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Spectral analysis

on Barlow and Evans’ projective limit fractals
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Abstract. We review the projective limit construction of a state space for a Markov process
use by Barlow and Evans. On this state space we construct a projective limit Dirichlet form
in a process analogous to Barlow and Evan’s construction of a Markov process. Then
we study the spectral properties of the corresponding Laplacian using the projective limit
construction. For some examples, such as the Laakso spaces and a Sierpiński pâte à choux,
one can develop a complete spectral theory, including the eigenfunction expansions that are
analogous to Fourier series. In addition, we construct connected fractal spaces isospectral
to the fractal strings of Lapidus and van Frankenhuijsen. Our work is motivated by recent
progress in mathematical physics on fractals.
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1. Introduction

Analysis on projective, or inverse, limit spaces is an active area of current research
[30, 31, and references therein]. We study symmetric regular Dirichlet forms [33,
37] on the fractal-like spaces F1 constructed in [21]. Our motivation primarily
comes from applications in mathematical physics, see [2, 1, 3, 4, 5, 6, 32, 42,
47, and references therein]. In particular, [6] shows that explicit formulas for
kernels of spectral operators, such as heat kernel and Schroödinger kernels, can
be obtained for these types of fractal spaces. The main results of our paper,
Theorems 6.1 and 6.2, deal with the spectrum and the spectral resoltion of the
Laplaican on the Barlow–Evans type projective limit space.

Barlow and Evans in [21] used projective limits to produce a new class of
state spaces for Markov processes. They also construct a projective limit Markov
process by taking the projective limit of a sequence of compatible resolvent opera-
tors. We shall build, in a similar manner, a projective sequence of Dirichlet forms
which we will then show have a non-degenerate limit. The projective sequences
are built from a base Dirichlet space, that is a metric measure space equipped with
a Dirichlet form together with its domain and a sequence of “multiplier spaces.”
We will show that for reasonable base and index spaces one can develop a com-
plete spectral theory of the associated Laplace operators, including formulas for
spectral projections, utilizing the tools of Dirichlet form theory on the projective
limit space, F1. The characterization of the spectra of the Laplacians presented
here is a generalization of those obtained previously by the first author for Laakso
spaces in [66, 67]. It is worth noting that the construction of F1 in this paper
is the same as that in [21] and while the analytic apparatus is different (Dirichlet
forms vs. resolvents) the constructions are in the same spirit.

Given a measure space on which one has a Laplacian it is natural to study
the spectrum. As the measure space becomes more complicated this task can
become very difficult. On fractal spaces such as the Sierpiński gasket and carpet
this problem has been extensively studied [70, 18, 19, 53, 54]. For finitely ramified
self-similar highly symmetric fractals a complete spectral analysis is possible
although rather complicated, see [13, 14] and references therein. Moreover, it
is possible to extend this kind of spectral analysis to finitely ramified fractafolds,
see [70, 71, 49, 50, 72], that is to metric measure spaces that have local charts from
open sets of a reference fractal as opposed to R

d . This is one way of obtaining
new examples from old, including isospectral fractafolds. The projective limit
construction provides yet another way of controllably obtaining new measure
spaces and in this paper we examine how the spectral data transfers to the limit
space from the base space.



Spectral analysis on Barlow and Evans’ projective limit fractals 93

The main goal of this paper is an understanding of the spectrum of a class
of Laplacians. We have found it more straight forward to work in terms of
the associated Dirichlet forms. This is particularly noticeable in Definition 3.3,
where the domain of a Dirichlet form is easier to describe than the domain of the
corresponding Laplacian.

We discuss in the final section of this paper how the projective limit construc-
tion can produce connected fractals which are isospectral to a given fractal string
(see [59] and references therein). This makes it possible to make a connection
between Laplacians and spectra on fractal strings and on connected fractals in a
natural way. The actual analysis of heat kernels on specific fractals is beyond the
scope of this paper. Determining heat kernel estimates for Laplacians on fractal
spaces has a long tradition (see for instance, [8, 9, 10, 16, 17, 20, 22, 68, 38]).
For example Laakso spaces have Gaussian heat kernel estimates while Sierpiński
gasket-like fractals have sub-Gaussian estimates often depending on geometric
conditions.

One note of caution, our analysis of fractals defined as projective limits is an
entirely intrinsic analysis on abstractly defined objects. Even in the simplest ex-
amples, diamond fractals and Laakso spaces, the limit space is not bi-Lipschitz
embeddable in any finite dimensional Euclidean space, [56, 57]. However dia-
mond fractals and Laakso spaces provide a useful set of examples for a general
theory which attempts to reprove the main results of differential geometry on pos-
sibly fractal spaces with regular Dirichlet forms, see [44, 45, 46, 43, 41].

We begin in Section 2 with a description of simple representative examples, the
diamond fractal Figure 1 and Laakso spaces. These types of fractals recently were
used as models for graphs which allow perfect quantum state transfer in quantum
information theory, see [35, 62, 63, and references therein], which is related to
[23, 24, 29, 11]. The definitions of more general approximating sequences are
given in Section 3. In Sections 4 and 5 we provide the background on projective
systems of measure spaces along with the limiting procedure for the Laplacians
on each approximating measure space. Section 6 contains the main results of the
paper which give a decomposition of the spectrum of the Laplacian on the limit
space. Then in Section 7 we describe three classes of examples of spaces that can
be constructed with this method.

Acknowledgments. The authors thank Eric Akkermans, Gerald Dunne, Michel
Lapidus, and Jean Bellisard for many useful conversations and Jean Bellisard
especially for the name and inspiration for Sierpiński pâte à choux example.
The authors are very grateful to an anonymous referee for helpful comments and
suggestions.
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2. First examples

Our simplest example is the diamond fractal on Figure 1 with the similarity and
spectral dimensions equal to 2, when understood in the intrinsic sense. This is an
important example in the mathematics and physics literature, see [29, 25, 39, 51, 3,
60, 61, 40, 64, 73]. The spectrum of the Laplacian of the discrete approximations
was completely analyzed in [13, Section 7] using the spectral decimation method.
Approximations of the diamond fractals by quantum graphs ([12, 55, 26]), as well
as an explicit construction and a detailed study of the heat kernels, was recently
presented in [6, 5].

Figure 1. The diamond fractal [13, Section 7] with the similarity and spectral dimensions
dim D 2.

Another example is a Laakso space, which are presented in full formality in
Subsection 7.1. Consider the unit interval F0 D Œ0; 1�. On it is the usual Laplacian
� D � d2

dx2
or Dirichlet form E.f; g/ D

R 1

0
f 0g0 dx. It is a virtue for us that these

are very well understood analytic objects. In order the complicate this space we
are going take a number of copies ofF0 indexed by the setG1 D ¹0; 1º and identify
a closed subsetB1 � F0. In this case let us take B1 D

®

1
3
; 2

3

¯

. See Figure 2 for the
picture of this. The copies of F0 are glued together at the points of B1. Call this
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Figure 2. The first step in constructing a Laakso space with horizontal space F0 D Œ0; 1�,
and vertical set G1 D ¹0; 1º with identifications made on B1 D

®

1
3
; 2
3

¯

. The set on the
right is F1.

new space F1. This is what is done formally in Definition 3.1. It is worth noticing
that at this point we have a collection of line segments joined together at vertices.
Specifically it makes sense to define a Laplacian �1 on F1 by taking � d2

dx2
along

each edge and some conditions at the vertices to ensure that the Laplacian is self-
adjoint. Here we take the Kirchoff condition at all vertices that at each vertex the
sum of the normal derivatives along the edges coming into the vertex sum to zero.

