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Decorrelation estimates for random Schrödinger operators

with non rank one perturbations

Peter D. Hislop,1 Maddaly Krishna,2 and Christopher Shirley

Abstract. We prove decorrelation estimates for generalized lattice Anderson models on

Z
d constructed with finite-rank perturbations in the spirit of Klopp [12]. These are applied

to prove that the local eigenvalue statistics �!
E

and �!
E0 , associated with two energies E and

E 0 in the localization region and satisfying jE�E 0j > 4d , are independent. That is, if I; J

are two bounded intervals, the random variables �!
E
.I / and �!

E0.J /, are independent and

distributed according to a compound Poisson distribution whose Lévy measure has finite

support. We also prove that the extended Minami estimate implies that the eigenvalues in

the localization region have multiplicity at most the rank of the perturbation. The method

of proof contains new ingredients that simplify the proof of the rank one case [12, 19, 21],

extends to models for which the eigenvalues are degenerate, and applies to models for which

the potential is not sign definite [20] in dimensions d > 1.
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1. Statement of the problem and results

We consider random Schrödinger operators H! D L C V! on the lattice Hilbert

space `2.Zd / (or, for matrix-valued potentials, on `2.Zd /˝ C
mk ), and prove that

certain natural random variables associated with the local eigenvalue statistics

around two distinct energiesE andE 0, in the region of complete localization†CL

and with jE �E 0j > 4d , are independent. From previous work [9], these random

variables distributed according to a compound Poisson distribution. The operator

L is the discrete Laplacian on Z
d , although this can be generalized. For these
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lattice models, the random potential V! has the form

.V!f /.j / D
X

i2J

!i .Pif /.j /; (1.1)

where ¹Piºi2J is a family of finite-rank projections with the same rank mk > 1,

the set J is a sublattice of Z
d , and

P

i2J Pi D I . We assume that Pi D

UiP0U
�1
i , for all i 2 J, where Ui is the unitary implementation of the translation

group .Uif /.k/ D f .k C i/, for i; k 2 Z
d . The coefficients ¹!iº are a family

of independent, identically distributed (iid) random variables with a bounded

density of compact support on a product probability space � with probability

measure P. It follows from the conditions above that the family of random

Schrödinger operators H! is ergodic with respect to the translations generated

by the sublattice J.

One example on the lattice is the polymer model. For this model, the projector

Pi D �ƒk.i/ is the characteristic function on the cubeƒk.i/ of side length 2k 2 N

centered at i 2 Z
d . The rank of Pi is .2k C 1/d and the set J is chosen so that

S

i2Jƒk.i/ D Zd . Another example is a matrix-valued model for which Pi ,

i 2 Z
d , projects onto the mk-dimensional subspace Cmk , and J D Z

d . The

corresponding Schrödinger operator is

H! D L C
X

i2J

!iPi ; (1.2)

whereL is the discrete lattice Laplacian� on `2.Zd /, or�˝I on `2.Zd /˝C
mk or,

more generally,�˝A, where A is a Hermitian positive-definitemk �mk matrix),

respectively. In the following, we denote by H!;` (or simply as H` omitting the

!) the matrices �ƒ`
H!�ƒ`

and similarly H!;L; HL by replacing ` with L, for

positive integers ` and L.

A lot is known about the eigenvalue statistics for random Schrödinger operators

on `2.Rd /. When the projectors Pi are rank one projectors, the local eigenvalue

statistics in the localization regime has been proved to be given by a Poisson

process by Minami [16] (see also Molchanov [17] for a model onR and Germinet-

Klopp [7] for a comprehensive discussion and additional results). For the non

rank one case, Tautenhahn and Veselić [20] proved a Minami estimate for certain

models that may be described as weak perturbations of the rank one case. The

general non finite rank case was studied by the first two authors in [9] who proved

that, roughly speaking, the local eigenvalue statistics in the localization regime are

compound Poisson point processes. This result also holds for random Schrödinger

operators on R
d .
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In this paper, we further refine these results for lattice models with non rank one

projections and prove, roughly speaking, that the processes associated with two

energies are independent. The method applies to Schrödinger operators with non

simple eigenvalues, see the discussion at the end of Section 5. Klopp [12] proved

decorrelation estimates for rank one lattice models in any dimension. He applied

them to show that the local eigenvalue point processes at distinct energies converge

to independent Poisson processes (in dimensions d > 1 the energies need to be far

apart as is the case for the models studied here). Shirley [19] extended the family

of one-dimensional lattice models for which the decorrelation estimate may be

proved to include alloy-type models with correlated random variables, hopping

models, and certain one-dimensional quantum graphs.

One of the advantages of the methods employed in this paper is that monotonic-

ity is no longer needed. Consequently, we can treat the almost rank one models

for which the potential is not sign definite. A class of such models was considered

by Tautenhahn and Veselic̀ [20] who proved a Minami estimate.

1.1. Asymptotic independence and decorrelation estimates. The main result

is the asymptotic independence of random variables associated with the local

eigenvalue statistics centered at two distinct energies E and E 0 satisfying the

inequality jE �E 0j > 4d .

We note that in one-dimension there are stronger results and the condition

jE � E 0j > 4d is not needed. Our results are inspired by the work of Klopp [12]

for the Anderson models on Z
d and of Shirley [19] for related models on Z

d .

The condition jE � E 0j > 4d requires that the two energies be fairly far apart.

For example, if !0 2 Œ�K;K� so that the deterministic spectrum † D Œ�2d �K;

2d C K�, the region of complete localization †CL is near the band edges

˙.2d CK/. In this case, one can consider E and E 0 near each of the band edges.

Our main result on asymptotic independence is the following theorem.

Theorem 1.1. Let E;E 0 2 †CL be two distinct energies with jE �E 0j > 4d . Let

�!;E , respectively, �!;E 0 , be a limit point of the local eigenvalue statistics centered

at E, respectively, at E 0. Then these two processes are independent. That is, for

any bounded intervals I; J 2 B.R/, the random variables �!;E .I / and �!;E 0.J /

are independent random variables distributed according to a compound Poisson

process.

We refer to [7] for a description of the region of complete localization†CL. For

information on Lévy processes, we refer to the books by Applebaum [2] and by

Bertoin [3]. Theorem 1.1 follows (see Section 4) from the following decorrelation
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estimate. We assume that L > 0 is a positive integer, and that ` WD ŒL˛� is the

greatest integer less thanL˛ for an exponent 0 < ˛ < 1. For polymer type models,

we assume that mk divides L and `.

