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Generic continuous spectrum

for multi-dimensional quasiperiodic Schrödinger operators

with rough potentials

Rui Han and Fan Yang

Abstract. We study the multi-dimensional operator

.Hxu/n D
X

jm�njD1

um C f .T n.x//un;

where T is the shift of the torus Td . When d D 2, we show the spectrum of Hx is almost

surely purely continuous for a.e. ˛ and generic continuous potentials. When d � 3, the

same result holds for frequencies under an explicit arithmetic criterion. We also show that

general multi-dimensional operators with measurable potentials do not have eigenvalue for

generic ˛.
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1. Introduction

In this note, we are interested in quasiperiodic Schrödinger operators acting on

l2.Zd / as follows

.Hxu/n D
X

jm�njD1

um C f .T nx/un; (1.1)

where f WTd ! R, T nx D .x1 C n1˛1; : : : ; xd C nd ˛d /, jmj D
Pd

j D1 jmj j. We

refer to f as the potential, ˛ 2 .TnQ/d as the frequency and x 2 Td as the phase.

It is known that the spectral types of Hx are almost surely independent of x. By

the well known RAGE theorem, different spectral types lead to different long-time

behaviour of the solutions to time-dependent Schrödinger equations. Thus one is

naturally interested in finding the way to identify the spectral types of a given

operator. In this note we will show that for multi-dimensional operators, purely

continuous spectrum is a generic1 phenomenon.

1 In this note, generic means dense Gı .
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In the one-dimensional case, d D 1, a very useful criterion to exclude point

spectrum, due to Gordon [3], states that if the potential can be approximated in

a reasonably fast sense by periodic ones, then the operator does not have point

spectrum. Following this idea, Boshernitzan and Damanik showed that given

any ˛, for a generic continuous potential, Hx has empty point spectrum for a.e. x,

see [1]. In the first part of this note, we generalize this result to multi-dimensional

case. When d D 2, we show this result holds for an explicit full measure set of ˛,

when d � 3, we show this result is true under an explicit arithmetic criterion for ˛.

It is interesting whether this result holds for a.e. ˛ in the d � 3 case.

In the second part of this note, we explore the generic phenomenon in the fre-

quency space. According to Simon’s Wonderland Theorem [6], dense continuous

spectrum for a large class of metric spaces of operators implies generic continuous

spectrum. Fixing a continuous potential, since convergence in frequency implies

operator convergence in the strong resolvent sense. Thus, by Wonderland Theo-

rem, generic continuous spectrum follows from continuous spectrum for rational

frequencies. However discontinuous potentials do not fall into the criterion of

Wonderland Theorem. It was recently observed by Gordon [4] that when d D 12,

one can prove continuous spectrum for generic frequency even for measurable

potentials. In this note we generalize this result to multi-dimensional operators.

A key ingredient that enables us to deal with multi-dimensional operators is a

criterion recently discovered by Gordon and Nemirovski [5].

Our results for generic continuous potentials are as follows

Theorem 1.1. When d D 2, if .˛1; ˛2/ are not both of bounded type, then for

generic continuous potentials f , Hx has no point spectrum for a.e. x 2 T2.

The proof of Theorem 1.1 relies on the following result about general multi-

dimensional operators. Let kxkT D dist .x;Z/.

Theorem 1.2. Suppose there exists an infinite sequence

Q D ¹� .n/ D .�
.n/
1 ; : : : ; �

.n/

d
/º

such that

lim
n!1

�
.n/
1 : : : �

.n/

d

�
.n/
i

k�
.n/
i ˛i kT D 0 for any i D 1; : : : ; d: (1.2)

Then for generic continuous potentials f , Hx has no point spectrum for a.e.

x 2 Td .

2 The author actually dealt with one-dimensional operator but with multi-dimensional fre-

quency.
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Remark 1.1. For d D 2, (1.2) holds if and only if .˛1; ˛2/ are not both of bounded

type (see definition 2.1), see Lemma 4.1 in Section 4. However for d � 3, (1.2)

only holds for Lebesgue measure zero set of frequencies due to a simple argument

by Borel–Cantelli lemma, see Section 6.

Our result for measurable potentials is as follows.

Theorem 1.3. Let the potential f be a measurable function. For generic ˛ 2 Td ,

Hx has empty point spectrum for a.e. x.

Remark 1.2. This theorem could be easily generalized to the case of arbitrary

(not necessarily equal to d ) number of frequencies.