Let �1 be Lebesgue measure on each line segment in F1 normalized so that
the total mass of �1 is 1. Thus there is L2.F1; �1/ so it is sensible to discuss
orthogonality of functions. Let �1WF1 ! F0 that collapses the two copies of
F0 onto a single one in the obvious way. Thus any function on F0 can, by pre-
composition with �1, be lifted to F1. Such a lift has the property that it has the
same values on both copies of F0, so an orthogonal function would have opposite
values on the upper and lower branches in Figure 2.

Now let us consider the eigenfunctions of the Laplacians on F0 and F1. Let
f be an eigenfunction of �0, which means it is cos.�nx/ for some n. Now
lift it to F1. By the comment in the previous paragraph the lift has the same
function values in each copy of F0 in F1 and along each of the edges in F1

it is an eigenfunction of �1 because we are using the same negative second
differentiation. It even has the same eigenvalue. So the spectrum of �1 contains
the spectrum of�0 plus possibly new values. To consider the new eigenfunctions
we are only interested in ones orthogonal to the lifted eigenfunctions so again by
the observation in the previous paragraph we know that they must have opposite
values on the upper and lower copies ofF0. Thus they must have the function value
of 0 at the points of B1 where the two copies overlap. Look again at Figure 2. If
we look for functions which are 0 at the inner two vertices, satisfy the Kirchoff
matching condition at all vertices, have opposite values on the upper and lower
branches, and that they are eigenfunctions of �1 then they have to be piecewise
trigonometric functions on each edge. But we can further see that the vertices split
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F1 into three pieces. We could have an eigenfunction that is non-zero only on the
left-hand “V” or on the right-hand one, or only non-zero on the central “loop.” But
each of these is built from eigenfunctions of �0 on subdomains of F0 where the
gluing points allow discontinuities of f 0 so there can be localized eigenfunctions.

What has just been described is the one-step process in Theorem 3.1 written
for Laplacians rather than for Dirichlet forms. Section 5 discusses in great detail
the orthogonality arguments to split “new” eigenfunctions from ”old” and how
one might take a limit as this process is repeated indefinitely. Laakso spaces are a
particularly nice example for illustrating this process, as we have just used them,
because the approximating spaces are all collections of line segments and the
operators on them are just differentiation along the line segments. If one wanted to
see a more involved example there is the Sierpiński pâte à choux in Subsection 7.2.
In this situation instead of using F0 D Œ0; 1� we use F0 is a standard Sierpiński
gasket. The set B1 where the gluing happens at the first left is shown in Figure 4.
In this situation we have instead of line segments making up F1 we have subsets
of the Sierpiński gasket which are similar to the whole gasket. Fortunately we
know (cf. [70]) that on the Sierpiński gasket there are eigenfunctions which are
supported on exactly these subsets and that by matching a positive and a negative
copy any necessary matching conditions are satisfied. Thus the exact same process
could be done for the Sierpiński pâte à choux as for the Laakso space. That is the
point of this unified framework.

3. Definitions

The following definitions are essentially repeated from [21].

LetF0 be a locally compact, second-countable, Hausdorff space with a �-finite
Borel measure�F0 . In addition we assume there is a sequence of compact, second-
countable, Hausdorff spaces Gi for i � 1 with Borel probability measures �Gi .
The measures �F0 and �Gi are all assumed to be Radon measures with full
support.

We call F0 the horizontal base space, and callGi the vertical multiplier spaces,
see Figure 2.

Inductively we define a sequence of locally compact topological measure
spaces and maps between them as follows (refer to Figure 3). Suppose that Fi�1

for i � 1 is defined as a locally compact, second-countable, Hausdorff space and
Bi � Fi�1 is a closed subset.
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Figure 3. The sequence of spaces and the maps between them in Definition 3.1.

Definition 3.1. Set
Fi D ..Fi�1 n Bi / �Gi /

[

Bi

and

�i .x; g/ D

´

.x; g/ if x 2 Fi�1 n Bi

x if x 2 Bi :

The space Fi is topologized by the map �i , which means that a subset of Fi is
open if and only if its �i -preimage is open in Fi�1 �Gi .

The maps  i are the natural projections Fi�1 � Gi ! Fi�1 and define
�i D  i ı ��1

i WFi ! Fi�1. Alternatively �i can be defined by

�i .x; g/ D x if x 2 Fi�1 n Bi ;

�i.x/ D x if x 2 Bi :

Definition 3.2. Given �F0 We inductively define measures �Fi on Fi for i � 1

by
�Fi .�/ WD .�Fi�1 � �Gi /.�

�1
i .�//:

The measure �Fi is defined on the Borel �-algebra generated by the above defined
topology on Fi .

The sequence of spaces and associated maps ¹Fi ; Gi ; �i ; �i ;  iº will be called
a Barlow–Evans sequence. We also assume that the sequence of measures �Fi

defined above is fixed. Note that �i is an open map because  i is open by virtue
of it being a projection.

Since Fi is locally compact, second-countable, and Hausdorff the measures
�Fi are also Radon measures with full support. Note that if �F0 is a finite measure
with mass j�F0 j then all�Fi have the same total mass since j�Gi j D 1 for all i � 1.
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For the rest of the paper a space Fi will be a member of a Barlow–Evans
sequence with all the associated components assumed to exist. For any i D 0;

1; : : : we shall denote the L2 norm on functions over Fi by k � ki . Below F1 and
�F1

will be defined and this convention will apply to them as well. These norms
should not be confused for the Lp norm which are not used in this paper except
for p D 2.

If f is a function on Fi then ��i f is a function on Fi�1 �Gi defined by

��i f D f ı �i :

Similarly for ��i and  �i . We shall need the following technical statement to
properly describe the function spaces that will be used later.

Lemma 3.1. Let A � Fi . Then A is compact if and only if ��1
i .A/ is compact.

Also B � Fi�1 is compact if and only if ��1
i .B/ is compact.

Proof. The result follows from the topologies of Fi and Fi�1 � Gi being related
through �i and a basic compactness argument. �

We will use C0ŒX� to denote the space of continuous functions with compact
support.

Corollary 3.1. For all i � 1, if f is a function on Fi , then

f 2 C0ŒFi � () ��i f 2 C0ŒFi�1 � Gi �:

Proof. The equivalence of continuity is immediate from the quotient topology on
Fi . The equivalence of the compact support claims follows from Lemma 3.1. �

Following Definitions 3.1 and 3.2, we consider the spaces L2.Fi ; �Fi / with
the norms k � ki for all i on which we now define quadratic forms, which will be
shown in Theorem 3.1 to be Dirichlet forms.

Definition 3.3. Given a regular Dirichlet form .E0;F0/ on L2.F0; �F0/ with a
core F0 � C0ŒF0� define inductively quadratic forms on L2.Fi ; �Fi / as follows.

