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Yernat M. Assylbekov and Ting Zhou

Abstract. In the current paper we consider an inverse boundary value problem of electro-

magnetism in a nonlinear Kerr medium. We show the unique determination of the electro-

magnetic material parameters and the nonlinear susceptibility parameters of the medium

by making electromagnetic measurements on the boundary. We are interested in the case

of the time-harmonic Maxwell equations.
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1. Introduction

Let .M; g/ be a compact 3-dimensional Riemannian manifold with smooth bound-

ary and let E.�; t / and H.�; t / be the time-dependent 1-forms on M representing

electric and magnetic fields. By d and � we denote the exterior derivative and

https://creativecommons.org/licenses/by/4.0/
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the Hodge star operator on .M; g/, respectively. Consider the time-dependent

Maxwell equations on the manifold, with no scalar charge density and with no

current density
8

ˆ̂
ˆ
<̂

ˆ̂
ˆ
:̂

@tB C �dE D 0;

@tD � �dH D 0;

�d � D D 0;

�d � B D 0;

(1.1)

where D and B are 1-forms representing electric displacement and magnetic

induction

D D "E C PNL.E/; B D �H C MNL.H/;

with PNL and MNL being the nonlinear polarization and nonlinear magnetization,

respectively. The (time-independent) functions " and � on M , with positive real

parts, represent the material parameters (permettivity and permeability, respec-

tively).

The electric and magnetic fields E and H are said to be time-harmonic with

frequency ! > 0 if

E.x; t / D E.x/e�i!t CE.x/ei!t ;

H.x; t / D H.x/e�i!t CH.x/ei!t ;

for some complex 1-forms E and H on M . Then the time-averages of the

intensities of E and of H are

1

T

TZ

0

jE.x; t /j2g dt D 2jE.x/j2g ;

1

T

TZ

0

jH.x; t /j2g dt D 2jH.x/j2g ;

where T D 2�=!. In a medium with high intensity electric field, the nonlinear

polarization is of the form

PNL.x;E.x; t // D �e.x; jEj2g /E.x; t /;

where �e is the scalar susceptibility depending only on the time-average of the

intensity of E. One of the most common nonlinear polarizations appearing in

physics and engineering is the Kerr nonlinearity

�e.x; jEj2g / D a.x/jEj2g : (1.2)
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The reader is refereed to [19, 24] for this and other examples of electric nonlinear

phenomenas.

We also assume that the nonlinear magnetization has the similar form

MNL.x;H.x; t // D �m.x; jH j2g/H.x; t /;

where �m is the scalar susceptibilities depending only on the time-average of the

intensity of H. Such nonlinear magnetizations appear in the study of metamateri-

als built by combining an array of wires and split-ring resonators embedded into a

Kerr-type dielectric [32]. These metamaterials have complicated form of nonlin-

ear magnetization. However, if the intensity jH j2g is sufficiently small, relatively

to the resonant frequency, the nonlinear magnetization can be assumed to be of

the Kerr-type [15, 17, 31]

�m.x; jH j2g/ D b.x/jH j2g : (1.3)

This assumption has successful numerical implementation [17].

For the time-harmonic E and H, the time-dependent Maxwell’s system (1.1)

reduces to the nonlinear time-harmonic Maxwell equations for complex 1-forms

E and H , with a fixed frequency ! > 0, will be

´

�dE D i!�H C i!bjH j2gH;

�dH D �i!"E � i!ajEj2gE:
(1.4)

The complex functions � and " represent the material parameters (permettivity

and permeability, respectively).

1.1. Direct problem. First we consider the boundary value problem for the

nonlinear Maxwell equations (1.4). We suppose that "; � 2 C 1.M/ are complex

functions with positive real parts and a; b 2 C 1.M/.

The boundary conditions are expressed in terms of tangential trace. The latter

is defined on m-forms by

tWC1�m.M/ �! C1�m.@M/; t.w/ D {�.w/; w 2 C1�m.M/;

where {W @M ,! M is the canonical inclusion. Then t has its extension to a

bounded operator W 1;p�m.M/ ! W 1�1=p;p�m.@M/ for p > 1. Here and in

what follows, W 1;p�m.M/ and W 1�1=p;p�m.@M/ are standard Sobolev spaces

of m-forms on M and @M , respectively.
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To describe the boundary conditions, we introduce the spaces

W
1;p

Div .M/ D ¹u 2 W 1;p�1.M/W Div.t.u// 2 W 1�1=p;p�1.@M/º;

T W
1�1=p;p

Div .@M/ D ¹f 2 W 1�1=p;p�1.@M/W Div.f / 2 W 1�1=p;p�1.@M/º;

where Div is the surface divergence on @M ; see Section 2.4 for the exact definition

of Div. These spaces are Banach spaces with norms

kuk
W

1;p

Div .M /
D kukW 1;p�1.M / C k Div.t.u//kW 1�1=p;p.@M /;

kuk
T W

1�1=p;p

Div .@M /
D kf kW 1�1=p;p.@M / C k Div.f /kW 1�1=p;p.@M /:

It is not difficult to see that t.W
1;p

Div .M// D T W
1�1=p;p

Div .@M/.

Our first main result is the following theorem on well-posedness of the nonlin-

ear Maxwell equations (1.4) with prescribed small t.E/ on @M .

Theorem 1.1. Let .M; g/ be a compact 3-dimensional Riemannian manifold with

smooth boundary and let 3 < p � 6. Suppose that "; � 2 C 1.M/ are complex

functions with positive real parts and a; b 2 C 1.M/. For every ! 2 C, outside

a discrete set † � C of resonant frequencies, there is � > 0 such that for all

f 2 T W
1�1=p;p

Div .@M/ with kf k
T W

1�1=p;p

Div .@M /
< �, the Maxwell’s equation (1.4)

has a unique solution .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ satisfying t.E/ D f and

kEk
W

1;p

Div .M /
C kHk

W
1;p

Div .M /
� Ckf k

T W
1�1=p;p

Div
.@M /

;

for some constant C > 0 independent of f .

1.2. Inverse problem. For ! > 0 with ! … †, we define the admittance map

ƒ!
";�;a;b

as

ƒ!
";�;a;b.f / D t.H/; f 2 T W

1�1=p;p

Div .@M/; kf k
T W

1�1=p;p

Div .@M /
< �

where .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ is the unique solution of the system (1.4)

with t.E/ D f , guaranteed by Theorem 1.1. Moreover, the estimate provided in

Theorem 1.1 implies that the admittance map satisfy

kƒ!
";�;a;b.f /kT W

1�1=p;p

Div .@M /
� Ckf k

T W
1�1=p;p

Div .@M /
< C�:

The inverse problem is to determine "; �; a and b from the knowledge of the

admittance map ƒ!
";�;a;b

.

To state our second main result, let us introduce the notion of admissible

manifolds.
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Definition. A compact Riemannian manifold .M; g/ with smooth boundary of

dimension n � 3, is said to be admissible if .M; g/ �� R � .M0; g0/, g D

c.e ˚ g0/ where c > 0 smooth function on M , e is the Euclidean metric and

.M0; g0/ is a simple .n�1/-dimensional manifold. We say that a compact manifold

.M0; g0/ with boundary is simple, if @M0 is strictly convex, and for any point

x 2 M0 the exponential map expx is a diffeomorphism from its maximal domain

in TxM0 onto M0.

Compact submanifolds of Euclidean space, the sphere minus a point and of

hyperbolic space are all examples of admissible manifolds.

The notion of admissible manifolds were introduced by Dos Santos Ferreira,

Kenig, Salo and Uhlmann [6] as a class of manifolds admitting the existence of

limiting Carleman weights. In fact, the construction of complex geometrical optics

solutions are possible on such manifolds via Carleman estimates approach based

on the existence of limiting Carleman weights. Such an approach was introduced

by Bukhgeim and Uhlmann [2] and Kenig, Sjöstrand and Uhlmann [13] in the

setting of partial data Calderón’s inverse conductivity problem in R
n.

Our second main result is as follows.

Theorem 1.2. Let .M;g/ be a 3-dimensional admissible manifold and let 4�p<6.

Suppose that "j ; �j 2 C 3.M/ with positive real parts and that aj ; bj 2 C 1.M/,

j D 1; 2. Fix ! > 0 outside a discrete set of resonant frequencies † � C and fix

sufficiently small � > 0. If

ƒ!
"1;�1;a1;b1

.f / D ƒ!
"2;�2;a2;b2

.f /

for all f 2 T W
1�1=p;p

Div .@M/with kf k
T W

1�1=p;p

Div
.@M /

< �, then "1 D "2,�1 D �2,

a1 D a2 and b1 D b2 in M .

Such inverse boundary value problems have been considered for various semi-

linear and quasilinear elliptic equations and systems (see [7, 8, 9, 10, 11, 25, 26,

27]) based on the linearization approach.

For the type of nonlinearity of Maxwell’s equations in a Kerr type medium,

after first order linearization, we can recover � and " by solving corresponding

inverse problem for the linear equation (see [12]). The difficulty lies in recon-

structing the susceptibility parameters a and b. By calculating the next term of

the asymptotic expansion for the admittance map, one obtains the tangential trace

t.H2/ of the solution to (7.1). It carries the energy generated by the nonlinear

source .ajE1j2E1; bjH1j2H1/, where .E1; H1/ is the solution to the linear equa-

tion. By polarization, we are able to recover a and b from such energy using
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enough proper solutions. The solutions we apply here are complex geometrical

optics solutions constructed on an admissible manifold as in [12] or [4] with proper

regularity.

