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Wildly perturbed manifolds:

norm resolvent and spectral convergence
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Abstract. The publication of the important work of Rauch and Taylor [J. Funct. Anal. 18

(1975)] started a hole branch of research on wild perturbations of the Laplace-Beltrami

operator. Here, we extend certain results and show norm convergence of the resolvent.

We consider a (not necessarily compact) manifold with many small balls removed, the

number of balls can increase as the radius is shrinking, the number of balls can also be

infinite. If the distance of the balls shrinks less fast than the radius, then we show that

the Neumann Laplacian converges to the unperturbed Laplacian, i.e., the obstacles vanish.

In the Dirichlet case, we consider two cases here: if the balls are too sparse, the limit

operator is again the unperturbed one, while if the balls concentrate at a certain region (they

become “solid” there), the limit operator is the Dirichlet Laplacian on the complement of

the solid region. Norm resolvent convergence in the limit case of homogenisation is treated

by Khrabustovskyi and the second author in another article (see also the references therein).

Our work is based on a norm convergence result for operators acting in varying Hilbert

spaces described in a book from 2012 by the second author.
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1. Introduction

In this article, we present norm convergence of the resolvents of Laplacians on

manifolds with wild perturbations. Wild perturbations refers here to increase

the complexity of topology. In particular, we show convergence of the Laplace-

Beltrami operator on manifolds with an increasing number of small holes.

1.1. Main results. Since the perturbation changes the space on which the opera-

tors act, we need to define a generalised norm resolvent convergence for operators

on varying spaces (see Definition 1.1). This powerful tool and many consequences

(like convergence of eigenvalues, eigenfunctions, functions of the operators such

as spectral projections, heat operators etc.) is explained in detail in a book by

the second author [35]. Let us stress here that we do not need a compactness as-

sumption on the space or the resolvents as in many of the previous works (see

Section 1.2). Moreover, the abstract convergence result shows its full strengths

especially when the perturbed space is not a subset of the unperturbed one or vice

versa: an example is given by adding many small handles to a manifold; we treat

this problem in a subsequent publication [3].

We give sufficient conditions on the obstacles in Theorems 4.3 and 5.2 to

have (generalised norm resolvent) convergence to the unperturbed situation (ob-

stacles without an effect) where we remove a family of obstacles and consider

on the remaining manifold either the Neumann or Dirichlet Laplacian. In the

Dirichlet case, there is a regime when the obstacles can become “solid” (The-

orem 6.4). These abstract results use as assumptions e.g. non-concentrating of

energy-bounded functions on the obstacles and extension properties in the Neu-

mann case.

We make these abstract results concrete in Theorems 4.7, 5.6 and 6.16, where

we assume that the obstacles consist of many small balls having a certain mini-

mal distance, and filling up the “solid” region for Theorem 6.16, a terminology

introduced in [40] to describe the situation under the name “crushed ice problem”

where small obstacles such as holes maintained at zero temperature increase in

number while their size converge to 0 in such a way that they freeze at the limit.

A typical assumption here is that small balls in the manifold look everywhere

roughly the same; this is assured if the harmonic radius is uniformly positive; and

the latter follows if the manifold has bounded geometry, see Definition 3.2 and

Proposition 3.5.

Let us first explain the main idea behind the abstract convergence tool: In all

our results, we deal with an "-dependent space X" and suitable Laplace operators
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�" acting on X" for each " � 0. We define a generalised norm resolvent conver-
gence for �" to a limit Laplacian �0. To do so, we need so-called identification
or transplantation operators J D J"WH0 WD L2.X0/ ! H" WD L2.X"/, which are

asymptotically unitary (cf. (1.1a)) and intertwine the resolvents (cf. (1.1b)) in the

following sense:

Definition 1.1. We say that �" converges in general norm resolvent sense to �0

if there exist bounded operators J D J" and m � 0 such that

k.idH0
�J �J /R0k � ı"; k.idH"

�JJ �/R"k � ı"; (1.1a)

k.JR0 �R"J /R
m=2
0 k � ı"; (1.1b)

where R0 WD .�0 C 1/�1 and R" WD .�" C 1/�1 for " > 0 and where ı" ! 0

as " ! 0. Moreover, k�k denotes the operator norm for operators H0 ! H0,

H" ! H" and H0 ! H" in (1.1a)–(1.1b), respectively.

The name is justified as follows: if H" D H0, then generalised norm resolvent

convergence (with m D 0) is just the classical norm resolvent convergence if one

chooses J D idH0
. In Section 2, we interpret ı" as a sort of “distance” between�0

and �", or more, precisely, between their corresponding quadratic forms d0 and

d", and call such forms ı"-quasi-unitarily equivalent. If this distance converges

to 0, then �" converges to �0 in generalised norm resolvent convergence, see

Section 2.

Once we have this generalised norm resolvent convergence, similar conclu-

sions as for the classical norm resolvent convergence are valid. In particular, we

have norm convergence (using also J and J �) of the corresponding functional

calculus, i.e., of '.�"/ towards '.�0/ for suitable functions ' such as ' D 1Œa;b�

with a; b … �.�0/ (spectral projections) or '.�/ D e�t� (heat operator), see The-

orem 2.4. Moreover, we conclude the following spectral convergence:

Theorem 1.2 ([35, Theorems 4.3.3–4.3.5], [27, Theorem 2.7]). Assume that �"

converges to �0 in generalised norm resolvent sense then

��.�"/ �! ��.�0/

uniformly (i.e., in Hausdorff distance) on any compact interval Œ0; ƒ�. Here,
��.�"/ stands for the entire spectrum or the essential spectrum of �" for " � 0.
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If �0 2 �disc.�0/ is an eigenvalue of multiplicity � > 0, then there exist �
eigenvalues (not necessarily all distinct) �";j , j D 1 : : : �, such that �";j ! �0

as " ! 0. In particular, if � D 1 and if  0 2 H0 is the corresponding normalised
eigenvector, then there exists a family of normalised eigenvectors  " of �" such
that

kJ 0 �  "kH"
�! 0 and kJ � " �  0kH0

�! 0 (1.2a)

as " ! 0.
If �" has purely discrete spectrum .�k."//k2N written in increasing order and

repeated according to multiplicity for each " � 0, then we have

j�k."/ � �k.0/j � 4C".�k."/C 1/.�k.0/C 1/ı" (1.2b)

with lim"!0 C" D 1.