First, we inductively define the cores of continuous functions

Fi D

´

f 2 C0ŒFi �

ˇ

ˇ

ˇ

ˇ

��i f .x; g/ D
Pn

kD1 fk.x/hk.g/;

fk 2 Fi�1; hk 2 C.Gi/

µ

and then we define

Ei.f; h/ WD

Z

Gi

Ei�1.�
�
i f .�; g/; �

�
i h.�; g//d�Gi .g/; f; g 2 Fi : (1)
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After that we define Fi as the completion of Fi in the norm
p

Ei .�/C k � ki . Note
that

Fi � yFi D

´

f 2 L2.Fi ; �Fi /

ˇ

ˇ

ˇ

ˇ

ˇ

��i f .�; g/ 2 Fi�1 for �Gi a.e., g 2 Gi ;
R

Gi
Ei�1.�

�
i f .�; g/; �

�
i f .�; g//d�Gi .g/ < 1

µ

and so Ei is well defined onFi provided that .Ei ;Fi/ is closable (see Theorem 3.1).
The measurability of Ei�1.�

�
i f .�; g/; �

�
i f .�; g// as a function of g follows

from the lower semi-continuity of the map f 7! Ei�1.f; f / for f 2 Fi�1.

The relationship between Fi and yFi will be a delicate one where in many
instances it will be possible to prove equality. It is not obvious how to do so
in complete generality though.

Note that ��i f is a function in two variables, one along Fi�1 and another
along Gi . So this definition can be read as applying Ei�1 to ��i f for almost every
element of Gi and then integrating over Gi . Before examining the properties of
.Ei ;Fi/ to ensure that it is really a Dirichlet form we first verify that it is well
defined.

Lemma 3.2. If .Ei�1;Fi�i/ is regular for i � 1, then Fi is a dense subalgebra of

C0ŒFi �.

Proof. Since Fi consists of functions on Fi whose pull back to Fi�1 � Gi are
continuous with compact support then by Cor 3.1 Fi � C0ŒFi �. Density follows
from an application of the Stone–Weierstrass Theorem for locally compact spaces
[34, Chapter V, Cor. 8.3]. Note that Fi is an algebra of real valued functions so it
remains only to show that for all x 2 Fi there exists a f 2 Fi such that f .x/ ¤ 0

and that Fi separates points. Since Ei�1 is a regular Dirichlet form there exists
f 2 Fi�1 \ C0ŒFi�1� so that f .�.x// > 0 and ��i f 2 Fi .

Let z1; z2 2 Fi be distinct points. Then there exists .xk; gk/ 2 Fi�1 � Gi for
k D 1; 2 such that �.xk; gk/ D zk Because z1 ¤ z2 it follows that x1 ¤ x2 or
g1 ¤ gk , this is an inclusive “or” so it is possible that both coordinates a distinct.
If x1 ¤ x2 then there exists a f 2 Fi�1 \ C0ŒFi�1� such that f .x1/ ¤ f .x2/. In
this case ��i f 2 Fi is a separating function for the points z1 and z2. If x1 D x2 but
g1 ¤ g2 there are two sub-cases xk 2 Bi or xk 62 Bi . If xk 2 Bi then this forces
g1 D g2 so this case cannot happen by the structure of a Barlow–Evans sequence.
Suppose then that x1 D x2 62 Bi and g1 ¤ g2. Such a combination of xk and gk

imply that x1 is in some open connected component of Fi�1 nBi , call it S . By the
regularity of Ei�1 there exists f 2 Fi�1 \C0ŒFi�1� that is positive at x1 and zero
on SC � Fi�1. By Urysohn’s Lemma there exists h 2 C0ŒGi � such that h.g1/ D 0



100 B. Steinhurst and A. Teplyaev

and h.g2/ D 1. Then f .x/h.g/ is zero on Bi � Gi so it is the lift of a continuous
compactly supported function on Fi which by construction is in Fi . �

Theorem 3.1. If .F0;F0/ is a regular Dirichlet form with core F0 � C0ŒF0�, then

.Ei ;Fi/ are closable forms whose closures are the regular Dirichlet forms .Ei ;Fi/

for all i � 0. Moreover, if .E0;F0/ is strongly local, then .Ei ;Fi/ are strongly local

as well.

The proof of this theorem is standard and is only sketched below. We also
present some intuitive arguments illustrate the situation. One feature of a Barlow–
Evans sequence that makes the proof of this theorem more complicated is that the
domains Fi are not nested as subsets of the same background set. The perspective
of nested subspaces will take the notation of Section 5, and then it involves the use
of the projective limit of the Fi and �Fi , which are not necessary for the proof of
this theorem.

Proof. We proceed by induction. The base case is the first hypothesis of the
theorem. The hypothesis that F0 is a core for .E0;F0/ is automatically satisfied if
.E0;F0/ is a regular Dirichlet form.

Assume that .Ei�1;Fi�1/ is a closable bilinear form and that .Ei�1;Fi�1/ is
its smallest closed extension, or closure, which is a Dirichlet form. Definition 3.3
already defines .Ei ;Fi / as a bilinear, non-negative, and Markovian quadratic form,
which is closable. This easily follows from the product structure in the right hand
side of formula (1), and the fact that restricting a closable form to a subspace is a
closable form. The standard references are [33, 37] and [27, Section V.2] on the
products of Dirichlet forms.

If .Ei�1;Fi�1/ is a regular Dirichlet form then by Lemma 3.2 Fi is a dense
sub algebra of C0ŒFi � in the uniform topology. So by standard arguments Fi is a
dense subset of L2.Fi ; �Fi / so .Ei ;Fi/ is densely defined. Also by this lemma we
have that Fi \C0ŒFi � is uniformly dense in C0ŒFi �. Also by definition of Fi as the
closure in the

p

Ei .�; �/ C k � ki metric of Fi � C0ŒFi � we have that .Ei ;Fi/ is a
regular Dirichlet form with Fi � yFi .

Assume that .Ei�1;Fi�1/ is strongly local. Let u; v 2 Fi have disjoint supports
then ��i .u/.x; g/ and ��i .v/.x; g/ will also have disjoint supports. Consider

Ei.u; v/ D

Z

Gi

Ei�1.�
�
i u; �

�
i v/�Gi :

Since ��i u and��i v are continuous functions onFi�1�Gi we know that for a given
g 2 Gi that as functions of x 2 Fi�1 that ��i u.x; g/ and ��i v.x; g/ have disjoint
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supports (Lemma 3.1). Thus for all g 2 Gi Ei�1.�
�
i u; �

�
i v/ D 0 by locality and

consequently Ei.u; v/ D 0. Since Fi is a core for .Ei ;Fi / it is local if .Ei�1;Fi�1/

was. See also Theorem 3.1.2 and Problem 3.1.1 in [37]. �

Remark 3.1. While it will be useful to be able to characterize elements of ��i Fi

as elements of ��i
yFi it will be important to remember that these two spaces are

not in general the same.

The following is a precursor to the nesting of Fi that will be further developed
in the next section.