The paper is organized as following. In Section 2, we present basic facts on

differential forms, trace operators, the type of Sobolev spaces and their properties

used in this paper. After proving the well-posedness of the direct problem (The-

orem 1.1) in Section 3, we compute the asymptotic expansion of the admittance

map ƒ!
�;";a;b

in Section 4. To solve the inverse problem, the reconstruction of �

and " is given in Section 5, and the reconstruction of a and b is given in Section 7.

The CGO solution is constructed in Section 6.

Acknowledgements. The research of Ting Zhou is supported by the NSF grant

DMS-1501049. Yernat Assylbekov is grateful to Professor Petar Topalov for

helpful discussions on direct and inverse problems of nonlinear equations.

2. Preliminaries

In this section we briefly present basic facts on differential forms and trace op-

erators. For more detailed exposition we refer the reader to the manuscript of

Schwarz [23].

Let .M; g/ be a compact oriented n-dimensional Riemannian manifold with

smooth boundary. The inner product of tangent vectors with respect to the metric

g is denoted by h�; �ig , and j � jg is the notation for the corresponding norm. By jgj

we denote the determinant of g D .gij / and .gij / is the inverse matrix of .gij /.

Finally, there is the induced metric {�g on @M which gives a rise to the inner

product h�; �i{�g of vectors tangent to @M .

2.1. Basic notations for differential forms. In what follows, for F some func-

tion space (C k , Lp,W k;p, etc.), we denote by F�m.M/ the corresponding space

ofm-forms. In particular, the space of smoothm-forms is denoted by C1�m.M/.

Let �WC1�m.M/ ! C1�n�m.M/ be the Hodge star operator. For real valued

�; � 2 C1�m.M/, the inner product with respect to g is defined as

h�; �ig D �.� ^ ��/ D h��; ��ig : (2.1)

Its local coordinates expression is h�; �ig D gi1j1 � � �gimjm�i1:::im�j1:::jm
. This

can be extended as a bilinear form on complex valued forms onM . We also write

j�j2g D h�; N�ig .
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The inner product on L2�m.M/ is defined as

.� j �/L2�m.M / D

Z

M

h�; N�ig d Volg D

Z

M

� ^ �N�; �; � 2 L2�m.M/;

where

d Volg D �1 D jgj1=2 dx1 ^ � � � ^ dxn

is the volume form. The corresponding norm is k � k2
L2�m.M /

D .� j �/L2�m.M /.

Using the definition of the Hodge star operator �, it is not difficult to check that

.� j �/L2�m.M / D .�� j ��/L2�n�m.M /: (2.2)

Let d WC1�m.M/ ! C1�mC1.M/ be the external differential. Then the codif-

ferential

ıWC1�m.M/ �! C1�m�1.M/

is defined as

.d� j �/L2�m.M / D .� j ı�/L2�m�1.M /

for all � 2 C1

0 �m�1.M int/, � 2 C1�m.M/. The Hodge star operator � and the

codifferential ı have the following properties when acting on C1�m.M/:

�2 D .�1/m.n�m/; ı D .�1/m.n�m/�nCm�1 � .d � �/: (2.3)

For a given � 2 C1�1.M/, the interior product

i� WC1�m.M/ �! C1�m�1.M/

is the contraction of differential forms by �. In local coordinates,

i�� D gij �i �j i1:::im�1
; � 2 C1�m.M/:

It is the formal adjoint of �, in the inner product h�; �ig on real valued forms, and

has the following expression

i�� D .�1/n.m�1/ � .� ^ ��/; � 2 C1�m.M/: (2.4)

The Hodge Laplacian acting on C1�m.M/ is defined by �� D dı C ıd .

Finally, the inner product on L2�m.@M/ is given by

.u j v/L2�m.@M / D

Z

@M

hu; Nvi{�g d�@M ; u; v 2 L2�m.@M/;

where h�; �i{�g is extended as a bilinear form on complex forms on @M , and

d�@M D {�.i�d Volg/ is the volume form on @M induced by d Volg .
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2.2. Integration by parts. The outward unit normal � to @M can be extended to

a vector field near @M by parallel transport along normal geodesics, initiating from

@M in the direction of ��, and then to a vector field on M via a cutoff function.

The following simple result from [1, Lemma 2.1] will be used in formulating

integration by parts formula in appropriate way.

Lemma 2.1. If � 2 C1�m.M/ and � 2 C1�mC1.M/, then for an open subset

� � @M the following holds

.t.�/ j t.i��//L2�m.�/ D

Z

�

t.� ^ �N�/:

For �2C1�m.M/ and �2C1�mC1.M/, using Stokes’ theorem, Lemma 2.1

(with � D @M ) and (2.3), we have the following integration by parts formula for

d and ı

.t.�/ j t.i��//L2�m.@M / D .d� j �/L2�mC1.M / � .� j ı�/L2�m.M /: (2.5)

2.3. Extensions of trace operators. The tangential trace operator t has an

extension to a bounded operator from W 1;p�m.M/ to W 1�1=p;p�m.@M/ for

p > 1. Moreover, for every f 2 W 1�1=p;p�m.@M/, there is u 2 W 1;p�m.M/

such that t.u/ D f and

kukW 1;p�m.M / � Ckf kW 1�1=p;p�m.@M /I

see [23, Theorem 1.3.7] and comments.

The operator t.i� � / is bounded from W 1;p�m.M/ to W 1�1=p;p�m�1.@M/.

Moreover, for every h 2 W 1�1=p;p�m�1.@M/, there is � 2 W 1;p�m.M/ such

that t.i��/ D h and

k�kW 1;p�m.M / � CkhkW 1�1=p;p�m�1.@M /:

In fact, we can take � D � ^w, where w 2 H 1�m�1.M/ such that t.w/ D h and

kwkW 1;p�m�1.M / � CkhkW 1�1=p;p�m�1.@M /.

Finally, if f 2 W 1�1=p;p�m.@M/ and h 2 W 1�1=p;p�m�1.@M/, there is

� 2 W 1;p�m.M/ such that t.�/ D f , t.i��/ D h and

k�kW 1;p�m.M / � Ckf kW 1�1=p;p�m.@M / C CkhkW 1�1=p;p�m�1.@M /:

This time, we can take � D .u� � ^ i�u/C � ^ i��, where u 2 W 1;p�m.M/ such

that t.u/ D f and kukW 1;p�m.M / � Ckf kW 1�1=p;p�m.@M / and � 2 W 1;p�m.M/

such that t.i��/ D h and k�kW 1;p�m.M / � CkhkW 1�1=p;p�m�1.@M /.
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2.4. Surface divergence. When n D 3, we define the surface divergence of

f 2 W 1�1=p;p�1.@M/, for p > 1, by

Div.f / D hd@Mf; d�@M i{�g :

If u 2 W 1;p�1.M/ is arbitrary such that t.u/ D f , then for all h 2 C1.M/

.Div.f / j h/L2.@M / D

Z

@M

hd@Mf; Nh d�@M i{�g d�@M

D

Z

@M

ht.du/; t. Nh i�d Volg/ig d�@M

D

Z

@M

ht.du/; t. Nh i� � 1/ig d�@M

D

Z

@M

ht.i� � du/; Nhig d�@M :

In the last step we used Lemma 2.1 twice. Thus, we have

Div.f / D i� � duj@M (2.6)

for all u 2 W 1;p�1.M/ with t.u/ D f .

2.5. Technical estimate. We finish this section with the following lemma which

ensures that nonlinear terms in the Maxwell equations (1.4) will be in appropriate

functional spaces.

Lemma 2.2. Let .M; g/ be a compact n-dimensional Riemannian manifold. If

u 2 W 1;p�1.M/ for p > n, then

kjuj2gukW 1;p�1.M / � Ckuk3
W 1;p�1.M /

:

Proof. To prove the lemma, we first observe that the W 1;p�m.M/-norm may be

expressed invariantly as

kf kW 1;p�1.M / D kf kLp�1.M / C k jrf jgkLp.M /;

where r is the Levi-Civita connection defined on tensors on M and jT jg is the

norm of a tensor T on M with respect to the metric g.
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For a given u 2 W 1;p�1.M/,

kjuj2gukW 1;p�1.M / � Ckjuj2gukLp�1.M / C Ck jr.juj2gu/jgkLp.M /

� Ckjuj2gukLp�1.M / C Ckjuj2g jrujgkLp.M /

� Ckuk2
L1�1.M /

kukW 1;p�1.M /:

Since p > n and M is compact, we can use the Sobolev embedding

W 1;p�1.M/ ,�! C�1.M/

([23, Theorem 1.3.6]), which implies the desired estimate �

2.6. Properties of W
p

d
�m.M/ and W

p

ı
�m.M/ spaces, p > 1. Let .M; g/ be a

compact oriented n-dimensional Riemannian manifold with smooth boundary. In

this paper we work with the Banach spaces W
p

d
�m.M/ and W

p

ı
�m.M/, p > 1,

which are the largest domains of d and ı, respectively, acting on m-forms:

W
p

d
�m.M/ WD ¹w 2 Lp�m.M/W dw 2 Lp�mC1.M/º;

W
p

ı
�m.M/ WD ¹u 2 Lp�m.M/W ıu 2 Lp�m�1.M/º

endowed with the norms

kwk2
W

p

d
�m.M /

WD kwkLp�m.M / C kdwkLp�mC1.M /;

kuk2
W

p

ı
�m.M /

WD kukLp�m.M / C kıukLp�m�1.M /:

We also use the notations

Hd�
m.M/ D W 2

d �
m.M/ and Hı�

m.M/ D W 2
ı �

m.M/;

together with their corresponding traces THd�
m.M/ and THı�

m.M/.

