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Abstract. We use two of the most fruitful methods for constructing isospectral manifolds,

the Sunada method and the torus action method, to construct manifolds whose Dirichlet-

to-Neumann operators are isospectral at all frequencies. The manifolds are also isospectral

for the Robin boundary value problem for all choices of Robin parameter. As in the

sloshing problem, we can also impose mixed Dirichlet–Neumann conditions on parts of

the boundary. Among the examples we exhibit are Steklov isospectral flat surfaces with

boundary, planar domains with isospectral sloshing problems, and Steklov isospectral

metrics on balls of any dimension greater than 5. In particular, the latter are the first

examples of Steklov isospectral manifolds of dimension greater than 2 that have connected

boundaries.
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1. Introduction

Inverse spectral problems on compact Riemannian manifolds ask to what extent

geometric and topological data are encoded in the spectra of natural operators.

There is an extremely rich literature of both positive and negative results in the

case of the Laplace–Beltrami operator on compact manifolds, with Dirichlet or

Neumann boundary conditions (or mixed conditions) imposed when the boundary

is nonempty. The literature for other natural operators lags behind. The goal of this

article is to show that most of the negative results for the Laplace–Beltrami oper-

ator in the literature, i.e., the constructions of manifolds whose Laplace–Beltrami

operators are isospectral, are equally valid for other natural operators. We were

motivated primarily by the surge of interest in Steklov eigenvalue problems and

the related “sloshing problem” on compact Riemannian manifolds with boundary,

so we will focus primarily on these problems. However, we will also comment on

other eigenvalue problems.

https://creativecommons.org/licenses/by/4.0/
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1.1. Steklov eigenvalue problems. Let .M; g/ be a compact smooth Riemann-

ian manifold with boundary, and let � be the associated Laplace–Beltrami oper-

ator. For any ˛ 2 R that is not in the spectrum of the Dirichlet Laplacian, and for

� 2 C 1.@M/, the Steklov spectrum of M at frequency ˛ with boundary density �,

denoted by Stek˛.M; g; �/ or simply by Stek˛.M; g/ if � � 1, is the collection of

real numbers � for which there exists a nontrivial solution u 2 C 1.M/ to the

eigenvalue problem
´

�u D ˛u on M X @M;

@�u D ��u on @M;
(1)

where @�u is the normal derivative of u on the boundary. (The problem is

well-defined, since it was required that ˛ not be a Dirichlet eigenvalue of �.)

In two dimensions, Stek0.M; g; �/ corresponds to the collection of squares of

eigenfrequencies of a drum all of whose mass is distributed along the boundary

according to the density � (see [37]). When � � 1, the Steklov spectrum

Stek˛.M; g/ is precisely the eigenvalue spectrum of the Dirichlet-to-Neumann
operator D

.M;g/
˛ WC 1.@M/ ! C 1.@M/. This operator associates to a function

v 2 C 1.@M/ the normal derivative of the unique extension V WM ! R of v to M

that satisfies �V D ˛V . In particular, when ˛ D 0, the extension V is harmonic,

so is just the solution of the Dirichlet problem with initial data v. We remark

that if the boundary density function � is merely L1, then (1) is still a well-

defined eigenvalue problem, although the eigenfunctions are merely H 1 rather

than smooth, and the boundary condition in (1) is interpreted in the sense of the

Sobolev trace.

The so-called sloshing problem, describing oscillations of a fluid in an open

container, is the special case of the Steklov problem (1) in which � takes on only

the values 0 and 1: � � 0 on the walls of the container and � � 1 on the free

surface of the fluid.

In dimension two, the Steklov spectrum Stek0.M; g; �/ is invariant under

conformal changes of metric away from the boundary; i.e., if g0 D ef g with f � 0

on @M , then Stek0.M; g; �/ D Stek0.M; g0; �/. In fact, we even have D
.M;g0/
0 D

D
.M;g/
0 . (This is immediate from the fact that the Laplacian of g0 is related to

that of g by �0 D e�f � in dimension two. In higher dimensions, this equality

fails.) We will say that .M; g; �/ and .M 0; g0; �0/ are trivially Steklov isospectral
for ˛ D 0 if there exists a diffeomorphism F from M to M 0 intertwining � and �0

such that either (i) F W .M; g/ ! .M 0; g0/ is an isometry or (ii) dim.M/ D 2 and

F �g0 D ef g with f j@M D 0. We caution that such conformal changes of metric

will in general affect Stek˛.M; g; �/ for ˛ ¤ 0, even in dimension two.
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The Steklov spectrum was first introduced by A. Steklov in 1902 and has since

found many remarkable applications; see the historical article [36]. For example,

by examining the dependence of Stek˛.M; g/ on the parameter ˛, Friedlander [20]

derived an inequality between the Neumann and Dirichlet eigenvalues of bounded

C 1-domains in R
n; this inequality was extended to Lipschitz domains by Arendt

and Mazzeo [1]. The study of the Steklov spectrum has recently gained impe-

tus; see, for example, [7, 16, 18, 17, 19, 23, 22, 33, 43, 34, 48], and the excellent

survey [24]. E.g., Stek0.M; g/ is known to determine the dimension and volume

of @M , the geometry of @M if dim.M/ D 2 [22], whether a domain in R
2 is a

disk [22], and whether a domain in R
3 with connected boundary is a ball [43]. In-

terest in the Steklov problem is also motivated in part by various results suggesting

that any sufficiently regular metric g on M can be recovered from the Dirichlet-to-

Neumann operator D
.M;g/
0 WC 1.@M/! C 1.@M/; see [39] and [38] for the cases

of surfaces and for real analytic manifolds of all dimensions. These are instances

of Calderón’s inverse problem [15] for electrical impedance tomography, which

asks whether a body’s conductivity can be determined from current and voltage

measurements on its boundary.

In this article we adapt to the Steklov setting the two primary techniques for

constructing Laplace isospectral manifolds: Sunada’s technique [47] and the torus

action method (see, e.g., [25, 26, 45, 46]). Both techniques yield pairs of Riemann-

ian manifolds M1 and M2 with boundary that are simultaneously Dirichet and

Neumann isospectral and that also satisfy Stek˛.M1; g1/ D Stek˛.M2; g2/ for all

˛ not in the Dirichlet spectrum. Moreover, Stek˛.M1; g1; �1/ D Stek˛.M2; g2; �2/

for a large family of pairs of densities .�1; �2/. The Laplace–Beltrami operators

on the boundaries are also isospectral. (In some, but not all cases, the boundaries

are isometric.)

We illustrate these techniques with nontrivial examples:

� pairs of (nonplanar) flat Steklov isospectral surfaces embedded in R
3 con-

structed via the Sunada method;

� continuous families of mutually Steklov isospectral nonflat metrics on a ball

in R
n constructed by the torus action method.

Specializing to the sloshing problem, we obtain, for example,

� pairs of planar domains that are isospectral for the sloshing problem.

Referencing our results, the article [2] gives examples of Steklov isospec-

tral orbifolds using the Sunada and torus action techniques. Example 6.1 in the

same article uses direct computation to give examples of orbifold quotients �1nB
and �2nB of Euclidean balls with Stek0.�1nB/ D Stek0.�2nB/. Lemma 6.1
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of [17] establishes that cylinders over Laplace–Beltrami isospectral closed mani-

folds have the same Steklov spectrum, again with ˛ D 0. To our knowledge, these

examples exhaust the nontrivial examples of Steklov isospectral manifolds in the

literature.

There are various notions of Dirichlet-to-Neumann operator acting on the

space of p-forms on the boundary of a manifold. The definitions in [44] and [35]

(the latter being a modification of a definition in [3]) give operators with discrete

spectrum. The Sunada method goes through for these Steklov spectra on p-

forms. However, the torus action method does not. (This is not unexpected: the

torus action method for the Laplace–Beltrami operator produces manifolds that

are isospectral on functions, but it does not establish isospectrality for the Hodge

Laplacian on p-forms.)