Corollary 3.2. The domains of the Dirichlet forms .Ei ;Fi / are compatible in the

sense that

��i Fi�1 � Fi :

Proof. Let f 2 Fi�1, then Ei .�
�
i f / D

R

Gi
Ei�1.f /�Gi D Ei�1.f / < 1: Also

��i f 2 L2.Fi / because Gi is compact and �Gi is a probability measure. �

4. Projective limits

The construction that is considered in this paper is a means of constructing state
spaces for symmetric diffusions via projective limits. That is, taking limits along
compatible sequences of topological spaces and producing a limit topological
space. More work is required to construct compatible sequences of metrics, mea-
sures, and Dirichlet forms. Barlow and Evans [21] considered this construction as
a way to produce exotic state spaces for Markov processes. Then [52] specialized
Barlow and Evans’ work to Laakso spaces [56].

Definition 4.1. Let
Q1

iD1 Fi have the product topology. For a Barlow–Evans
sequence the projective limit lim Fi , denoted by F1 is a subset of

Q1
iD1 Fi

with the subspace topology such that for any .x/1iD1 2 F1 �i .xi / D xi�1 and
the canonical projections ĵ W

Q

Fi ! Fj restrict to F1 and have the consistency
property:

�j ı ĵ D ĵ�1; j � 1:

Note that the topology on F1 is Hausdorff and second countable. It is also
locally compact [28, IX Sec 4]. We now turn to defining a measure on F1.
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Proposition 4.1 ([28, IX Section 4]). There exists a unique measure on F1
denoted �F1

if the masses of �Fi are uniformly bounded. Then �F1
satisfied

�Fi .A/ D �F1
.ˆ�1

i .A// (2)

for all A that are �Fi -measurable. Further more, if the �Fi are Radon measures

so is �F1
.

The existence and uniqueness claim in Theorem 2 in IX Section 4 in [28]. The
claim about the Radon property follows from Propositions 1-3.

Corollary 4.1. If �F0 is �-finite then there exists a unique �F1
on F1 which

satisfies Equation 2.

Proof. Since �F0 is �-finite there exists a partition of F0 such that each element
of the partition has finite measure. By partitioning F0 it follows that the lift of
the partition to Fi is also a partition where each piece has finite mass sets then
.Fi ; �Fi / is a �-finite measure space. Each member of the partition of Fi has the
same measure as the corresponding member of the partition of F0, so the masses
stay bounded in i . Apply Proposition 4.1 on each member of the partition starting
at F0 and then take �F1

to be their sum. �

We shall often have probability measures on Fi so that it will be possible to
consider directly the limit measure space .lim Fi ; �F1

/ rather than using this
Corollary. Note that theˆ�i are R-linear maps from Borel functions on Fi to Borel
functions on F1.

Proposition 4.2. Let closuniform represent the closure operation in the uniform

norm then

C0ŒF1� D closuniform

°

1
[

iD0

ˆ�i C0ŒFi �
±

:

Proof. As in the proof of Lemma 3.2 using the Stone–Weierstrass theorem. �

5. Projections and Laplacians

Having constructed Dirichlet forms on the approximating spaces, Fi , in Section 3
we now turn to constructing a Dirichlet form over the limit space, F1 which was
constructed in Section 4. Recall that the L2.FM ; �FM / norm is denoted by k � kM

for M D 0; 1; 2; : : : ;1. The existence of projective limits of Dirichlet spaces
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(L2 space equipped with a Dirichlet form and its domain) is briefly discussed
in [27]. We develop the existence for the sake of the accompanying notation which
is then used to describe the decompositions in Theorem 5.3. The decompositions
rely on the specific structure of the equivalence relations used in defining a
Barlow–Evans sequence and are not a general feature of projective systems of
Dirichlet spaces.

Definition 5.1. Given a Barlow–Evans sequence let E1 be the quadratic form on
F1 D lim Fi defined by

E1.ˆ
�
i u;ˆ

�
i u/ D Ei.u; u/

for all u 2 Fi for all i � 1. The domain of E1 is

F1 D clos
°

1
[

iD0

ˆ�i Fi

±

:

The closure is in the E
1=2
1 C k � k1 metric.

As in Section 3 we must show that this definition is suitable. Specifically that
E1 is closable and that the minimal closed extension is .E1;F1/. In the manner
of Section 3 we define

yF1 D clos
°

1
[

iD0

ˆ�i
yFi

±

:

The possible equality of F1 and yF1 will not be addressed in any generality. For
Laakso spaces it is known that they are the same, see [67] and Subsection 7.1.

By Corollary 3.2, the ˆ�i Fi are increasing linear subspaces of L2.F1; �F1
/

and
S

i�0ˆ
�
i Fi is a dense linear subspace of L2.F1; �F1

/. Notice that by the
relationship ˆ�i D ˆ�iC1 ı ��i we have that E1.ˆ�i u/ D E1.ˆ

�
iC1 ı ��i u/ for all

u 2 Fi . From this we see that the quadratic form
�

E1;
S

i�0ˆ
�
i Fi

�

is well defined.

Theorem 5.1. If .E0;F0/ is a regular Dirichlet form then the pair .E1;F1/ is a

regular Dirichlet form. Furthermore, if E0 is strongly local then E1 is strongly

local as well.

Proof. On
S

i�0ˆ
�
i Fi the form E1 is linear, positive, and has the Markovian

property. Suppose for the moment that
�

E1;
S

i�0ˆ
�
i Fi

�

is closable. Linearity

and positivity are maintained in the closure with respect to the E
1=2
1 C k � k1

metric. By Theorem 3.1.1 of [37] the Markovian property extends to the smallest
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closed extension of
�

E1;
S

i�0ˆ
�
i Fi

�

which is F1 by virtue of it being the closure
in the metric induced by the form E1 itself.

To show that
�

E1;
S

i�0ˆ
�
i Fi

�

is closable, one can employ the standard mono-
tonicity methods [65, Theorem S.14, page 373]. To make this construction more
concrete, note that all of the Gi are compact probability spaces, and

Q1
iD1Gi is

also a compact probability space with the product topology. For u 2
S

i�0ˆ
�
i Fi

there exists a j 2 N such that u D ˆ�j v for some v 2 Fj . Let gj 2
Qj

iD1Gi and
gjC 2

Q1
iDjC1Gi . Since �1 acts on F0 � G1 � � � � � Gj by taking the first two

coordinates and returning an elements of F1 � G2 � � � � � Gj upon which �2 has
a similar action we can compose �i let �j;1 D �j ı � � � ı �1. Then we can take
advantage of the structure of Barlow–Evans sequence:

E1.u/ D Ej .v/

D

Z

Qj

iD1
Gi

E0.�
�
j;1.v/.x; gj //d�Qj

iD1
Gi
.gj /

D

Z

Q1
iDjC1Gi

� Z

Qj

iD1

E0.�
�
j;1.v/.x; gj //d�Qj

iD1
Gi
.gj /

�

d�Q1
iDjC1Gi

.gjC/

D

Z

Q1
iD1Gi

E0..�
�
j;1.v//

0.x; gj // d�Q1
iD1Gi

.gj /

where .��j;1.v//
0.x; gj / is ��j;1.v/.x; gj / extended to a function of x, gj , and gjC

by declaring it constant in gjC. For functions in
S

i�0ˆ
�
i Fi the composition ��1;1

eventually stabilizes at some finite j so by the above we can write

E1.u/ D

Z

Q1
iD1Gi

E0.�
�
1;1.u/.x; g1C//d�Q1

iD1Gi
.gj /:

This is an analogous definition for E1 as was made for Ei as constructed from
Ei�1 in Theorem 3.1.