Let us also stress that we have a convergence of a (suitably sandwiched)

difference of the resolvents R0 and R" as operators

L2.X/ �! H
1; (1.3)

where H1 is a first order Sobolev space, i.e., H1.X"/ or a closed subspace, see

Proposition 2.5 and Remark 2.6 for details. Moreover, one can also show conver-

gence of eigenvectors in energy norm, see (2.7).

1.2. Previous works. The results of Rauch and Taylor in [40] inspired a lot of

works (cited by 85 papers in MathSciNet in November 2019), and served as a

starting point of our analysis here. In particular, we borrowed the names “wild

perturbations”, “fading”, “solidification” and “crushed ice” from their article, the

latter three appearing already in the earlier lectures of Jeffrey Rauch [39]. It is im-

possible to give a comprehensive review of all literature on domain perturbations

after Rauch and Taylor’s paper (and even before): we will only emphasise on the

following aspects here:

Asymptotic behaviour of eigenvalues. A classical topic is how eigenvalues

change under small singular domain perturbations: asymptotic expansions on

Dirichlet eigenvalues on bounded domains with small obstacles taken out is given

e.g. in [9, 32, 31, 10, 18, 14, 7]; the difference of the unperturbed and perturbed

Dirichlet eigenvalues is of order as the capacity of the obstacle set; e.g., for balls

of radius " the capacity is of order 1=jlog "j and "m�2 in dimension m D 2 and

m � 3, hence the difference of the unperturbed and perturbed k-th eigenvalue is

of order " if m D 3 ([32]). Using the eigenvalue estimate (1.2b), we obtain for a
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single ball removed in dimension m D 3 as error estimate ı" D O.".1=6�0// (see

Corollary 5.7 with ˛ D 0), i.e., for a single obstacle, our analysis is far from being

optimal.

Similarly, the asymptotic behaviour of Neumann eigenvalues has been studied

for a single hole for bounded domains or compact manifolds e.g. in [33, 31, 21, 28];

again the asymptotic expansion for a single ball as obstacle gives a better estimate

on the difference of the unperturbed and perturbed eigenvalues, see Example 4.8.

It seems that our method always gives only the square root of the optimal

estimate (or even worse); a similar phenomenon appears for manifolds converging

to metric graphs (see e.g. [38, Remark 3.9]). Nevertheless, our analysis shows its

full power when considering non-compact domains and manifolds and when one

is interested in the entire spectrum; as well as convergence of operator functions

of the Laplacians such as the heat operators (see for instance [37, Example 1.11]).

Also, we believe that our approach gives rather abstract conditions from which it

follows that an obstacle “fades” in the limit, i.e., from which (generalised) norm

resolvent convergence of the Neumann resp. Dirichlet Laplacian on the manifold

without obstacles towards the original (“free”) Laplacian follows.

Domain perturbations and convergence results. Weidmann [43] proved strong

resolvent convergence (in a generalised sense) of elliptic differential operators un-

der perturbation of the domain. Moreover, he also developed a general (strong re-

solvent) convergence theory for sequences of operators acting in different Hilbert

spaces (which can be embedded in a larger common Hilbert space).

Daners [15] considers the norm convergence of resolvents of Dirichlet Lapla-

cians for perturbations of Euclidean bounded domains (or at least those with com-

pact resolvent), the norm convergence follows from the strong one under the as-

sumption of compactness of the limit resolvent, see also [16] for a survey and the

references therein. Our approach is more general as we do not assume a priori

that the perturbed and unperturbed domains are embedded in a common space as

in [15, 16]. Moreover, we obtain explicit error estimates in terms of ı". For an

older survey about strong resolvent convergence and perturbations of Euclidean

domains, we refer to [22].

Homogenisation theory. Finally, Rauch and Taylor [39, 40] inspired with their

crushed ice problem also the study of homogenisation problems (see also [29, 13]

for some other pioneering works on this topic). If the density of small balls is

removed from the domain is too low, then the limit of the corresponding Dirichlet

Laplacian is “fading”, i.e., converging to the original Laplacian. If it is too

high, then in the limit “solidification” takes place, i.e., the limit Laplacian only
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survives on some subsets, the other became “solid”. The critical parameter here

is the capacity: In [6] Balzano and Notarantonio consider a compact Riemannian

manifold with an increasing finite number of small balls removed. They show that

if the balls are placed randomly and if their capacity converges, then the Dirichlet

Laplacian on the manifold less the holes converges in strong resolvent sense to a

Laplacian plus a potential given by the random distribution of ball centres. The

proof is based on earlier works of Balzano [5] using �-convergence, see [17].

More recent works can be found in [26] and references therein.

For a similar approach using the above mentioned generalised norm resolvent

convergence in the homogenisation case, we refer to [27] and the references cited

therein. For an approach using the already shown strong resolvent convergence

to upgrade to norm resolvent convergence (similarly as in [15, 16], but even for

general unbounded domains) we refer to [12]. The very recent work [42] also treats

norm resolvent convergence as operators L2.X/ ! H
1.X"/ on periodic spaces. We

are also able to show estimates like (1.3), see Proposition 2.5 and Remark 2.6.

In [8] the authors show also norm resolvent convergence of type L2.X/ !
H

1.X"/ in a homogenisation problem: this time they place small balls along a curve

in an infinite horizontal 2-dimensional strip as obstacles. They have a fading case

and also a case of homogenisation: Here, the little holes become a delta interaction

supported on the curve in the limit. The proof of norm resolvent convergence is

established directly along the problem (see also the formulation of the problem

in [27, Section 2]). It is straightforward to see that if we place small balls of

radius " along a curve such that they are �"-separated, then the fading results of

Theorems 4.7 and 5.6 remain true (provided the conditions on " and �" are true).

We strongly believe that it is also possible to apply our concept of quasi-unitary

equivalence to the homogenisation problem of [8] using basic estimates from [8]

and ideas of [27].