1.2. Robin eigenvalue problems. The Robin boundary value problem is dual to

the Steklov eigenvalue problem in the following sense. Set � � 1. Fixing a given

� 2 R and interpreting (1) as an eigenvalue problem for an unknown ˛ converts (1)

into an eigenvalue problem with Robin boundary conditions. Since the Steklov

isospectral manifolds that we construct satisfy Stek˛.M1; g1/ D Stek˛.M2; g2/

for every allowable choice of the parameter ˛, they will also be isospectral for

the Robin boundary value problem for every choice of the Robin parameter � .

See [1] for historical comments on this relationship between the Steklov and Robin

problems.

The Sunada and torus action methods work equally well for the mixed Robin–

Neumann–Dirichlet eigenvalue problem. This problem asks for which ˛ 2 R

there exists u 2 C 1.M/, with normal derivative @�u 2 C 1.@M/, such that

�uD ˛u on M X @M; (2a)

uD 0 on D; (2b)

@�uD 0 on N; (2c)

@�uD �u on S: (2d)

where @M D S t N t D (set-theoretic disjoint union) and where � is again a

fixed Robin parameter. In case D D ¿, then the mixed Robin–Neumann problem

is dual in the sense above to the Steklov problem with boundary density � � 1 on

S and � � 0 on N .

1.3. Other eigenvalue problems. Both the Sunada method and the torus action

method are very robust. We remark without proof that both methods easily

extend, for example, to poly-Laplacians �m with Dirichlet boundary conditions

u D @�u D @2
�u D � � � D @m�1

� u D 0 on @M , as in the clamped plate problem

where m D 2.
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The paper is organized as follows. In §2 and §3, we adapt the Sunada method

and the torus action method, respectively, to the Steklov settings. Examples

constructed via the two methods are given in §4. Finally, in §5, we construct

Steklov isospectral boundary density functions: more precisely, we adapt both the

Sunada method and the torus action method using an idea introduced by R. Brooks

in order to construct pairs of boundary density functions �1 and �2 on a compact

Riemannian manifold M with boundary such that Stek˛.M; �1/ D Stek˛.M; �2/

for all ˛ not in the Dirichlet spectrum of M .

Acknowledgements. We thank Dorothee Schueth for suggesting Proposition 3.3

and its proof, and we thank Leonid Friedlander and Rafe Mazzeo for informative

conversations.

2. The Sunada method

We adapt the Sunada method [47] to the context of the Steklov spectra.

Definition 2.1. Let G be a finite group. Two subgroups H and H 0 of G are

called almost conjugate or Gassmann equivalent if every g 2 G has equally many

conjugates in H and H 0.

Remark 2.2. Gassmann [21] used such almost conjugate subgroups of a finite

group to exhibit examples of pairs of nonisomorphic algebraic number fields

with the same arithmetic (i.e., the same Dedekind zeta function). The formula

for the character of an induced representation shows easily that H and H 0 are

almost conjugate if and only if the representations of G induced from the trivial

one-dimensional representations of H and H 0 are equivalent: i.e., IndG
H .1H / Š

IndG
H 0.1H 0/, where 1H and 1H 0 denote the trivial one-dimensional representations

of H and H 0, respectively.

Theorem 2.3 (Sunada’s Theorem adapted to the Steklov setting). Let H and H 0 be
almost conjugate subgroups of a finite group G. Assume that G acts by isometries
on a compact Riemannian manifold M with boundary and that the restrictions
of the action to the subgroups H and H 0 are free. Let � be an L1, nonnegative,
G-invariant function on @M . Continue to denote by g and � the Riemannian metric
and the function induced on each of the orbit spaces HnM and H 0nM by g and �.
Then,

Stek˛.HnM; g; �/ D Stek˛.H 0nM; g; �/
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for all ˛ not in the Dirichlet spectrum of HnM and H 0nM . (Sunada’s original
theorem guarantees that the two quotient manifolds are both Dirichlet and Neu-
mann isospectral, so the allowable choices of ˛ are the same in both cases.)

Proof. Fix ˛ and � as in the theorem. We will abuse language and refer to solutions

u of equation (1) in the Introduction as �-eigenfunctions for the .˛; �/-Steklov

problem on M .

In what follows, if � is any group acting linearly on a vector space V , we denote

by V � the subspace of �-fixed vectors in V .

There are numerous simple and elegant proofs of Sunada’s original theorem,

some of which compare the dimension of each eigenspace in the two manifolds.

These proofs go through without change in our setting. The �-eigenfunctions

for the .˛; �/-Steklov problem on each of the quotient manifolds HnM and

H 0nM pull back to H -invariant, respectively H 0-invariant, �-eigenfunctions for

the .˛; �/-Steklov problem on M . Thus letting E� � C 1.M/ be the �-eigenspace

for the .˛; �/-Steklov problem on M , we need only show that the subspaces EH
�

and EH 0

� of H -invariant and H 0-invariant functions, respectively, have the same

dimension. Hence the proof of Theorem 2.3 reduces to the following lemma.

Lemma 2.4. Let H and H 0 be almost conjugate subgroups of a finite group G

and let V be any vector space on which G acts. Then dim.V H / D dim.V H 0

/.

T. Sunada [47] gave an elementary proof of this lemma by a trace formula; see

also [14], p. 295. H. Pesce [42] gave a representation theoretic proof by applying

Remark 2.2 along with Frobenius reciprocity to obtain

dim.V H / D Œ1H W ResG
H .V /� D ŒIndG

H .1H / W V �;

where ŒU W W � denotes the multiplicity of the representation U in W . Since

IndG
H .1H / and IndG

H 0.1H 0/ are equivalent, it follows that dim.V H / D dim.V H 0

/.

�

Remarks 2.5. We note a couple of features of the Sunada construction.

(1) Lemma 2.4 says that the vector spaces V H and V H 0

are isomorphic. In

fact, the equivalence � between the induced representations IndG
H .1H / and

IndG
H 0.1H 0/ actually yields an explicit and natural isomorphism �]WV H 0 !

V H , which Peter Buser and Pierre Bérard [12, 4] called transplantation. See

also [49], [10], [28].
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(2) If H and H 0 are conjugate subgroups of G, then the resulting quotient man-

ifolds HnM and H 0nM are isometric. Even when H and H 0 are not conju-

gate, the quotient manifolds may be accidentally isometric. Thus one must

always verify nontriviality when using Sunada’s technique (in fact, when us-

ing any of the known techniques for constructing isospectral manifolds).

More important for our purposes is:

Remark 2.6. One may drop the hypothesis that H and H 0 act freely. The resulting

quotients HnM and H 0nM will then be Steklov isospectral good Riemannian

orbifolds. (A good orbifold is the orbit spaceO D �nM of a manifold by a smooth

discrete group action satisfying the condition that the isotropy group at any point

is finite. A function on O is said to be smooth if its pullback to M is smooth. If g is

a Riemannian metric on M and � acts by isometries, then g gives O the structure

of a Riemannian orbifold. The associated Laplacian �OWC 1.O/ ! C 1.O/ is

defined by �� ı �O D �M ı �� where � WM ! O is the projection.) We will

apply the orbifold version in Example 4.1.2 when we construct planar domains

that are isospectral for the sloshing problem.

Other eigenvalue problems 2.7. (i) There are various notions in the literature

of a Dirichlet-to-Neumann operator acting on the space of smooth differential p-

forms on @M where M is a smooth compact Riemannian manifold with smooth

boundary. The notions of Dirichlet-to-Neumann operator on forms defined by

S. Raulot and A. Savo [44] and by Karpukhin [35] have discrete spectra. Using

either of these definitions of Steklov spectrum on p-forms, the hypotheses of

Theorem 2.3 (with � � 1) guarantee that the manifolds HnM and H 0nM have

the same Steklov spectra on p-forms, for all p.

