
J. Spectr. Theory 8 (2018), 1509–1527

DOI 10.4171/JST/233

Journal of Spectral Theory

© European Mathematical Society

Uniform distribution of eigenstates

on a torus with two point scatterers

Nadav Yesha

Abstract. We study the Laplacian perturbed by two delta potentials on a two-dimensional

flat torus. There are two types of eigenfunctions for this operator: old, or unperturbed

eigenfunctions which are eigenfunctions of the standard Laplacian, and new, perturbed

eigenfunctions which are affected by the scatterers. We prove that along a density one se-

quence, the new eigenfunctions are uniformly distributed in configuration space, provided

that the difference of the scattering points is Diophantine.
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1. Introduction

1.1. Toral point scatterers. In the field of Quantum Chaos, one of the fundamen-

tal questions concerns the quantum ergodicity of a quantum system, i.e., equidis-

tribution of almost all eigenstates of the system in the high energy limit. A key

result is Shnirelman’s quantum ergodicity theorem [12, 3, 19], which asserts that
a quantum system whose classical counterpart has ergodic dynamics is quantum
ergodic. On the other hand, there are quantum systems whose classical counter-
part has integrable dynamics, for which the eigenstates tend to localize (“scar”) in
phase space.

A point scatterer on a flat torus is a popular model to study the transition
between integrable and chaotic systems. Formally, it is defined as a rank one
perturbation of the Laplacian, namely

� � C ˛hıx0
; �iıx0

(1.1)

where ˛ 2 R is a coupling parameter, and x0 is the scattering point. It is an
intermediate model, in the sense that the delta potential at x0 does not change
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the (integrable) classical dynamics of the system except for a measure zero set of
trajectories, whereas it has a chaotic influence on the behaviour of the quantum
system.

A standard way to rigorously define a point scatterer is via the theory of self-
adjoint extensions, as described in depth in [2]. One defines the operator (1.1) as
a self-adjoint extension of the Laplacian vanishing near the point x0 (there are
non-trivial self-adjoint extensions only in dimensions d � 3); such extensions
are parametrized by a phase � 2 .��; ��, where � D � corresponds to ˛ D 0

in (1.1), i.e., to the standard Laplacian. Consider the other, non-trivial extensions.
Their eigenfunctions can be split into eigenfunctions of the standard Laplacian,
referred to as the old, or unperturbed eigenfunctions, as well as new, or perturbed
eigenfunctions which are affected by the presence of the scatterer, and therefore
are the main object of study.

The semiclassical limits for the perturbed eigenfunctions of a point scatterer
on flat tori have been studied extensively in recent years (see [13] for a survey
on some of the results). Rudnick and Ueberschär proved uniform distribution
in configuration space of the perturbed eigenfunctions for a point scatterer on
two-dimensional flat tori [9]. This was also proved for three-dimensional flat
tori [17], both on the standard square torus and on irrational tori with a Diophantine
condition on the side lengths, where in the former case of the standard torus
all of the perturbed eigenfunctions equidistribute in configuration space. As for
quantum ergodicity in full phase space, it was proved both on the standard two-
dimensional flat torus [6] and on the standard three-dimensional torus [18].

Scarring behavior has also been studied in several settings. Kurlberg and
Ueberschär showed [7] that for an irrational two-dimensional torus (also known
as the “Šeba billiard” as introduced in [10]) with a Diophantine condition on the
side lengths, quantum ergodicity does not hold in full phase space; in fact, almost
all new eigenfunctions strongly localize in momentum space. More recently,
Kurlberg and Rosenzweig studied scarring behaviour on standard tori both in two
and three dimensions [5].

1.2. Two point scatterers. Recently, Ueberschär raised the natural question of
the behavior of a system with several scatterers [14, 15, 16]. For a standard torus
with n i.i.d uniform random scatterers, he showed [15] that uniform distribution
in configuration space of almost all of the perturbed eigenfunctions holds with
probability � 1=n. Our goal in this paper is to prove a deterministic result for
two point scatterers on the torus.
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Interestingly, our techniques do not generalize to the case of three or more
scatterers, for which the symmetries that we exploit fail to hold. Indeed, it seems
that even one additional (third) scatterer significantly complicates the nature of
the system, so deterministic results for three or more scatterers require additional
arguments. As an example, note that even with the presence of only a few scatter-
ers, some unique phenomena occur, such as Laplace eigenspaces of dimensions
smaller than the number of scatterers (this can occur for all eigenspaces, e.g. for
irrational tori). Additional arguments are also required in order to extend our
equidistribution results to phase space (as in [6]) or to study scarring behaviour
for systems with multiple scatterers.