Proposition 1.1. We choose any 0 < ˛ < 1 and ˇ > 5
2
, and length scales L

and ` WD ŒL˛� as described above. For a pair of energies E;E 0 2 †CL, the

region of complete localization, with �E WD jE � E 0j > 4d , and bounded

intervals I; J � R, we define IL.E/ WD L�dI C E and JL.E
0/ WD L�dJ C E 0

as two scaled energy intervals centered at E and E 0, respectively. There exists

L0 D L0.˛; ˇ; d/ > 0 and a constant C0 D C0.L0/ such that for all L > L0 we

have

P¹.TrEH!;`
.IL.E// > 1/ \ .TrEH!;`

.JL.E
0// > 1/º

6 C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/.1Cˇ/d

L.2�˛/d
:

(1.3)

The extended Minami estimate [9] (see Section 3.1) implies that we only need

to estimate the probability that there is a small number of eigenvalues in each

interval:

P¹.TrEH!;`
.IL.E// 6 mk/ \ .TrEH!;`

.JL.E
0// 6 mk/º (1.4)

In fact, we consider the more general estimate:

P¹.TrEH!;L
.IL.E// D k1/ \ .TrEH!;L

.JL.E
0// D k2/º; (1.5)

where k1; k2 6 mk are positive integers independent of L.

We allow that there may be several eigenvalues in IL.E/ and JL.E
0/ with

nontrivial multiplicities. To deal with this, we introduce the mean trace of the

eigenvalues Ej .!/ of H!;` in the interval IL.E/:

T`.E; k1; !/ WD
Tr.H!;`EH!;`

.IL.E///

Tr.EH!;`
.IL.E///

D
1

k1

k1
X

j D1

E`
j .!/; (1.6)

where k1 WD Tr.EH!;`
.IL.E/// is the number of eigenvalues, including multiplic-

ity, of H!;` in IL.E/. Similarly, we define

T`.E
0; k2; !/ WD

Tr.H!;`EH!;`
.JL.E

0///

Tr.EH!;`
.JL.E 0///

D
1

k2

k2
X

j D1

E`
j .!/; (1.7)

where k2 WD Tr.EH!;`
.JL.E

0///. We will show in Section 2 that these weighted

sums behave like effective eigenvalues in each scaled interval IL.E/ and JL.E
0/,

respectively.
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As another application of the extended Minami estimate, we prove that the

multiplicity of eigenvalues in †CL is at most the multiplicity of the perturbations

mk in dimensions d > 1. The proof of this fact follows the argument of Klein and

Molchanov [11]. For d D 1, Shirley [19] proved that the usual Minami estimate

holds for the dimer model (mk D 2) so the eigenvalues are almost surely simple.

1.2. Contents. We present properties of the average of eigenvalues in Section 2,

including gradients estimates.The proof of the main technical result, Proposi-

tion 1.1, is presented in Section 3. The proof of asymptotic independence is given

in Section 4. We show in Section 5 that the argument of Klein and Molchanov [11]

applies to higher rank perturbations and implies that the multiplicity of eigenval-

ues in †CL is at most mk , the uniform rank of the perturbations. In Section 6, we

prove that the decorrelation estimates, and therefore asymptotic independence of

local eigenvalue processes, hold for non sign definite models studied by Tauten-

hahn and Veselic̀ [20]. This paper replaces the manuscript [10] by the first two

authors, completing and improving the arguments, and extending the results.

Note added in proof. Deitlien and Elgart [4] recently proved a Minami estimate

for random Schrödinger operators on L2.Rd / in a small energy interval near

the bottom of the almost sure spectrum. Their methods should allow for an

improvement in the Minami estimate for the higher-rank models discussed in

this paper, leading to an improvement in Theorem 1.1 where “compound Poisson

process” is replaced by “Poisson process,” and in Theorem 5.1 where “multiplicity

at most mk” is replaced by “multiplicity one.”

2. Estimates on weighted sums of eigenvalues

In this section, we present some technical results on weighted sums of eigenvalues

of H!;` defined in (1.6)–(1.7). These are used in Section 4 to prove the main

technical result (1.3). We recall that ` D ŒL˛�, for 0 < ˛ < 1.

2.1. Properties of the weighted trace. When the total number of eigenvalues

of H!;` in IL.E/ WD L�dI CE is k1, we have

T.!/ WD T`.E; k1/ WD T`.E; k1; !/ D
1

k1

k1
X

j D1

Ej .!/; (2.1)
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for eigenvaluesE`
j .!/ 2 IL.E/. Properties (1)–(3) below are valid for the similar

expression obtained by replacing k1 with k2, the interval I with J , and the energy

E with E 0. We will write

T0.!/ WD T`.E
0; k2/ WD T.E 0; k2; !/:

We write PE .!/ for the spectral projection EH!;`
.IL.E// onto the eigenspace

of H!;` corresponding to the eigenvalues E`
m.!/ in IL.E/. Let 
E be a simple

closed contour containing only these eigenvalues ofH!;` with a counter-clockwise

orientation. Since the mean of the eigenvalues may be expressed as

T.!/ D
1

k1

TrH!;`PE .!/;

and the projection has the representation

PE .!/ D
�1

2�i

Z


E

R.z/ dz; R.z/ WD .H!;` � z/�1:

The Hamiltonian H!;` is analytic in the variables !j . The projection PE .!/

is also analytic in ! provided the contour 
E remains isolated from the other

eigenvalues of H!;`. We work on that part of the probability space for which

the total multiplicity of the eigenspace Ran PE .!/ D k1, that is, on the set

�.k1/ WD ¹! j TrPE .!/ D k1º. If we place a security zone around IL.E/ of

width L�d then the probability thatH!;` has no eigenvalues in this zone is larger

than 1 � .`=L/d by the Wegner estimate. On this set, it follows that

@T.!/

@!j

D
1

2�ik1

Z


E

Tr¹R.z/PjR.z/º zdz; (2.2)

where Pj is the finite-rank projector associated with site j or block j , depending

on the model. Evaluating the contour integral, we find that

@T.!/

@!j

D
1

k1

Tr¹PE .!/Pj º: (2.3)

Formula (2.3) shows that the eigenvalue average behaves like an effective

eigenvalue in the following sense:

1. T`.E; k1; !/ 2 IL.E/, so the average of the eigenvalue cluster in IL.E/

belongs to IL.E/;

2. the !j -derivative of T.!/ is nonnegative as follows directly from (2.3);
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3. since
P

j 2J\ƒ`
Pj D Iƒ`

, it follows from this and (2.3) that the !-gradient

of the weighted trace is normalized: kr!T.!/k`1 D 1.

Remark 1. It follows from property (1) above and the fact that the intervals IL.E/

and JL.E/ are O.L�d /, that if jE �E 0j > 4d , then jT.!/�T.!0/j > 4d � cL�d ,

for some c > 0. We will use this result below.

2.2. Variational formulae. We can estimate the variation of the mean trace with

respect to the random variables as follows. The !-directional derivative is

! � r!.T.!/� T0.!// D
X

j 2J\ƒ`

!j

° 1

k1

TrPE .!/Pj �
1

k2

TrPE 0.!/Pj

±

D
° 1

k1

TrPE .!/V
!