(ii) As noted in the introduction, taking � � 1 in Theorem 2.3 immediately

yields isospectrality of the Robin problems on HnM and H 0nM for every choice

of Robin parameter. Alternatively, one can prove the Robin isospectrality directly

using the same method as in the proof of Theorem 2.3.

Moreover, one can easily modify Theorem 2.3 to address mixed Robin–

Neumann–Dirichlet problems. One assumes that @M D @RM t @N M t @DM ,

where each of the three subsets is G-invariant and where the decomposition is

sufficiently nice so that the mixed Robin–Neumann–Dirichlet problem, in which

Robin, Neumann, and Dirichlet conditions are imposed on @RM; @N M and @DM ,

respectively, is well-defined with discrete spectrum. Then the mixed problems on

HnM and H 0nM are isospectral, where the respective boundary conditions are

imposed on Hn.@RM/; Hn.@N M/, and Hn.@DM/ and similarly for H 0.
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3. The torus action method

The torus action method was developed to construct Riemannian manifolds that

have the same Laplace spectrum but that are not even locally isometric. There are

several versions, e.g., [25, 26, 45, 46]. We first state the version in [46] and then

adapt it to the Steklov setting.

In the following, a torus always means a nontrivial, compact, connected,

abelian Lie group. Let T be a torus acting effectively by isometries on a compact,

connected Riemannian manifold M . The union of those orbits on which T acts

freely is an open, dense submanifold of M (see [6]) that we will denote by cM ; it

carries the structure of a principal T -bundle.

Theorem 3.1 ([46]). Let T be a torus which acts effectively on two compact,
connected Riemannian manifolds .M; g/ and .M 0; g0/ by isometries. For each
subtorus W � T of codimension one, suppose that there exists a T -equivariant
diffeomorphism FW WM !M 0 such that

(1) FW WM !M 0 is volume-preserving; i.e., F �
W dvolM 0 D dvolM where dvolM

and dvolM 0 are the Riemannian volume densities of M and M 0;

(2) FW induces an isometry F W W .W n yM; gW / ! .W ncM 0; g0
W / where gW and

g0
W are the metrics induced by g and g0 on the quotients.

Then .M; g/ and .M 0; g0/ are isospectral. Moreover, if the manifolds have bound-
ary, then they are both Dirichlet and Neumann isospectral.

We now adapt this method to the Steklov setting.

Theorem 3.2. Let T be a torus which acts isometrically and effectively on two
compact, connected Riemannian manifolds .M; g/ and .M 0; g0/ with boundary.
Let � 2 L1.@M/ and �0 2 L1.@M 0/ be T -invariant. For each subtorus W � T

of codimension one, suppose that there exists a T -equivariant diffeomorphism
FW WM !M 0 such that

(1) FW WM !M 0 is volume-preserving;

(2) FW j@M W @M ! @M 0 is volume-preserving, i.e., F �
W dvol@M 0 D dvol@M ;

(3) F �
W �0 D �;

(4) FW induces an isometry F W W .W n yM ; gW /! .W ncM 0; g0
W /, where gW and

g0
W are the metrics induced by g and g0 on the quotients.

Then for each ˛ not in the Dirichlet spectrum of .M; g/, we have

Stek˛.M; g; �/ D Stek˛.M 0; g0; �0/: (3)
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(Theorem 3.1 guarantees that the two quotient manifolds are Dirichlet isospectral,
so the allowable choices of ˛ are the same in both cases.)

Before proving Theorem 3.2, we recall the variational characterization of the

eigenvalues in Stek˛.M; g; �/. First recall that the boundary restriction map that

takes u 2 H 1.M/ \ C 0.M/ to uj@M extends to the compact trace operator

TrWH 1.M/! L2.@M/. We write uj@M D Tr.u/. Define

RM;˛;�.u/ D
R

M kruk2 dvolM �˛
R

M u2 dvolMR
@M

uj2
@M

� dvol@M

: (4)

Denoting the eigenvalues in Stek˛.M; g; �/ as

0 D �0 < �1 � �2 � � � � ;

we have

�k D inf
Ek.M;�/

sup
0¤u2Ek

RM;˛;�.u/ (5)

where the infimum is over all k-dimensional subspaces Ek.M; �/ of H 1.M/

consisting of functions whose restrictions to the boundary are �-orthogonal to

the constant functions, i.e.
R

@M uj@M � dvol@M D 0.

Proof of Theorem 3.2. We adapt the proof of [46, Theorem 1.4]. For W < T any

subtorus, let H 1.M/W � H 1.M/, L2.M/W � L2.M/, H 1.M 0/W � H 1.M 0/,

and L2.M 0/W � L2.M 0/ denote the subspaces of W -invariant functions. By

Fourier decomposition with respect to the isometric action of T , we have

H 1.M/ D H 1.M/T ˚
M

W

.H 1.M/W 	H 1.M/T / (6)

and

L2.@M/ D L2.@M/T ˚
M

W

.L2.@M/W 	 L2.@M/T / (7)

where the sum is over all subtori W of T of codimension one. Multiplication by

the T -invariant density � preserves each of the subspaces L2.M/T and L2.M/W .

Moreover the trace operator TrWH 1.M/ ! L2.@M/ respects these decomposi-

tions. Analogous statements hold with M replaced by M 0.

As shown in [46], conditions (1) and (4) of Theorem 3.2 imply that if W is a

subtorus of T of codimension at most one and u 2 H 1.M 0/W , then

kF �
W ukH 1.M / D kukH 1.M 0/ and also kF �

W ukL2.M / D kukL2.M 0/: (8)
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The first of the equations in (8), the T -equivariance of the maps FW , and equa-

tion (6) yield an isomorphism

� WH 1.M 0/ �! H 1.M/

given by

� D F �
T ˚

M

W

F �
W :

Hypothesis (2) of the theorem and equation (7) similarly yield an isomorphism

�@ WD F �
T ˚

M

W

F �
W WL2.@M 0/ �! L2.@M/

and the diagram

H 1.M 0/ H 1.M/

L2.@M 0/ L2.@M/

 !�

 !Tr  ! Tr

 !
�@

commutes.

Hypotheses (2) and (3) of the theorem guarantee for each k D 1; 2; : : : that �

maps Ek.M 0; �0/ to Ek.M; �/ and that the denominators in the Rayleigh quotients

RM;˛;�.�.u// and RM 0;˛;�0.u/ coincide for each u 2 Ek.M 0; �0/. The pair of

equalities (8) imply that the numerators in RM;˛;�.�.u// and RM 0;˛;�0.u/ also

agree, and the theorem follows from equation (5). �

Although condition (2) in Theorem 3.2 does not appear in Theorem 3.1 or

in any of the other versions of the torus action method, it is actually satisfied

in all of the examples that have been constructed thus far by these methods, as

will be explained in §4. Moreover, the version of the torus action method in [26,

Theorem 1.2] includes a hypothesis that the principal T -orbits be dense in @M and

@M 0 in order to produce Neumann isospectral manifolds; this condition is stronger

than condition (2) in the following sense.

Proposition 3.3. Let M and M 0 be compact, connected, orientable Riemannian
manifolds with a faithful isometric action by a torus T satisfying conditions (1)

and (4) of Theorem 3.2. If yM \ @M is dense in @M , then condition (2) of
Theorem 3.2 is satisfied as well.