For the clarity of the paper, we will not work in the most general setting. Here
we consider the two-dimensional standard flat torus T2 D R2=2�Z2 with two
scatterers at the points x1; x2 2 T2, whose normalized difference .x2 � x1/=�

is Diophantine. Our results can be easily generalized to non-square tori with a
Diophantine condition on the difference of the scatterers – see Theorem 1.5 below.
In addition, using the methods of [17], Theorem 1.3 can be extended to the standard
three-dimensional torus, and also to irrational tori with the same Diophantine
condition on the side lengths as in [17].

To give a more detailed account of our results, recall the definition of a
Diophantine vector.

Definition 1.1. A vector .˛1; ˛2/ 2 R2 is said to be Diophantine of type �, if there
exists a constant C > 0 such that

max
j D1;2

ˇ

ˇ

ˇ j̨ � pj

q

ˇ

ˇ

ˇ >
C

q�

for all p1; p2; q 2 Z; q > 0. By Dirichlet’s theorem, the smallest possible value
for � is 3=2.

Let x0 D x2 � x1, and assume that the vector x0=� is Diophantine. Note that
by Khinchin’s theorem on Diophantine approximations, our assumption holds for
almost all pairs x1; x2.

Consider the Laplacian perturbed by two delta potentials at x1; x2, which is
formally defined as a symmetric rank two perturbation of the Laplacian, namely

� � C
2

X

i;j D1

hj i hıxi
; �iıxj

(1.2)

where H D ¹hij º2
i;j D1 is a Hermitian matrix, and x1; x2 2 T2 are the scattering

points (in particular, the case where we assume no non-local interaction between
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the scatterers corresponds to perturbations with a diagonal H , i.e.,

�� C ˛hıx1
; �iıx1

C ˇhıx2
; �iıx2

where ˛; ˇ 2 R are coupling constants). As in the case of a single scatterer,
the formal operators (1.2) can be defined rigorously using the theory of self-
adjoint extensions of the standard Laplacian vanishing at x1; x2. The self-adjoint
extensions are parametrized by the unitary group U.2/. As we will see, the
standard Laplacian is retrieved by the extension corresponding to the matrix
U D �I , and the eigenvalues of the other extensions can be again divided into old
or unperturbed eigenvalues, i.e., eigenvalues of the standard Laplacian, as well as
a set of new, perturbed eigenvalues, which we denote by ƒ D ƒU .

To establish a link between the old and the new eigenvalues of a self-adjoint
extension ��U , we define the “weak interlacing” property.

Definition 1.2. We say that a set A � R weakly interlaces with a set B � R, if
A \ B D ;, and there exists a constant C > 0 such that between any two elements
of A there are at most C elements of B , and vice versa.

It is a general fact [1] that for n point scatterers (which are similarly defined
via self-adjoint extensions), the difference between the spectral counting function
of ��U (with multiplicities) and the spectral counting function of the standard
Laplacian is uniformly bounded by n. In Appendix A, we will see that for each
0 ¤ � 2 �.��/; the dimension of the corresponding eigenspace of ��U is equal
to the dimension of the Laplace eigenspace minus rank.I CU /. It follows that the
set ƒ of new eigenvalues weakly interlaces with the Laplace eigenvalues.

1.3. Statement of the main result. We now state our main result. Let ƒ0 be
any set of real numbers which weakly interlaces with the Laplace eigenvalues.
For � 2 ƒ0 and .d1; d2/ ¤ .0; 0/, let

G�.x/ D G�.xI d1; d2/ D d1G�.x; x1/ C d2G�.x; x2/

be any non-zero superposition of the Green’s functions

G�.x; xj / D .� C �/�1ıxj
.x/ j D 1; 2;

and let g� D G�=kG�k2.
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Theorem 1.3. Let x0 D x2 � x1; and assume that x0=� is Diophantine. For any

� > 0 and for any set ƒ0 � R which weakly interlaces with the Laplace eigen-

values, there exists a subset ƒ1 � ƒ0 of density one so that for all observables

a 2 C 1.T2/,

Z

T2

a.x/jg�.xI d1; d2/j2 dx D 1

4�2

Z

T2

a.x/ dx C Oa;�.��1=8C�/

as � ! 1 along ƒ1.

