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Partial retraction of

“Two-term, asymptotically sharp estimates

for eigenvalue means of the Laplacian”

Evans M. Harrell II and Joachim Stubbe

We regret that we have to retract portions of the article “Two-term, asymptoti-

cally sharp estimates for eigenvalue means of the Laplacian” [J. Spectral Theory 8

(2018), 1529–1550] due to an essential error in the proof of Theorem 1.2, which

is used in other places in the paper.

An error in the proof of Theorem 1.2 was pointed out to us by S. Larson. The

proof relies on an average over certain translations, but the parameter L there

cannot be chosen independently of the spectral parameter z in order to eliminate

the remainder term calledG.z/ in the proof. Since we have been unable to remedy

the error and Theorem 1.2 is used throughout, we retract Theorem 1.2 and all

claims depending on it.

Several salient claims of the paper do not depend on the erroneous averaging

and remain unaffected. Before listing them we recall some definitions for the

reader’s convenience:

The eigenvalues of the Neumann Laplacian on a bounded domain � are denoted

0 D �1 < �2 � �3 � � � � ; (1.2)

and some related quantities that will appear are
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j�j
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; Sk WD

dC2
d
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Pk
jD1 �j
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:

The “classical constant” is written Cd D .2�/2B
�

2

d

d
, where Bd D �

d
2

�.1C
d

2
/

is the

volume of the d -dimensional unit ball. Pólya’s conjecture for Neumann domains

reads

�j � Cd j�j�
2

d .j � 1/�
2

d : (1.5)
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Claims that remain valid include the following:

Theorem 1.1 (a sharpening of Kröger’s inequality). Let d � 2. Then for all k � 0

the Neumann eigenvalue �kC1 satisfies

m2k.1� Sk/ � .�kC1 �mk/
2; (1.13)

i.e.,

mk.1�
p

1 � Sk/ � �kC1 � mk.1C
p

1 � Sk/: (1.14)

Corollary 1.3. Let d � 2 and� D �0 � Œ0; ı� be a bounded domain. Then for all

z � 0,
X

jD1

.z � �j /C

� Lcl1;d j�jz
d

2
C1 C

1

2
Lcl1;d�1

j�j

ı
z

d

2
C

1

2 �
1

24
.2�/2�dBd

j�j

ı2
z

d

2 :

(1.20)

The statement of Corollary 1.4 needs to drop a lower-order nonnegative con-

tribution derived from Theorem 1.2. After correction, it reads:

Corollary 1.4 (Pólya’s conjecture for Cartesian products). Suppose that � D

�1 � �2 � R
d where �1 � R

d1 and �2 � R
d2 are two bounded domains

with spectra consisting of increasing eigenvalues satisfying eq. (1.2), and where

Pólya’s conjecture (1.5) holds for �1. Then

N.z/ � 1C j�jLcl0;d z
d
2 : (1.22)

This implies Pólya’s conjecture for � of the form �1 ��2.

Section 3, containing detailed calculations for rectangles, and the Appendix,

discussing refinements of Young’s and Hölder’s inequalities, are entirely indepen-

dent of Theorem 1.2 and hence unaffected by the error.

Other parts of Section 1 aside from those listed above and Lemma 1.5 (which

is from an earlier work), as well as Section 2 and Section 4, can be disregarded.
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Two-term, asymptotically sharp estimates

for eigenvalue means of the Laplacian

Evans M. Harrell II and Joachim Stubbe

Abstract. We present asymptotically sharp inequalities for the eigenvalues �k of the

Laplacian on a domain with Neumann boundary conditions, using the averaged variational

principle introduced in [14]. For the Riesz mean R1.z/ of the eigenvalues we improve the

known sharp semiclassical bound in terms of the volume of the domain with a second term

with the best possible expected power of z.

In addition, we obtain two-sided bounds for individual �k, which are semiclassically

sharp, and we obtain a Neumann version of Laptev’s result that the Pólya conjecture is

valid for domains that are Cartesian products of a generic domain with one for which

Pólya’s conjecture holds. In a final section, we remark upon the Dirichlet case with the

same methods.
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1. Introduction

Let � � R
d be a bounded domain with boundary @�. We mainly consider here

the eigenvalue problem for the Laplacian with Neumann boundary conditions,

��u D �u on �;

@u

@n
D 0 on @�:

(1.1)

We suppose that the spectrum (1.1) consists of an ordered sequence of eigenvalues

�j tending to infinity,

0 D �1 < �2 � �3 � : : : : (1.2)

The corresponding normalized eigenfunctions are denoted uj . This assumption

holds when� satisfies some regularity assumptions, see e.g. [25], and is different

from the situation for the Dirichlet Laplacian which admits a spectrum consisting
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of an strictly positive eigenvalues 0 < �1 < �2 � �3 � : : : for any bounded

domain whatsoever. Neumann eigenvalues satisfy the same Weyl asymptotic

relation as the better-studied Dirichlet eigenvalues, viz.,

lim
j!1

�j j
�

2
d D lim

j!1

�j j
�

2
d D Cd j�j�

2
d ; (1.3)

where j�j denotes the volume of � and the "classical constant" Cd is given by

Cd D .2�/2B
�

2
d

d
; (1.4)

where Bd D
�

d
2

�.1C d
2
/

is the volume of the d -dimensional unit ball. An impor-

tant question in the spectral theory of Laplacian operators concerns the relation

between the eigenvalues and the geometry of the domain �, for example through

estimates of eigenvalues in terms of the Weyl limit (1.3) or, more generally, in

terms of asymptotic expansions beyond the Weyl limit, as we shall discuss below.

