homogeneous (affine with the same contraction rate

for each of the generators) Cantor sets with a dynamically defined Cantor set was

considered in Theorem 1.4 in [49]; in this case the set of exceptional parameters

has zero Hausdorff dimension.

In many applications a dynamically defined Cantor sets appears as the inter-

section of the stable lamination of some hyperbolic horseshoe with a transversal.

More specifically, suppose that f WM 2 ! M 2 is aC r -diffeomorphism, r � 2, and

ƒ � M 2 is a hyperbolic horseshoe (i.e., a totally disconnected locally maximal

invariant compact set such that there exists an invariant splitting Tƒ D Es ˚ Eu

so that along the stable subbundle ¹Esº, the differential Df contracts uniformly,

and along ¹Euº, the differential of the inverse Df �1 contracts uniformly). Then

W s.ƒ/ D ¹x 2 M 2W dist .f n.x/; ƒ/ �! 0 as n ! C1º

consists of stable manifolds W s.ƒ/ D
S

x2ƒW
s.x/ and locally looks like a

product of a Cantor set with an interval. If f D f�� 2 ¹f�º�2J D.�0;�1/ is an

element of a smooth family of diffeomorphisms, then there exists a family of

horseshoes ¹ƒ�º; f�.ƒ�/ D ƒ�, for parameters � sufficiently close to the initial

�� 2 J . Suppose thatL � M 2 is a line transversal to every leaf inW s.ƒ�/, � 2 J ,

with compact intersection L \ W s.ƒ�/. The intersection C� D L \ W s.ƒ�/ is

a �-dependent dynamically defined Cantor set. The lamination ¹W s.x/º consists

of C r leaves, but in general one cannot include it in a foliation of smoothness

better than C 1C˛ (even for C1 or real analytic f ). That justifies the traditional

assumption on C 1C˛ smoothness of generators of a dynamically defined Cantor

set3. This prevents us from using Theorem 2.1 in the context above. Nevertheless,

the analog of Theorem 2.1 holds for families of Cantor sets ¹C�º obtained via the

described construction.

3 Notice that C 1-smoothness is usually too weak since it does not allow one to use distortion

property arguments; see [34, 58] for some results on sums of C 1 Cantor sets.
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Theorem 2.3. Suppose that ¹f�º�2J D.�0;�1/, f�WM 2 ! M 2, is a C 2-family of
C 2-diffeomorphisms with uniformly (in �) bounded C 2 norms. Let ¹ƒ�º�2J be
a family of hyperbolic horseshoes, and ¹L�º�2J be a smooth family of curves
parameterized by 
�WR ! M 2, transversal to W s.ƒ�/, with compact C� D


�1
�
.L� \W s.ƒ�//. Assume that

d

d�
dimH C� ¤ 0 for all � 2 J: (4)

If K � R is a compact set such that

dimH C� C dimHK > 1 for all � 2 J; (5)

then Leb.C� CK/ > 0 for Lebesgue almost every � 2 J .

Notice that Theorem 2.3 implies Theorem 2.1. Indeed, under the assumptions

of Theorem 2.1, one can construct a family of horseshoes and curves as in The-

orem 2.3 that produce the same family of Cantor sets ¹C�º. Namely, if C is a

dynamically defined Cantor set as in Definition 1, one can consider l disjoint

closed intervals J1; J2; : : : ; Jl � R, with convex hull J , and l contacting map-

pings fi W J ! Ji , i D 1; : : : ; l . The map ‰W [sD1;:::;l; kD1;:::;lIs � Jk ! I � J ,

defined by ‰.x; y/ D .ˆ.x/; fs.y// if x 2 Is , has an invariant hyperbolic set ƒ

such that its unstable set intersects the line R� ¹0º by the set C � ¹0º. For a more

detailed discussion of the relation between dynamically defined Cantor sets and

hyperbolic invariant sets of diffeomorphisms, see, for example, [42, Chapter 4].