Let �I ¤ U 2 U.2/, and let ��U the corresponding self-adjoint extension.
For a new eigenvalue � 2 ƒ, the corresponding eigenfunction is a superposition
of the Green’s functions G�.x; xj /. Thus, given an orthonormal basis ¹'kº for
the subspace of the perturbed eigenfunctions, it follows from Theorem 1.3 and
from the weak interlacing of ƒ with the eigenvalues of �� that ¹'kº is uniformly
distributed in configuration space along a density one subsequence.

Corollary 1.4. Let x0 D x2 � x1; and assume that x0=� is Diophantine. For

any �I ¤ U 2 U.2/, let ¹'kº be an orthonormal basis for the subspace of the

perturbed eigenfunctions of ��U with eigenvalues ¹�kº. For any � > 0, there

exists a density one sequence ¹�kj
º so that for all observables a 2 C 1.T2/,

Z

T2

a.x/j'kj
.x/j2dx D 1

4�2

Z

T2

a.x/dx C Oa;�.�
�1=8C�

kj
/

as j ! 1.

In particular, we improve on the result of Ueberschär [15, Theorem 1.1] for two
scatterers, as in that case his result only gives the result for random x1; x2 in a
set of positive, but not necessarily full measure. Our result is deterministic and
applies for almost all x1; x2.

Note that the formulation of Theorem 1.3 is fairly general, and is independent of
the self-adjoint extension U , which is advantageous since in the physics literature
one often considers self-adjoint extensions which are not fixed but vary with �.
For a single scatterer, for example, there is a popular quantization condition known
as the “strong coupling limit” where tan �

2
� �C log � (see [11, 13]), in which

phenomena such as level repulsion between the new eigenvalues are observed, as
opposed to the “weak coupling limit” where the self-adjoint extension is fixed. In
particular, it follows from Theorem 1.3 that uniform distribution in configuration
space holds even if the self-adjoint extensions change with �:
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As stated above, the proof of Theorem 1.3 is easily generalized to non-square
tori. For a > 0, define a lattice L0 D Z.1=a; 0/ ˚ Z.0; a/ in R2; and let

L D ¹x 2 R2W hx; li 2 Z; for all l 2 L0º D Z.a; 0/ ˚ Z.0; 1=a/

be the dual lattice. Consider the torus T2
L0

D R2=2�L0 with scattering points
x1; x2 2 T2

L0
, whose difference we denote by x2 � x1 D .˛1; ˛2/, and assume

that .˛1a=�; ˛2=.�a// is Diophantine. Let ƒ0 be any set of real numbers which
weakly interlaces with the Laplace eigenvalues, which are the norms j�j2 of the
elements � 2 L. For � 2 ƒ0 and .d1; d2/ ¤ .0; 0/, let

G�.x/ D G�.xI d1; d2/ D d1G�.x; x1/ C d2G�.x; x2/

be any non-zero superposition of the Green’s functions .� C �/�1ıxj
and let

g� D G�=kG�k2.

Theorem 1.5. Let x2 � x1 D .˛1; ˛2/; and assume that .˛1a=�; ˛2=.�a// is

Diophantine. There exists a constant 
 > 0, such that for any � > 0 and for any

set ƒ0 � R which weakly interlaces with the Laplace eigenvalues, there exists a

subset ƒ1 � ƒ0 of density one so that for all observables a 2 C 1.T2
L0

/,

Z

T
2
L0

a.x/jg�.xI d1; d2/j2 dx D 1

4�2

Z

T
2
L0

a.x/ dx C Oa;�.�
�
C�

kj
/

as � ! 1 along ƒ1.

Remark 1.6. One can take 
 D .1 � 3�/=2, where � is the exponent in the
remainder term in Weyl’s law on the torus (see [15]). The best known exponent
� D 131=416 is due to Huxley [4], so one can take 
 D 23=832.

Acknowledgements. The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Frame-
work Programme (FP/2007-2013) / ERC Grant Agreement n. 291147. I would like
to thank Zeév Rudnick and Jens Marklof for helpful comments.

2. Two points scatterers on the torus

2.1. Self-adjoint extensions. Let T2 D R2=2�Z2 be the standard two-dimen-
sional flat torus. Let x1; x2 2 T2 two points on the torus, and denote the difference
of x1 and x2 by x0 D x2 � x1 D .˛1; ˛2/. Recall that we assume that x0=� is Dio-
phantine. We rigorously define the Laplacian perturbed by potentials at x1; x2



Uniform distribution of eigenstates 1515

using the theory of self-adjoint extensions of unbounded symmetric operators.
We give here a brief summary of the procedure – a more general calculation for n

scatterers can be found in [15], however in the case of two scatterers we are able
to give a more explicit computation.