1.3. Structure of the article. In Section 2 we briefly describe the main tool of

norm convergence of operators on varying Hilbert spaces. In Section 3 we briefly

introduce Laplacians and Sobolev spaces on manifolds, the harmonic radius and

manifolds of bounded geometry. Moreover, we introduce the concept of non-

concentration in Definition 3.7 and Proposition 3.9.

In Section 4 we present the situation for obstacles with Neumann boundary

condition, the main result is Theorem 4.3 for abstract fading obstacles, and The-

orem 4.7 deals with the situation where each obstacle is a disjoint union of many

small balls of radius ". Similarly, Section 5 contains results for fading Dirich-

let obstacles and many balls in Theorems 5.2 and 5.6. Finally, Section 6 is about
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Dirichlet obstacles that become “solid”, again an abstract version and one for many

balls removed in Theorems 6.4 and 6.16. We conclude with an appendix, where

we collect some estimates on manifolds.
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2. Main tool: norm convergence of operators on varying Hilbert spaces

The second author of the present article proposed in [34] and in more detail in the

monograph [35] a general framework which assures a generalised norm resolvent

convergence for operators �" converging to �0 as " ! 0. Here, each operator �"

acts in a Hilbert space H" for " � 0; and the Hilbert spaces are allowed to depend

on ". In typical applications, the Hilbert spaces H" are of the form L2.X"/ for

some metric measure space X" which is considered as a perturbation of a “limit”

metric measure space X0; and typically, there is a topological transition between

" > 0 and " D 0.

In order to define the convergence, we define a sort of “distance” ı" between
z� WD �" and � WD �0, in the sense that if ı" ! 0 then �" converges to �0 in the

above-mentioned generalised norm resolvent sense.

Let H and zH be two separable Hilbert spaces. We say that .d;H1/ is an energy
form in H if d is a closed, non-negative and densely defined quadratic form in

H with domain H
1, i.e., if d.f / WD d.f; f / � 0 for some sesquilinear form

dWH1 � H
1 ! C, denoted by the same symbol, with H

1 DW dom d endowed

with the norm defined by

kf k2
1 WD kf k2

H1 WD kf k2
H

C d.f /; (2.1)

so H
1 is itself a Hilbert space and a dense set in H. We denote by � the

corresponding non-negative, self-adjoint operator the energy operator associated

with .d;H1/ (see e.g. [25, Section VI.2]). Similarly, let .Qd; zH1/ be an energy form

in zH with energy operator z�.

Associated with an energy operator�, we can define a natural scale of Hilbert
spaces Hk defined via the abstract Sobolev norms

kf k
Hk WD kf kk WD k.�C 1/k=2f k: (2.2)
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Then H
k D dom�k=2 if k � 0 and H

k is the completion of H with respect to

the norm k�kk for k < 0. Obviously, the scale of Hilbert spaces for k D 1 and its

associated norm agrees with H
1 and k�k1 defined above (see [35, Section 3.2] for

details). Similarly, we denote by zHk the scale of Hilbert spaces associated with z�.

We denote by �.�/ the spectrum of the energy operator and by R.z/ D
.� � z/�1 its resolvent at z 2 C n �.�// and for short R D R.�1/ D .�C 1/�1,

we use similar notations for z�.

We now need pairs of so-called identification or transplantation operators act-

ing on the Hilbert spaces and later also pairs of identification operators acting on

the form domains. Note that our definition is slightly more general than the one

in [35, Section 4.4]. The new point here is that we allow the (somehow “smooth-

ing”) resolvent power of order k=2 on the right hand side in (2.3d) and (2.3d0) also

for k > 0 (see Remark 2.7 for more details).

Definition 2.1. Let ı � 0, and let J WH ! zH and J 0W zH ! H be linear bounded

operators.1 Moreover, let ı � 0, and let J 1WH1 ! zH1 and J 01W zH1 ! H
1 be

linear bounded operator on the energy form domains.

(i) We say that J is ı-quasi-unitary with ı-quasi-adjoint J 0 if

kJf k � .1C ı/kf k; ˇ
ˇhJf ; ui � hf; J 0uiˇ

ˇ � ıkf kkuk (2.3a)

for f 2 H, u 2 zH, and

kf � J 0Jf k � ıkf k1; ku � J 0Juk � ıkuk1 (2.3b)

for f 2 H
1, u 2 zH1.

(ii) We say that J 1 and J 01 are ı-compatible with the identification operators J

and J 0 if

kJ 1f � Jf k � ıkf k1; kJ 01u � J 0uk � ıkuk1 (2.3c)

for f 2 H
1, u 2 zH1.

(iii) We say that the energy forms d and Qd are ı-close (of order k � 1) if

ˇ
ˇQd.J 1f; u/ � d.f; J 01u/

ˇ
ˇ � ıkf kkkuk1 (2.3d)

for f 2 H
k, u 2 zH1.

1 In our applications here, we set J 0 D J �.
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(iv) We say that d and Qd are ı-quasi unitarily equivalent (of order k � 1),
if (2.3a)–(2.3d) are fulfilled, i.e.,

� if there exists identification operators J and J 0 such that J is ı-quasi-

unitary with ı-adjoint J 0 (i.e., (2.3a)–(2.3b) hold);

� if there exists identification operators J 1 and J 01 which are ı-compat-

ible with J and J 0 (i.e., (2.3c) holds);

� and if d and Qd are ı-close (of order k) (i.e., (2.3d) holds).

We comment on the asymmetry in (2.3d) with respect to the norms kf kk and

kuk1 in Remark 2.7 at the end of this section.

In operator norm notation, ı-quasi-unitary equivalence means

kJ k � 1C ı; kJ � � J 0k � ı (2.3a0)

k.idH �J 0J /R1=2k � ı; k.id zH �JJ 0/ zR1=2k � ı; (2.3b0)

k.J 1 � J /R1=2k � ı; k.J 01 � J 0/ zR1=2k � ı; (2.3c0)

k zR1=2.z�J 1 � .J 01/��/Rk=2k � ı; (2.3d0)

where R WD .� C 1/�1 resp. zR WD .z� C 1/�1 denotes the resolvent of � resp.
z� in �1. Moreover, .J 01/�WH�1 ! zH�1 where .�/� denotes here the dual map

with respect to the dual pairing H
1 �H

�1 induced by the inner product on H and

similarly on zH. Moreover,� is interpreted as�WH1 ! H
�1, and similarly for z�.