In 1961, Pólya showed that

�j � Cd j�j�
2
d .j � 1/�

2
d (1.5)

for all positive integers j when � is any tiling domain of Rd , and the opposite

inequality for the Dirichlet eigenvalues,

�j � Cd j�j�
2
d j�

2
d : (1.6)

His still unproven conjecture is that these inequalities hold for all bounded do-

mains � � R
d . In other words the Weyl limit (1.3) is approached from below in

the Neumann case and above for Dirichlet.

Whereas there are universal domain-independant and hence scale-invariant

constraints for eigenvalues of the Dirichlet problem, of the form

Fd .k; �1=�kC1; : : : ; �k=�kC1/ � 0;

for the Neumann problem Colin-de-Verdière showed in 1987 [9] that for any finite

nondecreasing 0 D �1 < �2 � �3 � � � � � �k , there exists a bounded

domain having these values as the first k eigenvalues. Therefore inequalities

among Neumann eigenvalues must incorporate geometric properties of � to be

of interest. (See, e.g. [2, 4, 3], for discussions of universal eigenvalue bounds and

related references.)
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Other convenient ways to study the spectrum rely on the counting function,

N.�/ WD ]¹�j W�j < �º; (1.7)

and, in a tradition going back to Berezin [6], Riesz means,R� .z/ WD
P

j .z��j /
�
C

,

or, resp.,
P

j .z � �j /
�
C

. Here xC denotes the positive part of x. N.z/ can be

interpreted as the limit of R�.z/ when � ! 0. For instance, Berezin proved the

equivalent of the summed version of (1.6) in the Riesz mean form,

X

j

.z � �j /C � Lcl1;d j�jz1C
d
2 ; (1.8)

where

Lcl
;d WD
�.
 C 1/

.4�/
d
2 �

�


 C 1C d
2

�

: (1.9)

In recent years, beginning with a paper by Melas [21], there has arisen an industry

to improve (1.8) by including further terms in lower powers of z. An improvement

incorporating the best expected succeeding power in (1.8), zdC
1
2 was obtained in

the Dirichlet case by Weidl [26] and later improved by Geisinger, Laptev, and

Weidl [13], and we refer to those papers for further background.

Our main goal here is to achieve analogous improvements in Riesz means for

Neumann eigenvalues in terms of z to the expected powers. In addition, we obtain

two-sided bounds for individual eigenvalues �k , which are semiclassically sharp.

For this we rely on the averaged variational introduced in [14] and a series of

analytic inequalities. In a final section, we also treat the Dirichlet case with the

same methods. An appendix contains a discussion of refinements of Young’s and

Hölder’s inequalities, including some results going beyond those we use in the

main part of this article.

An important step towards Pólya’s conjecture in the Neumann case was taken

in 1991 by Kröger, who by applying a variational estimate for the sum of the first

k eigenvalues, obtained the asymptotically sharp inequality

d C 2

d

k
X

jD1

�j � Cd j�j�
2
d k1�

2
d : (1.10)

Later, using the Fourier transforms of the eigenfunctions uj , Laptev [18] proved

the Riesz mean inequality equivalent to Kröger’s estimate (1.10),

X

j

.z � �j /C � Lcl1;d j�jz1C
d
2 ; (1.11)

for all z � 0. (See also [19].)
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Our first result is an improvement of (1.10) using a refinement of Young’s

inequality for real numbers, which not only improves the estimates of Riesz means

and sums, but also provides a bound on individual eigenvalues. It will be useful

to introduce the following notation.

mk WD Cd

� k

j�j

�
2
d

; Sk WD

dC2
d

1
k

Pk
jD1 �j

mk
: (1.12)

In these terms mk is the Weyl expression, and Kröger’s inequality (1.10) is ex-

pressed as Sk � 1. We shall prove the following refinement of Kröger’s inequality.

Theorem 1.1. Let d � 2. Then for all k � 0 the Neumann eigenvalue �kC1

satisfies

m2k.1 � Sk/ � .�kC1 �mk/
2: (1.13)

I.e.,

mk.1�
p

1 � Sk/ � �kC1 � mk.1C
p

1 � Sk/: (1.14)

Kröger’s bound corresponds to replacing the right side of (1.13) by 0. One may

further ask whether there is an additional remainder term improving the right side

of the universal inequality (1.13), which contains more explicit information on

the geometry of �. The asymptotic expansion of the counting function suggests

that under sufficient regularity conditions the .d � 1/-dimensional volume of the

boundary @� (see [15, 22]) may appear:

N.�/ � C
d
2

d
j�j�

d
2 C

1

4
C

d�1
2

d�1
j@�j�

d�1
2 ; (1.15)

and therefore, for the Riesz mean,

R1.z/ WD
X

jD1

.z � �j /C � Lcl1;d j�jz1C
d
2 C

1

4
Lcl1;d�1j@�jz

dC1
2 : (1.16)

In the present paper we present a two-term bound for R1.�/, using additional

geometrical information on �. To this end, for any unit vector v 2 R
d we let ıv

be the width of � in the v-direction, that is,

ıv .�/ WD sup¹v � .x � y/W x; y 2 �º D max¹v � .x � y/W x; y 2 @�º: (1.17)

We note that ıv.�/ always lies between twice the inradius and the diameter of�.