Let D0 D C 1
c .T2 n ¹x1; x2º/ be the space of smooth functions supported

away from the points x1; x2, and let ��0 D ���D0
be the Laplacian restricted

to this domain. We realize the perturbed operator as a self-adjoint extension of
the operator ��0. In fact, it can be shown that the deficiency indices of ��0

are .2; 2/, hence the self-adjoint extensions are parametrized by the unitary group
U.2/.

For � … �.��/, let

G�.x; y/ D .� C �/�1ıy.x/

be the Green’s function of the Laplacian on T2. In particular, it has the L2-
expansion

G�.x; y/ D � 1

4�2

X

�2Z2

eih�;x�yi

j�j2 � �
:

The deficiency subspaces of ��0, namely ker.��
0 ˙ i/ are spanned by

¹Gi .x; x1/; Gi.x; x2/º; ¹G�i.x; x1/; G�i.x; x2/º:
Note that G�i .x; xj / D Gi .x; xj /, and that for � 2 R, G�.x; xj / is real.
Let

c1 D kG˙i .x; xj /k2
2 D 1

16�4

X

�2Z2

1

j�j4 C 1
;

c2 D
Z

Gi .x; x1/Gi .x; x2/ dx

D
Z

G�i .x; x1/G�i .x; x2/ dx

D 1

16�4

X

�2Z2

cos.h�; x0i/
j�j4 C 1

:

Thus, defining
G�.x/ D .G�.x; x1/; G�.x; x2//

(for notational convenience we treat G�.x/ as a vector with two coordinates) and

T D

0

@

1p
c1

0

� c2
q

c1.c2
1

�c2
2

/

q

c1

c2
1

�c2
2

1

A ;

we get that TGi .x/ and TG�i .x/ form orthonormal bases for the deficiency spaces
ker.��

0 ˙ i/:
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Denote the self-adjoint extension of ��0 corresponding to U 2 U.2/ by ��U .
The domain of ��U consists of the functions in the Sobolev space

H 2.T2 n ¹x1; x2º/

of the form

g.x/ D f .x/ C hv; TGi .x/i C hv; U TG�i .x/i (2.1)

where f 2 H 2.T2/ such that f .x1/ D f .x2/ D 0 and v 2 C2.

We can also rewrite (2.1) as

g.x/ D f .x/ C hT �.I C U �/v; ReGi .x/i C ihT �.I � U �/v; ImGi .x/i:

Since Im Gi .x; xj / 2 H 2.T2/, the extension ���I retrieves the standard Lapla-
cian �� on H 2.T2/, and we have g 2 H 2.T2/ if and only if .I C U �/v D 0.

Another class of special extensions are ��U where rank.I C U / D 1. For
these extensions, there is a non-zero v0 (unique up to multiplication by a scalar)
such that .I C U �/v0 D 0, and therefore for the choice v D cv0, (2.1) reads

g.x/ D f .x/ C 2ichT �v0; ImGi .x/i

so g 2 H 2.T2/. Since

Im Gi .x1; x1/ D Im Gi .x2; x2/ D �4�2c1; (2.2)

Im Gi .x1; x2/ D Im Gi .x2; x1/ D �4�2c2 (2.3)

we see that hT �v0; ImGi .x/i and therefore g do not vanish simultaneously at
x1; x2. Thus, if rank.I C U / D 1, then there exists g 2 Dom.��U / such that
g 2 H 2.T2/ with either g.x1/ ¤ 0 or g.x2/ ¤ 0; a phenomenon which does not
occur in the case of a single scatterer.

2.2. Spectrum and eigenfunctions. The eigenvalues of ��U for U ¤ �I , and
the corresponding eigenfunctions, fall into two kinds. First, there are the “old”, or
“unperturbed” eigenvalues, which are the eigenvalues of the standard Laplacian
�� on T2, i.e., belong to the set N of integers which are representable as a sum
of two squares. For each 0 ¤ � 2 �.��/; we will see in Appendix A that every
eigenfunction of ��U with an eigenvalue � is also an eigenfunction of ��. From
this we will deduce that the dimension of the corresponding eigenspace of ��U

is equal to the dimension of the Laplace eigenspace minus rank.I C U /.
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The second group of eigenvalues of ��U will be referred to as the group of
new, or perturbed eigenvalues. These are the eigenvalues that are affected by the
scatterers, and therefore are the main object of our study. Denote the set of the
perturbed eigenvalues of ��U by ƒ D ƒU .