To give a flavour of the ideas, we give a short proof of the following result:

Proposition 2.2. Let d and Qd be ı-quasi-unitarily equivalent (of order k � 1),
then we have





�

JR � zRJ �

Rm=2



 � 7ı for m D max¹k � 2; 0º. (2.4)

In particular, if the energy forms d" and d0 are ı"-quasi-unitarily equivalent
of order k � 1 then the corresponding operators �" converge in generalised
norm resolvent sense to �0 of order m (cf. Definition 1.1) and the conclusions
of Theorem 1.2 hold.

Note that we can ignore the factors Rm=2 in (2.4) and (2.6a) if k 2 ¹1; 2º.
Proof. We have the expansion

.JR � zRJ /Rm=2 D .J � J 1/Rm=2C1 C �

J 1R � zR.J 01/�
�

Rm=2

C zR1=2. zR1=2..J 01/� � .J 0/�//Rm=2 C zR..J 0/� � J /Rm=2;
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where the second term can be further expanded into

.J 1R � zR.J 01/�/Rm=2

D zR..z�C 1/J 1 � .J 01/�.�C 1//Rm=2C1

D zR.z�J 1 � .J 01/��/Rm=2C1

C zR..J 1 � J /C .J � .J 0/�/C ..J 0/� � .J 01/�//Rm=2C1:

(2.5)

Taking the operator norm, and using kA�k D kAk for the dual of an operator, we

obtain from the last two equations (as m � 0 and mC 2 � k)

k.JR � zRJ /Rm=2k � 2k.J � J 1/R1=2k C k zR1=2.z�J 1 � .J 01/��/Rk=2k
C 2k.J 01 � J 0/ zR1=2k C 2kJ 0 � J �k

� 7ı: �

Remark 2.3. The last proposition explains the notation in two extreme cases.

(i) “0-quasi-unitary equivalence” is “unitary equivalence.” If ı D 0 then J

is 0-quasi-unitary if and only if J is unitary with J � D J 0. Moreover, d

and Qd are 0-quasi-unitarily equivalent (of order k � 1) if and only if � and
z� are unitarily equivalent (in the sense that JR D zRJ , see (2.4)). In this

sense, ı-quasi unitary equivalence is a quantitative generalisation of unitary
equivalence.

(ii) “ı"-quasi-unitary equivalence” (with ı" ! 0) is a generalisation of “norm
resolvent convergence.” If H D zH and H

1 D zH1 (i.e., dom d D dom Qd),

and if we choose all identification operators to be the respective identity

maps, then ı"-quasi-unitary equivalence of order k 2 ¹1; 2º (with ı" ! 0)

implies (classical) norm resolvent convergence. In particular, Proposition 2.2

is a generalisation of a result by Kato [25, Theorem VI.3.6]; see also the

discussion in [27, Remark 3.4] and the one in great detail in [37, pp. 6–7].

We also have the following functional calculus result.

Theorem 2.4 (see [35, Section 4.2, Theorem 4.2.11, Lemma 4.2.13]). Let U �
.�1;1/ be open and unbounded, and let 'W Œ0;1/ ! R be analytic on U such
that lim�!1 '.�/ exists, then there exists a constant C' depending only on ' and
U such that

k.J'.�/ � '.z�/J /Rm=2k � C'ı (2.6a)
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for all d and Qd being ı-quasi-unitary equivalent energy forms (of order k � 1)
with �.�/ � U or �.z�/ � U . Moreover, if k 2 ¹1; 2º then we can replace (2.6a)

by

k'.z�/ � J'.�/J 0k � 5C 0
'ıCC'ı; where C 0

' WD sup
�2U

.�C1/1=2j'.�/j: (2.6b)

In particular, if ' D 1Œa;b� with a; b … �.�/ then (2.6a)–(2.6b) are norm

estimates of spectral projections. Moreover, if 't .�/ D e�t� for t > 0, then we

have norm estimates of the heat operators. One can also prove similar operator

norm estimates on J 0'.z�/J � '.�/. If ' is only continuous on U , then one has

to replace C'ı by ı' with ı' ! 0 as ı ! 0.

As a conclusion, spectral convergence as in Theorem 1.2 follows. Note that

we also have convergence of eigenfunctions in energy norm, namely we can

replace (1.2a) by

kJ 1 0 �  "k1 � C 0
1ı" �! 0 (2.7)

as " ! 0 using a similar argument as in [36, Proposition 2.6].

A slight modification of the proof of Proposition 2.2 gives us a norm estimate

of a suitably sandwiched resolvent difference as operator H ! zH1; for simplicity

we assume k 2 ¹1; 2º here:

Proposition 2.5. Let d and Qd be ı-quasi-unitarily equivalent (of order k 2 ¹1; 2º),
then we have

kJ 1R � zRJk
H! zH1 D k. zH C 1/1=2.J 1R � zRJ /k � 6ı: (2.8)

Proof. The proof is similar to the one of Proposition 2.2 (with m D 0). Here, we

have the expansion

.J 1R � zRJ / D .J 1R � zR.J 01/�/C zR1=2. zR1=2..J 01/� � .J 0/�//C zR..J 0/� � J /:
The first term can again be expanded as in (2.5); note that we can factor out zR1=2

from the left, and all remaining terms can be estimated by (2.3a0)–(2.3d0). As we

have one term less than in the proof of Proposition 2.2, we end up with 6ı. �

Remark 2.6. In our applications, the space H is an L2-space of an unperturbed

set X such as L2.X/ and zH is a perturbed space L2.X"/ where X" D X n B" for

some obstacle set B" shrinking in a suitable manner. Moreover, the operators

are Neumann or Dirichlet Laplacians (see the next section for details). The

above convergence (2.8) then means convergence of the resolvents as operators

L2.X/ ! H
1 if H1 denotes the first order Sobolev space associated with the form

domain of the perturbed Laplacian �", typically H1.X"/ or a closed subspace.
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We can also formulate similar results as in Theorem 2.4 as conclusions of (2.8).