In the present section we prove some important properties of these spaces,

which were proven in [1, Section 3] for the case p D 2; see also [5, 14, 18].

First, we show that there are bounded extensions

tWW
p

d
�m.M/ �! W �1=p;p�m.@M/

and

t.i� � /WW
p

ı
�mC1.M/ �! W �1=p;p�m.@M/:

Let .� j �/@M denote the distributional duality on @M naturally extending

.� j �/L2�m.@M /.
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Proposition 2.3. (a) The operator

tWW 1;p�m.M/ �! W 1�1=p;p�m.@M/

has its extension to a bounded operator

tWW
p

d
�m.M/ �! W �1=p;p�m.@M/

and the following integration by parts formula holds

.t.�/ j t.i��//@M D .d� j �/L2�mC1.M / � .� j ı�/L2�m.M /

for all � 2 W
p

d
�m.M/ and � 2 W 1;p0

�mC1.M/, where p0 D p=.p � 1/.

(b) The operator

t.i� � /WW 1;p�mC1.M/ ! W 1�1=p;p�m.@M/

has its extension to a bounded operator

t.i� � /WW
p

ı
�mC1.M/ ! W �1=p;p�m.@M/

and the following integration by parts formula holds

.t.i��/ j t.�//@M D .� j d�/L2�mC1.M / � .ı� j �/L2�m.M /

for all � 2 W
p

ı
�mC1.M/ and � 2 W 1;p0

�m.M/.

Proof. (a) Letw 2 C1�m.M/ and f 2 W 1=p;p0

�m.@M/, wherep0 D p=.p�1/.

Then using integration by parts formula (2.5), we have

.t.w/ j f /L2�m.@M / D .t.w/ j t.i��//L2�m.@M /

D .dw j �/L2�mC1.M / � .w j ı�/L2�m.M /;

where � 2 W 1;p0

�mC1.M/ such that

t.i��/ D f and k�kW 1;p0
�mC1.M / � Ckf kW 1=p;p0

�m.@M /:

Then using Hölder’s inequality, we show

j.t.w/ j f /L2�m.@M /j � CkwkW
p

d
�m.M /k�kW 1;p0

�mC1.M /

� CkwkW
p

d
�m.M /kf kW 1=p;p0

�m.@M /:

Therefore, t can be extended to a bounded operator

W
p

d
�m.M/ �! W �1=p;p�m.@M/:
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In fact, if � 2 W
p

d
�m.M/, then we define t.�/ as

.t.�/ j t.i��//@M D .d� j �/L2�mC1.M / � .� j ı�/L2�m.M /;

where � 2 W 1;p0

�mC1.M/.

Now we prove part (b). Let w 2 C1�mC1.M/ and f 2 W 1=p;p0

�m.@M/.

Then using integration parts formula (2.5), we have

.t.i�w/ j f /L2�m.@M / D .t.i�w/ j t.u//L2�m.@M /

D .w j du/L2�mC1.M / � .ıw j u/L2�m.M /;

where u 2 W 1;p0

�m.M/ such that

t.u/ D f and kukW 1;p0
�m.M / � Ckf kW 1=p;p0

�m.@M /:

Therefore, using Hölder’s inequality, we can estimate

j.t.i�w/ j f /L2�m.@M /j � CkwkW
p

ı
�mC1.M /kukW 1;p0

�m.M /

� CkwkW
p

ı
�mC1.M /kf kW 1=p;p0

�m.@M /:

Thus, t.i� � / can be extended to a bounded operator

W
p

ı
�mC1.M/ �! W �1=p;p�m.@M/:

In fact, if � 2 W
p

ı
�mC1.M/ we define t.i��/ as

.t.i��/ j t.�//@M D .� j d�/L2�mC1.M / � .ı� j �/L2�m.M /;

where � 2 W 1;p0

�m.M/. �

We will also need the following embedding results. For p D 2, these were

proven in Euclidean and Riemannian settings [1, 14, 18].

Proposition 2.4. Suppose that p > 1, u 2 W
p

d
�m.M/ \ W

p

ı
�m.M/ and

t.u/ 2 W 1�1=p�m.@M/. Then u 2 W 1;p�m.M/ and

kukW 1;p�m.M / � C.kukW
p

d
�m.M / C kıukLp�m�1.M / C kt.u/kW 1�1=p;p�m.@M //

for some constant C > 0 independent of u.

In Euclidean setting, this was proven in the case m D 1 and p D 2 by

Costabel [5]; see also [14, 18]. On manifolds, for the case p D 2 and for arbitrary

m, this was proved in [1].

Write

Hm
D.M/ WD ¹u 2 W 1;2�m.M/W du D 0; ıu D 0; t.u/ D 0º:

Proposition 2.4 is based on the following result from [23].
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Lemma 2.5. Let k � 0 be an integer and let p > 1. Given w 2 W k;p�mC1.M/,

v 2 W k;p�m�1.M/ and h 2 W kC1;p�m.M/, there is a unique

 2 W kC1;p�m.M/;

up to a form in Hm
D.M/, that solves

d D w; ı D v; t. / D t.h/

if and only if

dw D 0; t.w/ D t.dh/; ıv D 0

and

.w j �/L2�mC1.M / D .t.h/ j t.i��//L2�m.@M /; .v j �/L2�m�1.M / D 0

for all � 2 HmC1
D .M/, � 2 Hm�1

D .M/. Moreover,  satisfies the estimate

k kW kC1;p�m.M /

� C.kwkW k;p�mC1.M / C kvkW k;p�m�1.M //

C C.kt.h/kW kC1�1=p;p�m.@M / C kt.�h/kW kC1�1=p;p�n�m.@M //:

Proof. Follows from [23, Theorem 3.2.5]. �

The proof of Proposition 2.4 is identical to the proof of [1, Proposition 3.2]

(case p D 2), but for different integrability spaces. Therefore, we do not include

it here. We only mention that the use of Lemma 2.5 is crucial and similar ideas

were used in the next proposition, after certain modifications.

Proposition 2.6. Suppose that p > 1, u 2 W
p

d
�m.M/ \ W

p

ı
�m.M/ and

t.i�u/ 2 W 1�1=p;p�m�1.@M/. Then u 2 W 1;p�m.M/ and

kukW 1;p�m.M /

� C.kukW
p

d
�m.M / C kıukLp�m�1.M / C kt.i�u/kW 1�1=p;p�m�1.@M //

for some constant C > 0 independent of u.

Proof. Since t.i�u/ 2 W 1�1=p;p�m�1.@M/, by discussion in Section 2.3 there is

� 2 W 1;p�m.M/ such that t.�/ D 0, t.i��/ D t.i�u/ and

k�kW 1;p�m.M / � Ckt.i��/kW 1�1=p;p�m�1.@M / D Ckt.i�u/kW 1�1=p;p�m�1.@M /:
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Set h D ��, then h 2 W 1;p�n�m.M/. Using boundedness of

tWW 1;p�n�m.M/ �! W 1�1=p;p�n�m.@M/

and the above estimate,

kt.h/kW 1�1=p;p�n�m.@M / � CkhkW 1;p�n�m.M /

� Ck�kW 1;p�m.M /

� Ckt.i�u/kW 1�1=p;p�m�1.@M /:

(2.7)

Set

Qu WD �u;

then it is clear that Qu 2 W
p

d
�n�m.M/ \W

p

ı
�n�m.M/. Write

w D d Qu 2 Lp�n�mC1.M/

and

v D ı Qu 2 Lp�n�m�1.M/:

An important fact is that

t. Qu/ D t.h/:

Indeed, for arbitrary ' 2 W 1=p;p=.p�1/�n�m.@M/, as discussed in Section 2.3,

there is � 2 W 1;p=.p�1/�n�mC1.M/ such that t.i��/ D '. Then, using integration

by parts formulas in Proposition 2.3, we get

.t. Qu � h/ j '/@M D .t.�.u� �// j t.i��//@M

D .d � .u � �/ j �/L2�n�mC1.M / � .�.u� �/ j ı�/L2�n�m.M /

D .ı.u� �/ j ��/L2�m�1.M / � .u � � j d � �/L2�m�1.M /

D �.t.i�.u � �// j t.��//@M D 0;

since t.i��/ D t.i�u/. Therefore, t. Qu/ D t.h/.

We wish to use Lemma 2.5, and hence we need to show that w, v and h satisfy

the hypothesis of Lemma 2.5. Obviously, we have dw D 0 and ıv D 0. Integrating

by parts and using that t. Qu/ D t.h/, we can show that for all � 2 Hn�mC1
D .M/

.w j �/L2�n�mC1.M / D .d Qu j �/L2�n�mC1.M / D .t.h/ j t.i��//L2�n�m.@M /:

Similary for all � 2 Hn�m�1
D .M/, using the integration by parts formula in part

(b) of Proposition 2.3, we can show that

.v j �/L2�n�m�1.M / D .ı Qu j �/L2�n�m�1.M / D �.t.i� Qu/ j t.�//@M D 0:
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Next, we show that t.w/ D t.dh/. For arbitrary ' 2 W 1=p;p=.p�1/�n�mC1.@M/,

as discussed in Section 2.3, there is � 2 W 1;p=.p�1/�n�mC2.M/ such that

t.i��/ D '. Then, using integration by parts formulas in Proposition 2.3, we

get

.t.w/ j '/@M D .t.d Qu/ j t.i��//@M

D �.d Qu j ı�/L2�n�mC1.M /

D �.t. Qu/ j t.i�ı�//@M :

Since t. Qu/ D t.h/, using integration by parts formulas in Proposition 2.3, gives

.t.w/ j '/@M D �.t.h/ j t.i�ı�//@M

D �.dh j ı�/L2�n�mC1.M /

D .t.dh/ j '/@M ;

which implies t.w/ D t.dh/.