We prove the following.
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Theorem 1.2. Let d � 2. Then for each unit vector v 2 R
d and for all z � 0,

X

.z � �j /C �Lcl1;d j�jz
d
2

C1 C
1

4
Lcl1;d�1

j�j

ıv .�/
z

d
2

C
1
2

�
1

96
.2�/2�dBd

j�j

ıv .�/2
z

d
2 :

(1.18)

Together with the semiclassical bound (1.11) this implies the improved estimate
X

.z � �j /C �Lcl1;d j�jz
d
2

C1

C
�1

4
Lcl1;d�1

j�j

ıv .�/
z

d
2

C
1
2 �

1

96
.2�/2�dBd

j�j

ıv .�/2
z

d
2

�

C

:

(1.19)

Both inequalities (1.18) and (1.19) will follow from our proof. Although

the bound (1.19) improves (1.18), we work in most cases with (1.18) since we

are mainly interested in large z. An exception is Corollary 1.4 below, where

we use the estimate (1.19). We also remark that while the first term is sharp,

the second term in eq. (1.18) appears too small by a factor 1=2. Indeed, for

the box � D Œ0; 1�d�1 � Œ0; ı� the bound (1.18) differs from the the asymptotic

formula (1.15) by a factor 1=2, since with ıv .�/ D ı in the comparison of the

second term of (1.18) and the asymptotic expansion (1.16) we have

j�j

ıv .�/
D 1; j@�j D 2C 2.d � 1/ı;

in which ı can be chosen arbitrarily small. More precisely, according to the

asymptotic formula (1.16), we find

lim
z!1

P

.z � �j /C � Lcl
1;d

j�jz
d
2

C1

z
d
2

C
1
2

D
1

4
Lcl1;d�1.2C 2.d � 1/ ı/;

while Theorem 1.2 yields the lower bound
1

4
Lcl1;d�1 for this limit. Furthermore,

this argument applies to any domain of the form � D �0 � Œ0; ı� such that �0 is

bounded in R
d�1 with finite boundary, since

j�j

ıv .�/
D j�0j; j@�j D 2j�0j C j@�0j ı:

From our method of proof it will be seen that for these kinds of domains the

lower bound (1.18) can be improved to the optimal lower bound consistent with

the asymptotic formula (1.16). It is less clear whether the improvement can be

obtained in the absence of a product structure.
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Corollary 1.3. Let d � 2 and� D �0 � Œ0; ı� be a bounded domain. Then for all
z � 0,

X

jD1

.z � �j /C

� Lcl1;d j�jz
d
2

C1 C
1

2
Lcl1;d�1

j�j

ı.�/
z

d
2

C
1
2 �

1

24
.2�/2�dBd

j�j

ı.�/2
z

d
2 :

(1.20)

Note that by means of the integral

Z

1

0

.z � � � t /Ct

�2 dt D

.z � �/


C


.
 � 1/
; 
 > 1;

Eq. (1.18) implies further bounds for higher Riesz means, viz.,

X

jD1

.z � �j /


C

� Lcl
;d j�jz
d
2

C
 C Lcl
;d�1

j�j

4ıv .�/
z

d
2

C
�
1
2 �

�

96
Lcl
;d�2

j�j

ıv .�/2
z

d
2

C
�1;

(1.21)

for any 
 � 1, as well as a strengthened version by means of eq.(1.19). This

moreover implies that Pólya’s conjecture (1.5) can be proved with an improvement

for domains in product form.

Corollary 1.4. Suppose that � D �1 � �2 � R
d where �1 � R

d1 and �2 �

R
d2 are two bounded domains with spectra consisting of increasing eigenvalues

satisfying eq. (1.2), and where Pólya’s conjecture (1.5) holds for �1. Then

N.z/ � 1C j�jLcl0;d z
d
2 C j�j

� Lcl
0;dC1

p
4� � 4ıv.�2/

z
d
2

�
1
2 �

Lcl
0;dC2

384ıv.�2/2
z

d
2

�1
�

C

:

(1.22)

This implies Pólya’s conjecture for �, when only the first two terms in this

expression are kept.

The proof of the main Theorem 1.2 is based on an averaged variational principle

introduced by the authors [14], which was later used in [11] to extend and simplify

Kröger’s results for certain operators on manifolds. The averaged variational

principle uses only basic properties of quadratic forms and an averaging over an

orthormal basis or, more generally, a frame. Quoting from the formulation in [11]:
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Lemma 1.5. Consider a self-adjoint operator H on a Hilbert space H, the
spectrum of which is discrete at least in its lower portion, so that �1 < �0 �

�1 � � � � . The corresponding orthonormalized eigenvectors are denoted ¹ .`/º.
The closed quadratic form corresponding to H is denoted Q.'; '/ for vectors '
in the quadratic-form domain Q.H/ � H. Let f� 2 Q.H/ be a family of vectors
indexed by a variable � ranging over a measure space .M; †; �/. Suppose that
M0 is a subset of M. Then for any z 2 R,

X

j

.z � �j /C

Z

M

jh .j /; f�ij
2 d� �

Z

M0

.zkf�k
2 �Q.f� ; f�//d�; (1.23)

provided that the integrals converge.