Remark 2.7. The asymmetry of (2.3d) with respect to the norms kf kk and kuk1

has the following reason: As explained in the previous remark, zH D L2.X"/

will be a parameter dependent space, hence kuk1 is just the energy norm with

respect to a Laplacian. Dealing here with higher order norms kukk (k � 2) would

force us to control the estimate in terms of the graph norm of the corresponding

Laplacians. We normally use the corresponding Sobolev norm of order k, but then

we need an elliptic estimate of the form kuk
Hk.X"/ � C"k.�X"

C 1/k=2ukL
2

.X"/

on the parameter-depending manifolds X"; and we would then need information

about the (complicated) geometry of X" in order to have some control over the

dependency of C" on ". Instead, we use such arguments only on the parameter-

independent manifold H D L2.X/ with its parameter-independent Laplacian.

The asymmetry seems to be a key ingredient in order to use the concept of

quasi-unitary equivalence for perturbed domains; see also Remark 4.4 why the

energy norm is not enough.

3. Laplacians on manifolds

3.1. Energy form, Laplacian and Sobolev spaces associated with a Riemann-

ian manifold. Let .X; g/ be a complete2 Riemannian manifold of dimension

n � 2, for the moment without boundary. Denote by dg the Riemannian measure

induced by the metric g on X (we often omit the measure if it is clear from the

context). Then L2.X/ D L2.X; g/ is the usual L2-space with norm given by

kuk2
L

2
.X;g/ WD

Z

X

juj2 dg:

The energy form associated with .X; g/ is defined by

d.X;g/.u/ WD
Z

X

jduj2g dg

for u in the first Sobolev space H1.X/ D H
1.X; g/, which can be defined as the

completion of smooth functions with compact support, under the so-called energy

2 Most of the results are also true for incomplete manifolds, but then we have some more

technicalities with fixing different boundary conditions and with elliptic regularity. In order to

keep this presentation readable, we simply assume that the manifold is complete.
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norm given by

kuk2
H1.X;g/

WD
Z

X

.juj2 C jduj2g/ dg:

Here, du is a section into the cotangent bundle T �M and g the corresponding

metric on it. Note that by definition, d.X;g/ is a closed form with dom d.X;g/ D
H

1.X; g/. The Laplacian �.X;g/ associated with .X; g/ is the energy operator

associated with the energy form d.X;g/. The Laplacian is a self-adjoint non-

negative operator and hence introduces a scale of Hilbert spaces

H
k WD H

k.�.X;g// WD dom..�.X;g/ C 1/k=2/

with norm

kuk
Hk.�

.X;g/
/ WD k.�.X;g/ C 1/k=2ukL

2
.X;g/;

this definition extends to negative exponents k as already explained in the text

after (2.2). We also call Hk.�
.X;g/

/ the k-th Laplacian-Sobolev space. Obviously,

we have H1.X; g/ D H
1.�

.X;g/
/ with identical norms.

IfX is a manifold with (smooth) boundary, then we define the Neumann energy
form d

N
.X;g/

as above with domain dom d
N
.X;g/

D H
1.X; g/, where the latter is the

closure of all functions, smooth up to the boundary and with compact support,

with respect to the energy norm. The corresponding operator �N
.X;g/

is called the

Neumann Laplacian on .X; g/.
Similarly, we define the Dirichlet energy form d

D
.X;g/

as above with domain

dom d
D
.X;g/

D VH1.X; g/, where the latter is the closure of all functions with

compact support away from the boundary with respect to the energy norm. The

corresponding operator �D
.X;g/

is called the Dirichlet Laplacian on .X; g/.

We denote by L2.T
�X˝k ; g/ the L2-space of k-tensors with the pointwise norm

on the tensors induced by g, i.e., of sections into T �X˝k D T �X ˝ � � � ˝ T �X

with norm given by

kuk2
L

2
.T �X˝k ;g/

WD
Z

X

juj2g dg;

where j�j2g is the canonical extension of g onto the corresponding tensor bundle.

Here and in the sequel, we are often sloppy and just write kuk2
L

2
.X;g/

for the

corresponding norm (assuming that the fibre norm j�jg is clear from the context).

Denote by r the extension of the Levi-Civita connection on the tensor bundle

T �X˝k. For k D 0, we have ru D du. Moreover, we set r2u WD rru, which is

in T �X˝T �X if u is a function. We have for instance r2
V1;V2

WD rV1
rV2

�rrV1
V2

for vector fields V1, V2, and similarly for higher derivatives. We say that u has a
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k-th weak derivative if there exists a measurable section v 2 L1;loc.X; .T
�X/˝k/

such that Z

X

u � .r�/k' dg D
Z

X

hv; 'ig dg

for all ' 2 C
1
c .X; .T

�X/˝k/, where r� denotes the (formal) adjoint of r. We set

rku WD v and

H
k
p.X; g/ WD ¹ u 2 Lp.X; g/ j rju 2 Lp.X; g/ for j � k º;

with norm given by

kukp

H
k
p.X;g/

WD
k

X

j D0

krjukp

Lp.T �X˝j ;g/

for p � 1, and Hk.X; g/ WD H
k
2.X; g/.

Note that the above defined Sobolev spaceH1.X; g/ agrees with the one defined

in the beginning of the section, i.e., H1.X; g/ D dom d.X;g/ D H
1.�

.X;g/
/ and the

corresponding norms agree.

3.2. Bounded geometry, harmonic radius and Euclidean balls. We also need

some estimates of higher order Sobolev spaces in terms of Laplace-graph norms:

Definition 3.1. We say that .X; g/ is an elliptically regular Riemannian manifold

(of order k � 2) if dom.�
.X;g/

C 1/k=2 � H
k.X; g/ and if there is Cell:reg;k � 1

such that

kf k
Hk.X;g/ � Cell:reg;kk.�.X;g/ C 1/k=2f kL

2
.X;g/

for all f 2 dom.�
.X;g/

C1/k=2. We say that .X; g/ is elliptically regular, if .X; g/

is elliptically regular of order k D 2.