Proof. Choose orientations on M and M 0 and give @M and @M 0 the induced

orientations. Let �M , �M 0 , �@M and �@M 0 be the associated Riemannian volume

forms. Condition (1) says that F �
W �M 0 D ˙�M . Since yM \ @M is dense in @M ,
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it suffices to show that condition (2) holds at each point p 2 yM \ @M . Let

p 2 yM \ @M and let p0 D FW .p/. The T -equivariance of FW guarantees that

p0 2 yM 0. Let � and �0 denote the outward unit normals to @M and @M 0 at p and p0,

respectively, and let i W @M ! M and i 0W @M 0 ! M 0 be the inclusion maps. The

facts that FW is an isometry and that the action of W on M and M 0 preserves the

boundaries imply that �0 � FW �.�/ is tangent to @M 0 and hence

.i 0/�.FW �.�/ y �M 0/ D .i 0/�.�0
y �M 0/ D �@M 0: (9)

By condition (1) we have

FW �.�/ y �M 0 D ˙FW �.�/ y .F �1
W /��M D ˙.F �1

W /�.� y �M /: (10)

Since FW ı i D i 0 ı FW , equations 9 and 10 yield

F �
W .�@M 0/ D ˙F �

W ı .i 0/� ı .F �1
W /�.� y �M / D ˙i�.� y �M / D ˙�@M

and thus F �
W dvol@M 0 D dvol@M . �

4. Examples

4.1. Examples using the Sunada technique. There is a wealth of examples of

Dirichlet or Neumann isospectral manifolds that have been constructed by the

Sunada method and its various generalizations; see [27] and references therein.

The original Sunada technique has yielded, for example, isospectral flat surfaces

embedded inR
3 [13] and large finite families of mutually isospectral Riemann sur-

faces [9], which can be easily modified to produce families of mutually isospectral

hyperbolic surfaces with boundary. All examples of isospectral manifolds with

boundary constructed by the original Sunada technique are also Steklov isospec-

tral.

There are various generalizations of Sunada’s theorem, surveyed in [27], not

all of which go through directly for the Steklov spectrum. For example, the pair

of Neumann isospectral flat surfaces with boundary constructed in [5] (one ori-

entable, the other nonorientable) using the orbifold version of Sunada’s Theorem

are not Steklov isospectral, since one of the manifolds has four boundary compo-

nents while its isospectral companion has only three boundary components. Yet

the number of boundary components of a surface is determined by the Steklov

spectrum (see [22]). See §4.1.2 for some further comments.

In this subsection we illustrate the Sunada method with just a sampling of the

many examples.
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4.1.1. Steklov isospectral flat surfaces embedded in R
3. In [13], Peter Buser

introduced the use of Schreier graphs to construct isospectral manifolds via

Sunada’s technique and illustrated the method by constructing a pair of Dirich-

let and Neumann isospectral flat surfaces with boundary in R
3.

For the reader’s convenience, we briefly review Buser’s construction be-

fore addressing the Steklov setting. Recall that if G is a finite group and

S D ¹s1; s2; : : : ; snº is a set of nonidentity elements generating G, the Cayley
graph �.G; S/ is the n-regular edge-colored directed graph whose vertices are

the elements of G, and whose i-colored edges encode right multiplication by the

generators si . More precisely, there is an i-colored edge from g to g0 if and only

if gsi D g0. The group G acts transitively and faithfully on �.G; S/ by left mul-

tiplication. If H is a subgroup of G, then the Schreier graph �.HnG; S/ is the

quotient of �.G; S/ by the action of H . Equivalently, the vertices of the Schreier

graph correspond to the elements of the space of right-cosets HnG and the edges

indicate the right action of the elements of S on HnG. The graph theoretic version

of Sunada’s Theorem says that if H1 and H2 are almost conjugate subgroups of G,

then for any fixed choice of generating set S , the adjacency operators (or Lapla-

cians or other natural operators) associated with the Schreier graphs �.H1nG; S/

and �.H2nG; S/ are isospectral.

To construct a manifold from a Schreier graph, Buser chooses a basic tile T ,

whose piecewise-smooth boundary contains 2n disjoint line segments called

sides, labelled s1, s�1
1 , s2, s�1

2 ; : : : ; sn; s�1
n . Sides si and s�1

i are required to have

the same length. The sides need not exhaust the entire boundary of the tile. To

construct a manifold M.HnG; S/, consider a collection of ŒG W H� identical tiles,

labelled by the elements of HnG, whose sides are glued together in pairs accord-

ing to the pattern encoded by the Schreier graph. More precisely, side si of tile

Hg is glued to side s�1
i of tile Hgsi . Similarly, one uses the Cayley graph �.G; S/

to construct a manifold M.G; S/. Observe that G acts on M.G; S/ on the left, and

that M.HnG; S/ D HnM.G; S/. Let @0.T / denote the complement in @T of the

union of the sides s1; s�1
1 ; s2; s�1

2 ; : : : ; sn; s�1
n . Buser arbitrarily chooses bound-

ary conditions on @0T . The boundary conditions chosen on @0T then determine

the boundary conditions on the manifold M.G; S/ and on M.HnG; S/ for any

subgroup H < G.

Now suppose that H1 and H2 are almost conjugate subgroups of G. Then,

as observed by Buser, Sunada’s Theorem immediately yields isospectrality of

M1 WDM.H1nG; S/ and M2 WDM.H2nG; S/ with respect to the given boundary

conditions.
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Moving to our setting, we instead choose arbitrarily an L1 density function �

on @0T , thus giving rise to a density function, still denoted �, on the boundaries

of M WDM.G; S/ and Mi , i D 1; 2. The density on @M.G; S/ is G-invariant and

Theorem 2.3 yields

Stek˛.M1; �/ D Stek˛.M2; �/:

It is easy to construct an abundance of examples this way. For a concrete

example, we consider the pair of flat surfaces in R
3 given by Buser in [13]. In

this example, G D GL.3;Z2/, H1 is the subset of matrices with first row .1; 0; 0/,

and H2 D H t
1 is the subset consisting of transposes of elements of H1. The two

subgroups H1 and H2 are almost conjugate in G (each element of H1 is similar

to its transpose in H2) and have index 7 in G. Buser’s surfaces are obtained by

using a particular generating set S D ¹a; bº of order 2 and the basic tile shown in

Figure 1(A). (Ignore for now the dashed line in Figure 1(A); it will be used in the

next example.) Buser actually used a cross-shaped tile; we have smoothed out the

corners of the tile so that the resulting isospectral surfaces M1 and M2 are smooth.

We have not included a picture of the two surfaces here. However, Figure 1(B)

shows the quotient of each of the two surfaces by a reflection. To visualize the

original surfaces, simply double the two domains in the figure across the part of

the boundary indicated by double lines. Alternatively, see [13], where the surfaces

constructed with a cross-shaped tile are drawn.

The surfaces are easily seen to be nonisometric; in fact they have different

diameter. Since we are in dimension two, we also verify that they are not trivially

Steklov isospectral when ˛ D 0 by showing that M2 is not isometric to the surface

M1 endowed with a metric ef gE , where gE is the Euclidean metric and where

the conformal factor f vanishes on the boundary. Recall that the scalar curvature

of ef gE is 4e�f �f , where � denotes the Euclidean Laplacian. Noting that M2

is flat, we conclude that f must be a harmonic function. Since f vanishes on the

boundary, f must be identically zero. Thus no such conformal equivalence exists

and the surfaces are nontrivially Steklov isospectral.

4.1.2. Planar domains with isospectral sloshing problems. The first examples

of isospectral planar domains [30] arose from the observation that each of the

two isospectral flat surfaces Mi , i D 1; 2, described in the previous example

admits an isometric involution ˇi covering the symmetry ˇ0 of the basic tile

in Figure 1(A) given by reflection across the dashed line. The quotients of the

surfaces by the involutions, shown in Figure 1(B), are both Dirichlet and Neumann

isospectral. As we will explain below, the version of Sunada’s technique used to

prove isospectrality does not yield Steklov isospectrality of these domains except
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(A) Buser’s tile (B) Steklov–Neumann and Robin–Neumann isospectral planar domains

aa
1

b b
1

Figure 1. Neumann conditions are imposed on all straight boundary parts (double-lined).