2. Proofs of the main results

2.1. Refinement of Kröger’s inequality: Theorem 1.1. The quadratic-form do-

main of the Neumann Laplacian ��N on a Euclidean domain� is the restriction

to � of functions in the Sobolev space H 1
0 .R

d / [10] (which is normally but not

always the same as H 1.�/), and the quadratic form corresponding to ��N is

Q.f; f / D

Z

�

jrf j2 dx: (2.1)

The trial functions f .x/ D eip�x are admissible, so choosing them as in [17] leads

after a calculation to the following bound for the eigenvalues of the Neumann

Laplacian (the set M is chosen as ¹p 2 R
d º with Lebesgue measure, and M0 is

the ball of radius R; see [17, 11] for details of the calculation),

�kC1R
d �

d

d C 2
RdC2 � m

d=2

k

�

�kC1 �
1

k

k
X

iD1

�i

�

(2.2)

for all R > 0, cf. (1.12). Putting Rd D m
d=2

k
xd=2, we get the bound

d C 2

d

1

k

k
X

iD1

�i � mk

�d C 2

d

�kC1

mk
�
d C 2

d

�kC1

mk
x

d
2 C x

dC2
2

�

:

We choose x D xk D
�kC1

mk
. This yields

d C 2

d

1

k

k
X

iD1

�i �mk � mk
2

d

�d C 2

2
xk �

d

2
� x

dC2
2

k

�

: (2.3)
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We may assume that d � 2, since when d D 1 all eigenvalues are explicitly

known. Then p D
d

2
� 1, and, therefore, the function gp.x/ defined in (A.6) is

� 0. Hence we obtain

d C 2

d

1

k

k
X

iD1

�i �mk � �mk .xk � 1/2; (2.4)

which strengthens Kröger’s estimate

d C 2

d

1

k

k
X

iD1

�i � mk D Cd
k2=d

j�j2=d

and yields the bound on �kC1 claimed in (1.14).

2.2. Two-term spectral bounds: Proof of Theorem 1.2.

Proof. Let v 2 R
d be a unit vector. After a translation we may suppose that

� � R
d is a bounded domain such that � � ¹x 2 R

d W 0 � v � x � Lº, that is, in

the v direction all x 2 � are contained in an interval of length L. We shall choose

L later as L D 2ıv .�/. Fixing v , we may choose a coordinate system such that

v is a standard unit vector of the canonical basis of Rd . We apply the averaged

variational principle 1.5 with test functions of the form

f .x/ D .2�/�
d�1

2 eip?�x�n.v � x/; (2.5)

where p? D p � .p � v/v and �n is an eigenfunction of the Neumann Laplacian

on an interval of length L, that is,

� �00

n.y/ D �n�n.y/ on �0; LŒ and�0

n.0/ D �0

n.L/ D 0: (2.6)

Recall that the eigenvalues �n are given by �n D .�n/2

L2 , n 2 N and the (normalized)

eigenfunctions are given by �0.y/ D L�1=2 and �n.y/ D
q

2
L

cos
�

�ny
L

�

, where

n ranges over the positive integers. With these test functions, the variational

principle implies that

k
X

jD1

.z � �j /jhf; uj ij2

� .2�/1�d .z � jp?j2/

Z

�

�n.v � x/2 � .2�/1�d

Z

�

�0

n.v � x/2

(2.7)

for any z 2 Œ�k ; �kC1�, where uj are again the orthonormalized eigenfunctions

of the Neumann Laplacian. When n > 0 we apply the trigonometric identities
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cos2 t D 1Ccos2t
2

and sin2 t D 1�cos2t
2

to �n.v � x/2 and �0
n.v � x/2, respectively.

Then for all n � 0, (2.7) becomes

k
X

jD1

.z � �j /jhf; uj ij2

� .2�/1�dL�1j�j
�

z � jp?j2 �
.�n/2

L2

�

C .2�/1�dL�1
�

z � jp?j2 C
.�n/2

L2

�

.1 � ı0;n/

Z

�

cos
�2�nv � x

L

�

;

(2.8)

where ı0;n denotes the Kronecker delta. On the right side we integrate over the

set ˆk D
®

.p?; n/ 2 R
d�1 � NW jp?j2 C �2n2

L2 � z
¯

while on the left side over

the larger set Rd�1 � N, using Parseval’s identity. We shall prove in Lemma 3.2

below that for all R > 0,

X

k�0

.R2 � k2/C � max
�2R3

3
C
R2

2
�
R

6
;R2

�

: (2.9)

By applying the lower bound (2.9) to the sum over n and then integrating over p?

we obtain an explicit lower bound for
R P

ˆk

�

z�jp?j2� .�n/2

L2

�

. Since
R

max.f; g/ �

max.
R

f;
R

g/, this yields

k
X

jD1

.z � �j / �
2

d C 2
.2�/�dBd j�j z

d
2

C1

C
1

d C 1
.2�/1�dBd�1j�jL�1 z

dC1
2

�
1

24
.2�/2�dBd j�jL�2z

d
2 CG.z/;

(2.10)

where

G.z/ WD

Z

X

ˆk

.2�/1�d
�

z � jp?j2 C
.�n/2

L2

�

.1 � ı0;n/

Z

�

cos
�2�nv � x

L

�

:

It remains to control G.z/, which could in principle be positive or negative. In

fact, by averaging (2.10) in a certain way we shall show that G can be dropped

altogether. To this end we choose L large enough that � is also contained in

¹x 2 R
d W 0 � v � x � Lº when translated by L=2. This means nothing else

than assuming that � � ¹x 2 R
d W 0 � v � x � L=2º. In the corresponding

Neumann eigenfunctions we have to replace v �x by v �xCL=2. We may apply the
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averaged variational principle on both sets (the eigenvalues .�n/2

L2 , n 2 N remain

unchanged). Since

1

2

�

cos
�2�nv � x

L

�

C cos
�2�n.v � x C L=2/

L

��

D

8

<

:

cos
�2�nv � x

L

�

if n is even;

0 if n is odd;

all odd n may be dropped from G.z/, leaving only cosine functions of the form

cos
�

4�nv �x

L

�

with n a positive integer. We apply the same averaging procedure

with a translation by L=4. Since

1

2

�

cos
�4�nv � x

L

�

C cos
�4�n.v � x C L=4/

L

��

D

8

<

:

cos
�4�nv � x

L

�

if n is even;

0 if n is odd;

again the terms containing odd integers may be dropped. SinceG.z/ contains only

a finite number of contributions, after a finite sequence of averages with shifts

L=2n, every contribution will be eliminated. Hence

k
X

jD1

.z � �j / �
2

d C 2
.2�/�dBd j�j z

d
2

C1

C
1

d C 1
.2�/1�dBd�1j�jL�1 z

dC1
2

�
1

24
.2�/2�dBd j�jL�2z

d
2 :

(2.11)

We may now chooseL D 2ıv .�/, which yields the statement of the theorem. �

To prove Corollary 1.3 we note that when� D �0�Œ0; ı�we may choose v D ed .

As a consequence

Z

�

�n.v � x/2 D j�0j;

Z

�

�0

n.v � x/2 D
.�n/2

L2
j�0j;

and no translations are needed. Therefore we may choose L D ı which yields the

bound (1.20).
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From the bound (2.9) it is straightforward to derive the simpler expression

X

k�0

.R2 � k2/C �
2R3

3
C
R2

3
; (2.12)

containing only two terms. This yields the following spectral bound.

Corollary 2.1. Let d � 2. Then for any unit vector v 2 R
d and for all � � 0

k
X

jD1

.z � �j /C � Lcl1;d j�jz
d
2

C1 C Lcl1;d�1

j�j

6ıv .�/
z

d
2

C
1
2 : (2.13)

The term containing the width ıv can be estimated by geometric properties of

the convex hull of �, since ıv .�/ coincides with ıv .hull.�//. For example, in 2

dimensions,
Z

S1

ıv D 2j@ hull.�/j: (2.14)

With Corollary 2.1, by choosing v so that ıv equals the mean width w of hull.�/

(= the average of ıv uniformly over directions v), we obtain a correction involving

the isoperimetric ratio of �,

k
X

jD1

.� � �j /C � Lcl1;2j�j�2 C Lcl1;1
�j�j

6j@ hull.�/j
�3=2: (2.15)

In arbitrary dimensions, if ıv is chosen equal to w, then, following Bourgain [7],

the final term in (2.13) can be bounded from below in terms of the isotropic
constant,

L2hull.�/j WD
det.Mhull.�/j/

1
d

Vol.hull.�/j/1C
2
d

;

where the inertia matrix Mij D
R

hull.�/j xixjdx has been minimized with respect

to the choice of the origin. Finding the optimal upper bound for the ratio w
L�

for

convex� is an open problem in analysis. In [23], Milman has, for example, proved

an upper bound for w in the form of a universal constant times
p
d log.d/2.

It has been known since the work of Ball [5] that under various further as-

sumptions convex bodies satisfy reverse isoperimetric inequalities, with which

Inequality (2.15) can be connected to additional geometric properties of hull.�/.

See, e.g., [24]. We also recall that for convex domains a remainder term with

the surface area for Riesz means with power 
 � 3=2 has been obtained by

Larson [20].
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Finally, we prove Corollary 1.4. For the Dirichlet case it was shown by Laptev

[18] that if Pólya’s conjecture holds for a domain �1, then it holds on arbitrary

Cartesian products of the form �1 � �2. In fact, the same argument allows

improved bounds on the counting function, benefitting from the improved bounds

for sums coming from �2, as follows.

Proof. Suppose that �1 � R
d1 d1 � 2 is a domain for which Pólya’s conjecture

N.z/ D
X

j

.z � �j /
0
C

� 1C Lcl0;d1
j�1jz

d1=2

is valid. Let d1 C d2 D d , � D �1 � �2 with �2 � R
d2 . The Neumann

eigenvalues �j of � are of the form �j D �j1
C �j2

where �j1
; �j2

are the

Neumann eigenvalues of �1; �2, respectively. Therefore,

X

j

.z � �j /
0
C

D
X

j2

X

j1

.z � �j2
� �j1

/0
C

� 1C Lcl0;d1
j�1j

X

j2

.z � �j2
/
d1=2
C

:

Since d1=2 � 1, using (1.21) and (1.9) we obtain

N.z/ � 1C Lcl0;d1
j�1j j�2j

�

Lcld1
2
;d2

z
d
2 C

Lcld1
2
;d2�2

4ıv .�2/
z

d
2 �

1
2

�
�

96

Lcl

;d�2

ıv .�2/2
z

d
2

C
�1

�

� 1C j�j

�

Lcl0;d z
d
2 C

Lcl
0;dC1

p
4� � 4ıv.�2/

z
d
2

�
1
2 �

Lcl
0;dC2

384ıv .�2/2
z

d
2

�1

�

;

as well as

N.z/ � 1C j�jLcl0;d z
d
2 :

Combining both estimates we prove the claim.