For � 2 ƒ, the corresponding eigenfunction G� is of the form

G�.x/ D f .x/ C hT �v;Gi.x/i C h.U T /�v;G�i.x/i

where f .x1/ D f .x2/ D 0 and v … Ker.I C U �/.
Since G� is an eigenvalue of ��U , it is also an eigenvalue of the adjoint

operator ���
0: In addition, we have ��

0G˙i .x; xj / D �iG˙i .x; xj /; so

0 D .��
0 C�/G� D .�C�/f C.�i C�/hT �v;GiiC.i C�/h.U T /�v;G�ii (2.4)

and after simplifying using the resolvent identity

�i C �

.� C �/.� ˙ i/
D �1

� C �
C 1

� ˙ i

we get

0 D f C hT �v;Gi � G�i C h.U T /�v;G�i � G�i D f C hv;A�i

where
A�.x/ D T .Gi � G�/.x/ C U T .G�i � G�/.x/:

Evaluating at x D x1; x2, we see that a necessary condition on � being a new
eigenvalue is that

det.A�.x1/;A�.x2// D 0:

We remark that the condition is also sufficient, since if the determinant is zero, we
can easily construct G�. Also note that

G�.x/ D hT �.I C U �/v;G�.x/i;

so the perturbed eigenfunctions are linear combinations of the Green’s functions
G�.x; xj /:

3. Uniform distribution in configuration space

3.1. Density one subsequence. Let ƒ0 be a set of real numbers which weakly
interlaces with the Laplace eigenvalues. We first build a density one subsequence
in ƒ0 along which we will be able to obtain a lower bound for the L2-norm of G�.
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Recall that N is the set of integers representable as a sum of two squares, i.e.,
the eigenvalues of ��, and let r2.n/ be the number of such representations. For
any � 2 ƒ0, define

n� D max¹n 2 NW n < �º:
Fix a small � > 0.

Lemma 3.1. There exists a density one subsequence ƒ1 in ƒ0, such that for every

� 2 ƒ1, we have � � n� � ��:

Proof. DenoteN D ¹n1; n2; : : : º: By Lemma 2.1 in [9], for a density one sequence
N1 in N we have nkC1 � nk � n�

k
. Let ƒ1 D ¹� 2 ƒ0W n� 2 N1º. The statement

of the lemma then follows from the weak interlacing of ƒ0 with N. �

Lemma 3.2. There exists a density one subsequence ƒ2 in ƒ0, such that for all

� 2 ƒ2 and � 2 Z2 such that j�j2 D n�, we have max
j D1;2

j sin.�j j̨ /j � ���:

Proof. Denote the distance to the nearest integer by

ktk D min
n2Z

jt � nj:

Since j sin.�j j̨ /j � k�j j̨ =�k, it is enough to find a density one subsequence
along which max

j D1;2
k�j j̨ =�k � ���.

Let � be the type of x0=� . Let

A D ¹� 2 Z2W j�j2 � X; max
j D1;2

k�j j̨ =�k � X��º:

Then by writing �1 D n; �2 D n C h, we have

#A �
X

jhj�2X1=2

#Ah

where

Ah D ¹n 2 ZW jnj � X1=2; kn˛1=�k � X��; k.n C h/˛2=�k � X��º:

Fix jhj � 2X1=2; and divide the interval Œ�X1=2; X1=2� into subintervals of
length X�=.��1/; so the number of such intervals is � X1=2��=.k�1/: For any
n ¤ m which lie in one of these intervals, the distance between the points
.kn˛1=�k; k.n C h/˛2=�k/ and .km˛1=�k; k.m C h/˛2=�k/ is bounded from
below by

max
j D1;2

k.n � m/ j̨ =�k � 1

.n � m/��1
� X��;
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so the number of points in each of the intervals belonging to Ah is bounded.
Therefore #Ah � X1=2��=.k�1/; and #A � X1��=.k�1/: Moreover, it follows that

#¹� 2 Z2W j�j2 � X; max
j D1;2

k�j j̨ =�k � .1 C j�j2/��º � X1��=2.k�1/;

and thus the set

B D ¹n 2 NW n � X such that there exists � 2 Z2 such that j�j2 D n and

max
j D1;2

k�j j̨ =�k � .1 C n/��º

satisfies #B � X1��=2.k�1/: On the other hand, since r2.n/ � n� for all � > 0,
we have

#¹n 2 NW n � Xº � X1��

(in fact, by Landau’s theorem [8] we have #¹n 2 NW n � Xº � C xp
log x

). Thus

N n B is a density one set in N. Let ƒ2 D ¹� 2 ƒ0W n� 2 N n Bº. The statement
of the lemma again follows from the weak interlacing of ƒ0 with N. �

Finally, we define ƒ0 D ƒ1\ƒ2 which is a density one set in ƒ0 by Lemmas 3.1
and 3.2.