The domains arise from [30, Figure 7] by using tiles as in (A).

in the special case that the density � is identically zero on the part of the boundary

indicated by double lines (the straight segments of the boundary) in Figure 1(B).

However, if we choose � to be zero on this part of the boundary and � � 1 on the

curved edges, then we do obtain isospectrality for the mixed Neumann-Steklov

problem (the sloshing problem). One can also make a more general choice of �

on the curved parts of the boundary as long as consistency is maintained among

the various tiles.

The proof in [30] of Neumann isospectrality of the planar domains goes as

follows. The involutive isometries ˇi , i D 1; 2, lift to an involutive isometry

ˇ of the covering manifold M D M.G; S/. The isometry ˇ normalizes the

group G and each of the subgroups Hi , i D 1; 2. The groups fH1 WD H1 Ì

hˇi and fH2 WD H2 Ì hˇi are almost conjugate subgroups of zG WD G Ì hˇi.
The group zG does not act freely on M . However, we may apply the orbifold

version of Sunada’s Theorem as in Remark 2.6 to conclude that the quotients
fH1nM and fH2nM are isospectral orbifolds. The underlying spaces of these

orbifolds are the domains in Figure 1(B). The singular sets of these orbifolds

consist of the doubled line segments in Figure 1(B), which are reflector edges

where the isotropy group has order 2. (Note that these line segments lift to interior

segments of M , not to boundary edges.) By the definition of smooth functions

and of the Laplacian on these orbifolds (see Remark 2.6), the isospectrality of

the two orbifolds is equivalent to isospectrality of the underlying planar domains

with Neumann boundary conditions placed on the doubled line segments of the

boundary and whatever boundary conditions on the curved edges were chosen on

the curved edges of the basic tile T used to construct M .

If we choose the boundary density function � � 1 on the boundary of the

basic tile, the same argument yields the Steklov isospectrality of the two orbifolds,

which in turn corresponds to isospectrality for the sloshing problem on the two

underlying planar domains.
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Remark 4.1. We have summarized the original proof of the isospectrality of

the planar domains in order to clarify why we only get sloshing isospectrality

rather than more general Steklov isospectrality of the planar domains. However,

transplantation as in Remark 1 yields a very simple proof by picture of the sloshing

isospectrality.

4.1.3. Isospectral domains with mixed boundary conditions. In [40], Levi-

tin, Parnovski, and Polterovich constructed examples of pairs of domains that are

isospectral with mixed boundary conditions, including a pair consisting of a tri-

angle and a square, whose isospectrality cannot be explained directly by Sunada’s

technique but can be shown by an explicit transplantation of eigenfunctions. Later

Band and Parzanchevsky [41] gave a representation theoretic explanation, which

was further developed and applied systematically by Herbrich [32].

One can similarly use transplantation directly to obtain domains that are

isospectral for both the mixed Robin–Neumann–Dirichlet and the mixed Steklov–

Neumann–Dirichlet problems. We give two examples here, both obtained by mod-

ifying the construction of the isospectral triangle and square in [40]. The triangle

and square in [40] are each constructed by gluing together two copies of an isosce-

les right triangle (the basic tile); they are glued along the hypotenuse to obtain the

square and along one of the legs to obtain the triangle in the isospectral pair. Fig-

ure 2 shows two modifications of their construction, both obtained by cutting out

a half disk from the basic tile.

For the mixed Robin–Neumann–Dirichlet problem, we impose Robin bound-

ary conditions—with the same Robin parameter on both domains in each pair—on

the curved part of the boundary indicated by a solid line in the figures, Neumann

conditions on the part of the boundary indicated by doubled lines, and Dirichlet

conditions on the part indicated by dashed lines. With these boundary conditions

we claim that M is isospectral to M 0 and P is isospectral to P 0.

Let u be an eigenfunction for the mixed problem on M , say with eigenvalue �,

and denote by u1 and u2 the restrictions of u to the two tiles making up M as in

Figure 2. We transplant u to an eigenfunction u0 D T .u/ on M 0 whose restrictions

u0
1 and u0

2 to the two tiles of M 0 as in Figure 2 are given by

�
u0

1

u0
2

�
D 1p

2

�
1 �1

1 1

��
u1

u2

�
: (11)

In writing u1 ˙ u2, we implicitly identify the tiles underlying u1 and u2, which

involves a reflection in the dotted diagonal of M . To see that u0 is smooth on the

dotted interior segment, we observe that u1 extends smoothly by reflection across

this segment (since the segment corresponds to an edge in M where u1 satisfies
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Neumann conditions) and, similarly, u2 smoothly extends by negative reflection

across this segment (which corresponds to an edge of M where u2 satisfies Dirich-

let conditions). It is then straightforward to verify that u0 is an eigenfunction with

eigenvalue � for the mixed Robin–Neumann–Dirichlet problem. The transplanta-

tion map T is invertible and isospectrality follows. The same transplantation map

yields the mixed Robin–Neumann–Dirichlet isospectrality of P and P 0.

To prove the Steklov–Neumann–Dirichlet isospectrality of M and M 0 and of P

and P 0, one uses the same expression for the transplantation map T , but now acting

on Steklov–Neumann–Dirichlet eigenfunctions. Alternatively, the isospectrality

is immediate from the duality between the Steklov–Neumann–Dirichlet and the

Robin–Neumann–Dirichlet problem.

M M
0

P P
0

u1

u2

u1

u2

u
0

1

u
0

2

u
0

1

u
0

2

Figure 2. Mixed Robin–Neumann–Dirichlet and Steklov–Neumann–Dirichlet isospectral

pairs. They are based on the main example in [40]. Isospectrality follows from the

transplantation (11). Robin boundary conditions are imposed on the solid boundary edges,

Neumann conditions on the doubled boundary edges, and Dirichlet conditions on the

dashed boundary edges.

4.2. Examples using the torus action method. The torus action method, e.g.,

Theorem 3.1, has led to numerous pairs and families of Dirichlet and Neumann

isospectral manifolds as well as isospectral closed manifolds. All known examples

satisfy the additional condition (2) of Theorem 3.2 and therefore have isospectral

Dirichlet-to-Neumann operators at all frequencies. In fact, Proposition 3.3 applies

to all of them, yielding condition (2) in Theorem 3.2. Letting Bn and T n denote

the n-dimensional ball and torus, respectively, the examples include:

(1) continuous families of nonisometric metrics on Bn for n � 8 [26, 46], and

pairs of such metrics on B6 and B7 [46] (These metrics can be chosen as

Euclidean outside of a smaller concentric ball [46].);

(2) continuous families of metrics on Bn � T k for n � 5 and k � 2 that are the

restrictions of locally nonisometric homogeneous metrics on R
n � T k [31];
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(3) for n � 6, if one removes a concentric ball from Bn to obtain an annulus M

and takes � � 1 on one of the boundary spheres and � � 0 on the other,

then the metrics in (1) and (2) restrict to metrics with isospectral sloshing

problems on M .

5. Isospectral density functions

In [8], R. Brooks modified Sunada’s theorem in order to construct isospectral

potentials for the Schrödinger operator. Shortly thereafter, a similar method

was used to construct isospectral conformally equivalent Riemannian metrics,

see [11]. The technique became standard and produced many new examples.

Later D. Schueth [45] analogously modified the torus action method in order to

produce isospectral potentials and isospectral conformally equivalent Riemannian

metrics. In this section, we observe that similar modifications of Theorem 2.3

and Theorem 3.2 allow us to produce isospectral boundary density functions for

the Steklov spectrum. Here we carry out the modification of Theorem 2.3; the

modification of Theorem 3.2 is similar.