We organize this note as follows: Section 2 serves as a preparation for our

proofs of Theorems 1.2, 1.3 in Sections 3 and 5. The proof of Theorem 1.1 will

be discussed in Section 4. In Section 6 we show the simple argument by Borel–

Cantelli lemma that we mentioned in Remark 1.1.

2. Preliminaries

For a Borel set U � R, we let jU j be its Lebesgue measure. For x 2 Rd , let

kxk
Td D dist .x;Zd /. For a measurable function f , let kf k1 D ¹inf M � 0W

jf .x/j � M for a:e:xº be the L1 norm.

2.1. Some facts from measure theory. Let f be a measurable function on Td .

It is known that f .� C y/ converges to f .�/ in measure as Td 3 y ! 0. We set

F.y; �/ D ¹x 2 Td W jf .x C y/ � f .x/j � �º: (2.1)

Then we have the following fact

Proposition 2.1. For any � > 0 and any � > 0, there is �.�; �/ > 0 such that if

kykT d < �.�; �/ (2.2)

then we have jF.y; �/j < �.

We will also set

E.M/ D ¹x 2 T d W jf .x/j > M º (2.3)

Clearly, jE.M/j ! 0 as M ! 1.



1638 R. Han and F. Yang

2.2. Continued fraction approximants. Let ¹pn

qn
º be continued fraction ap-

proximants of ˛. The following properties of continued fractions will be used

later. First,
8

<

:

pnC1 D anpn C pn�1;

qnC1 D anqn C qn�1:
(2.4)

Secondly, for any 1 � k � qn � 1, we have

kqn˛kT � kk˛kT: (2.5)

Thirdly, we have

1

qnC1

� kqn˛kT � 2

qnC1

: (2.6)

Definition 2.1. ˛ is said to be of bounded type if there exists C > 0 such that

an � C for any n 2 N.

Remark 2.1. It is well known that bounded type ˛ form a Lebesgue measure zero

set.

If ˛ is of bounded type, by (2.4), (2.5), and (2.6), we have for some C > 0,

kk˛kT � 1

C k
for any k � 1: (2.7)

2.3. A key ingredient from [5]. We have combined Theorems 3.1 and 5.1

from [5] into the following form, which is more convenient for us to use in this

note.

Theorem 2.2. Let V be a complex-valued function on Zd . Suppose there exists

 > ı > 0 and an infinite set P � Nd satisfying

lim
P3�!1

�i D 1; i D 1; : : : ; d;

such that there is a (�1; : : : ; �d )-periodic function V� .�/ satisfying the property that

for some �0 > 0,

�� < .2d � 1 C M� C �0/�.2dC/�1 :::�d ;

where

�� D max
knk1�.2dCı/�1:::�d

jV� .n/ � V.n/jI M� D max
knk1�.2dCı/�1:::�d

jV.n/j:

Then the equation Hu D �u with any j�j � �0 does not have non-trivial l2.Zd /

solutions.
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3. Proof of Theorem 1.2

For any 1 > ı > 0, let �n D .2d C ı/
Qd

j D1 �
.n/
j . Take  > 1. For x; y 2 Rd , let

x ? y D .x1y1; : : : ; xdyd /.

Proof. For any k 2 N, take nk such that

�nk

�
.nk/
i

k�
.nk/
i ˛i kT <

1

k2
for i D 1; : : : ; d: (3.1)

By Rokhlin–Halmos Lemma (see Theorem 1 on p. 242 in [2]), there exists a set

Onk
such that ¹Onk

C j ? ˛ºkj k1�k�nk
are disjoint and

jOnk
j >

1 � 2�k�1

.2k�nk
C 1/d

:

We further partition Onk
into sets Snk ;l , 1 � l � snk

such that

diam .Snk ;l / <
1

k
: (3.2)

Choose compact set Knk ;l � Snk ;l such that

snk
X

lD1

jKnk ;l j >
1 � 2�k

.2k�nk
C 1/d

: (3.3)

For 0 � mi � �
.nk/
i � 1, i D 1; : : : ; d , we define

Unk ;l;m D
[

jji j�k�nk
=�

.nk/

i

Knk ;l C m ? ˛ C j ? � .nk/ ? ˛:

Then by (3.1) and (3.2), we have

diam .Unk ;l;m/ <
2
p

d C 1

k
for any l; m above: (3.4)

Set

Fnk
D ¹f 2 C.Td /W f is constant on each Unk ;l;mº;

and let Fnk
be the k� 2dC

2dCı
�nk neighborhood of Fnk

in C.Td /. Note that by (3.4)

and the fact that continuous function on Td is uniformly continuous, we have for

each t 2 N,
[

k�t

Fnk
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is open and dense subset of C.Td /. Thus

F D
\

t�1

[

k�t

Fnk

is a dense Gı subset of C.Td /.