By Theorem 3.1.2 of [37], a local closable Markovian symmetric form .E;F/

on L2.X; �/ has the local property on its smallest closed extension if it has a core
that is a dense subalgebra of C0ŒX� and every compact set, K, has a pre compact
open neighborhood, G, such that there exists u 2 F such that u.x/ D 1 for all
x 2 K and u.x/ D 0 for all x 2 X n G. The existence of such a core is exhibited
by choosing it to be

S

i�0 Fi since all such functions are continuous by definition
and as was remarked above it is a dense sub algebra of C0ŒF1�. Let K � F1 be
compact. Set K 0 D ˆ0.K/ � F0. Since .E0;F0/ is a local regular Dirichlet form
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there exists an open set G0 � K 0 and u0 2 F0 such that u0.x/ D 1 for x 2 K 0 and
u0.x/ D 0 for x 2 F0 nG0. LetG D ˆ�0.G

0/ and u D ˆ�0u
0. G is pre compact since

F1 is locally compact. Because K � ˆ�1
0 .K 0/ we have u.x/ D 1 for all x 2 K

and similarly u.x/ D 0for all x 2 F1 nG. As in Theorem 3.1, Theorem 3.1.2 and
Problem 3.1.1 of [37] imply that if .E0;F0/ is strongly local then .E1;F1/ is as
well.

The regularity of .E1;F1/ comes from the fact that F1 is defined as the
closure of a set of continuous functions and Lemma 5.1 which says that those
continuous functions are also uniformly dense in C0ŒF1�. �

Logically the following lemma comes before the above theorem. The only
reason it is placed here is for the notation of �1;1 discussed in the theorem’s
proof.

Lemma 5.1. If .E0;F0/ is regular then F1 \ C0ŒF1� is a dense subalgebra of

C0ŒF1�.

Proof. It is clearly a subalgebra. We use the Stone–Weierstrass theorem in the
same manner as in Lemma 3.2. Choose z1 ¤ z2 2 F1. Then �1;1.z1/ and
�1;1.z2/ as functions on F0 � G1 � � � � differ in at least one coordinate. If that
coordinate is F0 then the same argument as in Lemma 3.2 can be used again to
show a pair of functions separating these two points. If the first coordinate in
which a difference occurs is Gj then by Theorem 3.1 implies that Ej�1 is regular
and then the proof of Lemma 3.2 again shows that there exists a pair of separating
functions. Hence by Stone–Weierstrass we have the proof. �

Theorem 5.2. If �i is the Laplacian generated by Ei and ĵ W lim
 �

Fi ! Fj the

continuous projection form the projective limit construction. Then

ˆ�i�1 Dom.�i�1/ � ˆ�i Dom.�i / for all i � 0:

Proof. For a general Dirichlet form .E;F/ with generator �, h is in Dom.�/ if
and only if there exists f 2 L2 such that

E.h; v/ D hf; viL2

for any v 2 F, and in this situation �h D f . It is sufficient to check that if u 2

Dom.�i�1/ then ��i u 2 Dom.�i/. Since Fi � yFi we have that ��i v.�; g/ 2 Fi�1
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for almost every g. Let u 2 Dom.�i�1/ and v 2 Fi . Then

Ei .�
�
i u; v/ D

Z

Gi

Ei�1.�
�
i �
�
i u; �

�
i v/.g/ d�Gi .g/

D

Z

Gi

Ei�1.u; �
�
i v/.g/ d�Gi .g/

D

Z

Gi

Z

Fi�1

�i�1u.x; g/ �
�
i v.x; g/ d�Fi�1.x/ d�Gi .g/

D

Z

Fi�1�Gi

�i�1u.x; g/ �
�
i v.x; g/ d.�Fi�1 � �Gi /.x; g/

D

Z

Fi

.��i �i�1u.x/ v.x/ d�Fi .x/:

Thus ��i .�i�1u/ D �i�
�
i u: So ��i u 2 Dom.�i /. �

Definition 5.2. For i � 1, given a Borel measurable f WFi ! R define the pro-
jections zPi WL

2.F; �Fi / ! L2.Fi�1; �Fi�1/ and Pi WL
2.Fi ; �Fi / ! L2.Fi ; �Fi /

by

zPi .f /.x/ D

Z

Gi

.��i f /.x; g/d�Gi .g/

and

Pi .f /.x/ D ��i

� Z

Gi

.��i f /.x; g/d�Gi .g/

�

D ��i
zPi .f /.x/:

These projections can be restricted to have domains C0ŒFi � or Fi as subspaces of
L2.Fi ; �Fi /. The domain will be made clear in each context.

The integral in this definition maps a function on Fi�1 � Gi to a function on
Fi�1 so that Pi takes functions on Fi and returns another function on Fi . Note
that Pi .f /.x/ D f .x/ for x 2 Bi because ��i f .x; g/ is constant overall values
of g if x 2 Bi . On the other hand zPi can be composed to project down several
levels, say from i to i D 3. Let …i .ˆ

�
i /
�1 projˆ�

i
.L2.Fi ;�Fi //, where projX is the

orthogonal projection in L2.F1; �F1
/ onto a closed subspace X , which is the

left inverse of ˆ�i . The families Pi , zPi , and …i satisfy the following relation for
f 2 L2.Fi ; �Fi /:

…i�1 ıˆ�i .f / D zPi .f /:
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The map …i has, for functions in
S

i�0ˆ
�
i Fi , a nice explicit form. Suppose

u 2
S

i�0L
2.Fi ; �Fi / then there exists a j 2 N and a v 2 L2.Fj ; �Fj / such

that u D ˆ�j v. Then

…iu D

8

ˆ

ˆ

<

ˆ

ˆ

:

zPj ı � � � ı zPiC1v if j > i;

v if j D i;

��i ı � � � ı ��jC1v if j < i:

Definition 5.3. Since C0ŒFi � and Fi have natural injections into L2.Fi ; �Fi / we
can set the following notation:

ker.Pi jL2.Fi ;�Fi // D Li

ker.Pi jC0ŒFi �/ D Ci

ker.Pi jFi / D F
0
i

The following three lemmas describe the behaviors of the projection Pi on
each of its three domains of interest.

Lemma 5.2. Let Pi be defined on L2.Fi ; �Fi / as above. Then

L2.Fi ; �Fi / D ��i .L
2.Fi�1; �Fi�1//˚ Li :

Moreover, h 2 Li if and only if ��i h.x; g/ satisfies

Z

Gi

��i h.x; g/ d�Gi D 0

for �FI�1
-almost every x 2 Fi�1.

Proof. The operators Pi is an orthogonal projection operators. The eigenspace
corresponding to the eigenvalue 1 is precisely those functions for which

Z

Gi

��i f .x; g/ d�Gi D ��i f .x; g/ for all x 2 Fi�1 and g 2 Gi .

These functions are in ��i .L
2.Fi ; �Fi //. The orthogonal complement is then the

kernel of the projection. �
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Lemma 5.3. Let Pi be defined on C0ŒFi �. Then

C0ŒFi � D ��i .C0ŒFi�1�/˚ Ci :

Moreover, h 2 Ci if and only if ��i h.x; g/ satisfies

Z

Gi

��i h.x; g/ d�Gi D 0

for all x 2 Fi�1.