Theorem 5.1. Let M , G, H , H 0, g and � satisfy the hypotheses of Theorem 2.3.
Assume in addition that there exists an isometry � of .M; g/, not in G, such that
�H��1 D H 0. Then for all ˛ not in the Dirichlet spectrum of .HnM; g/, we have

Stek˛.HnM; g; �/ D Stek˛.HnM; g; ���/

where we continue to denote by � and ��� the boundary density functions on HnM
induced by those on M .

Proof. By Theorem 2.3, Stek˛.HnM; g; �/ D Stek˛.H 0nM; g; �/ for all ˛

not in the Dirichlet spectrum of HnM . By the additional hypothesis of The-

orem 5.1, � induces an isometry � W .HnM; g/ ! .H 0nM; g/, so we have

Stek˛.H 0nM; g; �/ D Stek˛.HnM; g; ���/. �

Example 5.2 (flat surfaces and planar domains). In Example 5.6 in [30], the tile

in Figure 1(A) is replaced by a tile T that has not only a reflection symmetry ˇ0

as in 4.1.2 but also a rotational symmetry �0 that commutes with ˇ0. The tile is

pictured in Figure 15 of [30]. Construct M D M.G; S/ and Mi D M.HinM; S/,

i D 1; 2 exactly as in 4.1.1 but using the more symmetric tile. The isometry �0

of the basic tile lifts to an isometry � of M . The isometry � normalizes the group

G and �A��1 D .At /�1 for all A 2 G. In particular, �H1��1 D H2. Define
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@0T as in 4.1.1 and let �0W @0T ! R be a boundary density function that is not
invariant under the restriction to @0T of the rotational symmetry �0. Denote by

� the resulting boundary density on M . Then the hypotheses of Theorem 5.1

are satisfied with H1 and H2 playing the roles of H and H 0. Thus we have

Stek˛.M1; �/ D Stek˛.M1; ���/ for all ˛ not in the Dirichlet spectrum of M1.

Next we construct planar domains. In the construction in the previous para-

graph, impose the additional requirement that �0 be invariant under the reflection

symmetry ˇ0. As in §4.1.2, the symmetry ˇ0 of the new basic tile lifts to iso-

metric involutions of M , M1, and M2. Let Oi be the orbifold quotient of Mi by

the involution ˇi . As before, the underlying space of Oi is a planar domain Di

whose boundary consists of the projection to Oi of the boundary of Mi (this part

is the boundary of the orbifold) together with a collection of straight line segments

corresponding to the singular set of the orbifold. The boundary density � on Mi

projects to a density function, still denoted �, on the first part of the bounary of Di ;

we extend � to the full boundary by setting it to be zero on the orbifold singular set.

Because ˇ0 and �0 commute, the isometry � WM1 !M2 satisfies � ı ˇ1 D ˇ2 ı � ,

and thus � induces an isometry between the planar domains D1 to D2. We then

have Stek˛.D1; �/ D Stek˛.D1; ���/ for all ˛ not in the Dirichlet spectrum of D1.

The modification of the torus action method is similar:

Theorem 5.3. Let T be a torus which acts isometrically and effectively on two
compact, connected Riemannian manifolds .M; g/ and .M 0; g0/ with boundary.
Let � 2 L1.@M/ and �0 2 L1.@M 0/ be T -invariant. Assume that all the
hypotheses of Theorem 3.2 are satisfied and, in addition, that there exists an
isometry � W .M; g/ ! .M 0; g0/. Then for all ˛ not in the Dirichlet spectrum of
.M; g/, we have

Stek˛.M; g; �/ D Stek˛.M; g; ���0/:

Proof.

Stek˛.M; g; �/ D Stek˛.M 0; g0; �0/ D Stek˛.M; g; ���0/

where the first equality follows from Theorem 3.2. �

Example 5.4. Let Bn be the n-dimensional ball. For various values of n � 10,

D. Schueth and the first author [29] constructed pairs of conformally equivalent

metrics on Bn that are isospectral but not isometric and whose restrictions to

the boundary spheres are also isospectral but non-isometric. The construction

begins with (i) a pair of metrics g; g0 on Bn that admit a torus action satisfying
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the hypotheses of Theorem 3.1 and Proposition 3.3, (ii) an isometry � W .Bn; g/!
.Bn; g0/, and (iii) a smooth positive function ' on Bn such that ' D F �

W ' for

all the functions FW in Theorem 3.1 but such that ��' ¤ '. The conformally

equivalent metrics are given by 'g and ��.'/g. To adapt this construction to our

setting, let � D �0 be the restriction of ' to the boundary sphere. The hypotheses

of Theorem 5.3 are satisfied and we have Stek˛.Bn; g; �/ D Stek˛.Bn; g; ���/ for

all ˛ not in the Dirichlet spectrum of .Bn; g/, but (as shown in [29]) the densities

� and ��� are not congruent under any isometry of the boundary sphere.

References

[1] W. Arendt and R. Mazzeo, Friedlander’s eigenvalue inequalities and the Dirichlet-

to-Neumann semigroup. Commun. Pure Appl. Anal. 11 (2012), no. 6, 2201–2212.

MR 2912743 Zbl 1267.35139

[2] T. Arias-Marco, E. B. Dryden, C. S. Gordon, A. Hassannezhad, A. Ray, and E.

Stanhope, Spectral geometry of the Steklov problem on orbifolds. Int. Math. Res.
Not. IMRN 2019, no. 1, 90–139. MR 3897425 Zbl 1425.58017

[3] M. Belishev and V. Sharafutdinov, Dirichlet to Neumann operator on differential

forms. Bull. Sci. Math. 132 (2008), no. 2, 128–145. MR 2387822 Zbl 1133.58017

[4] P. Bérard, Transplantation et isospectralité. I. Math. Ann. 292 (1992), no. 3, 547–559.

MR 1152950 Zbl 0735.58008

[5] P. Bérard and D. Webb, On ne peut pas entendre l’orientabilité d’une surface.

C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), no. 5, 533–536. MR 1322332

Zbl 0841.58062

[6] G. E. Bredon, Introduction to compact transformation groups. Pure and Applied

Mathematics 46. Academic Press, New York and London, 1972. MR 0413144

Zbl 0246.57017

[7] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM
Z. Angew. Math. Mech. 81 (2001), no. 1, 69–71. MR 1808500 Zbl 0971.35055

[8] R. Brooks, On manifolds of negative curvature with isospectral potentials. Topol-
ogy 26 (1987), no. 1, 63–66. MR 0880508 Zbl 0617.53048

[9] R. Brooks, R. Gornet, and W. H. Gustafson, Mutually isospectral Riemann surfaces.

Adv. Math. 138 (1998), no. 2, 306–322. MR 1645582 Zbl 0997.53031

[10] R. Brooks, R. Gornet, and P. Perry, Isoscattering Schottky manifolds. Geom. Funct.
Anal. 10 (2000), no. 2, 307–326. MR 1771427 Zbl 0966.58018

http://www.ams.org/mathscinet-getitem?mr=2912743
http://zbmath.org/?q=an:1267.35139
http://www.ams.org/mathscinet-getitem?mr=3897425
http://zbmath.org/?q=an:1425.58017
http://www.ams.org/mathscinet-getitem?mr=2387822
http://zbmath.org/?q=an:1133.58017
http://www.ams.org/mathscinet-getitem?mr=1152950
http://zbmath.org/?q=an:0735.58008
http://www.ams.org/mathscinet-getitem?mr=1322332
http://zbmath.org/?q=an:0841.58062
http://www.ams.org/mathscinet-getitem?mr=0413144
http://zbmath.org/?q=an:0246.57017
http://www.ams.org/mathscinet-getitem?mr=1808500
http://zbmath.org/?q=an:0971.35055
http://www.ams.org/mathscinet-getitem?mr=0880508
http://zbmath.org/?q=an:0617.53048
http://www.ams.org/mathscinet-getitem?mr=1645582
http://zbmath.org/?q=an:0997.53031
http://www.ams.org/mathscinet-getitem?mr=1771427
http://zbmath.org/?q=an:0966.58018


58 C. Gordon, P. Herbrich, and D. Webb

[11] R. Brooks, P. Perry, and P. Yang, Isospectral sets of conformally equivalent metrics.