The proof of Theorem 2.3 is based on Theorem 3.7 from [13]. The setting there

is the following.

Suppose J � R is a compact interval, and f�WM 2 ! M 2, � 2 J , is a smooth

family of smooth surface diffeomorphisms. Specifically, we require f�.p/ to be

C 2-smooth with respect to both � and p, with a finite C 2-norm. Also, we assume

that f�WM 2 ! M 2, � 2 J , has a locally maximal transitive totally disconnected

hyperbolic set ƒ� that depends continuously on the parameter.

Let 
�WR ! M 2 be a family of smooth curves, smoothly depending on

the parameter, and L� D 
�.R/. Suppose that the stable manifolds of ƒ� are

transversal to L�.

Lemma 2.4 (Lemma 3.1 from [13]). There is a Markov partition of ƒ� and a
continuous family of projections ��Wƒ� ! L� along stable manifolds ofƒ� such
that for any two distinct elements of the Markov partition, their images under ��

are disjoint.
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Suppose �AW†`
A ! †`

A is a topological Markov chain, which for every � 2 J is

conjugated to f�Wƒ� ! ƒ� via the conjugacyH�W†`
A ! ƒ�. Let� be an ergodic

probability measure for �AW†`
A ! †`

A such that h�.�A/ > 0. Set �� D H�.�/,

then �� is an ergodic invariant measure for f�Wƒ� ! ƒ�.

Let ��Wƒ� ! L� be the continuous family of continuous projections along

the stable manifolds of ƒ� provided by Lemma 2.4. Set �� D 
�1
�

ı ��.��/ D


�1
�

ı �� ıH�.�/.

In this setting the following theorem holds.

Theorem 2.5 (Theorem 3.7 from [13]). Suppose that J is a compact interval so
that

ˇ

ˇ

d
d�

Lyapu.��/
ˇ

ˇ � ı > 0 for some ı > 0 and all � 2 J . Then for any
compactly supported exact-dimensional measure � on R with

dimH �C dimH �� > 1

for all � 2 J , the convolution � � �� is absolutely continuous with respect to
Lebesgue measure for Lebesgue almost every � 2 J .

Remark 2.6. In fact, in Theorem 2.5 the assumptions on the measure � can be

replaced by the following weaker ones:

� There are C > 0 and d > 0 such that for every x 2 R and r > 0, we have

�.Br.x// � Crd (this is the only consequence of exact dimensionality of �

that was used in the proof of Theorem 2.5 in [13]),

� d C dimH �� > 1.

Proof of Theorem 2.3. The condition dimH C� C dimHK > 1 trivially implies

that dimHK > 0. By Frostman’s Lemma (see, e.g., [30, Theorem 8.8]), for every

d < dimHK, there exist a Borel measure � on R with �.K/ D 1 and a constant C

such that

�.Br.x// � Crd for every x 2 R and r > 0: (6)

We will show that for every �0 2 J , there exists " D ".�0/ > 0 such that

Leb.C� CK/ > 0 for Lebesgue almost every � 2 .�0 � "; �0 C "/ \ J . This will

imply Theorem 2.3.

Fix �0 2 J . Let��0
be the equilibrium measure onƒ�0

that corresponds to the

potential � dimH C�0
log jDf�0

jEu j. Then (see [31]), the measure��0
is a measure

of maximal (unstable) dimension, that is, dimH ��0
.��0

/ D dimH C�0
. Denote

by ��0
the projection ��0

.��0
/. In order to mimic the setting of Theorem 2.5,

set � D H�1
�0
.��0

/. Then � is an invariant probability measure for the shift

�AW†l
A ! †l

A. Let us denote �� D H�.�/ and �� D ��.��/. There exists a
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canonical family of conjugacies H�1;�2
Wƒ�1

! ƒ�2
, .�1; �2/ 2 J � J , so that

H�1;�2
ı f�1

D f�2
ı H�1;�2

. It is well known (see, for example, Theorem 19.1.2

from [25]) that each of the maps H�1;�2
is Hölder continuous. Moreover, the

Hölder exponent tends to one as j�1 ��2j ! 0; see [43]. As a result, we conclude

that for any � sufficiently close to �0, we have

dimH �� C d > 1

for a suitable d that is chosen sufficiently close to dimHK and for which we

have (6) with suitable � and C .