An immediate consequenceof elliptic regularity (of order k) is that the Sobolev

and Laplace-Sobolev spaces agree, i.e.,

H
k.X; g/ D H

k.�.X;g//.D .dom�.X;g/ C 1/k=2/:

Typically, assumptions assuring elliptic regularity of order k also imply elliptic

regularity of lower order, but we will not put this in our definition.

The elliptic regularity of a manifold is not given for higher order without

further assumptions:
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Definition 3.2. We say that a complete Riemannian manifold .X; g/ has bounded
geometry if the injectivity radius is uniformly bounded from below by some

constant �0 > 0 and if the Ricci tensor Ric is uniformly bounded from below

by some constant �0 2 R, i.e.,

Ricx � �0gx for all x 2 X (3.1)

as symmetric 2-tensors.

We will not need assumptions on derivatives of the curvature tensor (i.e.,

bounded geometry of higher order) in this article.

Proposition 3.3 ([19, Proposition 2.10]). Suppose that .X; g/ is a complete mani-
fold with bounded geometry, then the set of smooth functions with compact support
D.X/ is dense in the Sobolev space H2.X; g/. Moreover, .X; g/ is elliptically reg-
ular (of order 2), and the constant Cell:reg depends only on the lower bound �0 on
the Ricci curvature.

Proof. For the proof of the first claim, we refer to the proof of Prp. 2.10 in [19].

For sufficiently smooth metrics, there is a constant cell:reg > 0 depending on g and

its first derivatives such that

cell:regk.�.X;g/ C 1/f kL
2

.X;g/ � kf kH2.X;g/

for all f 2 D.X/. For the estimate of the Sobolev norm in terms of the (Laplace)

graph norm, we use the following consequence of the Bochner-Lichnerowicz-

Weitzenböck formula, namely,

kr2uk2
L

2
.T �X˝2/

D k�.X;g/uk2
L

2
.X;g/ � hRic du; duiL

2
.T �X;g/ (3.2)

for all u 2 D.X/, where we understand Ric as endomorphism on T �X (an idea

appearing already in [4]). From this equality and the spectral calculus for the

self-adjoint operator �
.X;g/

we obtain the desired result, namely that Cell:reg of

Definition 3.1 depends only on �0. �

We now give some estimates on the Riemannian metric in order to compare

small balls with Euclidean balls. To this purpose, we recall the useful notion of a

harmonic chart:

Definition 3.4 ([19, Definition 1.1]). Let U be an open subset of a Riemannian

manifold .X; g/. A chart ' D .y1; :::; yn/WU ! Rn on .X; g) is called harmonic
if �

.X;g/
yk D 0 for all k D 1; : : : ; n.
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Since �
.X;g/

yk D Pn
i;j D1 g

ij�k
ij , a chart ' D .y1; : : : ; yn/ is harmonic if and

only if
Pn

i;j D1 g
ij�k

ij D 0 for all k D 1; : : : ; n. Here, gij and �k
ij are as usual the

components of the inverse metric tensor and the Christoffel symbols with respect

to the chart ', respectively.

We now give some estimates on the Riemannian metric in order to compare

small balls with Euclidean balls:

Proposition 3.5 ([19, Theorem 1.3]). Assume that .X; g/ is complete and has
bounded geometry (with constants �0 2 R and �0 > 0). Then for all a 2 .0; 1/

there exist r0 > 0, K � 1 and k > 0 depending only on �0, �0 and a, such that
around any point x 2 X there exists a harmonic chart 'x D .y1; : : : ; yn/ defined
on Br0

.x/, and in these charts we have

K�1.ıij / � .gij / � K .ıij / (as bilinear forms) (3.3a)

and

jgij .x
0/ � gij .x

00/j � k dg .x
0; x00/a: (3.3b)

for all x0, x00 2 Br0
.x/.

The radius r0 will be called harmonic radius in the following. We refer

to [24, 19, 20] and the references therein for more details. We assume r0 � 1 here,

as it simplifies some estimates later on, when using estimates of cut-off functions

on small balls, see e.g. Lemma 3.10.

Denote by geucl;x the Euclidean metric in the harmonic chart 'x defined in the

ball Br0
.x/ by

geucl;x.@yi
; @yj

/ D ıij : (3.4)

We immediately conclude from (3.3a):

Corollary 3.6. Let p 2 X and let B WD Br.p/ with

Br.p/ WD ¹ x 2 X j dg .x; p/ < r º (3.5)

be a ball around p with geodesic radius r 2 .0; r0/ in .M; g/. Then

(i) the volume measures and the cotangent norm satisfy the estimates

K�n=2 dgeucl;x � dgx � Kn=2 dgeucl;x

and

K�1j�j2geucl;x
� j�j2gx

� Kj�j2geucl;x

for all x 2 B and � 2 T �
x X ;
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(ii) we have the following norm estimates

K�n=4kukL
2

.B;geucl/ � kukL
2

.B;g/ � Kn=4kukL
2

.B;geucl/;

K�.nC2/=4kdukL
2

.T �B;geucl/ � kdukL
2

.T �B;g/ � K.nC2/=4kdukL
2

.T �B;geucl/;

K�.nC2/=4kukH1.B;geucl/
� kukH1.B;g/ � K.nC2/=4kukH1.B;geucl/

for all u 2 L2.B; g/ resp. u 2 H
1.B; g/.

3.3. The non-concentrating property. We now formulate a property which will

be used in all our examples. Typically, A D A" � B and ı" ! 0 as " ! 0. The

definition of “ı-non-concentrating” allows us to quantify how much a function

f 2 H
1.B/ is not concentrated in A.

Definition 3.7. Let .X; g/ be a Riemannian manifold, A � B � X and ı > 0. We

say that .A; B/ is ı-non-concentrating (of order 1) if

kf kL
2

.A;g/ � ıkf kH1.B;g/ (3.6)

for all f 2 H
1.B; g/.

Note that if zB � B and if .A; B/ is ı-non-concentrating, then .A; zB/ is also

ı-non-concentrating.