Duke Math. J. 58 (1989), no. 1, 131–150. MR 1016417 Zbl 0667.53037

[12] P. Buser, Isospectral Riemann surfaces. Ann. Inst. Fourier (Grenoble) 36 (1986),

no. 2, 167–192. MR 0850750 Zbl 0579.53036

[13] P. Buser, Cayley graphs and planar isospectral domains. In T. Sunada (ed.), Geometry
and analysis on manifolds. Proceedings of the Twenty-first International Taniguchi

Symposium held in Katata, August 23–29, 1987, and the conference held at Kyoto

University, Kyoto, August 31–September 2, 1987. Lecture Notes in Mathematics,

1339. Springer-Verlag, Berlin, 1988, 64–77. MR 0961473 Zbl 0647.53034

[14] P. Buser, Geometry and spectra of compact Riemann surfaces. Reprint of the

1992 edition. Modern Birkhäuser Classics, Birkhäuser Boston, Boston, MA, 2010.

MR 2742784 Zbl 1239.32001

[15] A. P. Calderón, On an inverse boundary value problem. In Seminar on Numerical
Analysis and its Applications to Continuum Physics. Held in Rio de Janeiro, March

24–28, 1980. Coleçao Atas, Sociedade Brasileira de Matemática, 12. Sociedade

Brasileira de Matemática, Rio de Janeiro, 1980, 65–73. MR 0590275

[16] D. Cianci and A. Girouard, Large spectral gaps for Steklov eigenvalues under volume

constraints and under localized conformal deformations. Ann. Global Anal. Geom. 54

(2018), no. 4, 529–539. MR 3878841 Zbl 1405.58011

[17] B. Colbois, A. El Soufi, and A. Girouard, Isoperimetric control of the Steklov spec-

trum. J. Funct. Anal. 261 (2011), no. 5, 1384–1399. MR 2807105 Zbl 1235.58020

[18] B. Colbois, A. Girouard, and K. Gittins, Steklov eigenvalues of submanifolds with

prescribed boundary in Euclidean space. J. Geom. Anal. 29 (2019), no. 2, 1811–1834.

MR 3935280 Zbl 1423.35273

[19] A. Fraser and R. Schoen, Sharp eigenvalue bounds and minimal surfaces in the ball.

Invent. Math. 203 (2016), no. 3, 823–890. MR 3461367 Zbl 1337.35099

[20] L. Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues. Arch.
Rational Mech. Anal. 116 (1991), no. 2, 153–160. MR 1143438 Zbl 0789.35124

[21] F. Gassmann, Bemerkung zur vorstehenden Arbeit von Hurwitz über Beziehungen

zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner

Gruppen. Math. Zeit. 25 (1926), 661–675. JFM 0156.03

[22] A. Girouard, L. Parnovski, I. Polterovich, and D. A. Sher, The Steklov spectrum of

surfaces: asymptotics and invariants. Math. Proc. Cambridge Philos. Soc. 157 (2014),

379–389. MR 3286514 Zbl 1317.58032

[23] A. Girouard and I. Polterovich, Upper bounds for Steklov eigenvalues on surfaces.

Electron. Res. Announc. Math. Sci. 19 (2012), 77–85. MR 2970718 Zbl 1257.58019

[24] A. Girouard and I. Polterovich, Spectral geometry of the Steklov problem (survey

article). J. Spectr. Theory 7 (2017), no. 2, 321–359. MR 3662010 Zbl 1378.58026

http://www.ams.org/mathscinet-getitem?mr=1016417
http://zbmath.org/?q=an:0667.53037
http://www.ams.org/mathscinet-getitem?mr=0850750
http://zbmath.org/?q=an:0579.53036
http://www.ams.org/mathscinet-getitem?mr=0961473
http://zbmath.org/?q=an:0647.53034
http://www.ams.org/mathscinet-getitem?mr=2742784
http://zbmath.org/?q=an:1239.32001
http://www.ams.org/mathscinet-getitem?mr=0590275
http://www.ams.org/mathscinet-getitem?mr=3878841
http://zbmath.org/?q=an:1405.58011
http://www.ams.org/mathscinet-getitem?mr=2807105
http://zbmath.org/?q=an:1235.58020
http://www.ams.org/mathscinet-getitem?mr=3935280
http://zbmath.org/?q=an:1423.35273
http://www.ams.org/mathscinet-getitem?mr=3461367
http://zbmath.org/?q=an:1337.35099
http://www.ams.org/mathscinet-getitem?mr=1143438
http://zbmath.org/?q=an:0789.35124
http://zbmath.org/?q=an:0156.03
http://www.ams.org/mathscinet-getitem?mr=3286514
http://zbmath.org/?q=an:1317.58032
http://www.ams.org/mathscinet-getitem?mr=2970718
http://zbmath.org/?q=an:1257.58019
http://www.ams.org/mathscinet-getitem?mr=3662010
http://zbmath.org/?q=an:1378.58026


Steklov and Robin isospectral manifolds 59

[25] C. Gordon, Isospectral closed Riemannian manifolds which are not locally iso-

metric. II. In R. Brooks, C. Gordon, and P. Perry (eds.), Geometry of the spec-
trum. Proceedings of the 1993 AMS-IMS-SIAM Joint Summer Research Conference

on Spectral Geometry held at the University of Washington, Seattle, Washington,

July 17–23, 1993. Contemporary Mathematics, 173. American Mathematical Soci-

ety, Providence, R.I., 1994, 121–131. MR 1298201 Zbl 0811.58063

[26] C. Gordon, Isospectral deformations of metrics on spheres. Invent. Math. 145 (2001),

no. 2, 317–331. MR 1872549 Zbl 0995.58004

[27] C. Gordon, Sunada’s isospectrality technique: two decades later. In M. Kotani,

H. Naito, and T. Tate (eds.), Spectral analysis in geometry and number theory.
Papers from the International Conference on the occasion of Toshikazu Sunada’s

60th birthday held at Nagoya University, Nagoya, August 6–10, 2007. Contemporary

Mathematics, 484. American Mathematical Society, Providence, R.I., 2009, 45–58.

MR 1500137 Zbl 1185.58016

[28] C. Gordon, E. Makover, and D. Webb, Transplantation and Jacobians of Sunada

isospectral Riemann surfaces. Adv. Math. 197 (2005), no. 1, 86–119. MR 2166178

Zbl 1083.58031

[29] C. Gordon and D. Schueth, Isospectral potentials and conformally equivalent isospec-

tral metrics on spheres, balls and Lie groups. J. Geom. Anal. 13 (2003), no. 2,

300–328. MR 1967029 Zbl 1043.58018

[30] C. Gordon, D. Webb, and S. Wolpert, Isospectral plane domains and surfaces via

Riemannian orbifolds. Invent. Math. 110 (1992), no. 1, 1–22. MR 1181812

Zbl 0778.58068

[31] C. Gordon and E. N. Wilson, Continuous families of isospectral Riemannian metrics

which are not locally isometric. J. Differential Geom. 47 (1997), no. 3, 504–529.

MR 1617640 Zbl 0915.58104

[32] P. Herbrich, On inaudible properties of broken drums—Isospectrality with mixed

Dirichlet–Neumann boundary conditions. Preprint, 2011.

arXiv:1111.6789 [math.DG]

[33] P. Jammes, Prescription du spectre de Steklov dans une classe conforme. Anal. PDE 7

(2014), no. 3, 529–549. MR 3227426 Zbl 1304.35452

[34] M. Karpukhin, Bounds between Laplace and Steklov eigenvalues on nonnega-

tively curved manifolds. Electron. Res. Announc. Math. Sci. 24 (2017), 100–109.