In order to apply Theorem 2.5 we need to show that
ˇ

ˇ

d
d�

Lyapu.��/
ˇ

ˇ � ı > 0.

But due to [29] we know that

Lyapu�� D
h��

dimH ��

;

where h��0
D h� is the entropy of the invariant measure �� (which is by

construction independent of �). Notice also that Lyapu�� is a C 1 smooth function

of �. Indeed, the center-stable and center-unstable manifolds of the partially

hyperbolic invariant set of the map .�; p/ 7! .�; f�.p// are C 2-smooth, hence

Lyapu�� D

Z

ƒ�

log jDf�jEu j d�� D

Z

†l
A

log jDf�.H�.!//jEuj d�.!/

is a C 1-smooth function of � 2 J .

Finally, consider dimH C� and dimH �� as functions of �; see Fig. 2. Due to

[28] we know that dimH C� is a C 1-function of �. Without loss of generality we

can assume that d
d�

dimH C� � ı > 0 for some ı > 0. Since supp �� � C�,

we have dimH �� � dimH C�. By construction we have dimH ��0
D dimH C�0

.

This implies that d
d�

ˇ

ˇ

�D�0
dimH �� D d

d�

ˇ

ˇ

�D�0
dimH C� � ı > 0, and hence for

some " > 0, d
d�

dimH �� � ı
2
> 0 for � 2 .�0 � "; �0 C "/. Now we can apply

Theorem 2.5 to the measures � and ��, and get that for Lebesgue almost every

� 2 .�0 � "; �0 C "/, the convolution � � �� is absolutely continuous with respect

to Lebesgue measure, and hence Leb.C� CK/ > 0. �

3. The Square Fibonacci Hamiltonian

The ultimate goal of this section is to prove Theorem 1.1. We will first recall the

dynamical description of the spectrum of the Fibonacci Hamiltonian via the trace

map.
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λ0 λ

dimH νλ

dimH Cλ

Figure 2. Graphs of dimH C� and dimH �� as functions of �.

3.1. The Dynamical Description of the Spectrum. There is a fundamental

connection between the spectral properties of the Fibonacci Hamiltonian and the

dynamics of the trace map

T WR3 ! R
3; T .x; y; z/ D .2xy � z; x; y/: (7)

The function G.x; y; z/ D x2 C y2 C z2 � 2xyz � 1 is invariant4 under the action

of T , and hence T preserves the family of cubic surfaces5

S� D
°

.x; y; z/ 2 R
3W x2 C y2 C z2 � 2xyz D 1C

�2

4

±

: (8)

It is therefore natural to consider the restriction T� of the trace map T to the

invariant surface S�. That is, T�WS� ! S�, T� D T jS�
. We denote by ƒ� the

set of points in S� whose full orbits under T� are bounded (it follows from [5, 47]

that ƒ� is equal to the non-wandering set of T�; compare the discussion in [12]).

Denote by `� the line

`� D
°�E � �

2
;
E

2
; 1

�

WE 2 R

±

: (9)

4 G is usually called the Fricke-Vogt invariant.

5 The surface S0 is known as Cayley cubic.
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It is easy to check that `� � S�. The key to the fundamental connection between

the spectral properties of the Fibonacci Hamiltonian and the dynamics of the trace

map is the following result of Sütő [53]. An energyE 2 R belongs to the spectrum

†� of the Fibonacci Hamiltonian if and only if the positive semiorbit of the point
�

E��
2
; E

2
; 1

�

under iterates of the trace map T is bounded.