�

3. Riesz means of Laplacians on rectangles

In this section we derive upper and lower bounds for Riesz means of Neumann

and Dirichlet Laplacians, respectively, on the rectangle R WD Œ0; l1� � Œ0; l2�.
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Theorem 3.1. Let �Ri ; �
R
i denote the eigenvalues of the Neumann Laplacian and

the Dirichlet Laplacian on R D Œ0; l1� � Œ0; l2�. Suppose that l1 � l2. Then the
following estimates hold

3�

128

� l2

l1
C
l1

l2
C
32

3�

�

�C
3�

64

� 1

l1
C
1

l2

�

�1=2 C
3�3=221=2

64l2l
1=2
1

�1=4

�

k
X

jD1

.� � �Rj /C �
jRj

8�
�2 �

j@Rj

6�
�3=2

� �
�

24

� l2

l1
C
l1

l2
�
6

�

�

� �
�

12

� 1

l1
C
1

l2

�

�1=2 �
�3=221=2

12l2l
1=2
1

�1=4;

(3.1)

and

3�

128

� l2

l1
C
l1

l2
C
32

3�

�

�C
�

12

� 1

l2
�

9

16l1

�

�1=2 C
3�3=221=2

64l2l
1=2
1

�1=4

�

k
X

jD1

.� � �Rj /C �
jRj

8�
�2 C

j@Rj

6�
�3=2

� �
�

24

� l2

l1
C
l1

l2
�
6

�

�

�C
�

12

� 1

l1
�

9

16l2

�

�1=2 �
�3=221=2

12l2l
1=2
1

�1=4:

(3.2)

Proof. The Riesz mean for the Neumann Laplacian on R is given by

RN1 .z/ D
X X

n1;n2�0

�

z �
.�n1/

2

l21
�
.�n2/

2

l22

�

C

:

We need the following polynomial upper and lower bounds for one-dimensional

Riesz means
P

.R2 � k2/
p
C

, in particular (2.9).

Lemma 3.2. For all R > 0,

max
�2R3

3
C
R2

2
�
R

6
;R2

�

�
X

k�0

.R2 � k2/C �
2R3

3
C
R2

2
C
3R

32
; (3.3)

and for all R > 0, ˇ > 0,

max
�

p
� �.ˇ C 2/

2 �.ˇ C 5=2/
R2ˇC3 C

1

2
R2ˇC2 �

p
� �.ˇ C 2/

12 �.ˇ C 3=2/
R2ˇC1; R2ˇC2

�

�
X

k�0

.R2 � k2/
ˇC1
C

�

p
� �.ˇ C 2/

2 �.ˇ C 5=2/
R2ˇC3 C

1

2
R2ˇC2 C

3
p
� �.ˇ C 2/

64 �.ˇ C 3=2/
R2ˇC1:

(3.4)
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Finally, for all R > 0,

X

k�0

p

.R2 � k2/C �
�R2

4
C
R

2
C

p
2R

2
: (3.5)

The lemma will be proved below. Assuming it for now, we continue the proof

of the theorem for the Neumann Laplacian on the rectangle Œ0; l1� � Œ0; l2�. Since

RN1 .z/ D
�2

l22

X X

n1;n2�0

� l22z

�2
�
l22n

2
1

l21
� n22

�

C

;

by applying the lower bound (3.3) we get

RN1 .z/ �
2�2l2

3l31

X

n1�0

� l21z

�2
� n21

�3=2

C

C
�2

2l21

X

n1�0

� l21z

�2
� n21

�

C

�
�2

6l1l2

X

n1�0

� l21z

�2
� n21

�1=2

C

:

Applying the lower bounds (3.3), (3.4) and the upper bound (3.5) we get

2�2l2

3l31

X

n1�0

� l21z

�2
� n21

�3=2

C

�
l1l2

8�
z2 C

l2

3�
z3=2 �

�

24

l2

l1
z;

�2

2l21

X

n1�0

� l21z

�2
� n21

�

C

�
l1

3�
z3=2 C

z

4
�

�

12l1
z1=2;

and

�
�2

6l1l2

X

n1�0

� l21 z

�2
� n21

�1=2

C

� �
�

24

l1

l2
z �

�

12l2
z1=2 �

�3=221=2

12l2l
1=2
1

z1=4:

Summarizing all estimates, we get the lower bound of (3.1). Similarly, we get the

upper bound of (3.1) interchanging l1 and l2. The Riesz mean for the Dirichlet

Laplacian on R is given by

RD1 .z/ D
�2

l22

X X

n1;n2�1

� l22z

�2
�
l22n

2
1

l21
� n22

�

C

:

The corresponding one-dimensional bounds are those of Lemma 3.2 subtracting

R2, R2ˇC2, and respectively R in (3.3), (3.4) and the upper bound (3.5), leading

to a change of the sign of the second term, from which we get the bounds (3.2) of

the theorem. �
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We next prove Lemma 3.2.