MR 3699063 Zbl 1404.35305

[35] M. A. Karpukhin, The Steklov problem on differential forms. Canad. J. Math. 71

(2019), no. 2, 417–435. MR 3943757 Zbl 1415.58020

[36] N. Kuznetsov, T. Kulczycki, M. Kwaśnicki, A. Nazarov, S. Poborchi, I. Polterovich,

and B. Siudeja, The legacy of Vladimir Andreevich Steklov. Notices Amer. Math.
Soc. 61 (2014), no. 1, 9–22. MR 3137253 Zbl 1322.01050

http://www.ams.org/mathscinet-getitem?mr=1298201
http://zbmath.org/?q=an:0811.58063
http://www.ams.org/mathscinet-getitem?mr=1872549
http://zbmath.org/?q=an:0995.58004
http://www.ams.org/mathscinet-getitem?mr=1500137
http://zbmath.org/?q=an:1185.58016
http://www.ams.org/mathscinet-getitem?mr=2166178
http://zbmath.org/?q=an:1083.58031
http://www.ams.org/mathscinet-getitem?mr=1967029
http://zbmath.org/?q=an:1043.58018
http://www.ams.org/mathscinet-getitem?mr=1181812
http://zbmath.org/?q=an:0778.58068
http://www.ams.org/mathscinet-getitem?mr=1617640
http://zbmath.org/?q=an:0915.58104
http://arxiv.org/abs/1111.6789
http://www.ams.org/mathscinet-getitem?mr=3227426
http://zbmath.org/?q=an:1304.35452
http://www.ams.org/mathscinet-getitem?mr=3699063
http://zbmath.org/?q=an:1404.35305
http://www.ams.org/mathscinet-getitem?mr=3943757
http://zbmath.org/?q=an:1415.58020
http://www.ams.org/mathscinet-getitem?mr=3137253
http://zbmath.org/?q=an:1322.01050


60 C. Gordon, P. Herbrich, and D. Webb

[37] P. D. Lamberti and L. Provenzano, Viewing the Steklov eigenvalues of the Laplace

operator as critical Neumann eigenvalues. In V. V. Mityushev and M. V. Ruzhansky

(eds.), Current trends in analysis and its applications. Proceedings of the 9th Interna-

tional ISAAC Congress held in Kraków, August 5–9, 2013. Trends in Mathematics.

Birkhäuser/Springer, Cham, 2015, 171–178. MR 3496508 Zbl 1325.35124

[38] M. Lassas, M. Taylor, and G. Uhlmann, The Dirichlet-to-Neumann map for complete

Riemannian manifolds with boundary. Comm. Anal. Geom. 11 (2003), no. 2, 207–

221. MR 2014876 Zbl 1077.58012

[39] M. Lassas and G. Uhlmann, On determining a Riemannian manifold from the

Dirichlet-to-Neumann map. Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 771–

787. MR 1862026 Zbl 0992.35120

[40] M. Levitin, L. Parnovski, and I. Polterovich, Isospectral domains with mixed bound-

ary conditions. J. Phys. A 39 (2006), no. 9, 2073–2082. MR 2211977 Zbl 1089.58021

[41] O. Parzanchevski and R. Band, Linear representations and isospectrality with bound-

ary conditions. J. Geom. Anal. 20 (2010), no. 2, 439–471. MR 2579517

Zbl 1187.58032

[42] H. Pesce, Variétés isospectrales et représentations de groupes. In R. Brooks, C. Gor-

don, and P. Perry (eds.), Geometry of the spectrum. Proceedings of the 1993 AMS-

IMS-SIAM Joint Summer Research Conference on Spectral Geometry held at the

University of Washington, Seattle, Washington, July 17–23, 1993. Contemporary

Mathematics, 173. American Mathematical Society, Providence, R.I., 1994, 231–240.

MR 1298208 Zbl 0814.58041

[43] I. Polterovich and D. A. Sher, Heat invariants of the Steklov problem. J. Geom.
Anal. 25 (2015), no. 2, 924–950. MR 3319956 Zbl 1432.58026

[44] S. Raulot and A. Savo, On the first eigenvalue of the Dirichlet-to-Neumann operator

on forms. J. Funct. Anal. 262 (2012), no. 3, 889–914. MR 2863852 Zbl 1250.58013

[45] D. Schueth, Isospectral manifolds with different local geometries. J. Reine Angew.
Math. 534 (2001), 41–94. MR 1831631 Zbl 0986.58016

[46] D. Schueth, Isospectral metrics on five-dimensional spheres. J. Differential Geom. 58

(2001), no. 1, 87–111. MR 1895349 Zbl 1038.58042

[47] T. Sunada, Riemannian coverings and isospectral manifolds. Ann. of Math. (2) 121

(1985), no. 1, 169–186. MR 0782558 Zbl 0585.58047

[48] L. Yang and C. Yu, Estimates for higher Steklov eigenvalues. J. Math. Phys. 58 (2017),

no. 2, 021504, 9 pp. MR 3614611 Zbl 1361.58015

[49] S. Zelditch, Isospectrality in the FIO category. J. Differential Geom. 35 (1992), no. 3,

689–710. MR 1163455 Zbl 0769.53026

http://www.ams.org/mathscinet-getitem?mr=3496508
http://zbmath.org/?q=an:1325.35124
http://www.ams.org/mathscinet-getitem?mr=2014876
http://zbmath.org/?q=an:1077.58012
http://www.ams.org/mathscinet-getitem?mr=1862026
http://zbmath.org/?q=an:0992.35120
http://www.ams.org/mathscinet-getitem?mr=2211977
http://zbmath.org/?q=an:1089.58021
http://www.ams.org/mathscinet-getitem?mr=2579517
http://zbmath.org/?q=an:1187.58032
http://www.ams.org/mathscinet-getitem?mr=1298208
http://zbmath.org/?q=an:0814.58041
http://www.ams.org/mathscinet-getitem?mr=3319956
http://zbmath.org/?q=an:1432.58026
http://www.ams.org/mathscinet-getitem?mr=2863852
http://zbmath.org/?q=an:1250.58013
http://www.ams.org/mathscinet-getitem?mr=1831631
http://zbmath.org/?q=an:0986.58016
http://www.ams.org/mathscinet-getitem?mr=1895349
http://zbmath.org/?q=an:1038.58042
http://www.ams.org/mathscinet-getitem?mr=0782558
http://zbmath.org/?q=an:0585.58047
http://www.ams.org/mathscinet-getitem?mr=3614611
http://zbmath.org/?q=an:1361.58015
http://www.ams.org/mathscinet-getitem?mr=1163455
http://zbmath.org/?q=an:0769.53026


Steklov and Robin isospectral manifolds 61

Received November 27, 2018

Carolyn Gordon, Department of Mathematics, Dartmouth College, 27 N Main St,

Hanover, NH 03755, USA

e-mail: carolyn.s.gordon@dartmouth.edu

Peter Herbrich, Department of Mathematics, Dartmouth College, 27 N Main St, Hanover,

NH 03755, USA

e-mail: peter.herbrich@gmail.com

David Webb, Department of Mathematics, Dartmouth College, 27 N Main St, Hanover,

NH 03755, USA

e-mail: david.l.webb@dartmouth.edu

mailto:carolyn.s.gordon@dartmouth.edu
mailto:peter.herbrich@gmail.com
mailto:david.l.webb@dartmouth.edu

	Introduction
	Acknowledgements
	The Sunada method
	The torus action method
	Examples
	Isospectral density functions
	References