It turns out that for every � > 0, ƒ� is a locally maximal compact transitive

hyperbolic set of T�WS� ! S�; see [5, 6, 10]. Moreover, it was shown in [14] that

for every � > 0, the line of initial conditions `� intersects W s.ƒ�/ transversally.

Thus, we are essentially in the setting in which Theorem 2.3 applies. The only

minor difference is that in the present setting, the surface S� depends formally

on �, while it is �-independent in the setting of Theorem 2.3. After partitioning

the parameter space into smaller intervals if necessary, we can then consider a

small �-interval, choose a �0 in it, and then conjugate with smooth projections

of S� to S�0
.

3.2. The Measure of the Spectrum. As was pointed out above, it was shown

in [14] that the box counting dimension of †� exists and is equal to the Hausdorff

dimension of †�. A particular consequence of this is the following:

Proposition 3.1. If .�1; �2/ 2 R
2
C is such that dimH†�1

C dimH†�2
< 1, then

†�1;�2
has zero Lebesgue measure.

Here we are able to prove the following companion result:

Proposition 3.2. Suppose that for all pairs .�1; �2/ in some open setU � R
2
C, we

have dimH†�1
CdimH†�2

> 1. Then, for Lebesgue almost all pairs .�1; �2/ 2 U ,
†�1;�2

has positive Lebesgue measure.

Proof. It clearly suffices to work locally in U (compare with the first steps in the

proof of Theorem 2.3). That is, we consider a rectangular box B D ¹.�1; �2/W a <

�1 < b; c < �2 < dº inside U and prove that for Lebesgue almost every

.�1; �2/ 2 B , †�1;�2
has positive Lebesgue measure. To accomplish this, it

suffices to show that for every fixed �2 2 .c; d/, †�1;�2
has positive Lebesgue

measure for Lebesgue almost every �1 2 .a; b/.

The set†�2
will play the role of the setK in Theorem 2.3. By the analyticity of

�1 7! dimH†�1
, we can subdivide .a; b/ into intervals, on the interiors of which

we have the condition
d

d�1

dimH†�1
¤ 0:
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This ensures that condition (4) in Theorem 2.3 holds. Condition (5) in Theo-

rem 2.3 holds since we work inside U . All the other assumptions in Theorem 2.3

hold by the discussion in the previous subsection. Thus we may apply Theorem 2.3

and obtain the desired statement. �

3.3. The Density of States Measure. Combining results from [13] and [14], we

obtain the following statement:

Proposition 3.3. For Lebesgue almost all pairs .�1; �2/ 2 R
2
C in the region where

dimH ��1
C dimH ��2

> 1, the measure ��1;�2
is absolutely continuous.

Let us prove the following companion result:

Proposition 3.4. Suppose that dimH ��1
CdimH ��2

< 1. Then, ��1;�2
is singular,

that is, it is supported by a set of zero Lebesgue measure.

We begin by recalling some basic concepts from measure theory and fractal

geometry; the standard texts [19, 30] can be consulted for background information.

Suppose � is a finite Borel measure on R
d . The lower Hausdorff dimension, resp.

the upper Hausdorff dimension, of � are given by

dim�
H.�/ D inf¹dimH.S/W�.S/ > 0º; (10)

dimC
H .�/ D inf¹dimH.S/W�.R

d n S/ D 0º: (11)

Thus, the measure � gives zero weight to every set S with dimH.S/ < dim�
H.�/

and, for every " > 0, there is a set S with dimH.S/ < dimC
H .�/C " that supports

� (i.e., �.R n S/ D 0).