If f 2 F, then f 2 F Qnk
for a subsequence ¹ Qnkº of ¹nkº. Let

T Qnk
D

[

1�l�s Qnk
;

kj k1�.k�1/� Qnk

.K Qnk ;l C j ? ˛/ for k > 4d � 1 C 2kf k0.

Then by (3.3),

jT Qnk
j �

� .2k � 2/�Qnk
C 1

2k�Qnk
C 1

�d

.1 � 2�k/ & 1 � 2�k as k ! 1; (3.5)

and for any x 2 T Qnk
, we have

max
j 2Zd ;jji j�� Qnk

=�
. Qnk/

i

jf .x C j ? � .Qnk/ ? ˛/ � f .x/j

< k� 2dC
2dCı

� Qnk

< .4d � 1 C 2kf k0/� 2dC
2dCı

� Qnk :

(3.6)

By Borel–Cantelli lemma, a.e. x 2 Td belongs to infinitely many T Qnk
, thus

Theorem 2.2 implies that for any j�j � 2d C kf k0, the equation Hxu D �u

has no l2.Zd / non-trivial solution. Absence of point spectrum then follows from

the fact the norm of Hx is � 2d C kf k0. �

4. Proof of Theorem 1.1

Theorem 1.1 follows from a quick combination of Theorem 1.2 and the following

Lemma.

Lemma 4.1. When d D 2, (1.2) holds if and only if .˛1; ˛2/ are not both of

bounded type.

Proof. The “if” direction. Let
®

p
.i/
n

q
.i/
n

¯

be continued fraction approximants of

˛i , i D 1; 2. By (2.6), it suffices to prove the following lemma.



Generic continuous spectrum 1641

Lemma 4.2. For any � > 0, there exists m; n 2 N such that

max
� q

.2/
m

q
.1/
nC1

;
q

.1/
n

q
.2/
mC1

�

< �: (4.1)

We will argue by contradiction. Assume that for some �0 > 0, we have

max
�

q
.2/
m

q
.1/
nC1

;
q

.1/
n

q
.2/
mC1

�

� �0 for any .m; n/ 2 N2. Fix any n 2 N, choose m such

that
q

.1/
n

q
.2/
mC1

< �0 � q
.1/
n

q
.2/
m

:

Then by our assumption, we have q
.2/
m

q
.1/
nC1

� �0, thus

�0q
.1/
nC1 � q.2/

m � q
.1/
n

�0

:

This immediately implies q
.1/
nC1 � 1

�2
0

q
.1/
n for any n 2 N, which means ˛1 is of

bounded type. Similarly, we could show ˛2 is also of bounded type, which is a

contradiction.

The “only if” direction. We will again argue by contradiction. Assume

.˛1; ˛2/ are both of bounded type and that there exists Q D ¹� .n/ D .�
.n/
1 ; �

.n/
2 /º

such that
8

<

:

�
.n/
2 k�

.n/
1 ˛1kT �! 0;

�
.n/
1 k�

.n/
2 ˛2kT �! 0:

(4.2)

However, by (2.7), we have for some C > 0,

8

ˆ

<

ˆ

:

�
.n/
2 k�

.n/
1 ˛1kT � C�

.n/
2

�
.n/
1

;

�
.n/
1 k�

.n/
2 ˛2kT � C�

.n/
1

�
.n/
2

;

which obviously can not converge to 0 at the same time, contradicting (4.2). �

5. Proof of Theorem 1.3

We need to divide into two different cases: Case 1, kf k1 D 1, or Case 2,

kf k1 < 1. Here we provide a detailed proof of Case 1 and discuss briefly about

Case 2 at the end of this section.
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Case 1. Let ¹eiºd
iD1 be the standard basis for Rd . For a number M >0, let E.M/

be defined as in (2.3). For � D .�1; : : : �d / 2 Nd , let M� D inf¹M W E.M/ �
.�1 : : : �d /�d º. Let � be defined as in (2.2). The following lemma yields Theo-

rem 1.3 directly.