Thus, all hypotheses of Lemma 2.5 are satisfied for w, v and h. Hence, we find

 2 W 1;p�n�m.M/ such that d D w, ı D v and t. / D t.h/ D t. Qu/ and

satisfying

k kW 1;p�n�m.M / �C.kwkLp�n�mC1.M / C kvkLp�n�m�1.M //

C C.kt.h/kW 1�1=p;p�n�m.@M / C kt.�h/kW 1�1=p;p�m.@M //:

Using (2.7), t.�h/ D t.�/ D 0, w D d � u and v D ı � u, we get

k kW 1;p�n�m.M /

� C.kukW
p

d
�m.M / C kıukLp�m�1.M / C kt.i�u/kW 1�1=p;p�m�1.@M //:

Write � D Qu �  , then d� D 0 and ı� D 0. Therefore, � solves ��� D 0 with

t.�/ D 0, t.ı�/ D 0. By [23, Theorem 2.2.4], it follows that � D 0. Since Qu D �u,

the last estimate together with (2.7) clearly implies the result. �

3. Well-posedness of the direct problem

3.1. Direct problem for linear equations. To prove existence and uniqueness

result for nonlinear equations, we first need to study the direct problem for linear

equations.
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Theorem 3.1. Let 2 � p � 6 and let "; � 2 C 1.M/ be complex functions with

positive real parts. There is a discrete subset † of C such that for all ! … † and

for a given f 2 T W
1�1=p;p

Div .@M/ the Maxwell’s equation

� dE D i!�H; �dH D �i!"E (3.1)

has a unique solution .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ satisfying t.E/ D f and

kEk
W

1;p

Div .M /
C kHk

W
1;p

Div .M /
� Ckf k

T W
1�1=p;p

Div .@M /
;

for some constant C > 0 independent of f .

Proof. Since p > 1, the inclusion T W
1�1=p;p

Div .@M/ ,! THd�
1.@M/ is bounded.

Then by [1, Theorem 1.1] there is a unique solution

.E;H/ 2 Hd�
1.M/ �Hd�

1.M/

of (3.1) such that t.E/ D f . By Theorem A.1, .E;H/ 2 H 1
Div.M/ � H 1

Div.M/.

By Sobolev embedding, inclusion W 1;2�1.M/ ,! Lp�1.M/ is bounded for

2 � p � 6; see [23, Theorem 1.3.6 (a)]. Using this together with (3.1), we get

.E;H/ 2 W
p

d
�1.M/ � W

p

d
�1.M/. Recall that t.E/ D f 2 T W

1�1=p;p

Div .@M/.

Then an application of Theorem A.1 implies that .E;H/ 2 W
1;p

Div .M/�W
1;p

Div .M/

and satisfies the estimate stated in the theorem. The proof is complete. �

We also consider the linear non-homogeneous problem. The following well-

posedness result will be used in dealing with nonlinear terms of (1.4). We define

W
1;p

D �1.M/ WD ¹u 2 W 1;p�1.M/W t.u/ D 0º:

Theorem 3.2. Let 2 � p � 6 and let "; � 2 C 1.M/ be complex functions with

positive real parts. Suppose that Je; Jm 2 W
p

ı
�1.M/ and i�Jej@M ; i�Jmj@M 2

W 1�1=p;p.@M/. There is a discrete subset † of C such that for all ! … † the

Maxwell’s system

� dE D i!�H C Jm; �dH D �i!"E � Je (3.2)

has a unique solution .E;H/ 2 W
1;p

D �1.M/ �W
1;p

Div .M/ satisfying

kEk
W

1;p

Div
.M /

C kHk
W

1;p

Div
.M /

� C.ki�Jej@M kW 1�1=p;p.@M / C ki�Jmj@M kW 1�1=p;p.@M //

C C.kJekW
p

ı
�1.M / C kJmkW

p

ı
�1.M //

for some constant C > 0 independent of Je and Jm.
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Proof. We follow the similar approach as in the proof of Theorem 3.1. Sincep�2,

the inclusion W
p

ı
�1.M/ ,! L2�1.M/ is bounded. Then by [1, Theorem 1.2]

there is a unique solution .E;H/ 2 Hd�
1.M/ � Hd�

1.M/ of (3.2) such that

t.E/ D 0. According to Theorem A.1, we have .E;H/ 2 H 1
D�

1.M/�H 1
Div.M/.

Using Sobolev embedding H 1�1.M/ ,! Lp�1.M/ for 2 � p � 6 together

with (3.2), we get .E;H/ 2 W
p

d
�1.M/ � W

p

d
�1.M/. Since t.E/ D 0, Theo-

rem A.1 implies that .E;H/ 2 W
1;p

D �1.M/�W
1;p

Div .M/ and satisfies the estimate

stated in the theorem. The proof is complete. �

3.2. Proof of Theorem 1.1. Suppose f 2 T W
1�1=p;p

Div .@M/ such that one has

kf k
T W

1�1=p;p

Div .@M /
< �, where � > 0 to be determined. By Theorem 3.1, when

2 � p � 6, there is a unique .E0; H0/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ solving

�dE0 D i!�H0; �dH0 D �i!"E0; t.E0/ D f

and satisfying

kE0k
W

1;p

Div .M /
C kH0k

W
1;p

Div .M /
� Ckf k

T W
1�1=p;p

Div
.@M /

:

Then .E;H/ is a solution of (1.4) if and only if .E 0; H 0/ defined by

.E;H/ D .E0; H0/C .E 0; H 0/

satisfies 8

ˆ
<̂

ˆ̂
:

�dE 0 D i!�H 0 C i!bjH0 CH 0j2g .H0 CH 0/;

�dH 0 D �i!"E 0 � i!ajE0 CE 0j2g.E0 CE 0/;

t.E 0/ D 0:

(3.3)

By Theorem 3.2, there is a bounded and linear operator

G";�
! WW 1;p�1.M/ �W 1;p�1.M/ �! W

1;p
D �1.M/ �W

1;p

Div .M/

mapping .Je; Jm/ 2 W 1;p�1.M/�W 1;p�1.M/ to the unique solution . zE; zH/ of

the problem

�d zE D i!� zH C Jm; �d zH D �i!" zE � Je; t. zE/ D 0:

Define Xı to be the set of .e; h/ 2 W
1;p

D �1.M/ �W
1;p

Div .M/ such that

k.e; h/k
W 1;p�1.M /�W

1;p

Div .M /
WD kekW 1;p�1.M / C khk

W
1;p

Div .M /
� ı;

where ı > 0 will be determined later. Define an operator A on Xı as

A.e; h/ WD G";�
! .i!ajE0 C ej2g.E0 C e/ ; i!bjH0 C hj2g.H0 C h//:
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We wish to show that for sufficiently small � > 0 and ı > 0, depending on the

frequency !, the operator A is a contraction on Xı .

First, we show that AmapsXı into itself. Using Lemma 2.2, we can show that

when p > n D 3, for all .e; h/ 2 Xı ,

kA.e; h/k
W 1;p�1.M /�W

1;p

Div .M /

� C!.k jE0 C ej2g.E0 C e/kW 1;p�1.M / C k jH0 C hj2g .H0 C h/kW 1;p�1.M //

� C!.kE0 C ek3
W 1;p�1.M /

C kH0 C hk3
W 1;p�1.M /

/

� C!.kE0k3
W 1;p�1.M /

C kek3
W 1;p�1.M /

C kH0k3
W 1;p�1.M /

C khk3
W 1;p�1.M /

/:

Therefore,

kA.e; h/k
W 1;p�1.M /�W

1;p

Div .M /

� C!�2kf k
T W

1�1=p;p

Div .@M /
C C!ı2k.e; h/k

W 1;p�1.M /�W
1;p

Div .M /
:

(3.4)

In particular, this gives

kA.e; h/k
W 1;p�1.M /�W

1;p

Div .M /
� C!.�3 C ı3/:

Taking � > 0 and ı > 0 sufficently small, below we will ensure that A maps Xı

into itself.

Next, we show that A is contraction on Xı . For this we need the following

technical lemma.

Lemma 3.3. Let .M; g/ be a compact n-dimensional Riemannian manifold and

let p > n. If u; v 2 W 1;p�1.M/, then

k.juj2gu � jvj2gv/kW 1;p�1.M /

� C.kuk2
W 1;p�1.M /

C kvk2
W 1;p�1.M /

/ku � vkW 1;p�1.M /:

Assuming this result, we continue the proof of Theorem 1.1. Using Lemma 3.3,

we also can show that for all .e1; h1/; .e2; h2/ 2 Xı

kA.e1; h1/ � A.e2; h2/kW 1;p�1.M /�W
1;p

Div .M /

� C!k jE0 C e1j2g.E0 C e1/ � jE0 C e2j2g.E0 C e2/kW 1;p�1.M /

C C!k jH0 C h1j2g .H0 C h1/ � jH0 C h2j2g.H0 C h2/kW 1;p�1.M /

� C!.kE0 C e1k2
W 1;p�1.M /

C kE0 C e2k2
W 1;p�1.M /

/ke1 � e2kW 1;p�1.M /

C C!.kH0 C h1k2
W 1;p�1.M /

C kH0 C h2k2
W 1;p�1.M /

/kh1 � h2kW 1;p�1.M /
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� C!.kE0k2
W 1;p�1.M /

C ke1k2
W 1;p�1.M /

C ke2k2
W 1;p�1.M /

/ke1 � e2kW 1;p�1.M /

C C!.kH0k2
W 1;p�1.M /

C kh1k2
W 1;p�1.M /

C kh2k2
W 1;p�1.M /

/kh1 � h2kW 1;p�1.M /

� C!.�2 C ı2/.ke1 � e2kW 1;p�1.M / C kh1 � h2kW 1;p�1.M //:

These imply thatA is contraction onXı , if C!.�3 Cı3/ � ı and C!.�2 Cı2/ < 1.