For x 2 R
d and " > 0, we denote the open ball with radius " and center x by

B.x; "/. The lower scaling exponent of � at x is given by

˛�
�.x/ D lim inf

"!0

log�.B.x; "//

log "
:

For �-almost every x, ˛�.x/ 2 Œ0; d �. Moreover, we have

dim�
H.�/ D � � essinf ˛�

� � sup¹˛W ˛�
�.x/ � ˛ for �-almost every xº; (12)

dimC
H .�/ D � � esssup˛�

� � inf¹˛W ˛�
�.x/ � ˛ for �-almost every xº; (13)

compare [20, Propositions 10.2 and 10.3].
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One can also consider the upper scaling exponent of � at x,

˛C
� .x/ D lim sup

"!0

log�.B.x; "//

log "
;

which also belongs to Œ0; d � for �-almost every x. The measure � is called exact-

dimensional if there is a number dim� 2 Œ0; d � such that ˛C
� .x/ D ˛�

�.x/ D dim�

for �-almost every x 2 R
d . In this case, it of course follows that dimC

H .�/ D

dim�
H.�/ D dim�, and tangentially we note that the common value also coincides

with the upper and lower packing dimension of �, which are defined analogously

by replacing the Hausdorff dimension of a set in the above definitions by the

packing dimension; see [19, 20, 30] for further details.

We are now ready to prove Proposition 3.4. In fact, the statement will follow

quickly from known results once we have established the following simple lemma.

Lemma 3.5. Suppose �1 and �2 are compactly supported exact-dimensional
measures on R of dimension d1 and d2, respectively. If d1 C d2 < 1, then the
convolution �1 � �2 is singular.

Proof. Note first that the product measure �1 � �2 is exact-dimensional with

dimension d1 Cd2. Moreover, the convolution �1 ��2 can be obtained from �1 ��2

by projection, that is,

�1 � �2.B/ D �1 � �2¹.x; y/ 2 R
2W x C y 2 Bº:

It follows that for �1 � �2-almost every x 2 R, the lower scaling exponent

˛�
�1��2

.x/ D lim inf
"#0

log .�1 � �2 ..x � "; x C "///

log "

is bounded from above by d1 C d2. This implies that the upper Hausdorff dimen-

sion of �1 � �2,

dimC
H .�1 � �2/ D inf¹dimH.S/W �1 � �2.R n S/ D 0º

D �1 � �2 � esssup˛�
�1��2

� inf¹d W ˛�
�1��2

.x/ � d for �1 � �2-almost every xº;

is bounded from above by d1 Cd2 (here we used (11) and (13)). Since d1 Cd2 < 1

by assumption, �1 ��2 has a support of Hausdorff dimension strictly less than one

and hence of Lebesgue measure zero. This shows that �1 � �2 is singular. �

Proof of Proposition 3.4. It was shown in [14] that for every � > 0, the density

of states measure �� is exact-dimensional. Thus, Proposition 3.4 is an immediate

consequence of Lemma 3.5. �
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3.4. Putting It All Together. We are now in a position to prove our main result,

Theorem 1.1.

Proof of Theorem 1.1. (a) The regions Uacds, Upmsd, Uzmsp are clearly disjoint due

to their definition. Moreover, the union of their closures covers the parameter

space R
2
C due to the analyticity of both dimH �� and dimH†�; compare [45].

(b) It was shown in [14] that dimH �� and dimH†� obey the inequalities (3).

This, together with the continuity of these functions, implies that each of the

regions Uacds, Upmsd, Uzmsp is open and non-empty.

(c) Proposition 3.3 shows that for Lebesgue almost every .�1; �2/ 2 Uacds,

��1;�2
is absolutely continuous, and hence†�1;�2

has positive Lebesgue measure.

(d) On the other hand, for every .�1; �2/ 2 Upmsd, ��1;�2
is singular by

Proposition 3.4, while for Lebesgue almost every .�1; �2/ 2 Upmsd, †�1;�2
has

positive Lebesgue measure due to Proposition 3.2.

(e) Finally, it follows from Proposition 3.1 that for every .�1; �2/ 2 Uzmsp,

†�1;�2
has zero Lebesgue measure, and hence ��1;�2

is singular. �
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