Lemma 5.1. Suppose there exists an infinite sequence Q with limQ3�!1 �i ! 1
for i D 1; ::; d . Then if the frequencies satisfy

k.�1˛1; : : : ; �d ˛d /k
Td < �.M �.2dC/�1 :::�d

� ; .�1 : : : �d /�2/ (5.1)

for some  > 0 and any � 2 Q, the operator Hx has no point spectrum for a.e.

x 2 Td .

Proof. For any � 2 Q. Let

X�
j D F.j ? � ? ˛; .jj1j C � � � C jjd j/M �.2dC/�1 :::�d

� /

and j .i/ D ei ? j . One could check directly by trigonometric inequality that

jf .x C j ? � ? ˛/ � f .x/j

�
d

X

iD1

jf .x C .j .1/ C � � � C j .i// ? � ? ˛/

� f .x C .j .1/ C � � � C j .i�1// ? � ? ˛/j;

where we set j .1/ C � � � C j .i�1/ D 0 when i D 1. Thus

X�
j � F.j .i/ ? � ? ˛; jji jM �.2dC/�1 :::�d

� / C .j .1/ C � � � C j .i�1// ? � ? ˛:

(5.2)

Since

kei ? � ? ˛k
Td � k� ? ˛k

Td � �.M �.2dC/�1 :::�d
� ; .�1 : : : �d /�2/;

again by trigonometric inequality, we have

jF.j .i/ ? � ? ˛; jji jM �.2dC/�1 :::�d
� /j � jji j.�1 : : : �d /�2: (5.3)

Hence, putting (5.2) and (5.3) together, we have

jX�
j j � jj1j C � � � C jjd j

�3
1 : : : �3

d

: (5.4)
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Let

Y �
j D ¹x 2 Td W jf .x C j ? � ? ˛/j > M�º D E.M� / � j ? � ? ˛;

obviously,

jY �
j j D jE.M� /j: (5.5)

For any 
2

> ı > 0, let

I� D ¹j 2 Zd W jji j � .2d C ı/�1 : : : �d =�i for i D 1; 2; : : : ; dº:

We denote

Z� D .[I�
X�

j / [ .[I�
Y �

j /:

Combining (5.4), (5.5), we get

jZ� j �
X

j 2I�

jj1j C � � � C jjd j
.�1 : : : �d /2

C jI� j
.�1 : : : �d /d

�! 0 as Q 3 � ! 1: (5.6)

By Borel–Cantelli lemma, for a.e. x 2 Td , there is an infinite sequence ¹�º�2Px

such that x … Z� for any � 2 Px . Define a �-periodic potential by setting

f� .x C n ? ˛/ D f .x C m ? ˛/;

where nj � mj (mod �j ) with 0 � mj � �j � 1. Then since x … Z� , we have

max
knk1�.2dCı/�1:::�d

jf� .x C n ? ˛/ � f .x C n ? ˛/j < M �.2dC/�1 :::�d
� ; (5.7)

where M� � maxknk1�.2dCı/�1:::�d
jf .xCn?˛/j. Note that since kf k1 D 1, we

have limPx3�!1 M� D 1. Together with (5.7) this implies that for any �0 > 0,

for � 2 Px large, we have

max
knk1�.2dCı/�1:::�d

jf� .xCn?˛/�f .xCn?˛/j < .2d �1CM� C�0/�.2dC 
2

/�1:::�d :

(5.8)

By Theorem 2.2, Hx has no point spectrum. �

Case 2. Note that when kf k1 < 1, one could choose M D kf k1 so that

E.M/ D 0. Then one can prove Lemma 5.1 with (5.1) replaced by

k.�1˛1; : : : ; �d ˛d /k
Td < �..4d � 1 C 2M/�.2dC/�1 :::�d ; .�1 : : : �d /�2/: (5.9)
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6. Arithmetic condition for d > 2

Lemma 6.1. For any � > 0, let

A�
m1;:::;md

D
°

˛ 2 Td W max
iD1;:::;d

�m1 : : : md

mi

kmi˛kT
�

< �
±

: (6.1)

Then A� D lim sup A�
m1;:::;md

has Lebesgue measure zero.

This Lemma clearly implies that when d � 3, ˛’s such that (1.2) holds form a

Lebesgue measure zero set.

Proof. Clearly, jA�
m1;:::;md

j D .2�/d

.m1:::md /d�1 . Thus

X

mi 2N

jA�
m1;:::;md

j D .2�/d
�

X

m2N

1

md�1

�d

< 1 for d � 3: (6.2)

By Borel–Cantelli lemma, jA�j D 0. �
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