3.2. Lower bound for the L
2-norm of G�. For � 2 ƒ0, let

G�.x/ D d1G�.x; x1/ C d2G�.x; x2/;

normalized such that jd1j2 C jd2j2 D 1. Assume without loss of generality that
jd2j2 � 1=2.

We now give a lower bound for the L2-norm of G� along � 2 ƒ0.

Lemma 3.3. For all � 2 ƒ0, we have kG�k2
2 � ��4�:

Proof. Let � 2 ƒ0. We have

kG�k2
2 D 1

16�4

X

�2Z2

jd1eih�;x1i C d2eih�;x2ij2
.j�j2 � �/2

D 1

16�4
jd2j2

X

�2Z2

jd1=d2 C eih�;x0ij2
.j�j2 � �/2

:
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Choose � D .�1; �2/ such that j�j2 D n�. From Lemmas 3.1 and 3.2, we have
max

j D1;2
j sin.�j j̨ /j � ��� and n� �� � ��: We can assume that j sin.�1˛1/j � ���

(so in particular �1 ¤ 0). Thus

kG�k2
2 �

X

�2Z2

jd1=d2 C eih�;x0ij2
.j�j2 � �/2

� ��2�.jd1=d2 C eih.�1;�2/;x0ij2 C jd1=d2 C eih.��1;�2/;x0ij2/

� ��2�jeih.�1;�2/;x0i � eih.��1;�2/;x0ij2 � ��2� sin2.�1˛1/

� ��4�: �

3.3. Truncation. Let 0 < ı < 1=4 and let L D �ı : We define G�;L D
d1G�;L.x; x1/ C d2G�;L.x; x2/ where

G�;L.x; xj / D � 1

4�2

X

jj�j2��j�L

eih�;x�xj i

j�j2 � �

is the truncated Green’s function. Denote

g� D G�

kG�k2

; g�;L D G�;L

kG�;Lk2

:

Lemma 3.4. For all � 2 ƒ0 we have kg� � g�;Lk2
2 � �5�=L.

Proof. We have

kg� � g�;Lk2
2 � 4

kG� � G�;Lk2
2

kG�k2
2

� �4�kG� � G�;Lk2
2:

But

kG� � G�;Lk2
2 D 1

16�4

X

jj�j2��j>L

jd1eih�;x1i C d2eih�;x2ij2
.j�j2 � �/2

�
X

jj�j2��j>L

1

.j�j2 � �/2

�
X

jn��j>L

n�

.n � �/2

� ��=L: �
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For all a 2 C 1.T2/, we have (see [9])

jhag�; g�i � hag�;L; g�;Lij � 2kak1kg� � g�;Lk2:

Thus,
hag�; g�i D hag�;L; g�;Li C O.�.5��ı/=2/:

Taking ı D 1=4 � �, we see that in order to prove Theorem 1.3, it is enough to find
a density one sequence ƒ1 in ƒ0 so that for all a 2 C 1.T2/ and all M > 0,

hag�;L; g�;Li D 1

4�2

Z

T2

a.x/ dx C O.��M / (3.1)

as � ! 1 along ƒ1:

3.4. Proof of Theorem 1.3. We first show that for every fixed � 2 Z2 n ¹.0; 0/º

heih�;xig�;L; g�;Li D 0

along a density one subsequence.
Let

S� D ¹� 2 Z2W jh�; �ij � 2j�j2ıº;
and let

ƒ� D ¹� 2 ƒ0W for all � 2 S� : jj�j2 � �j > Lº:

Lemma 3.5. ƒ� is a density one set in ƒ0.