Proof. Claim: zPi .C0ŒFi �/ � C0ŒFi�1�. Let f 2 C0ŒFi �. Since ��i f .x; g/ 2

C0ŒFi�1 � Gi � this reduces to whether continuity is preserved when integrating
over Gi , that is if

Z

Gi

��i f .x; g/ d�Gi .g/

is continuous in x 2 Fi�1. But since ��i f is a compactly supported continuous
function it is bounded and an application of the Lebesgue Dominated Conver-
gence Theorem provides the continuity. Now note that Ci D Li \ C0ŒFi � and
��i .C0ŒFi�1�/ D ��i .L

2.Fi�1; �Fi�1/ \ C0ŒFi �/. �

Lemma 5.4. Let Pi be defined on Fi . Then

Fi D ��i .Fi�1/˚ F
0
i :

Moreover, h 2 F
0
i if and only if ��i h.x; g/ satisfies

Z

Gi

��i h.x; g/ d�Gi D 0

for E.�/Ck�k2
i -almost every x 2 Fi . Moreover, the coreC.Fi /\Fi of the Dirichlet

form .Ei ;Fi / has the same decomposition.

Proof. On Fi , Pi is the orthogonal projection. Its range by the same arguments as
in Lemma 5.2 is ��i .Fi�1/which has also for the same reasons kernel F0i . The core
decomposes as a consequence of the first claim of this lemma and Lemma 5.3. �

Lemma 5.5. The generator of .E1;F1/, denoted �1, is the weak limit of

ˆ�i �i…i that is

…i .Dom.�1/ D Dom.�i/ and �i…i jDom.�1/ D …i�1
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for any i � 0. Furthermore for any f 2 Dom.�1/,

lim
i!1

ˆ�i �i…if D �1f

in L2.F1; �F1
/.

Proof. First �1 is the unique maximal self-adjoint operator on L2.F1; �F1
/

such that for all f 2 Dom.�1/ � F1 and g 2 F1 that

h�1f; gi D E1.f; g/:

The first claim is equivalent to projˆ�
i

.L2.Fi ;�Fi // Dom.�1/ � ˆ�i Dom.�i /: The
opposite inclusion is trivial. Observe that for f; g 2

S

i�0ˆ
�
i Fi that

E1.projˆ�
I

.L2.Fi ;�Fi //? f; projˆ�
i

.L2.Fi ;�Fi // g/ D 0;

and that
S

i�0ˆ
�
i Fi is dense inF1 so this extends to all ofF1. Also the projection

of elements of F1 onto ˆ�i L
2.Fi ; �Fi / are elements of ˆ�i Fi . Combining these

observations we have that for g 2 ˆ�i Fi � F1 and f 2 Dom.�1/ � F1

Ei .…if;…ig/ D E1.projˆ�
i

.L2.Fi ;�Fi // f; g/

D E1.f; g/ � E1.projˆ�
i

.L2.Fi ;�Fi //? f; g/

D h�1f; giL2.F1;�F1/ � 0

D h�1f; projˆ�
i

.L2.Fi ;�Fi //
giL2.F1;�Fi1 /

D hprojˆ�
i

.L2.Fi ;�Fi //�1f; projˆ�
i

.L2.Fi ;�Fi // giL2.F1;�Fi /

D h…i�1f;…igiL2.Fi ;�Fi /

since g D projˆ�
i

.L2.Fi ;�Fi // g. From this we have that

Ei.…if; g
0/ D h…i�1f; g

0iL2.Fi ;�Fi / for all g0 2 Fi ,

hence …if 2 Dom.�i / and �i…i D …i�1 on Dom.�1/.
The convergence in norm ofˆ�i �i…if D ˆ�i …i�1 D projˆ�

i
.L2.Fi ;�Fi //�1

follows from the fact that projˆ�
i

.L2.Fi ;�Fi // ! id as L2 operators. �

Definition 5.4. Let D00 D ˆ�0 Dom.�0/. Then inductively define D0i by

D0i D ˆ�i Dom.�i / \ D0?i�1:

The orthogonal compliment is taken in L2.F1; �F1
/. This implies that

ˆ�i Dom.�i / D

i
M

jD0

D0j :
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Theorem 5.3. Using the notation of Definition 5.3 we have the following decom-

positions:

L2.F1; �1/ D closL2.F1;�1/

�

ˆ�0L
2.F0; �F0/˚

�

1
M

iD1

ˆ�i Li

��

C.F1/ D closunif

�

ˆ�0C.F0/˚
�

1
M

iD1

ˆ�i Ci

��

F1 D closF1

�

ˆ�0F0 ˚
�

1
M

iD1

ˆ�i F
0
i

��

:

Proof. By definition L2.F1; �F1
/ is the completion of

S1
iD0ˆ

�
i L

2.Fi ; �Fi /

what is new is the direct sum decomposition. Let f 2 L2.F1; �F1/ then notice
that

f D .f � P1f /C ��1 .
zP1f / 2 L1 ˚ ��1L

2.F0; �F0/:

In general for f 2 L2.F2; �F2/ we would have

f D .f � P2f /C ��2 .
zP2f � P1

zP2f /C ��2�
�
1 .

zP1
zP2f /

2 L2 ˚ ��2L1 ˚ ��2�
�
1L

2.F0; �F0/:

Continuing by this method we have the direct sum expansion for L2.Fi ; �Fi / for
any i � 1. The L2.F1; �F1

/ limits of these expansions must then be all of
L2.F1; �F1

/ since they contain
S

i�0ˆ
�
i L

2.Fi ; �Fi /. The same argument works
for C.F1/ and F1. �

The domain of �1 can be decomposed into the direct sum of D0i , or as
Dom.�1/ \ Li or as Dom.�1/ \ F

0
i .

Lemma 5.6. The three direct sum decompositions of Dom.�1/mentioned above

agree, that is

D0i D Dom.�1/ \ˆ�i Li D Dom.�1/ \ˆ�i F
0
i

for i � 0 and L0 D L2.F0/ and F
0
0 D F0. Furthermore, the closures in the

graph-norm of �1jL1
iD0D

0
i

and of �1jS1
iD0ˆ�

i
Fi

, k � k2
1 C h�1�; �i are equal

to �1.

Proof. Because Fi � L2.Fi / we know that F0i � Li . This, together with the fact
that Dom.�1/ � F1, implies that Dom.�1/ \ˆ�i Li D Dom.�1/ \ˆ�i F

0
i .

For f 2 Dom.�1/ observe that ˆ�i …if 2 ˆ�i Dom.�i/ \ˆ�i L
2.Fi / as well

as in L2.F1/ so ˆ�f ! f in L2.F1/ and �1ˆ�i …if ! �1f in L2.F1/ as
i ! 1 thus �1 is the closure of its restriction to

S1
iD0ˆ

�
i Dom.�i/. �
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6. Main results

From the discussion in the previous section we can consider .�1;D0i / as a densely
defined operator on ˆ�i L

2.Fi / as a closed subspace of L2.F1; �F1
/, that is

D0i
L2.F1;�F1 /

D ˆ�i L
2.Fi ; �Fi / \ .ˆ�i�1L

2.Fi�1; �Fi�1//
?;L2.F1;�F1/:

However since D0i can be written as the intersection of two closed subspaces it is
itself closed in L2.F1; �F1

/ and we can drop the closure symbol.