ƒ`
�
1

k2

TrPE 0.!/V !
ƒ`

±

D
° 1

k1

TrPE .!/H!;` �
1

k2

TrPE 0.!/H!;`

�
1

k1

TrPE .!/L C
1

k2

TrPE 0.!/L
±

:

(2.4)

The absolute value of each trace involving the Laplacian L in (2.4) may be

bounded above by 2d . If we assume that

jT.!/� T0.!/j > �E

then we obtain from (2.4),

�E � 4d 6 jT.!/� T0.!/j � 4d 6 j! � r!.T.!/� T0.!//j: (2.5)

As the number of components of ! is bounded by `d and j!j j 6 K, it follows by

Cauchy-Schwartz inequality that

kr!.T.!/ � T0.!//k2 >
�E � 4d

K

1

.2`C 1/d=2
: (2.6)

We also obtain an `1 lower bound:

kr!.T.!/� T0.!//k1 >
�E � 4d

K
: (2.7)

2.3. Dependence of the weighted eigenvalue averages on the random vari-

ables. Suppose that H!;` has k1 eigenvalues (including multiplicities)

¹E`
m.!/Im D 1; : : : ; k1º
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in an interval I � R. The corresponding weighted average is

T`
!.k1/ WD

1

k1

k1
X

j D1

E`
mj
.!/ 2 I: (2.8)

We consider the tensor product operator H
k1

!;`
on the Hilbert space

H
k1

`
WD ˝k1

`2.ƒ`/

defined as

H
k1

!;`
WD

1

k1

k1
X

j D1

I ˝ � � � ˝H!;` ˝ � � � ˝ I; (2.9)

where the Hamiltonian H!;` appears in the j th-position. From the normalized

eigenfunctions  `
m of H!;`, we form the eigenfunctions

 �.k1/ WD  `
m1

˝  `
m2

˝ � � � ˝  `
mk1

; (2.10)

where �.k1/ D .m1; : : : ; mk1
/. These functions are eigenfunctions of H

k1

!;`
with

eigenvalue T`
!.k1/ defined in (2.8):

H
k1

!;`
 `

�.k1/ D T`
!.k1/ 

`
�.k1/: (2.11)

It is important to know how the eigenvalue average T`
!.k1/ depends on the

random variables!i ; !j with i; j 2 ƒ`. As the matrixH
k1

!;`
is of size .mk jƒ`j/k1 �

.mk jƒ`j/k1 , the expression det..mk jƒ`j/k1 � EI/ is a real polynomial of degree

m
k1

k
in the pair of random variables !i ; !j for i; j 2 ƒ`. We will use this in

Section 3 when we apply the Harnack Curve Theorem.

3. Proof of Proposition 1.1

In this section, we prove the technical result, Proposition 1.1. We let

X`.IL.E// WD TrEH!;`
.IL.E//; X`.JL.E

0// WD TrEH!;`
.JL.E

0//;

and consider the scale ` D ŒL˛�, for 0 < ˛ < 1. Then, we show

P¹.X`.IL.E// > 1/ \ .X`.JL.E
0// > 1/º

6 C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/.1Cˇ/d

L.2�˛/d
:

(3.1)

for positive numbers 0 < ˛ < 1 and any ˇ > 5
2
.
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3.1. Reduction via the extended Minami estimate. Let �A.!/ be the character-

istic function on the subsetA � �. In this section, we write JL.E/ WD L�dJ CE

since we are dealing with one interval. We use an extended Minami estimate of

the form

E¹�¹!jX`.JL.E//>mk C1ºX`.JL.E//.X`.JL.E// �mk/ > 1º 6 CM

� `

L

�2d

; (3.2)

as follows from [9].

Lemma 3.1. Under the condition that the projectors have uniform dimension

mk > 1, we have

P¹X`.JL.E// > mkº 6 CM

� `

L

�2d

: (3.3)

Proof. Recalling that X`.JL.E// 2 ¹0º [ N, we have

P¹X`.JL.E// > mkº

6 P¹X`.JL.E// �mk > 1º

D P¹X`.JL.E//.X`.JL.E// �mk/ > 1º

D P¹�¹!jX`.JL.E//>mk C1ºX`.JL.E//.X`.JL.E// �mk/ > 1º

6 E¹�¹!jX`.JL.E//>mkC1ºX`.JL.E//.X`.JL.E// �mk/ > 1º

6 CM

� `

L

�2d

;

(3.4)

by the extended Minami estimate. �

3.2. Estimates on the joint probability. We return to considering two scaled

intervals IL.E/ and JL.E
0/, with E ¤ E 0. Because of (3.2), we have

P¹.X`.IL.E// > 1/ \ .X`.JL.E
0// > 1/º

6 P¹.X`.IL.E// > mk C 1/ \ .X`.JL.E
0// > mk C 1/º

C P¹.X`.IL.E// 6 mk/ \ .X`.JL.E
0// > mk C 1/º

C P¹.X`.IL.E// 6 mk C 1/ \ .X`.JL.E
0// > mk/º

C P¹.X`.IL.E// 6 mk/ \ .X`.JL.E
0// 6 mk/º

6 P¹.X`.IL.E// 6 mk/ \ .X`.JL.E
0// 6 mk/º

C C0

� `

L

�2d

:

(3.5)
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The probability on the last line of (3.5) may be bounded above by

P¹.X`.IL.E// 6 mk/ \ .X`.JL.E
0// 6 mk/º

6

mk
X

k1;k2D1

P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º:

(3.6)

Since mk is independent of L, it suffices to estimate

P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º; (3.7)

for 1 6 k1; k2 6 mk .

3.3. Reduction of length scale using localization. If we continue to work at

scale ` D L˛, we can prove Proposition (1.1) but only for ˛ > 0 sufficiently

small. In order to prove Proposition 1.1 for all 0 < ˛ < 1, we must follow

Klopp [12, Section 2.2] and use localization in order to reduce the length scale

to Q̀ WD C logL, for C > 0. Once we work with the length scale Q̀, we will be able

to prove Proposition 1.1 for all 0 < ˛ < 1. The goal of this section is to bound (3.7)

by a similar estimate involving the length scale Q̀ up to errors vanishing asL ! 1.

The key to this reduction is the localization properties of the Hamiltonians given

in .Loc/.

Definition 3.1. We say that the local Hamiltonian H!;` satisfies .Loc/ in an

interval I � † if

(1) the finite-volume fractional moment criteria of [1] holds on the interval I for

some constant C > 0 sufficiently large;

(2) there exists � > 0 such that, for any p > 0, there exists q > 0 and a length

scale `0 > 0 such that, for all ` > `0, the following hold with probability

greater than 1� Lp:

(a) if '`
j .!/ is a normalized eigenvector ofH!;` with eigenvalueE`

j .!/2I ,

and

(b) x`
j .!/ is a maximum of x ! j'`

j .!/j in ƒ`,

then, for n 2 ƒ`, one has

j'`
j .!/.x/j 6 `qe

��kx�x`
j

.!/k
: (3.8)

The point x`
j .!/ is called a localization center for '`

j .!/ or for E`
j .!/.