Now, using the contraction mapping theorem, we find a unique .E 0; H 0/ 2 Xı such

that A.E 0; H 0/ D .E 0; H 0/ and hence solving (3.3). Using A.E 0; H 0/ D .E 0; H 0/

in (3.4) and taking ı > 0 sufficently small, one can see that .E 0; H 0/ satisfies the

estimate

kE 0kW 1;p�1.M / C kH 0k
W

1;p

Div
.M /

� Ckf k
T W

1�1=p;p

Div .@M /
:

Finally, .E;H/ D .E0; H0/ C .E 0; H 0/ solves (1.4) with t.E/ D f and satisfies

the estimate

kEk
W

1;p

Div
.M /

C kHk
W

1;p

Div
.M /

� Ckf k
T W

1�1=p;p

Div .@M /
:

The proof of Theorem 1.1 is thus complete.

We emphasize that the requirement 3 < p � 6 is due to the Sobolev embed-

ding theorem (see [23, Theorem 1.3.6 (a)]) used in Lemma 2.2, Lemma 3.3 and

Theorem 3.1.

Proof of Lemma 3.3. Recall that theW 1;p�m.M/-norm may be expressed invari-

antly as

kf kW 1;p�1.M / D kf kLp�1.M / C k jrf jgkLp.M /;

where r is the Levi-Civita connection defined on tensors on M and jT jg is the

norm of a tensor T on M with respect to the metric g.

By density of C1�1.M/ in W 1;p�1.M/, it is enough to assume that u; v 2

C1�1.M/. Recall that

k.juj2gu � jvj2gv/kW 1;p�1.M /

D kjuj2gu � jvj2gvkLp�1.M / C k jr.juj2gu � jvj2gv/jgkLp.M /:

We can write

r.juj2gu � jvj2gv/ D juj2gru� jvj2grv C 2Rehu;r Nuigu � 2Rehv;r Nvigv:
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Therefore,

kjuj2gu � jvj2gvkW 1;p�1.M /

� Ckjuj2gu � jvj2gvkLp�1.M / C Ck j.juj2gru � jvj2grv/jgkLp.M /

C Ck j.Rehu;r Nuigu � Rehv;r Nvigv/jgkLp.M /:

(3.5)

Write w� D u C �.v � u/. Let us estimate the first term on the right hand-side

of (3.5). Then

jvj2gv � juj2gu D

1Z

0

@

@�
¹jw� j2gw�º d�

D

1Z

0

¹2Rehw� ; v � uig w� C jw� j2g.v � u/º d�

and hence

j.juj2gu � jvj2gv/jg � C.kuk2
L1�1.M /

C kvk2
L1�1.M /

/ju � vjg :

Using the Sobolev embedding W 1;p�1.M/ ,! C�1.M/ as in Lemma 2.2, we

get for p > n

kjuj2gu � jvj2gvkLp�1.M /

� C.kuk2
L1�1.M /

C kvk2
L1�1.M /

/ku� vkLp�1.M /

� C.kuk2
W 1;p�1.M /

C kvk2
W 1;p�1.M /

/ku � vkLp�1.M /:

Now, we estimate the second term on the right hand-side of (3.5). Similarly as

before, we can show

jvj2grv � juj2gru D

1Z

0

@

@�
¹jw� j2g rw�º d�

D

1Z

0

¹2Rehw� ; Nv � Nuig rw� C jw� j2gr.v � u/º d�:

Then

j juj2gru � jvj2grvjg

� C.kukL1�1.M / C kvkL1�1.M //ku� vkL1�1.M /.jrujg C jrvjg/

C C.kuk2
L1�1.M /

C kvk2
L1�1.M /

/jr.u � v/jg :
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Therefore, using the Sobolev embedding W 1;p�1.M/ ,! C�1.M/, we get

k j juj2gru � jvj2grv jgkLp.M /

� C.kuk2
W 1;p�1.M /

C kvk2
W 1;p�1.M /

/ku � vkW 1;p�1.M /:

Finally, we estimate the last term on the right hand-side of (3.5). For this, we write

Rehv;r Nvigv � Rehu;r Nuigu

D

1Z

0

@

@�
¹Rehw� ;r Nw�ig w�º d�

D

1Z

0

¹.Rehv � u;r Nw� ig C Rehw� ;r. Nv � Nu/ig / w�

C Rehw� ;r Nw�ig .v � u/º d�:

Therefore,

j Rehu;r Nuigu � Rehv;r Nvigvjg

� C.kukL1�1.M / C kvkL1�1.M //ku� vkL1�1.M /.jrujg C jrvjg/

C C.kuk2
L1�1.M /

C kvk2
L1�1.M /

/jr.u � v/jg :

Using Sobolev embeddingW 1;p�1.M/ ,! C�1.M/, this implies that

k j Rehu;r Nuigu � Rehv;r NvigvjgkLp.M /

� C.kuk2
W 1;p�1.M /

C kvk2
W 1;p�1.M /

/ku � vkW 1;p�1.M /:

Combining all these three estimates with (3.5), we finish the proof. �

4. Asymptotics of the admittance map

Let .M; g/ be a compact 3-dimensional Riemannian manifold with smooth bound-

ary. Suppose that "; � 2 C 1.M/ are complex functions with positive real parts

and a; b 2 C 1.M/. Let m � 1 be an integer and let 3 < p � 6. Fix ! > 0

outside a discrete set of resonant frequencies. Suppose that f 2 T W
1�1=p;p

Div .@M/

and s 2 R is a small parameter. By Theorem 1.1, there is a unique solution

.E.s/; H .s// 2 W
1;p

Div .M/ �W
1;p

Div .M/ of (1.4) such that t.E.s// D sf and

kE.s/k
W

1;p

Div .M /
C kH .s/k

W
1;p

Div .M /
� C jsj kf k

T W
1�1=p;p

Div .@M /
: (4.1)
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By Theorem 3.1, there is a unique .E1; H1/ 2 W
1;p

Div .M/�W
1;p

Div .M/ solving (3.1)

with t.E1/ D f such that

kE1k
W

1;p

Div .M /
C kH1k

W
1;p

Div .M /
� Ckf k

T W
1�1=p;p

Div
.@M /

: (4.2)

Also, by Theorem 3.2 there is a unique solution .E2; H2/ 2 W
1;p

D .M/�W
1;p

Div .M/

for

�dE2 D i!�H2 C i!bjH1j2gH1;

�dH2 D �i!"E2 � i!ajE1j2gE1

and satisfying

kE2k
W

1;p

Div .M /
C kH2k

W
1;p

Div .M /

� Ck jE1j2gE1kW 1;p�1.M / C Ck jH1j2gH1kW 1;p�1.M /:

Then by Lemma 2.2,

kE2k
W

1;p

Div .M /
C kH2k

W
1;p

Div .M /
� CkE1k3

W 1;p�1.M /
C CkH1k3

W 1;p�1.M /

� CkE1k3

W
1;p

Div .M /
C CkH1k3

W
1;p

Div .M /

� Ckf k3

T W
1�1=p;p

Div .@M /
:

(4.3)

Now we define .F .s/; G.s// by

.E.s/; H .s// D s.E1 C s2F .s/; H1 C s2G.s//: (4.4)

Then by (4.1) and (4.2), .F .s/; G.s// satisfies

jsj3kF .s/k
W

1;p

Div .M /
C jsj3kG.s/k

W
1;p

Div .M /

� kE.s/k
W

1;p

Div
.M /

C kH .s/k
W

1;p

Div
.M /

C jsj kE1k
W

1;p

Div
.M /

C jsj kH1k
W

1;p

Div
.M /

� C jsj kf k
T W

1�1=p;p

Div
.@M /

:

Therefore,

jsj2 kF .s/k
W

1;p

Div .M /
C jsj2 kG.s/k

W
1;p

Div .M /
� Ckf k

T W
1�1=p;p

Div .@M /
: (4.5)

Lemma 4.1. Suppose that f 2 T W
1�1=p;p

Div .@M/. There is s0 > 0 and there is

Cf > 0 depending on f , ! and s0, but independent of s, such that for all s 2 R

with jsj < s0,

kF .s/ � E2k
W

1;p

Div .M /
C kG.s/ �H2k

W
1;p

Div .M /
� Cf jsj2:
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In particular,

kF .s/k
W

1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
� Cf : (4.6)

Proof. Set .P .s/; Q.s// D .F .s/; G.s// � .E2; H2/. Then it is easy to see that

� dP .s/ D i!�Q.s/ C i!sh.s/; �dQ.s/ D �i!"P .s/ � i!se.s/; t.P .s// D 0;

(4.7)

where

e.s/ D s�1a.jE1 C s2F .s/j2g.E1 C s2F .s// � jE1j2gE1/;

h.s/ D s�1b.jH1 C s2G.s/j2g.H1 C s2G.s// � jH1j2gH1/:

Using Lemma 3.3,

ke.s/kW 1;p�1.M /

� C jsjŒkE1k2
W 1;p�1.M /

C .jsj2kF .s/kW 1;p�1.M //
2�kF .s/kW 1;p�1.M /;

kh.s/kW 1;p�1.M /

� C jsjŒkH1k2
W 1;p�1.M /

C .jsj2kG.s/kW 1;p�1.M //
2�kG.s/kW 1;p�1.M /:

Then by (4.2) and (4.5),

ke.s/kW 1;p�1.M / C kh.s/kW 1;p�1.M /

� C jsjkf k2

T W
1�1=p;p

Div .@M /
.kF .s/k

W
1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
/:

By Theorem 3.2, .P .s/; Q.s// D .F .s/; G.s// � .E2; H2/ is the unique solution

of (4.7) and satisfies the estimate

kF .s/ �E2k
W

1;p

Div .M /
C kG.s/ �H2k

W
1;p

Div .M /

D kP .s/k
W

1;p

Div .M /
C kQ.s/k

W
1;p

Div .M /

� C!jsj .ke.s/kW 1;p�1.M / C kh.s/kW 1;p�1.M //:

Therefore,

kF .s/ �E2k
W

1;p

Div .M /
C kG.s/ �H2k

W
1;p

Div .M /

� Ckf k2

T W
1�1=p;p

Div
.@M /

!jsj2 .kF .s/k
W

1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
/:

(4.8)
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Using the reverse triangle inequality to the left hand-side, we get

kF .s/k
W

1;p

Div
.M /

C kG.s/k
W

1;p

Div
.M /

� Ckf k2

T W
1�1=p;p

Div .@M /
!jsj2 .kF .s/k

W
1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
/

C kE2k
W

1;p

Div .M /
C kH2k

W
1;p

Div .M /
:

Using (4.3), this gives

kF .s/k
W

1;p

Div
.M /

C kG.s/k
W

1;p

Div
.M /

� Ckf k2

T W
1�1=p;p

Div
.@M /

!jsj2 .kF .s/k
W

1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
/

C Ckf k3

T W
1�1=p;p

Div
.@M /

:

The first term in the last line can be absorbed into the left hand-side by taking

sufficiently small s0 > 0 so that

Ckf k2

T W
1�1=p;p

Div
.@M /

!js0j2 < 1=2:

Then we obtain

kF .s/k
W

1;p

Div .M /
C kG.s/k

W
1;p

Div .M /
� Ckf k3

T W
1�1=p;p

Div
.@M /

:

Substituting this into (4.8), we arrive to the desired estimate. �

Denote by ƒ!
";� the admittance map ƒ!

";�;0;0 for linear Maxwell’s equations.

We obtain the following asymptotic expansion of the admittance map.

Proposition 4.2. Suppose that f 2 T W
1�1=p;p

Div .@M/ with 3 < p � 6. Then

s�1Œƒ!
";�;a;b.sf / � sƒ!

";�.f /��! 0 in W
1�1=p;p

Div .@M/ as s ! 0;

(4.9)

s�3Œƒ!
";�;a;b.sf / � sƒ!

";�.f /��! t.H2/ in W
1�1=p;p

Div .@M/ as s ! 0:

(4.10)

Proof. From (4.4) we have

ƒ!
";�;a;b.sf / � sƒ!

";�.f / D t.H .s// � st.H1/ D s3
t.G.s//:
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Then by boundedness of t from W
1;p

Div .M/ onto T W
1�1=p;p

Div .@M/ and by (4.6),

ks�1Œƒ!
";�;a;b.sf / � sƒ!

";�.f /�kT W
1�1=p;p

Div .@M /
� C jsj2 kG.s/k

W
1;p

Div .M /

� Cf jsj2:

Taking s ! 0, this implies (4.9).

Now, by boundedness of t from W
1;p

Div .M/ onto T W
1�1=p;p

Div .@M/ and by

Lemma 4.1,

ks�3Œƒ!
";�;a;b.sf / � sƒ!

";�.f /�� t.H2/kT W
1�1=p;p

Div .@M /

� CkG.s/ �H2k
W

1;p

Div
.M /

� Cf jsj2:

Taking s ! 0, this implies (4.10). �

5. Proof of Theorem 1.2: Part I

In this section we show that the material parameters and electric and magnetic

susceptibilities of the nonlinear time-harmonic Maxwell equation (1.4) can be

uniquely determined from the knowledge of admittance map.

Let .M; g/ be a 3-dimensional admissible manifold, that is .M; g/ �� R �

.M0; g0/ with g D c.e ˚ g0/, where c > 0 is a smooth function on M and

.M0; g0/ is a simple manifold of dimension two.

The first ingredient in the proof of Theorem 1.2 is the reduction to the case

c D 1.

Lemma 5.1. Let .M; g/ be a compact Riemannian 3-dimensional manifold with

boundary and let c > 0 be a smooth function onM . Suppose that "; � 2 C1.M/

with positive real parts and a; b 2 C1.M/. Then

ƒ!
cg;";�;a;b D ƒ!

g;c1=2";c1=2�;c3=2a;c3=2b
:

Proof. Let �cg and �g denote the Hodge star operators corresponding to the

metrics cg and g, respectively. Following [12, Lemma 7.1], we note that

�cgu D c3=2�k �g u

for a k-form u. Therefore, .E;H/ solves

�cgdE D i!�H C i!bjH j2cgH;

�cgdH D �i!"E � i!ajEj2cgE
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if and only if it solves

�gdE D i!c1=2�H C i!c3=2bjH j2gH;

�gdH D �i!c1=2"E � i!c3=2ajEj2gE:

Therefore, ƒ!
cg;";�;a;b

D ƒ!
g;c1=2";c1=2�;c3=2a;c3=2b

. �

Therefore, it is enough to prove Theorem 1.2 in the case c D 1. Thus, in the

rest of this section we assume that .M; g/ �� R � .M0; g0/ with g D e ˚ g0,

where .M0; g0/ is a simple manifold of dimension two.

By (4.9) in Proposition 4.2, we obtain ƒ!
"1;�1

D ƒ!
"2;�2

. Then by [12,

Theorem 1.1], we get "1 D "2 and �1 D �2 in M . In what follows, we write

" D "1 D "2 and � D �1 D �2.

6. Construction of CGO solutions

Our aim is to very briefly review the construction of CGO solutions; see [12]

for details. In Section 6.1, we recall the reduction of the Maxwell equations to

the Hodge-Dirac and Schrödinger type equations, introduced in [20, 12]. Then, in

Section 6.2, we restate the form of existence and basic properties of CGO solutions

for Maxwell’s equations using the reduction in Section 6.1.

6.1. Reduction to the Hodge–Schrödinger equation. Let .M; g/ be a smooth

compact Riemannian 3-dimensional manifold with boundary. The arguments

require "; � 2 C 2.M/ to be complex functions with positive real parts. Ifˆ;‰ are

complex scalar functions onM andE;H are complex 1-forms onM , we consider

the graded forms X D ˆCEC �H C �‰ and we denote them in vector notation

X D . ˆ �H �‰ E /t :

We define the following matrix operators acting on graded forms on M

P D
1

i
.d � ı/ D

0

B
B
B
@

�ı

�ı d

d

d �ı

1

C
C
C
A
;

V D

0

B
B
B
@

�!� �.D˛ ^ � �/

�!� �.D˛ ^ � �/

Dˇ^ �!"

Dˇ^ �!"

1

C
C
C
A
;
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whereD D � id, ˛ D log " and ˇ D log�. Note that P is the self-adjoint Hodge-

Dirac operator. It was shown in [12, Section 3] that .E;H/ is a solution of the

original Maxwell’s equations

�dE D i!�H; �dH D �i!"E

if and only if X D . ˆ �H �‰ E /t is a solution of .P C V /X D 0 with

ˆ D ‰ D 0.

To reduce the Maxwell equations to the Schrödinger type equation, we consider

the rescaling

Y D

 

�1=2 Id2

"1=2 Id2

!

X;

where Id2 is the 2� 2 identity matrix. We always assume that X and Y are related

via this rescaling. We write the graded form Y as

Y D . Y 0 Y 2 Y 3 Y 1 /t ;

with Y k being the k-form part of Y . One can check that .P C V /X D 0 if and

only if .P CW /Y D 0. Here

W D �� C
1

2

0

B
B
B
@

�.D˛ ^ � �/

�.D˛ ^ � �/ �D˛^

Dˇ^

Dˇ^ �.Dˇ ^ � �/

1

C
C
C
A
;

for � D !."�/1=2. Then

.P CW /.P �W t / D ��CQ;

where Q is L1 potential. For the exact expression of Q, see [12, Lemma 3.1].

6.2. CGO solutions for Maxwell’s equations. Let .M; g/ be a 3-dimensional

admissible manifold. Throughout this section, we assume thatM � R�M int
0 and

the metric g has the form g D e ˚ g0 and .M0; g0/ is simple. Choose another

simple manifold . zM0; g0/ such that M0 �� zM0 and choose p 2 zM0 n M0.

Simplicity of . zM0; g0/ implies that there are globally defined polar coordinates

.r; �/ centered at p. In these coordinates, the metric g has the form

g D e ˚

�
1 0

0 m.r; �/

�

; (6.1)

where m is a smooth positive function.
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The following result states the existence and basic properties of CGO solutions.

Proposition 6.1. Let .M; g/ be a 3-dimensional admissible manifold with g D

e ˚ g0 and let 2 � p � 6. Suppose that "; � 2 C 3.M/ with Re."/;Re.�/ > 0

in M . Let s0; t0 2 R and � 2 R n ¹0º be constants and let � 2 C1.S1/. Then

for � 2 R with sufficiently large j� j > 0 and outside a countable subset of R, the

Maxwell’s equations

�dE D i!�H; �dH D �i!"E (6.2)

has a solution .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ of the form

E D e��.x1Cir/Œt0"
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/CR�;

H D e��.x1Cir/Œs0�
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/CR0�;

where R;R0 2 W
1;p

Div .M/ are correction terms satisfying the estimates

kRkLp�1.M /; kR
0kLp�1.M / � C

1

j� j
6�p
2p

; (6.3)

with C > 0 constant independent of � . Note that when p < 6 the remainders

decay as � increases.