Theorem 6.1. The spectrum of �1 is given by

�.�1/ D

1
[

iD0

�.�i/ D

1
[

iD0

�.�1jD0
i
/

Proof. We begin with the statement that

�.�n/ D �.�1jDn/ where Dn D

n
M

iD0

D0i .

Since the D0i are closed mutually-orthogonal subspaces of L2.F1; �F1
/ Dn is

a closed subspace and �1 is defined on it. Because Dn is the direct sum in
L2.F1; �F1

/ of only finitely manyD0i then �.�1jDn/ D
Sn

iD0 �.�1jD0
i
/. From

this the right hand equality in the statement follows.
Let z 2 �.�n/. Then by Lemma 5.5 .�n � z/ is not invertible on Dom.�n/.

Since .�1 � z/ agrees with .�n � z/ on ˆ�n Dom.�n/ � Dom.�1/ we have
that .�1 � z/ is not invertible. Hence �.�n/ � �.�1/ for all n � 0. So
�.�1/ �

S1
iD0 �.�i/. The other containment will take more work.

Suppose that z 2 �.�1/ and z 62
S1

iD0 �.�i/. Define

Bz WL2.F1; �F1
/ �! Dom.�1/

by
Bz D s � lim

i!1
ˆ�i .�i � z/�1…i :

Notice that Bz is linear since all of its components are. Also each are bounded
operators as well. For our choice of z the distance from z to

S1
iD0 �.�i / is positive

so ˆ�i .�i � z/�1…i are bounded linear operators with norm bounded uniformly
in i , so their limit is also bounded. That is, Bz is a bounded linear operator
on L2.F1; �F1

/. We claim that Bz is the inverse of .�1 � z/ contradicting
the assumption that z 2 �.�1/. Recall that …i is a bounded linear and hence
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continuous operator. Let f 2
S1

iD0ˆ
�
i Dom.�i /, then we have the following

point-wise limit statement on a dense subspace of the domain of �1 � z:

Bz.�1 � z/f D lim
n!1

ˆ�n.�n � z/�1…n lim
m!1

ˆ�m.�m � z/…mf

D lim
n!1

ˆ�n.�n � z/�1…nˆ
�
M .�M � z/…Mf

D ˆ�M .�M � z/�1.�M � z/…Mf

D f:

(3)

For large enough m limm!1ˆ
�
m.�m � z/…mf stabilizes to ˆ�M .�M � z/…Mf

then as n grows (3) will also stabilize for n � M . Then since�1 is a closed opera-
tor the claim extends to Dom.�1/. Finally by the decompositions in Lemmas 5.2
and 5.4 the last limit equals f . Similar calculations can be used to show that
.�1�z/Bz D Id . Thus there exists no z 2 �.�1/ that is not in

S1
iD0 �.�i/. �

In the standard theory of self-adjoint operators lie the spectral resolutions of
self-adjoint operators [58]. These spectral resolutions are orthogonal projection
valued measures over R supported on the spectrum of the operator they are
representing. For �1 let E� be the spectral resolution. Then

�1f D

Z

�.�1/

�dE�f:

Note that for each � 2 R,

E�WL2.F1; �F1
/ �! Dom.�1/;

where for f … Dom.�1/ the integral fails to converge. We also have the orthog-
onal projections Pi out of Dom.�1/.

From the previous discussion the following statement follows immediately.

Theorem 6.2. Let E� be a spectral projection operator for �1. Then for all

� 2 R and i 2 N

D0i \E�.Dom.�1// D E�D
0
i :

Similar statements could be made for L2.F1; �F1
/; F1, however we have

not developed the notation for these spaces corresponding to the D0i notation.

Corollary 6.1. Suppose that E0 is a local regular Dirichlet form. Assume that

�.�i jD0
i
/ � ŒMi ;1/ where limi!1Mi D 1 and �.�i / are all discrete. Then

�.�1/ D
S1

iD0 �.�n/.
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Proof. By Theorem 6.1,

�.�1/ D

1
[

iD0

�.�1jD0
i
/:

However for any compact interval Œ0; N �

�.�1/ \ Œ0; N � D Œ0; N �\

M
[

iD0

�.�1jD0
i
/

for someM D M.N/ by hypothesis. Since each of the �.�i/ D
Si

jD0 �.�1jD0
j
/

are discrete so is �.�1/ \ Œ0; N � for all N . �

The main point of this Corollary is that if the operators �i have spectral gaps
going to infinity then the closure in Theorem 6.1 adds no new points to the spec-
trum. There are many sufficient conditions for the two main hypotheses in Corol-
lary 6.1. For example when computing the spectrum of �1 for Laakso spaces in
Subsection 7.1 the spectrum of�i can be computed directly and explicitly so that
these hypotheses are straight forward to check. Also a metric measure space on
which the Faber-Krahn inequality [38] holds will satisfy the spectral gap hypoth-
esis. Also if the resolvents of �i are all known to be compact the spectral gap
hypothesis will hold.

7. Examples

The two main classes of example considered here are the Laakso spaces where the
horizontal space F0 is taken to be the unit interval and the Sierpiński pâte à choux
where F0 is a standard Sierpiński gasket. The pâte à choux is a new construction
suggested by Jean Bellisard.

7.1. The Laakso fractal. Laakso spaces were initially introduced in [56] as
the Cartesian product of a unit interval and a number of Cantor sets modulo an
equivalence realtion. In [67, 66] it was shown that they could also be constructed
using the projective limit construction presented originally in [21] and reiterated
above. Take F0 D Œ0; 1�, the unit interval. Let Gi D G D ¹0; 1º. Choose a
sequence ¹jlº

1
lD1

where jl 2 ¹j; j C 1º for some fixed integer, j , greater than
one. Define

dN D

N
Y

jD1

ji ; LN D
° i

dN

±dN�1

iD1
:
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Then set Bn D ��1
n;0.Ln n Ln�1/. We have abbreviated �0 ı �1 ı � � � ı �n as �n;0.

The sets LN describe the location of what the quotient maps �i collapse and d�1
N

the separation between the new identifications from any of the old identifications.
A Laakso space will be denoted by L.

If E0 is taken to be the standard Dirichlet form on the unit interval, namely
E0.u; v/ D

R 1

0
du
dx

dv
dx
dx with the Sobolev space H 1;2.Œ0; 1�/ as F0, then there is

a limiting Dirichlet form, E1, on L which has a generator �1. The analysis of
the spectrum of �1 is the topic of [66] and several chapters in [67]. Using the
arguments involved in the proofs of Theorem 6.1 and Corollary 6.1 the following
explicit results hold.

Theorem 7.1 ([66]). Let L be a Laakso space with sequence ¹jiº. The spectrum

of �1 on this Laakso space is

�.�1/ D

1
[

nD0

1
[

kD1

¹k2�2d2
n º [

1
[

nD2

1
[

kD1

¹k2�24d2
n º [

1
[

nD1

1
[

kD0

¹.2k C 1/2�24d2
n º:

Existence of �1 follows from Theorem 5.1. Theorem 6.1 reduces the cal-
culation of �.�1/ to a calculation of �.�1jD0

n
/. Since Fn is a quantum graph

composed of intervals all of length di with a very regular geometry, �.�1jD0
n
/

can be computed directly using counting arguments [66]. Then by the hypotheses
of Corollary 6.1 the union over n is closed and is the entire spectrum of �1.