The main consequence in the present context of .Loc/ is the following result

on the localization of eigenvectors.
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Lemma 3.2. [12, Lemma 2.2] Let �0 be the set of configuration ! for which

.Loc/ holds with probability greater than 1 � L�2d . There exists a covering of

ƒ` D
[


2�

ƒ Q̀.
/
;

where ƒ Q̀.
/
D ƒ Q̀ C 
 , such that for all

! 2 �0 \ ¹! j .X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º;

we have that

1. either there exist 
; 
 0 2 � so that ƒ Q̀.
/
\ƒ Q̀.
 0/

D ; and

X Q̀.
/
. zIL.E// > 1 and X Q̀.
 0/

. zJL.E
0// > 1;

2. or for some 
 2 �, we have X
5 Q̀.
/

. zIL.E// D k1 and X
5 Q̀.
/

. zJL.E
0// D k2.

Thanks to the localization properties of the eigenfunctions given in Lemma 3.2,

we can reduce the estimate on scale ` to one on scale Q̀ as presented in the following

lemma.

Lemma 3.3. For any k1; k2 2 ¹1; : : : ; mkº, we have

P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º

6

� `

L

�2d

C
�`

Q̀

�d

P¹.X
5 Q̀.
/

. zIL.E// D k1/ \ .X
5 Q̀.
/

. zJL.E
0// D k2/º:

(3.9)

Proof. According to Lemma 3.2,

P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º

6 P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/ \�0º C P¹�n�0º

6 L�2d C P1 C P2;

(3.10)

where, according to Lemma 3.2,P1 is the probability that option (1) occurs andP2

is the probability that option (2) occurs. To estimate P1, we use the independence

of the Hamiltonians associated with ƒ Q̀.
/
and ƒ Q̀.
 0/

, together with Wegner’s

estimate on scale Q̀, to obtain

P1 6

�`

Q̀

�2d

P¹.X Q̀.
/
. zIL.E// > 1/ \ .X Q̀.
 0/

. zJL.E
0// > 1/º

6

�`

Q̀

�2d

P¹X Q̀.
/
. zIL.E// > 1º P¹X Q̀.
 0/

. zJL.E
0// > 1º

6 C 2
W

�`

Q̀

�2d

.j zIL.E/j Q̀d /.j zIL.E/j Q̀d /

6 C 2
W

� `

L

�2d

:

(3.11)
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In order to estimate P2, condition (2) implies

P2 6

�`

Q̀

�d

P¹.X
5 Q̀.
/

. zIL.E// D k1/ \ .X
5 Q̀.
/

. zJL.E
0// D k2/º: (3.12)

Bounds (3.10)–(3.12) imply the bound (3.9). �

3.4. Key estimate on the log-scale. The proof of the next key Proposition 3.1

follows the ideas in [12].

Proposition 3.1. For k1; k2 D 1; : : : ; mk and for any ˇ > 5
2
, there exists a scale

L0 > 0, so that for any L > L0, there exists a constant C0 > 0 so that

P¹.X
5 Q̀.
/

. zIL.E// D k1/ \ .X
5 Q̀.
/

. zJL.E
0// D k2/º

6 C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/.2Cˇ/d

L2d
:

(3.13)

Proof. 1. We begin with some observation concerning the eigenvalue averages.

We let �0. Q̀; k1; k2/ denote the event

�0. Q̀; k1; k2/ WD ¹! j .X Q̀.. zIL.E/// D k1/\ .X Q̀.. zJL.E
0/// D k2/º\�0; (3.14)

for k1; k2 D 1; : : : ; mk, and where we write Q̀ instead of 5 Q̀.
/ to simplify the

notation. We define the subset � � ƒ Q̀ � ƒ Q̀ by � WD ¹.i; i/ j i 2 ƒ Q̀º. For

each pair of sites .i; j / 2 ƒ Q̀ � ƒ Q̀n�, the Jacobian determinant of the mapping

'W .!i ; !j / ! .T Q̀.E; k1/;T Q̀.E
0; k2//, given by:

Jij .T Q̀.E; k1/;T Q̀.E
0; k2// WD

ˇ

ˇ

ˇ

ˇ

@!i
T Q̀.E; k1/ @!j

T Q̀.E; k1/

@!i
T Q̀.E

0; k2/ @!j
T Q̀.E

0; k2/

ˇ

ˇ

ˇ

ˇ

: (3.15)

As we will show in Section 3.5, the condition

Jij .T Q̀.E; k1/;T Q̀.E
0; k2// > �.L/ > 0

implies that the average of the eigenvalues in zIL.E/ and zJL.E
0/ effectively vary

independently with respect to any pair of independent random variables .!i ; !j /,

for i ¤ j . We define the following events for pairs .i; j / 2 ƒ Q̀ �ƒ Q̀n�:

�
i;j
0 . Q̀; k1; k2/ WD �0. Q̀; k1; k2/ \ ¹! j Jij .T Q̀.E; k1/;T Q̀.E

0; k2// > �.L/º;

(3.16)

where �.L/ > 0 is given by

�.L/ WD .�E � 4d/K�1.C logL/�ˇd ; (3.17)



Decorrelation estimates for non rank one perturbations 75

where the exponent ˇ > 0 is chosen below. Following Klopp [12, p. 242], we note

in Section 3.5 that the positivity of the Jacobian determinant insures that the map

', restricted to a certain domain, is a diffeomorphism. In particular, this allows us

to compute P¹�
i;j
0 . Q̀; k1; k2/º as in Lemma 3.4.

2. We next bound P¹�0. Q̀; k1; k2/º in terms of P¹�
i;j
0 . Q̀; k1; k2/º using [12,

Lemma 2.5]. This lemma states that for .u; v/ 2 .RC/2n normalized so that

kuk1 D kvk1 D 1, we have

max
j ¤k

ˇ

ˇ

ˇ

ˇ

uj uk

vj vk

ˇ

ˇ

ˇ

ˇ

2

>
1

4n5
ku � vk2

1: (3.18)

Applying this with n D .2` C 1/d , and u D r!T.!/ and v D r!T
0.!/, and

recalling the positivity property mentioned in point (2) following from (2.3) and

the normalization in point (3) of Section 2.1, we obtain from (3.18) and (2.7):

max
i¤j 2ƒ Q̀

Jij .T Q̀.E/;T Q̀.E
0//2 >

� 23

Q̀5d

�

kr!.T Q̀.E/ � T Q̀.E
0//k2

1

>

��E � 4d

K

�2� 23

Q̀5d

�

:

(3.19)