Remark 6.2. The proof follows by carefully rewriting the result [4, Theorem 3.1]

(see also [12, Theorem 6.1(a)] for the original result) which requires "; �2C 3.M/.

We need the former result in order to get (6.3) for all 2 � p � 6 rather than just

p D 2. This will be very important in the next section.

Proof. By [4, Theorem 3.1], for � 2 R with sufficiently large j� j > 0 and

outside a countable subset of R, there is a solution for .�� C Q/Z D 0 such

that Z 2 H 3�.M/ and

.P CW /Y D 0; Y D .P �W t /Z; Y 0 D Y 3 D 0 in M;

and having the form

Z D e��.x1Cir/.ACR0/; A D �i jgj�1=4ei�.x1Cir/�.�/. s0 0 t0 � 1 0 /t

and kR0kH s�.M / � C j� j1�s , 0 � s � 2, where C > 0 is a constant independent

of � .

Let us compute Y 1 and Y 3. Writing � D x1 C ir and using the fact that

A1 D A2 D 0, one can see that

Y 1 D Œ.P �W t /Z�1 D e���.y1 C r1/;

Y 2 D Œ.P �W t /Z�2 D e���.y2 C r2/;
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where

y1 D �
�

i
id�A

2;

r1 D �ŒW t .ACR0/�
1 �

1

i
ıA2 C

1

i
dR0

0 �
�

i
R0

0 d� �
1

i
ıR2

0 �
�

i
id�R

2
0;

y2 D �
�

i
id�A

3;

r2 D �ŒW t .ACR0/�
2 �

1

i
ıA3 C

1

i
dR1

0 �
�

i
d� ^R1

0 �
1

i
ıR3

0 �
�

i
id�R

3
0:

It is easy to see that

kr1kH s�1.M /; kr2kH s�2.M / � C j� js�1; 0 � s � 1:

Using (2.4), one can show that

y1 D s0� jgj�1=4ei���.�/ d�; y2 D t0� jgj�1=4ei���.�/ � d�:

Note that Y0 WD ��1Y will solve .P CW /Y0 D 0 with Y 0
0 D Y 3

0 D 0. If we define

E WD "�1=2Y 1
0

D e��.x1Cir/Œs0"
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/C "�1=2r1

„ ƒ‚ …

R

�;

H WD ��1=2 � Y 2
0

D e��.x1Cir/Œt0�
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/C ��1=2r2

„ ƒ‚ …

R0

�:

Then .E;H/ 2 H 2�1.M/ � H 2�1.M/ will be a solution of the Maxwell’s

equations (6.2) and the correction terms R;R0 satisfy the estimates

kRkH s�1.M /; kR
0kH s�1.M / � C j� js�1; 0 � s � 1; (6.4)

with C > 0 constant independent of � .

By Sobolev embedding, we have .E;H/ 2 W 1;p�1.M/ � W 1;p�1.M/ for

2 � p � 6. Then, using (6.2) and (2.6), it is straightforward to check that

t.E/; t.H/ 2 T W
1�1=p;p

Div .@M/. Thus, .E;H/ 2 W
1;p

Div .M/ � W
1;p

Div .M/ for

2 � p � 6.

Finally, one can obtain the estimates in (6.3), using the inequality 0 � 3p�6
2p

�

1, Sobolev embedding and (6.4). �
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7. Proof of Theorem 1.2: Part II

In this section we continue proof of Theorem 1.2. Our aim is to show that a1 D a2

and b1 D b2. To that end, we shall use complex geometrical optics solutions,

constructed in the previous section, in the following integral identity (7.6).

7.1. An important energy integral identity. Now, by (4.10) in Proposition 4.2,

we obtain t.H 1
2 / D t.H 2

2 /, where .E
j
2 ; H

j
2 / 2 W

1;p
D .M/ � W

1;p
Div .M/, j D 1; 2,

is the unique solution of

� dE
j
2 D i!�H

j
2 C i!bj jH1j2gH1; �dH

j
2 D �i!"E

j
2 � i!aj jE1j2gE1 (7.1)

with t.E
j
2 / D 0 and .E1; H1/ 2 W

1;p

Div .M/ �W
1;p

Div .M/ is a solution of

� dE1 D i!�H1; �dH1 D �i!"E1 (7.2)

satisfying t.E1/ D f . Let .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ be a solution of

� dE D i! N�H; �dH D �i! N"E: (7.3)

Using integration by parts,

.t.H
j
2 /jt.i� �E//L2�1.@M / D .dH

j
2 j �E/L2�2.M / � .H

j
2 jı.�E//L2�1.M /

D .�dH
j
2 jE/L2�1.M / � .H

j
2 j � dE/L2�1.M /:

Since .E
j
2 ; H

j
2 / satisfy (7.1) and .E;H/ satisfy (7.3), we can show

.t.H
j
2 /jt.i� �E//L2�1.@M /

D �.i!"E
j
2 jE/L2�1.M / � .i!aj jE1j2gE1jE/L2�1.M / � .H

j
2 ji! N�H/L2�1.M /

D .E
j
2 ji! N"E/L2�1.M / � .i!aj jE1j2gE1jE/L2�1.M / C .i!�H

j
2 jH/L2�1.M /:

Here and in what follows, all integrals make sense because of the assumption

p � 4. Since .E
j
2 ; H

j
2 / satisfy (7.1) and .E;H/ satisfy (7.3), this can be rewritten

as

.t.H
j
2 /jt.i� �E//L2�1.@M /

D .�dE
j
2 jH/L2�1.M / � .E

j
2 j � dH/L2�1.M /

� .i!aj jE1j2gE1jE/L2�1.M / � .i!bj jH1j2gH1jH/L2�1.M /

D .dE
j
2 j �H/L2�2.M / � .E

j
2 jı.�H//L2�1.M /

� .i!aj jE1j2gE1jE/L2�1.M / � .i!bj jH1j2gH1jH/L2�1.M /:
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Using integration by parts and the fact that t.E
j
2 / D 0, we can show that

.dE
j
2 j �H/L2�2.M / � .E

j
2 jı.�H//L2�1.M / D 0:

Therefore,

�
1

i!
.t.H

j
2 /jt.i� �E//L2�1.@M /

D .aj jE1j2gE1jE/L2�1.M / C .bj jH1j2gH1jH/L2�1.M /:

Since t.H 1
2 / D t.H 2

2 /, this implies that

..a1 � a2/jE1j2gE1jE/L2�1.M / C ..b1 � b2/jH1j2gH1jH/L2�1.M / D 0 (7.4)

for all .E1; H1/ 2 W
1;p

Div .M/ � W
1;p

Div .M/ solving (7.2) and for all .E;H/ 2

W
1;p

Div .M/ �W
1;p

Div .M/ solving (7.3).

Note that if . zE; zH/; .E 0; H 0/ 2 W
1;p

Div .M/�W
1;p

Div .M/ solve (7.2), then . zECE 0;
zH CH 0/ also solves (7.2). Therefore, polarizing (7.4) by setting

.E1; H1/ D . zE CE 0; zH CH 0/;

we obtain

0 D ..a1 � a2/Œj zEj2gE
0 C 2RehE 0;

xzEigE
0 C jE 0j2g

zE

C 2RehE 0;
xzEig

zE�jE/L2�1.M /

C ..b1 � b2/Œj zH j2gH
0 C 2RehH 0;

xzH igH
0 C jH 0j2g

zH

C 2RehH 0;
xzH ig

zH�jH/L2�1.M /

(7.5)

for all . zE; zH/; .E 0; H 0/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ solving (7.2).

Now, take .E.j /; H.j // 2 W
1;p

Div .M/ � W
1;p

Div .M/, j D 1; 2; 3, which solve

(7.2). Setting .E1; H1/ D .E.1/ C E.2/ C E.3/; H.1/ CH.2/ CH.3// in (7.4) and

using (7.5), we get

0 D ..a1 � a2/RehE.3/; xE.2/igE.1/jE/L2�1.M /

C ..a1 � a2/RehE.3/; xE.1/igE.2/jE/L2�1.M /

C ..a1 � a2/RehE.1/; xE.2/igE.3/jE/L2�1.M /

C ..b1 � b2/RehH.3/; xH.2/igH.1/jH/L2�1.M /

C ..b1 � b2/RehH.3/; xH.1/igH.2/jH/L2�1.M /

C ..b1 � b2/RehH.1/; xH.2/igH.3/jH/L2�1.M /

(7.6)

for all .E.j /; H.j // 2 W
1;p

Div .M/ �W
1;p

Div .M/, j D 1; 2; 3, solving (7.2).
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7.2. Proof of Theorem 1.2: Part II. Recall that we assumeM � R �M int
0 and

the metric has the form g D e˚g0, where e is Euclidean metric onR and .M0; g0/

is a simple 2-dimensional manifold.