Proof. Start from the identity

X

k�0

.R2 � k2/C D R2 CR2ŒR��
ŒR�3

3
�
ŒR�2

2
�
ŒR�

6
; (3.6)

where ŒR� denotes the integer part of R. We substitute the periodic sawtooth

function  .t/ D
�

t � Œt �� 1
2

�

, in terms of which

X

k�0

.R2 � k2/C D
2R3

3
C
R2

2
�
R

6
C

�1

4
�  .R/2

��

R �
 .R/

3

�

�
2R3

3
C
R2

2
�
R

6
;

(3.7)

since both factors of the product are nonnegative. This lower bound is exact when

R is an integer. Since
P

k�0.R
2�k2/C D R2 trivially for all 0 < R < 1, the lower

bound follows. For the upper bound, we wish to replace
�

1
4

�  .R/2
��

R �  .R/
3

�

by a linear expression in R for R � 0, or, equivalently, find an upper bound for

F.R/ WD
�1

4
�  .R/2

��

1 �
 .R/

3R

�

:

Because on each interval .n; nC1/ the function .R/ is antisymmetric about nC 1
2

and negative on .n; nC 1
2
/, the maximum is to be sought in an interval of the form

.n; nC 1
2
/. On these subintervals, the second factor decreases when R is replaced

byRC1, while the first factor is positive and unchanged. Hence, the maximum of

F.R/ occurs where 0 < R < 1
2
. In this interval, however, an elementary calculus

exercise shows that the maximizing value isR D 3
8
, and thus F.R/ � F.3

8
/ D 25

96
.

Substituting this into the first line of (3.7) yields the claim. We observe that the

upper and lower bounds in (3.3) coincide uniquely when R D 3
8
.

To prove (3.4) we note that for all ˇ > 0,

Z

1

0

X

k�0

.R2 � t � k2/Ct
ˇ�1 dt D

1

ˇ.ˇ C 1/

X

k�0

.R2 � k2/
ˇC1
C

D 2

Z

1

0

X

k�0

.s2 � k2/C s .R
2 � s2/

ˇ�1
C

ds;

and then apply the bounds (3.3).
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It remains to show (3.5). We start from the identity

X

k�0

p

.R2 � k2/C D
�R2

4
C
R

2
�

Z R

0

t .R2 � t2/�1=2
�

t � Œt ��
1

2

�

dt:

For any continuous increasing function f W Œ0; R� ! R and any positive integer

k � R,

Z k

k�1

 .t/f .t/ dt D

Z 1
2

0

�1

2
� s

�

.f .k � s/ � f .k � 1C s// ds � 0: (3.8)

Consequently,

X

k�0

p

.R2 � k2/C �
�R2

4
C
R

2
�

Z R

ŒR�

t .R2 � t2/�1=2
�

t � Œt ��
1

2

�

dt: (3.9)

The integral between ŒR� and R can also be computed explicitly. Define � D ŒR�
R

and � D
p

1 � �2. Then for all R > 0 we have 1 � min
�

1; 1
R

�

� � � 1. Hence

0 < � < 1 if R < 1 and 0 < � < R�1
p
2R � 1 otherwise. Then

Z R

ŒR�

t  .t/
p
R2 � t2

dt D R2
Z 1

�

s2 � �s � s
2Rp

1 � s2
ds

D
R2

2
.arcsin � � �

p
1� �2/ �

R

2
�:

We also note that � 7! arcsin � � �
p
1 � �2 �

2�3

3
is increasing. It follows that

Z R

ŒR�

t  .t/
p
R2 � t2

dt � �
R2�3

3
C
R�

2
;

proving the claim. �

4. Two-term estimates for Dirichlet Laplacians by averaging

For Dirichlet Laplacians on a bounded domain � our strategy will be to enclose

� in a box B and then to use the averaged variational principle to estimate the

Riesz means of the Dirichlet Laplacian on B in terms of expectations with the

eigenfunctions of ���. Thus suppose that � � B where B D
Qd
˛D1�0; L˛Œ is a

box of volume jBj D
Qd
˛D1 L˛. We let v�

k
denote the Dirichlet eigenfunctions on

�, and, similarly, for B we define

vBk .x/ D

d
Y

˛D1

 n˛
.x˛/;
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where

 n˛
.x˛/ WD

s

2

l˛
sin

�n�x˛

l˛

�

;

corresponding to eigenvalues

�Bk D

d
X

˛D1

�2n2˛
l2˛

with n˛ 2 ZC. By the variational principle,

X

.z � �Bj /C
ˇ

ˇhv�k ; v
B
j iB

ˇ

ˇ

2
� z

Z

B

jv�k j2 dx �

Z

B

jrv�k j2 dx: (4.1)

Since v�
k

2 H 1
0 .�/, all integrals reduce to integrals on�. On the right side we take

a finite sum in k while on the left we sum over all k and apply the completeness

relation, obtaining

X

.z � �Bj /C

Z

�

jvBj .x/j
2 dx �

X

.z � ��j /C: (4.2)

To apply the translation argument as above we suppose that l˛ is at least twice

the width of � in the ˛ direction. Using again the trigonometric identity sin2 t D
1�cos2t