We partition the probability space as

¹! j Jij > �.L/ for some .i; j / 2 ƒ Q̀ �ƒ Q̀n�º

[ ¹! j Jij < �.L/ for all .i; j / 2 ƒ Q̀ �ƒ Q̀n�º;

where we write Jij for the Jacobian Jij .T Q̀.E/;T Q̀.E
0//. Suppose that the second

event

¹! j Jij < �.L/ for all .i; j / 2 ƒ Q̀ �ƒ Q̀n�º

occurs, so that, from (3.19),

�.L/2 D
� �E � 4d

K.C logL/ˇd

�2

> max
i¤j 2ƒ Q̀

Jij .T Q̀.E/;T Q̀.E
0//2

>

� 23

Q̀5d

�

kr!.T Q̀.E/ � T Q̀.E
0//k2

1:

(3.20)

Taking Q̀ D C logL, this implies that

kr!.T Q̀.E/ � T Q̀.E
0//k2

1 6 C1.C logL/.5�2ˇ/d : (3.21)
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So, provided ˇ > 5=2, we find that the bound (3.21) implies that the r!T Q̀.E/ is

almost collinear with r!T Q̀.E
0/. This contradicts the lower bound (2.7) as long as

�E � 4d > 0. Consequently, the probability of the second event is zero.

3. It follows from this, the partition of the probability space, and Lemma 3.4

that

P¹�0. Q̀; k1; k2/º 6
X

.i;j /2ƒ Q̀�ƒ Q̀n�

P¹�
i;j
0 . Q̀; k1; k2/º

6 Q̀2d
C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/ˇd

L2d
:

(3.22)

With Q̀ D C logL, we find the probability P¹�0. Q̀; k1; k2/º is bounded as

P¹�0. Q̀; k1; k2/º 6 C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/.2Cˇ/d

L2d
; (3.23)

Replacing Q̀ by 5 Q̀.
/, changing the constant C0, this completes the proof of

Proposition 3.1. �

In summary, Proposition 3.1 shows that

P¹�0.5 Q̀.
/; k1; k2/º �! 0 as L ! 0:

As a consequence of this and (3.10)–(3.12), there exist constants C0; C1 > 0 such

that for all L >> 0,

P¹.X`.IL.E// D k1/ \ .X`.JL.E
0// D k2/º

6 C1

� 1

L1�˛

�

2d C C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/.1Cˇ/d

L.2�˛/d
;

(3.24)

showing that P¹.X`.IL.E// D k1/\.X`.JL.E
0// D k2/º ! 0 asL ! 1, for any

integers k1; k2 D 1; : : : ; mk. This proves, up to the proof of the diffeomorphism

property of ', the main result (1.3).

3.5. Estimate of P¹�
i;j

0
. Q̀; k1; k2/º. Let �0. Q̀; k1; k2/; k1; k2 D 1; : : : ; mk be

the set of configurations described in (3.14). Similarly, for any pair of sites

.i; j / 2 ƒ Q̀�ƒ Q̀n�, the Jacobian determinant Jij .T Q̀.E; k1/;T Q̀.E
0; k2// is defined

in (3.15). We also defined events �
i;j
0 . Q̀; k1; k2/, for pairs .i; j / 2 ƒ Q̀ � ƒ Q̀n�,

in (3.16):

�
i;j
0 . Q̀; k1; k2/ WD �0. Q̀; k1; k2/ \ ¹! j Jij .T Q̀.E; k1/;T Q̀.E

0; k2// > �.L/º;

(3.25)
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where �.L/ > 0 has the value

�.L/ WD
�E � 4d

K.C logL/dˇ
; (3.26)

for some ˇ > 5
2
. We present an important technical lemma that is a simplification

of [12, Lemma 2.6].

Lemma 3.4. For all L large, there is a finite constant C0 > 0, independent of L,

so that

P¹�
ij
0 .

Q̀; k1; k2/º 6 C0

Kk�k2
1m

2mk

k

�E � 4d

.C logL/ˇd

L2d
;

for any ˇ > 5
2
.

Proof. 1. Since �
ij
0 .

Q̀; k1; k2/ � � is measurable and bounded, we can find a

compact set K � �
ij
0 .

Q̀; k1; k2/ so that

P¹�
i;j
0 . Q̀; k1; k2/nKº 6 C1L

�2d : (3.27)

We define the map 'W�
i;j
0 . Q̀; k1; k2/ ! R

2 by

'.!i ; !j / D .T Q̀.E; k1; !/;T Q̀.E
0; k2; !//:

This map is continuous so '.K/ � zIL.E/ � zJL.E
0/ is compact.

2. For each p 2 '.K/, we choose any element !ij .p/ 2 K in the pre-image

of p under '�1: !ij .p/ 2 '�1.p/ � K � �
i;j
0 . Q̀; k1; k2/. Because the Jacobian

of ' is bounded below at each point of '�1.p/, as follows from the definition

of �
i;j
0 . Q̀; k1; k2/, the Inverse Function Theorem states that there are open balls

U!ij .p/ � �
i;j
0 . Q̀; k1; k2/ and Vp � zIL.E/ � zJL.E

0/, with !ij .p/ 2 U!ij .p/ and

p 2 Vp so that the restriction ' to U!ij .p/ is a diffeomorphism with Vp. As

a consequence, the point !ij .p/ 2 K is the unique point in U!ij .p/ such that

'.!ij / D p so that such points are isolated points of K. It follows that '�1.p/ is

a discrete subset of K.

3. We can apply Harnack’s Curve Theorem [8] in order to obtain an upper

bound on the number of points in '�1.p/. In Section 2.3, we showed that T
Q̀
!.k1/

is a zero of a determinant constructed from the tensor product operatorH
k1

!; Q̀
. For

fixed E 2 R, this determinant defines the function

f
k1

E .!i ; !j / WD det.H
k1

!; Q̀
�E/
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that is a polynomial of degree at most m
k1

k
in each random variable !i and !j .

As such, the polynomial f
k1

E .!i ; !j / may be extended to R
2. For two distinct

energies e ¤ e0, we consider the polynomial

f
k1;k2

e;e0 .!1; !2/ WD Œf k1
e .!i ; !j /�

2 C Œf
k1

e0 .!i ; !j /�
2:

The Harnack Curve Theorem states that the maximum number of connected

components of the zero set of f
k1;k2

e;e0 is bounded above by max.m
2k1

k
; m

2k2

k
/. Each

of those connected components lying in K is necessarily zero dimensional by the

above diffeomorphism argument. Hence, since k1; k2 6 mk , the number of points

in the set '�1.p/ in K is bounded above by m
2mk

k
, independent of L.