Recall that we assume 3 < p < 6. Using Proposition 6.1, for � 2 R with

sufficiently large j� j, for arbitrary � 2 C1.S1/, s0; t0 2 R and � 2 R n ¹0º, there

are .E.j /; H.j // 2 W
1;p

Div .M/ � W
1;p

Div .M/, j D 1; 2; 3, solving (7.2) and there is

.E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ solving (7.3) of the forms

E.1/ D e��.x1Cir/Œt0 "
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/CR.1/�

D e��.x1Cir/.A.1/ CR.1//;

H.1/ D e��.x1Cir/Œs0 �
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/CR0

.1/�

D e��.x1Cir/.A0

.1/ CR0

.1//;

E.2/ D e�.x1�ir/Œ"�1=2jgj�1=4ei�.x1�ir/.dx1 � idr/CR.2/�

D e�.x1�ir/.A.2/ CR.2//;

H.2/ D e�.x1�ir/Œ��1=2jgj�1=4ei�.x1�ir/.dx1 � idr/CR0

.2/�

D e�.x1�ir/.A0

.2/ CR0

.2//;

E.3/ D e��.x1�ir/Œ"�1=2jgj�1=4e�i�.x1�ir/.dx1 � idr/CR.3/�

D e��.x1�ir/.A.3/ CR.3//;

H.3/ D e��.x1�ir/Œ��1=2jgj�1=4e�i�.x1�ir/.dx1 � idr/CR0

.2/�

D e��.x1�ir/.A0

.3/ CR0

.3//;

E D e�.x1Cir/Œ"�1=2jgj�1=4ei�.x1Cir/.dx1 C idr/CR�

D e��.x1Cir/.ACR/;

H D e�.x1Cir/Œ��1=2jgj�1=4ei�.x1Cir/.dx1 C idr/CR0�

D e��.x1Cir/.A0 CR0/;

with, for j D 1; 2; 3,

kR.j /kLp�1.M /; kR
0

.j /kLp�1.M /; kRkLp�1.M /; kR
0kLp�1.M / � C

1

j� j
6�p
2p

;

Since we assume p < 6, these imply, as � ! 1, for j D 1; 2; 3,

kR.j /kLp�1.M /; kR0

.j /kLp�1.M /; kRkLp�1.M /; kR0kLp�1.M / � o.1/:

(7.7)
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Substituting these solutions into (7.6), we get

0D..a1�a2/RehA.3/CR.3/; xA.2/C xR.2/ig .A.1/CR.1//j.ACR//L2�1.M /

C..a1�a2/RehA.3/CR.3/; xA.1/C xR.1/ig .A.2/CR.2//j.ACR//L2�1.M /

C..a1�a2/RehA.1/CR.1/; xA.2/C xR.2/ig .A.3/CR.3//j.ACR//L2�1.M /

C..b1�b2/RehA0

.3/CR
0

.3/;
xA0

.2/C
xR0

.2/ig .A
0

.1/CR
0

.1//j.A
0CR0//L2�1.M /

C..b1�b2/RehA0

.3/CR
0

.3/;
xA0

.1/C
xR0

.1/ig .A
0

.2/CR
0

.2//j.A
0CR0//L2�1.M /

C..b1�b2/RehA0

.1/CR
0

.1/;
xA0

.2/C
xR0

.2/ig .A
0

.3/CR
0

.3//j.A
0CR0//L2�1.M /:

(7.8)

Letting � ! 1, we come to

0 D ..a1 � a2/RehA.3/; xA.2/igA.1/jA/L2�1.M /

C ..a1 � a2/RehA.3/; xA.1/igA.2/jA/L2�1.M /

C ..a1 � a2/RehA.1/; xA.2/igA.3/jA/L2�1.M /

C ..b1 � b2/RehA0

.3/;
xA0

.2/igA
0

.1/jA
0/L2�1.M /

C ..b1 � b2/RehA0

.3/;
xA0

.1/igA
0

.2/jA
0/L2�1.M /

C ..b1 � b2/RehA0

.1/;
xA0

.2/igA
0

.3/jA
0/L2�1.M /:

(7.9)

To see this, one expands every term in (7.8) and uses generalized Hölder’s inequal-

ity together with (7.7). Then all terms in (7.8) go to zero as � ! 1 except the

terms written in (7.9).

Recall that the amplitudes A.j /, A
0

.j /
, j D 1; 2; 3, and A, A0 are of the form

A.1/ D t0 "
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/;

A0

.1/ D s0 �
�1=2jgj�1=4ei�.x1Cir/�.�/.dx1 C idr/;

A.2/ D "�1=2jgj�1=4ei�.x1�ir/.dx1 � idr/;

A0

.2/ D ��1=2jgj�1=4ei�.x1�ir/.dx1 � idr/;

A.3/ D "�1=2jgj�1=4e�i�.x1�ir/.dx1 � idr/;

A0

.3/ D ��1=2jgj�1=4e�i�.x1�ir/.dx1 � idr/;

A D "�1=2jgj�1=4ei�.x1Cir/.dx1 C idr/;

A0 D ��1=2jgj�1=4ei�.x1Cir/.dx1 C idr/:
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Then the second, third, fifth and last terms in (7.9) will vanish. Considering the

cases t0 D 1, s0 D 0 and t0 D 0, s0 D 1 separately, we obtain
Z

M

fe�i2�.x1�ir/�.�/jgj�1=2 d Volg D 0

and
Z

M

he�i2�.x1�ir/�.�/jgj�1=2 d Volg D 0;

where

f WD
a1 � a2

j"j2jgj1=2
and h WD

b1 � b2

j�j2jgj1=2
:

Now, we extend f and h as zero to R �M0. Since d Volg D jgj1=2 dx1drd� , we

get
Z

S1

�.�/

1Z

0

e�2�r

� 1Z

�1

fe�i2�x1 dx1

�

dr d� D 0

and
Z

S1

�.�/

1Z

0

e�2�r

� 1Z

�1

he�i2�x1 dx1

�

dr d� D 0:

Varying � 2 C1.S1/ and noting that the terms in the brackets are the one-

dimensional Fourier transforms of f and h with respect to the x1-variable, which

we denote by Of and Oh, respectively, we get

1Z

0

e�2�r Of .2�; r; �/ dr D

1Z

0

e�2�r Oh.2�; r; �/ dr D 0; � 2 S1:

Recall that .r; �/ are polar coordinates in M0. Therefore, r 7! .r; �/ is a geodesic

in M0 and the integrals above are the attenuated geodesic ray transforms of Of

and Oh on M0 with constant attenuation �2�. Then injectivity of this transform

on simple manifolds of dimension two [22, Theorem 1.1] implies that Of .2�; �/ D
Oh.2�; �/ D 0 in M0 for all � 2 R n ¹0º. Now, using the uniqueness result for the

Fourier transform, we show that f D h D 0 and hence a1 D a2 and b1 D b2 in

M , finishing the proof of Theorem 1.2.

Appendix A. Regularity of solutions of linear Maxwell equations

In this section we prove the following regularity result for linear, inhomogeneous,

time-harmonic Maxwell equations.
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Theorem A.1. Let 2 � p � 6 and let "; � 2 C 1.M/ be complex functions with

positive real parts. Suppose that Je; Jm 2 W
p

ı
�1.M/ and i�Jej@M ; i�Jmj@M 2

W 1�1=p;p.@M/. If .E;H/ 2 W
p

d
�1.M/ � W

p

d
�1.M/ is a solution of the

Maxwell’s system
´

�dE D i!�H C Jm;

�dH D �i!"E C Je

(A.1)

such that t.E/ 2 T W
1�1=p;p

Div .@M/, then .E;H/ 2 W
1;p

Div .M/ �W
1;p

Div .M/ and

kEk
W

1;p

Div .M /
C kHk

W
1;p

Div .M /

� C.kt.E/k
T W

1�1=p;p

Div .@M /
C kJekW

p

ı
�1.M / C kJmkW

p

ı
�1.M //

C C.ki�Jej@M kW 1�1=p;p.@M / C ki�Jmj@M kW 1�1=p;p.@M //

for some constant C > 0 independent of E, H , Je and Jm.

Proof. We apply ı to the Maxwell equations (A.1) to obtain

´

ıH D id log �H � .i!�/�1ıJm;

ıE D id log "E C .i!"/�1ıJe:
(A.2)

Since E;H 2 W
p

d
�1.M/ and Je; Jm 2 W

p

ı
�1.M/, this clearly implies that

E;H 2 W
p

d
�1.M/\W

p

ı
�1.M/. Now, by Proposition 2.4, we getE 2 W

1;p
Div .M/

and

kEk
W

1;p

Div .M /
� C.kEkW

p

d
�1.M / C kt.E/k

T W
1�1=p;p

Div .@M /

C kJekW
p

ı
�1.M / C kJmkW

p

ı
�1.M //;

since t.E/ 2 T W
1�1=p;p

Div .@M/.

To show that H 2 W 1;p�1.M/, we use similar reasonings. Using (A.1)

and (2.6) we get

i�H j@M D
1

i!�
i� � dEj@M �

1

i!�
i�Jmj@M 2 W 1�1=p;p.@M/;

since t.E/ 2 T W
1�1=p;p

Div .@M/ and i�Jmj@M 2 W 1�1=p;p.@M/. Then by Proposi-

tion 2.6, we have H 2 W 1;p�1.M/ and

kHkW 1;p�1.M / � C.kHkW
p

d
�1.M / C kt.E/k

T W
1�1=p;p

Div .@M /
/

C C.kJmkW
p

ı
�1.M / C ki�Jmj@M kW 1�1=p;p.@M //:
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We also have H 2 W
1;p

Div .M/, since t.H/ 2 W 1�1=p;p.@M/ and

Div.t.H// D i� � dH j@M D �i!" i�Ej@M C i�Jej@M 2 W 1�1=p;p.@M/;

where we have used (2.6) and the hypothesis i�Jej@M 2 W 1�1=p;p.@M/. Finally,

the estimate in the statement of the theorem follows by combining all the above

estimates. The proof is complete. �
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