2
, we may apply the same iteration of averages as earlier in the proof of

Theorem 1.2. Repeating this for all ˛ we get

j�j

jBj

X

.z � �Bj /C �
X

.z � ��j /C; (4.3)

which improves Berezin–Li–Yau. Consider, for example, the case d D 2 where

applying the upper bound in (3.2) of Theorem 3.1 for the Dirichlet Laplacian on a

rectangle B with side lengths l1; l2 we obtain the explicit upper bound

X

.� � ��j /C � Lcl1;2j�j�2 �
1

4
Lcl1;1

j@Bjj�j

jBj
�3=2 C F.l1; l2; �/j�j; (4.4)

where F.l1; l2; �/ is shorthand notation for the lower-order terms of the left side

in (3.2)

Appendix A. Refinements of Young’s and Hölder’s inequality

In §2.1, we rely on an improvement of Young’s inequality in order to strengthen

Kröger’s inequality with (2.4). Improvements of Young’s inequality that are
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adequate for this purpose already exist in the literature [1, 16, 12], but we take

the opportunity in this appendix to present an efficient approach to deriving

improvements to Young’s and Hölder’s inequalities.

To begin, let p > �1. For x � 0 we define the function yp.x/ by

yp.x/ WD .p C 1/x � p � xpC1: (A.1)

The unique critical point of yp.x/ occurs at x D 1. Since yp.1/ D 0, Young’s

inequality follows in the following formulation:

(1) yp.x/ � 0 for all x � 0 if p � 0;

(2) yp.x/ � 0 for all x � 0 if �1 < p � 0.

Before deriving an improvement, we first note that the case �1 < p � 0 is

equivalent to the case p � 0 by means of the duality

yp.x/ D �.p C 1/yq.z/; .p C 1/.q C 1/ D 1; z D xqC1;

the fixed point of which is the trivial casep D q D 0. In the following we therefore

only consider the case p > 0. Putting x D a=b1=p, defining s D p C 1, r D pC1
p

,

such that 1
r

C 1
s

D 1, and dividing by p C 1, we obtain the classical version of

Young’s inequality:

ab �
br

r
�
as

s
� 0; a; b � 0: (A.2)

There are basically two refinements discussed in [1, 16, 12], which as we shall

show follow directly from identities for the functions yp.x/. First, we consider the

family of functions fp defined by

fp.x/ WD yp.x/C .x.pC1/=2 � 1/2 D 2y.p�1/=2.x/: (A.3)

Clearly

(1) fp.x/ � 0 for all x > 0 if p � 1,

(2) f1.x/ D 0 for all x > 0,

(3) fp.x/ � 0 for all x > 0 if 0 < p � 1.

When p � 1 we have s D p C 1 � 2, and with x D a=b1=p the refinement of

Young’s inequality becomes:

ab �
br

r
�
as

s
� �

1

s
.as=2 � br=2/2; a; b � 0; s � 2 � r > 1: (A.4)

When 0 � p � 1 the inequality is reversed. Exchanging a and b as well as r and s,

we get

ab �
br

r
�
as

s
� �

1

r
.as=2 � br=2/2; a; b � 0; s � 2 � r > 1: (A.5)
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Another refinement follows from considering the family of functions gp defined

by

gp.x/ D yp.x/C p.x � 1/2 D px2 � .p � 1/x � xpC1 D x yp�1.x/: (A.6)

We observe that

(1) gp.x/ � 0 for all x > 0 if p � 1,

(2) g1.x/ D 0 for all x > 0,

(3) gp.x/ � 0 for all x > 0 if 0 < p � 1.

When p � 1 we have s D p C 1 � 2, and with x D a=b1=p the refinement of

Young’s inequality becomes

ab �
br

r
�
as

s
� �

1

r
.a � br�1/2b2�r ; a; b � 0; s � 2 � r > 1: (A.7)

When 0 � p � 1 we find a reversed inequality. Exchanging a and b as well as r

and s, we obtain

ab �
br

r
�
as

s
� �

1

s
.b � as�1/2a2�s ; a; b � 0; s � 2 � r > 1: (A.8)

Although we do not use it in this paper, we further note that refinements of

Hölder’s inequality, cf. [8], are easily obtained from the inequalities above as

follows.

Let M be a measure space and a 2 Ls.M/, b 2 Lr.M/ such that kaks D

kbkr D 1 where r�1 C s�1 D 1, s � 2 � r > 1 and k � kp denotes the usual norm

in Lp.M/. Then by integrating the pointwise inequalities (A.4) and (A.5),

1 �
1

r

Z

.jajs=2 � jbjr=2/2 �

Z

jabj � 1 �
1

s

Z

.jajs=2 � jbjr=2/2; (A.9)

with equality if and only if jajs D jbjr pointwise almost everywhere. We also

may directly make the replacements a ! t�1a, b ! tb in (A.4) and (A.5) and

after integration optimize with respect to t . This yields the slightly improved

inequalities:

�

1 �
1

2

Z

.jajs=2 � jbjr=2/2
�2=r

�

Z

jabj �

�

1 �
1

2

Z

.jajs=2 � jbjr=2/2
�2=s

:

(A.10)

When integrating the pointwise inequalities (A.7) and (A.8):

1�
1

s

Z

.jbj � jajs�1/2jaj2�s �

Z

jabj � 1�
1

r

Z

.jaj � jbjr�1/2jbj2�r ; (A.11)

with equality if and only if jajs D jbjr pointwise almost everywhere.
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