4. The sets ¹Vpºp2'.K/ cover '.K/. Since '.K/ is compact, there is a finite

subcover ¹Vpt
ºN

tD1 so that

'.K/ �

N
[

tD1

Vpt
� zIL.E/ � zJL.E

0/:

The restriction of ' to U!ij .pt /, a diffeomorphism with Vpt
, is denoted by 'pt

. We

take intersections and relative complements to obtain a finite collection ¹Wmº of

disjoint sets so that

'.K/ �

zN
[

mD1

Wm D

N
[

tD1

Vpt
;

up to a set of Lebesgue measure zero, and where zN is a function of N , and each

Wm � Vpt
, for some index t . We can chooseWm so that it is in the domain of '�1

pt
.

5. We compute theP-measure of�
i;j
0 . Q̀; k1; k2/ by first computing the measure

of '�1
pt
.Wm/:

P¹'�1
pt
.Wm/º D

Z

'�1
pt

.Wm/

�.!i/�.!j / d!i d!j : (3.28)

Upon changing variables, we obtain

Z

'�1
pt

.Wm/

�.!i/�.!j / d!i d!j 6 jJac'�1
pt

jk�k2
1

Z

Wm

dE dE 0: (3.29)

It follows from (3.26) that the Jacobian jJac'�1
pt

j satisfies the bound

jJac'�1
pt
.T Q̀.!ij /;T

0
Q̀.!ij //j 6

K.C logL/ˇd

�E � 4d
: (3.30)
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Using this bound, the fact that the Wm are disjoint, and the fact that there are at

most m
2mk

k
isolated points in '�1.p/, for p 2 '.K/, we find

P¹Kº 6 k�k2
1m

2mk

k
.max

n
jJac'�1

n j/
h

zN
X

mD1

jWmj
i

6
K.C logL/ˇd

�E � 4d
k�k2

1m
2mk

k
k zIL.E/ � zJL.E

0/k

6
Kk�k2

1m
2mk

k

�E � 4d

.C logL/ˇd

L2d

(3.31)

Finally, we have

P¹�
i;j
0 . Q̀; k1; k2/º 6 P¹Kº C P¹�

i;j
0 . Q̀; k1; k2/nKº; (3.32)

so the result follows from (3.31) and the fact thatP¹�
i;j
0 . Q̀; k1; k2/nKº isO.L�2d /.

�

4. Asymptotically independent random variables: Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. To prove that �!
E .I / and �!

E 0.J /

are independent, we recall that the limit points �!
E are the same as those obtained

from a certain uniformly asymptotically negligible array ([9, Proposition 4.4]).

To obtain this array, we construct a cover of ƒL by non-overlapping cubes of

side length 2` C 1 centered at points np. We use ` D ŒL˛�, where .˛; ˇ/ satisfy

0 < ˛ < 1 and ˇ > 5
2
. The number of such cubes ƒ`.np/ is

NL WD Œ.2LC 1/=.2`C 1/�d :

The local Hamiltonian isH!
p;`

. The associated eigenvalue point process at energy

E is denoted by �!
E;`;p

. We define the point process �!
E;ƒL

D
PNL

pD1 �
!
E;p;`

. For a

bounded interval I � R, we define the local random variable

�!
E;`;p.I / WD Tr.EH !

p;`
.IL.E///

and similarly �!
E 0;`;p

.J / for the scaled interval JL.E
0/. For p ¤ p0, the random

variables �!
E;`;p

.I / and �!
E 0;`;p0.J / are independent for any energiesE andE 0 and
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any bounded intervals I and J . We compute

P¹.�!
E;ƒL

.I / > 1/ \ .�!
E 0ƒL

.J / > 1/º

D

NL
X

p;p0D1

P¹.�!
E;`;p.I / > 1/ \ .�!

E 0;`;p0.J / > 1/º

D

NL
X

p;p0D1

P¹�!
E;`;p.I / > 1ºP¹�!

E 0;`;p0.J / > 1º C EL.E; E
0; I; J /;

(4.1)

where the error term is just the diagonal p D p0 contribution:

EL.E; E
0; I; J / D

NL
X

pD1

h

P¹.�!
E;`;p.I / > 1/ \ .�!

E 0;`;p.J / > 1/º

� P¹�!
E;`;p.I / > 1ºP¹�!

E 0;`;p.J / > 1º
i

:

(4.2)

If we now assume that jE � E 0j > 4d and E;E 0 2 †CL, then the first

term on the right side of (4.2) is bounded above by L�d .logL/.1Cˇ/d due to the

decorrelation estimate (1.3). The bound on the second probability on the right

of (4.2) is C 2
WL

�2d.1�˛/. It is obtained from the square of the Wegner estimate

P¹�!
E 0;`;p.J / > 1º 6 CW .`=L/

d D CWL
�d.1�˛/:

is bounded Since NL � .L=`/d D L.1�˛/d , we find that the second term

on the right of (4.2) above by C 2
WL

�d.1�˛/. Consequently, the error term

EL.E; E
0; I; J / ! 0 as L ! 1. Since the set of limit points �! and �! are

the same [9], this estimate proves that

lim
L!1

P¹.�!
E;ƒL

.I / > 1/ \ .�!
E 0;ƒL

.J / > 1/º D P¹�!
E .I / > 1ºP¹�!

E 0.J / > 1º;

(4.3)

establishing the asymptotic independence of the random variables �!
E .I / and

�!
E 0.J / provided jE �E 0j > 4d .

5. Bounds on eigenvalue multiplicity

The extended Minami estimate may be used with the Klein–Molchanov argu-

ment [11] to bound the multiplicity of eigenvalues in the localization regime. The

basic argument of Klein–Molchanov is the following. IfH! has at leastmk C1 lin-

early independent eigenfunctions with eigenvalueE in the localization regime, so

that the eigenfunctions exhibit rapid decay, then any finite volume operator H!;L
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must have at leastmk C 1 eigenvalues close to E for large L. But, by the extended

Minami estimate, this event occurs with small probability. The first lemma is a

deterministic result based on perturbation theory.

Lemma 5.1. Suppose that E 2 �.H/ is an eigenvalue of a self adjoint operator

H with multiplicity at leastmk C1. Suppose that all the associated eigenfunctions

decay faster than hxi�� , for some � > d=2 > 0. We define �L WD CL��C d
2 . Then

for all L >> 0, the local Hamiltonian HL WD �ƒL
H�ƒL

has at least mk C 1

eigenvalues in the interval ŒE � �L; E C �L�.

Proof. 1. Let ¹'j j j D 1; : : : ;M º be an orthonormal basis of the eigenspace for

H and eigenvalue E. We assume that the eigenvalue multiplicity M > mk C 1.

We define the local functions 'j;L WD �ƒL
'j , for j D 1; : : : ;M . These local

functions satisfy

1 � �L 6 k'j;Lk 6 1 (5.1a)

and

jh'i;L; 'j;Lij 6 �L .i ¤ j /: (5.1b)

It is easy to check that these conditions imply that the family is linearly indepen-

dent. Let VL denote the M -dimensional subspace of `2.ƒL/ spanned by these

functions.