Proof. We follow the proof of Proposition 6.1 in [9]. Write � D .p; q/; �? D
.�q; p/. Then every � 2 S� can be written as � D u �

j� j C v �?

j�?j , and therefore the

set of lattice points ¹� 2 S� W j�j2 � Xº is contained in the rectangle
²

u
�

j�j C v
�?

j�?j W u � 2Xı

j�j ; v �
p

X

³

:

Since the number of lattice points inside a rectangle is bounded (up to a constant)
by the area of the rectangle, we see that

#¹� 2 S� W j�j2 � Xº � X1=2Cı

j�j :

Let N � N be the set of norms j�j2 in S� . Define a map �W ƒ0 n ƒ� ! N� which
takes � 2 ƒ0 n ƒ� to the closest element n 2 N to � (if there are two elements
with the same distance take the smallest of them). For every N� we have

#��1.n/ � #¹� 2 ƒ0 n ƒ� W there exists � 2 S�

such that j�j2 D n; jn � �j � Lº � nı :
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Thus,

#¹� 2 ƒ0 n ƒ� W � � Xº �
X

n2N�

n�2X

#��1.n/ � Xı#¹n 2 N� W n � 2Xº

� Xı#¹� 2 S� W j�j2 � 2Xº

� X1=2C2ı

j�j ;

so ƒ� is a density one set in ƒ0 (since ı < 1=4/: �

Lemma 3.6. For all � 2 ƒ� such that �ı � j�j2,

jj�j2 � �j � L H) jj� C �j2 � �j > L:

Proof. For all � 2 ƒ� such that �ı � j�j2, if jj�j2 � �j � L, then � … S� ; i.e.,
jh�; �ij > 2j�j2ı ; and therefore

jj� C �j2 � �j � 2jh�; �ij � jj�j2 � �j � j�j2 > L: �

Proof of Theorem 1.3. We have

heih�;xig�;L; g�;Li D heih�;xiG�;L; G�;Li
kG�;Lk2

2

:

Denoting c.�/ D d1e�ih�;x1i C d2e�ih�;x2i; note that

heih�;xiG�;L; G�;Li D 16

�4

X

jj�j2��j�L

jj�C� j2��j�L

c.�/c.� C �/

.j�j2 � �/.j� C �j2 � �/
:

However by Lemma 3.6, the last sum is empty along � 2 ƒ� such that �ı � j�j2,
so along this sequence heih�;xig�;L; g�;Li D 0.

We conclude (3.1) by an argument which can be found in [15]. We expand a

into a Fourier series:

a.x/ D
X

�2Z2

Oa.�/eih�;xi:

By the rapid decay of the Fourier coefficients Oa.�/; we see that for any M > 0

a.x/ D
X

j� j���

Oa.�/eih�;xi C O.��M /:
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Define
ƒ1 D ¹� 2 ƒ0W for all j�j � ��: � 2 ƒ� º:

We have

#¹� 2 ƒ0 n ƒ1W � � Xº �
X

j� j�X�

#¹� 2 ƒ0 n ƒ� W � � Xº

� X1=2C2ı
X

0<j� j�X�

1

j�j � X1=2C2ıC�;

so ƒ1 is a density one set in ƒ0. Finally, for any � 2 ƒ1

hag�;L; g�;Li D Oa.0/ C
X

0<j� j���

Oa.�/heih�;xig�;L; g�;Li C O.��M /

D Oa.0/ C O.��M /;

since for each j�j � ��; heih�;xig�;L; g�;Li D 0: Thus, the limit (3.1) holds along
ƒ1; and Theorem 1.3 follows. �

Appendix A.

We study the eigenspaces of a self-adjoint extension ��U corresponding to old
eigenvalues of ��. Our goal is to show that their dimensions are equal to the
dimensions of the eigenspaces of �� minus rank.I C U /. We first prove three
auxiliary lemmas.

Lemma A.1. Let 0 ¤ � 2 �.��/; and let d be the dimension of the corresponding

eigenspace E�. Then the dimension of the subspace

¹f 2 E�W f .x1/ D f .x2/ D 0º

is equal to d � 2.

Proof. Since x0=� is Diophantine, we can assume that ˛1=� … Q. Fix � D .�1; �2/

such that �1 ¤ 0, j�j2 D �. The functions

¹eihx�x1;�i � eihx�x1;�iºj�j2D�; �¤�

form a basis for the subspace ¹f 2 E�W f .x1/ D 0º: Choose � D .��1; �2/, and
let g.x/ D eihx�x1;�i � eihx�x1;�i. Then

jg.x2/j D 2j sin.�1˛1/j ¤ 0
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since ˛1=� … Q; and therefore the functions

¹eihx�x1;�i � eihx�x1;�i � g.x/

g.x2/
.eihx0;�i � eihx0;�i/ºj� j2D�; �¤�;�

form a basis for the subspace ¹f 2 E�W f .x1/ D f .x2/ D 0º. �

Recall that if rank.I C U / D 1, v0 is defined to be the (unique up to scalar)
non-zero vector such that .I C U �/v0 D 0: We have the following property for
hT �v0; ImGi .x/i.