Remark 3.8. In the Euclidean setting (i.e., if X � Rn and g D geucl), we could

use a result by Marchenko and Khruslov [30, Lemma 4.9], namely

Z

A

juj2 � 2 volA

volG

Z

G

juj2 C C.n/
.diamB/nC1.volA/1=n

volG

Z

B

jduj2 (3.7)

for measurable sets A, G with A;G ¨ B � Rn, where B is a parallelepiped and

where diamB denotes the diameter of B . Moreover, C.n/ depends only on the

dimension. In this situation, .A; B/ is ı-non-concentrating with

ı2 WD max
°2 volA

volG
;C.n/

.diamB/nC1.volA/1=n

volG

±

:

In particular, if .A"/" is a family of subsets such that volA" ! 0, then .A"; B/ is

ı"-non-concentrating for some ı" ! 0 as " ! 0 (for G choose some fixed smaller

parallelepiped included in B). If A" are balls of radius ", then ı" is of order "1=2.

Note that this error is worse than the one we obtain in Lemma 3.10, which is of

order " (resp. "jlog "j in dimension 2) in the situation here.
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Once we have the non-concentrating property, we can immediately conclude

a similar estimate for the derivatives:

Proposition 3.9. Assume that .A; B/ is ı-non-concentrating, then .A; B/ is ı-
non-concentrating of order 2, i.e.,

kdf kL
2

.A;g/ � ıkf kH2.B;g/ (3.8)

for all f 2 H
2.B; g/.

Proof. Let f 2 H
2.X; g/. We apply (3.6) to the function ' D jdf jg and calculate

for any x 2 X with df .x/ ¤ 0 and any V 2 TxX :

dV ' D dV

q

hdf ; df ig D 1
phdf ; df ig

hrV df ; df ig : (3.9)

We conclude jdV 'j � jrdf jg jV jg by the Cauchy–Schwarz inequality. In particu-

lar, jd'jg � jrdf jg D jr2f jg , and this inequality (also called Kato’s inequality)

is also true if df .x/ D 0. Inequality (3.6) now yields

kdf kL
2

.A;g/ D k'kL
2

.A;g/

� ık'kH1.B;g/

D ı.kdf k2
L

2
.B;g/ C kd'k2

L
2

.B;g//
1=2

� ı.kdf k2
L

2
.B;g/ C kr2f k2

L
2

.B;g//
1=2

� ıkf kH2.B;g/: �

Let us now check the non-concentrating property for balls of different radii.

Lemma 3.10. Assume that .X; g/ has bounded geometry with harmonic radius
r0 2 .0; 1�. Let � 2 .0; r0/ and " 2 .0; �=2/ then .B".p/; B�.p// are �n."=�/-non-
concentrating for all p 2 X , i.e.,

kf kL
2

.B".p/;g/ � �n

� "

�

�

kf kH1.B�.p/;g/

for all f 2 H
1.B�.p/; g/. Here,

�n.!/ WD
p
8K.nC1/=2! resp. �2.!/ WD

p
8K3=2!

p

jlog!j (3.10)

if n � 3 resp. n D 2.
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Proof. We apply the results of [35, Section A.2]. We first consider Euclidean

balls: note that in polar coordinates the Euclidean metric is a warped product

geucl D ds2 Cs2hwith density function %.s/ D sn�1, where h is the standard met-

ric on the .n�1/-dimensional sphere. We then apply [35, Corollary A.2.7 (A.9b)]

with s0 D 0, s1 D ", s2 D �, a D � � ". We conclude

kf k2
L

2
.B";geucl/

� 2�2.0; "; �/
�

kf 0k2
L

2
.B�;geucl/

C 1

.� � "/2
kf k2

L
2

.B�;geucl/

�

;

where f 0 denotes the radial derivative and where

�2.0; "; �/ WD
"Z

0

� �Z

t

1

%.s/
ds

�

%.t/ dt �
´

"2 log.�="/ if n D 2;

"2 if n � 3;

provided " � �=2 < e�1=2�. In particular,

"2

.� � "/2 D !2

.1 � !/2 � 4!2

with ! D "=� � 1=2. We then use Corollary 3.6 (ii) to carry over the estimates to

the original metric g, namely

kf k2
L

2
.B".p/;g/ � Kn=2kf k2

L
2

.B";geucl/
� 8Kn=2Œjlog!j�!2kf k2

H1.B�;geucl/

� 8KnC1Œjlog!j�!2kf k2
H1.B�;g/

;

where Œjlog!j� appears only if n D 2. �

Let us now consider a disjoint union of small balls as obstacle; in our setting,

I is a discrete subset of X :

Definition 3.11. We denote by

Br.I / WD ®

x 2 X ˇ
ˇdg.x; I / WD inf

p2I
dg.x; p/ � r

¯

(3.11)

the r-neighbourhood of a subset I � X . We say that I � X is an r-separated set
if for all p1; p2 2 I , p1 ¤ p2, we have d.p1; p2/ � 2r .

Let I be an �-separated set inX , then B".I / consists of jI j-many disjoint balls

of radius " 2 .0; �/ around each point in I .

Let us now check the non-concentrating property for the union of balls:
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Proposition 3.12. Let .X; g/ be a complete Riemannian manifold with bounded
geometry and harmonic radius r0 > 0. Let � 2 .0; r0/ and " 2 .0; �=2/. Assume
that I is �-separated, then .B".I /; B�.I // are �n."=�/-separated, i.e.,

kf kL
2

.B".I/;g/ � �n

� "

�

�

kf kH1.B�.I/;g/

for all f 2 H
1.B�.I /; g/.

Proof. The estimate follows from

kf k2
L

2
.B".I/;g/ D

X

p2I

kf k2
L

2
.B".p/;g/

�
X

p2I

�n

� "

�

�2

kf k2
H1.B�.p/;g/

D �n

� "

�

�2

kf k2
H1.B�.I/;g/

using Lemma 3.10 and the disjointness of the balls in B�. �

4. Neumann obstacles without an effect

4.1. Abstract Neumann obstacles without effect. Let .X; g/ be a Riemannian

manifold of dimension n � 2 and letB" � X be a closed subset for each " 2 .0; "0�.

We will impose conditions on the family .B"/" such that the Neumann Laplacian

onX" WD X nB" converges to the Laplacian onX . Later in Subsection 4.2, B" will

be the disjoint union of many balls, and we show there that the abstract properties

of the following definition can actually be realised:

Definition 4.1. We say that a family .B"/" of closed subsets of a Riemannian

manifold .X; g/ is Neumann-asymptotically fading if the following conditions are

fulfilled.