2. As in [11], it is not difficult to prove that the functions 'j;L are approximate

eigenfunctions for HL:

k.HL � E/'j;Lk 6 �Lk'j;Lk: (5.2)

Furthermore, for any  L 2 VL, we have k.HL �E/ Lk 6 2�Lk Lk.

3. Let JL WD ŒE � 3�L; E C 3�L�. We write PL for the spectral projector

PL WD �JL
.HL/ and QL WD 1 � PL is the complementary projector. For any

 2 VL, we have kQL k 6 .3�L/
�1k.HL � E/QL k 6 .2=3/k k: Since

kPL k2 D k k2 � kQL k2 > .5=9/k k, it follows that PLWVL ! `2.ƒL/

is injective. Consequently,

dim RanPL D Tr.PL/ > dim VL D M > mk :

Redefining the constant C > 0 in the definition of �L, we find that H has at least

mk C 1 eigenvalues in ŒE � �L; E C �L�. �

The second lemma is a probabilistic one and the proof uses the extended

Minami estimate.
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Lemma 5.2. Let I � R be a bounded interval. For q > 2d , and any interval

J � I with jJ j 6 L�q, we define the event

EL;I;q WD ¹! j Tr.�J .H!;L// 6 mk for all J � I; jJ j 6 L�qº: (5.3)

Then, the probability of this event satisfies

P¹EL;I;qº > 1 � C0L
2d�q : (5.4)

Proof. We cover the interval I by 2.ŒLqjI j=2� C 1/ subintervals of length 2L�q

so that any subinterval J of length L�q is contained in one of these. We then have

P¹Ec
L;I;qº 6 .LqjI j C 2/P¹�J .H!;L/ > mkº: (5.5)

The probability on the right side is estimated from the extended Minami estimate

P¹�J .H!;L/ > mkº 6 CM .L
�qLd /2 D CML

2.d�q/; (5.6)

so that

P¹Ec
L;I;qº 6 CM .L

qjI j C 2/L2.d�q/ D CM .jI j C 1/L2d�q : (5.7)

This establishes (5.4). �

Theorem 5.1. Let H! be the generalized Anderson Hamiltonian described in

Section 1 with perturbations Pi having uniform rankmk . Then the eigenvalues in

the localization regime have multiplicity at most mk with probability one.

Proof. We consider a length scale Lk D 2k . It follows from (5.4) that the

probability of the complementary event Ec
Lk ;I;q is summable. By the Borel-

Cantelli Theorem, that means for almost every ! there is a k.q; !/ so that for

all k > k.q; !/ the event ELk ;I;q occurs with probability one. Let us suppose that

H! an eigenvalue with multiplicity at least mk C 1 in an interval I and that the

corresponding eigenfunctions decay exponentially. Then, by Lemma 5.1, the local

HamiltonianH!;Lk
has at leastmk C1 eigenvalues in the interval ŒE��L; EC�L�

where �L D CL�.ˇ� d
2 /, for any ˇ > 5d=2. This contradicts the event ELk ;I;q

which states that there are no more than mk eigenvalues in any subinterval J � I

with jJ j 6 L�q since we can find q > 2d so that ˇ � q
2
> q. �

Further investigations on the simplicity of eigenvalues for Anderson-type mod-

els may be found in the article by Naboko, Nichols, and Stolz [18], Mallick [13],

Mallick and Krishna [14], and Mallick and Narayanan [15]. Mallick [13] proves
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that the singular spectrum is simple for a class of Anderson models with higher

rank perturbation extending the results of Naboko, Nichols, and Stolz [18].

Mallick and Krishna [14] prove that, for higher rank Anderson models with the

single site potential having support in the whole real line, the Minami estimate

implies simplicity of the pure point spectrum away from the continuous spec-

trum. They a also show that in the case of higher multiplicity spectrum the spec-

tral statistics cannot be Poisson but must be compound Poisson. Mallick and

Narayanan [15] prove that higher rank models on some graphs have eigenvalues

of higher multiplicity.

6. Decorrelation estimates for the discrete alloy-type model

In this section, we prove decorrelation estimates for the nonsign definite alloy

model studied by Tautenhahn and Veselic̀ [20]. As above, these imply the asymp-

totic independence of local eigenvlaue statistics associated with two energies in

the localization regime sufficiently far apart. The discrete random Schrödinger

operator acting on `2.Zd / is described by

H! D L C V!; (6.1)

where L is the finite-difference Laplacian, and the random potential V! is defined

by

V!.m/ WD
X

n2Zd

!nam�n: (6.2)

The potentials at two sites, V!.m/ and V!.n/, are independent only if kn�mk >

diam a. Furthermore, the rank of V!.m/ is j supp aj. The single-site potential a

and random variables .!k/ satisfy the following hypotheses.

Hypothesis 1. The single-site potential a is a real, compactly supported function

aWZd ! R with a0 > 0 satisfying the condition

0 <
X

n2Zd n¹0º

janj 6 a0: (6.3)

Given a single-site potential a, we define a parameter ı > 0 by:

ı WD

P

m¤0jamj

a0

< 1; (6.4)

Hypothesis 2. The single-site potential a is such that the parameter ı > 0.



84 P. D. Hislop, M. Krishna, and Ch. Shirley

The Fourier transform OaWTd D Œ0; 2�/d ! C, is defined by

Oa.�/ WD
X

k2Zd

ei� �kak .� 2 T
d /;

Hypothesis 3. The Fourier transform Oa of the single-site potential a is never zero:

Oa.�/ ¤ 0, for all � 2 T
d .

Hypothesis 4. The family of random variables .!m/ are iid random variables with

a common, compactly supported density � 2 W 2;1.R/with support � � Œ�M;M�,

for some 0 < M < 1.

We note that the usual rank one Anderson model corresponds to am D a0ım0

so a is supported at a single point and ı D 0. In the case considered here, we will

always assume that ı > 0 and the single site potential a has compact support. In

particular, there is no restriction on the sign of the terms am.

Let us write

m WD
X

n

an > a0.1� ı/ > 0: (6.5)

It follows from standard methods that the almost sure spectrum of H! is equal

to Œ�2d; 2d �C m � supp !0. In particular, the almost sure spectrum is a union of

intervals and contains at least two intervals I1; I2 such that dist.I1; I2/ > 4dCmc,

for some 0 < c 6 2M , only depending on supp!0. We always assume that the

constant .M; c; ı/ satisfy the condition

cM�1.1� ı/2 � 2ı.1C ı/ > 0: (6.6)

Under this condition, we extract from [20, Corollary 3.4] the following Minami

estimate (M): There exists C > 0 such that for all interval I 2 R, we have

P .Tr X`.I / > 2/ 6 C jI j2`2 (6.7)

Although not explicitly stated in [20], the Minami estimate (6.7) and the

method of Klein–Molchanov [11], presented in Section 5, allow us to prove

that the eigenvalues of the alloy model (6.1)–(6.2) are almost surely simple. So

although the rank of a is greater than one, the standard Minami estimate holds

implying simplicity of the eigenvalues in the localization regime and Poisson

statistics.