Lemma A.2. Assume that rank.I C U / D 1. Then hT �v0; ImGi .x/i is not an

eigenfunction of ��.

Proof. Denote T �v0 D .v1; v2/, so

hT �v0; ImGi .x/i D � 1

4�2

X

�2Z2

.v1e�ih�;x1i C v2e�ih�;x2i/
eih�;xi

j�j4 C 1
:

Assume that hT �v0; ImGi .x/i is an eigenfunction of �� with an eigenvalue �:

Then for all � such that j�j2 D m ¤ � we have

v1e�ih�;x1i C v2e�ih�;x2i D 0:

We can again assume that ˛1=� … Q: Choosing any � D .�1; �2/ with �1 ¤ 0 and
j�j2 D m ¤ �, we get in particular that

det

�

1 e�ih.�1;�2/;x0i

1 e�ih.��1;�2/;x0i

�

D 0;

however since ˛1=� … Q; we have
ˇ

ˇ

ˇ

ˇ

�

1 e�ih.�1;�2/;x0i

1 e�ih.��1;�2/;x0i

�
ˇ

ˇ

ˇ

ˇ

D 2j sin.�1˛1/j ¤ 0

a contradiction. �

Lemma A.3. Assume that rank.I C U / D 1. Let 0 ¤ � 2 �.��/; and let d

be the dimension of the corresponding eigenspace E�. Then the dimension of the

subspace

¹g 2 E�W g.x/ D f .x/ C chT �v0; ImGi .x/i; f .x1/ D f .x2/ D 0; c 2 Cº

is equal to d � 1:
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Proof. From Lemma A.2, hT �v0; ImGi .x/i … E�, and therefore

dim.E� C hT �v0; ImGi .x/i/ D d C 1:

The proof of the statement of the lemma now follows similarly to the proof of
Lemma A.1. �

Proposition A.4. Let 0 ¤ � 2 �.��/; and assume that g is an eigenfunction of

��U with an eigenvalue �. Then g is an eigenvalue of ��.

Proof. Assume otherwise, so there exist v … Ker.I C U �/ and f 2 H 2.T2/ with
f .x1/ D f .x2/ D 0 such that

g.x/ D f .x/ C hT �v;Gi.x/i C h.U T /�v;G�i.x/i

where g is an eigenvalue of ��U , and hence of the adjoint operator ���
0: Thus,

as in (2.4)

0 D .��
0 C �/g D .� C �/f C .�i C �/hT �v;Gii C .i C �/h.U T /�v;G�ii:

Assume that ˛1=� … Q; and let �=.�1; �2/ such that �1 ¤ 0 and j�j2 D �.
Evaluating the Fourier coefficient at .˙�1; �2/, we see that

hT �.I C U �/v; .1; e�ih.�1;�2/;x0i/i D 0

and

hT �.I C U �/v; .1; e�ih.��1;�2/;x0i/i D 0:

Since v … Ker.I C U �/ it implies that

ˇ

ˇ

ˇ

ˇ

det

�

1 e�ih.�1;�2/;x0i

1 e�ih.��1;�2/;x0i

�
ˇ

ˇ

ˇ

ˇ

D 0;

a contradiction. �

Corollary A.5. Let 0 ¤ � 2 �.��/: Let d be the dimension of the eigenspace

of �� corresponding to �: Then the dimension of the eigenspace of ��U corre-

sponding to � is equal to d � rank.I C U /:
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Proof. If rank.I C U / D 2 and g is an eigenvalue of ��U with 0 ¤ � 2 �.��/,
then from the proof of Lemma A.4, we have

g.x/ D f .x/ C hT �v;Gi.x/i C h.U T /�v;G�i.x/i

with f .x1/ D f .x2/ D 0 and .I CU �/v D 0, and therefore v D 0, so g 2 H 2.T2/

with g.x1/ D g.x2/ D 0, and the statement follows from Lemma A.1 .
If rank.I C U / D 1, then there exist 0 ¤ v0 2 C2, so that

g.x/ D f .x/ C chT �v0; ImGi .x/i

with f .x1/ D f .x2/ D 0, c 2 C. Thus, in this case the statement follows from
Lemma A.3. �
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