In fact, more in known including the multiplicities of the eigenvalues. Having
the multiplicities allows computations of the spectral zeta function to be made and
the analysis of physics-inspired problems possible [67, 69].

7.2. Sierpiński pâte à choux. After seeing a talk about Laakso spaces this
example was suggested by Jean Bellisard who commented that such a space would
evoke the memory of puff pastry in the reader. Denote by SG the standard
Sierpiński gasket constructed as the limit of the iterated function system Tl.x/ D
1
2
.x � ql/C ql for l D 0; 1; 2 where q0 D .0; 0/, q1 D .1; 0/, and q2 D

�

1
2
;
p

3
2

�

.
Define V0 D ¹q0; q1; q2º and Vi D ¹TlVl�1ºlD0;1;2 so Vi is the set of vertices in the
i th graph approximation to the Sierpiński gasket. Let F0 D SG, Gi D G D ¹0; 1º

and Bi D ��1
i�1;0.Vi n Vi�1/. An approximation to the F1 of the Sierpiński pâte à

choux is shown in Figure 4.

Lemma 7.1. The limit space F1 is an infinitely ramified fractal with Hausdorff

dimension dh D 1C dH .SG/ D
log.6/

log.2/
with respect to the geodesic metric.
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Figure 4. The F1 of the Sierpiński pâte à choux fractal with G1 D ¹0; 1º and B1 the three
vertices around the central empty triangle. The shading indicates the two copies of the
Sierpiński gasket. The bending of the darker copy is simply to show how they are only
connected at the three points of B1.

Proof. The cell structure on F1 induced by the cell structures on SG and on the
Cantor set have boundaries that are themselves Cantor sets. HenceF1 is infinitely
ramified. Since .��1;0/

�1.F1/ � SG�¹0; 1ºN D SG�K, whereK is the Cantor

set with contraction ration one half, the Hausdorff dimension is at most log.6/

log.2/
.

This view of F1 being “unpacked” into F0 �G1 �G2 � � � � was used in the proof
of Theorem 5.1. By the same argument as in [68] it is at least log.6/

log.2/
. �

In light of Corollary 6.1 it would be possible to write out explicitly the spec-
trum on F1 as we did with the Laakso spaces. In particular, it is possible but
somewhat involved to write the spectrum in a closed form. The reader can find
solution to a similar problem in [72]. We note that, in the limit, the Sierpiński pâte
à choux is not a Sierpiński fractafold, but the approximations Fi are fractafolds.
A fractafold, as briefly mentioned in the Introduction is a manifold where the local
charts are maps into a reference fractal such as the Sierpiński gasket instead of into
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a Euclidean space. However, despite the fact that these fractafolds are very com-
plicated, the spectrum of the Laplacian onFi can be found inductively using meth-
ods presented in this paper. In particular, the spectrum of each Laplacian �i is a
union of the spectrum of a large collection of disjoint fractafolds (with Dirichlet
boundary conditions). These fractafolds are rescaled copies of two kinds of finite
fractafolds, and therefore the spectrum can be found using the methods of [70], and
the standard rescaling by 5n. This is very similar to how the spectrum is found in
the case of the Laakso spaces, described above. Finally, we can comment that the
Laakso spaces are built using intervals, which are one-dimensional analogs of the
Sierpiński gasket. Therefore, in a sense, the Sierpiński pâte à choux is a direct gen-
eralization of the Laakso spaces. Combining the approaches of [52, 67, 66, 70, 72]
one can study all the eigenfunctions and eigenprojections, which will be subject
of subsequent work.

7.3. Connected fractal spaces isospectral to the fractal strings of Lapidus

and van Frankenhuijsen. Fractal strings are given a comprehensive treatment
in [59], in particular in relation to spectral zeta functions, and we will only give a
brief description here. We show that our construction can yield connected fractal
spaces with Laplacians isospectral to the standard Laplacians on fractal strings.
This implies, in particular, that there are symmetric irreducible diffusion processes
whose generators are Laplacians with prescribed spectrum, as in the theory of
fractal strings developed in [59].

A fractal string is an open subset of R, usually assumed to be a bounded
subset, or at least that the lengths of the connected components are bounded and
tend to zero. Therefore it is a disjoint union of countably many finite intervals
of lengths li . We will suppose that the intervals are indexed so that the lengths
form a non-increasing sequence. By reindexing the fractal string with li and mi ,
unique lengths and multiplicities we can assume that li is strictly decreasing. The
Laplacian that we consider on I is the usual Laplacian on an interval with Dirichlet
boundary conditions on all the intervals. The eigenvalues of this Laplacian are all
of the form

�i;k D
�2k2

l2i

with multiplicity mi . What choices of Fi , Bi , and Gi can be made to create a
connected fractal with the same spectrum as a given fractal string? As the desire
is to “stitch” the disjoint intervals together there is no expectation for a unique
canonical method.

Declare F0 D Œ0; l1� to be equipped with Dirichlet form .E0;F0/ where F0 D

H 1;2.Œ0; l1�/ and E0.u; v/ D
R l1

0 u0v0. Let B1 D ¹0; 1º and G1 D ¹1; 2; : : : ; m1º.
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Then F1 will be m1 copies of the unit interval with left end points identified
and right end points identified. A particular implication of this step is that
F0 D F1 if and only if m1 D 1. We impose zero boundary conditions at the
endpoints, and therefore the spectrum of the Laplacian on F1 is the spectrum on
F0 D Œ0; l1� repeated, in the sense of multiplicity, m1 times. For the next step
G2 D ¹1; 2; : : : ; m2 C 1º, and we choose

B2 D �1 ..Œ0; l1 � l2�[ ¹l1º/ � G1/ [ �1 .Œl1 � l2; l1� � .G1 n ¹1º//

This implies that the spectrum on F2 is the union of the spectrum on F1 and the
spectrum on Œl1 � l2; l1� � Œ0; l2� repeated, in the sense of multiplicity, m2 times.
For i � 1 we take

Bi D�i;1 ..Œl1 � li ; l1�[ ¹l1º/ �Gi /

[ �i;1 .Œl1 � li ; l1� � .G1 � � � � �Gi n ¹1; : : : ; 1º/ :

Where Gj D ¹1; : : : ; mj C 1º for all j � 2. Recall the definition of �i;1 from the
proof of Theorem 5.1. This construction is in a sense a non-self-similar version
of the nested fractal construction. It is also somewhat similar to construction of
some of the so called diamond fractals, see [3, 64].

In this setting Corollary 6.1 holds since �1jD0
i

consists of the eigenvalues
for eigenfunctions present on Fi but not on Fi�1. By construction these new
eigenvalues are precisely the spectrum of the standard Laplacian on an interval
of length li with multiplicity mi . The conclusion drawn from Corollary 6.1 is
that our construction does not introduce any new elements to the spectrum so the
original fractal string and F1 are isospectral.
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