We now turn to the proof of the decorrelation estimates, Proposition 1.1, for

the random alloy model assuming (6.6). Because of the Minami estimate (6.7),

we may take mk D 1.
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We take E;E 0 2 †CL and such that jE �E 0j > 4d . We may restrict ourselves

to those configurations ! such there is one eigenvalue in IL.E/ and one in JL.E
0/

and such that the distance with the rest of the spectrum of H!;` is greater than

.L logL/�d . By the Wegner estimate, this is possible with probability greater

than 1�.`=.L logL//d . Let us writeE`
j .!/ andE`

k
.!/ these two eigenvalues with

normalized eigenvectors u`
j and u`

k
. We note that u`

j .m/; u
`
k
.m/ D 0, if m … ƒ`.

The results of Section 2.1 hold with k1 D 1, k2 D 1, and T`.E; 1; !/ D E`
j .!/

and T`.E
0; 1; !/ D E`

k
.!/.

The first main difference appears in the variational formulas of Section 2.2, in

particular, the lower bound (2.7). In the alloy case, the gradients of the eigenvalues

are not normalized. We prove the following lower bound:

Lemma 6.1. There exists a finite constantK > 0, depending only onM D sup!0,

and ı defined in (6.4), such that















r!E
`
j .!/

kr!E
`
j .!/k1

�
r!E

`
k
.!/

kr!E
`
k
.!/k1
















1

> K

Proof. By the Feynman-Hellmann formula we have

@!n
E`

j .!/ D
X

m2Zd

amju`
j .mC n/j2 (6.8)

from which it follows that

j@!n
E`

j .!/ � a0ju`
j .n/j

2j 6

X

m¤0

jamjju`
j .nCm/j2: (6.9)

This implies that the L1-norm of the gradient of E`
j .!/ satisfies

jkr!E
`
j .!/k1 � a0j 6

X

n2Zd

X

m¤0

jamjju`
j .nCm/j2 6

X

m¤0

jamj: (6.10)

Therefore, one has

a0.1 � ı/ 6 kr!E
`
j .!/k1; kr!E

`
k.!/k1 6 a0.1C ı/; (6.11)

and

jkr!E
`
j .!/k1 � kr!E

`
k.!/k1j 6 2

X

m¤0

jamj 6 2ıa0: (6.12)

It also follows from the Feynman-Hellmann formula that

! � .r!E
`
j .!/ � r!E

`
k.!// D .Œ� �E`

j .!/�uj ; uj / � .Œ� � E`
k.!/�uk; uk/

D .�uj ; uj / � .�uk ; uk/C .E`
k.!/ �E`

j .!//;
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so that

Mkr!E
`
j .!/ � r!E

`
k.!/k1

> j! � .r!E
`
j .!/ � r!E

`
k.!//j

> jE � E 0j � 4d > mc;

where m > 0 is defined in (6.5). We can now finally estimate

r!E
`
j .!/

kr!E
`
j .!/k1

�
r!E

`
k
.!/

kr!E
`
k
.!/k1

D
kr!E

`
k
.!/k1r!E

`
j .!/ � kr!E

`
j .!/k1r!E

`
k
.!/

kr!E
`
j .!/k1kr!E

`
k
.!/k1

D
kr!E

`
k
.!/k1Œr!E

`
j .!/ � r!E

`
k
.!/�C Œkr!E

`
k
.!/k1 � kr!Ej k1�r!E

`
k
.!/

kr!E
`
j .!/k1kr!E

`
k
.!/k1

;

(6.13)

so that















r!E
`
j .!/

kr!E
`
j .!/k1

�
r!E

`
k
.!/

kr!E
`
k
.!/k1
















1

>
1

kr!E
`
j .!/k1kr!E

`
k
.!/k1

.kr!E
`
j .!/ � r!E

`
k.!/k1kr!E

`
k.!/k1

� jkr!E
`
k.!/k1

� kr!E
`
j .!/k1jkr!E

`
k.!/k1/

>
mcM�1.1� ı/ � 2ı.1C ı/a0

.1C ı/2

> a0

cM�1.1� ı/2 � 2ı.1C ı/

.1C ı/2
> 0;

(6.14)

giving an explicit formula for the constant K > 0 in the lemma. �

We also compute

X

n2Zd

@!n
E`

j .!/ D
X

n2Zd

@!n
E`

k.!/ D m > 0; (6.15)

for the constant m > 0 defined in (6.5), and

X

n2Zd

@!n
E`

j .!/

kr!n
E`

j .!/k1

C
@!n

E`
k
.!/

kr!E
`
k
.!/k1

>
2m

a0.1� ı/
> 2: (6.16)
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Therefore, it follows that
















r!E
`
j .!/

kr!E
`
j .!/k1

C
r!E

`
k
.!/

kr!E
`
k
.!/k1
















1

> 2: (6.17)

To complete the proof of the decorrelation estimate (1.3), we note that the

reduction of Section 3 holds for the alloy-type model. It remains for us to prove

the analog of Proposition 3.1 for the alloy-type model.

Proposition 6.1. Let E;E 0 2 †CL be two distinct energies with jE � E 0j > 4d .

For any bounded intervals I; J � R, we define IL.E/ WD L�dI C E and

JL.E
0/ WD L�dJ C E 0, as above. We write X`.IL.E/ WD TrEH!;`

.IL.E//, and

similarly X`.JL.E
0/. Then, for any ˇ > 5

2
, there exists a scale L0 > 0, so that for

any L > L0, there exists a constant C0 > 0 so that

P¹.X`.IL.E// D 1/ \ .X`.JL.E
0// D 1/º 6 C0

Kk�k2
1

�E � 4d

.C logL/.2Cˇ/d

L2d
:

(6.18)

Lemma 6.1 allows us to write the analog of

max
i¤j 2ƒ`

Jij .E
`
j .!/; E

`
k.!//

2
>

� 23

`5d

�
















r!E
`
j .!/

kr!E
`
j .!/k1

�
r!E

`
k
.!/

kr!E
`
k
.!/k1
















2

1

> K2
� 23

`5d

�

;

(6.19)

where K > 0 is the constant defined in (6.14). Consequently, an estimate of the

form (3.21) holds for the alloy-type model, and the probability that the normalized

gradients are collinear is zero.

With regard to Lemma 3.4, we mention that because of the support of the

single-site function a, the determinant fE .!j ; !k/ D det.H!;` � E/ is a polyno-

mial of degree j supp aj in each random variable !j and !k. Hence, the Harnack

Curve Theorem states that the number of connected components in the zero set of

fE is bounded above by j supp aj2. By the argument in the proof of Lemma 3.4,

the number of points in '�1.p/, for any p 2 K, is bounded above by j supp aj2.

As this number is independent of L, the proof concludes as in Section 3.2.
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