(i) Non-concentrating property. We assume that .B"; X/ is ı0
"-non-concentra-

ting with ı0
" ! 0.

(ii) Uniform extension property. We assume that there is a constantCext � 1 such

that kE"k � Cext for all " 2 .0; "0�, where

E"WH1.X"; g/ �! H
1.X; g/

is an extension operator, i.e., .E"u/�X"
D u for all u 2 H

1.X"; g/.
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Remark 4.2. (i) Note that if volB" ! 0 as " ! 0 in the Euclidean case (and if B"

is included in a bounded set for " small enough), then (3.7) implies that .B"; X/

is non-concentrating with ı0
" of order .volB"/

1=.2n/. A possible counterexample

for B" not fulfilling the non-concentrating property but still fulfilling volB" ! 0

would be a rectangle in dimension 2 of length r" > 0 and width " > 0 such that

r" ! 1, volB" D r"" ! 0 and r""
˛ ! 1 for some ˛ 2 .0; 1/.

But the non-concentrating property does not imply that volB" ! 0: in

Subsection 4.2 we allow that B" consists of an infinite number of small (disjoint)

balls (in a non-compact manifold), hence volB" D 1.

(ii) The uniform extension property of Definition 4.1 (ii) is closely related to

a property of a (bounded) domain X in Rn, called strongly connected in [30], we

refer to the discussion in Chapter 4, especially of Section 4.2 of this book, for

further details; a counterexample is given in [30, Example 4.6].

We now show our first main result:

Theorem 4.3. Let .X; g/ be an elliptically regular Riemannian manifold and
.B"/" be a family of closed subsets of X . If .B"/" is Neumann-asymptotically
fading, then the energy form d.X;g/ of .X; g/ and the (Neumann) energy form
d

N
.X";g/

of .X"; g/ with X" D X n B" are ı"-quasi-unitarily equivalent of order
k D 2 with ı" D CextCell:regı

0
".

Proof. We show that the hypotheses of Definition 2.1 are fulfilled. To do so, we

first need to specify the spaces and transplantation operators. Namely, we set

J W H WD L2.X; g/ �! zH WD L2.X"; g/; f 7�! f �X"
;

J 1W H1 WD H
1.X; g/ �! zH1 WD H

1.X"; g/; f 7�! f �X"
;

J 0W zH D L2.X"; g/ �! H D L2.X; g/; u 7�! Nu;
J 10W zH1 D H

1.X"; g/ �! H
1 D H

1.X; g/; u 7�!E"u;

where Nu denotes the extension of uWX" ! C by 0 on B".

We check the hypotheses of Definition 2.1: We easily see that

J 0 D J �; JJ 0 D id zH; J 1 D J�
H1 :

Moreover, we have

kJf k2
L

2
.X";g/ D

Z

X"

jf j2 dg �
Z

X

jf j2 dg D kf k2
L

2
.X;g/;
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and if suppf � X", then kJf k D kf k, hence we have kJ k D 1; in particu-

lar, (2.3a) is fulfilled with ı D 0.

The first estimate in (2.3b) follows since .B"; X/ is ı0
"-non-concentrating

(see (3.6)), namely we have

kf � J 0Jf kL
2

.X;g/ D kf kL
2

.B";g/ � ı0
"kf kH1.X;g/:

Moreover, J 10u� J 0u D 1B"
E"u (the uniform extension onto B"), hence

kJ 10u � J 0ukL
2

.X;g/ D kE"ukL
2

.B";g/ � ı0
"kE"ukH1.X;g/ � ı0

"CextkukH1.X";g/

by the non-concentrating property (3.6) and the uniform extension property Def-

inition 4.1 (ii). Finally,
ˇ
ˇd".J

1f; u/ � d.f; J 10u/
ˇ
ˇ D ˇ

ˇhdf ; d.E"u/iL
2

.B";g/

ˇ
ˇ

� kdf kL
2

.B";g/kd.E"u/kL
2

.B";g/

� ı0
"kf kH2.X;g/CextkukH1.X";g/

� CextCell:regı
0
"k.�.X;g/ C 1/f kL

2
.X;g/kukH1.X";g/

(4.1)

by the non-concentrating property (3.8), the elliptic regularity assumption and

again the uniform extension property in Definition 4.1 (ii). �

Remark 4.4. Note that we have to use the estimate against the graph norm on

.X; g/ (i.e., the unitary equivalence of order k D 2 and not of order k D 1), as

the following example shows: Let X D B1.0/ be the Euclidean ball of radius 1,

B" D B".0/ and X" D X n B" the annulus with inner radius " and outer

radius 1. We will show that estimate (4.1) cannot hold if we replace the graph

norm kf k2 D k.�
.X;g/

C 1/f k by the quadratic form norm kf k1 D kf kH1.X;g/:

Namely, let u 2 H
1.X"/ be given in polar coordinates .r; �/ 2 ."; 1/�.0; 2�/by

u.r; �/ D rˇ cos � for some ˇ 2 R. Then the harmonic extension zu" D E"u (used

also in the next Subsection 4.2) is given by zu".r; �/ D "ˇ�1r cos � . Moreover, we

have

kd zu"k2
L

2
.B";g/ D �"2ˇ ; kzu"k2

L
2

.B";g/ D �

4
"2.ˇC1/;

kd zu"k2
L

2
.X";g/ D �.ˇ2 C 1/

2ˇ
.1� "2ˇ /; kzu"k2

L
2

.X";g/ D �

2.ˇ C 1/
.1 � "2.ˇC1//;

hence we have (with f D zu", the optimal case for the Cauchy–Schwarz estimate

in (4.1))
ˇ
ˇd".J

1f; u/ � d.f; J 10u/
ˇ
ˇ

kf kH1.X;g/kukH1.X";g/

D
kd zu"k2

L
2

.B";g/

kzu"kH1.X;g/kukH1.X";g/

�! � 2ˇ

ˇ2 C 1
> 0 (4.2)
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as " ! 0 provided ˇ < 0. In particular, Estimate (4.1) cannot hold with the

quadratic form norm instead of the graph norm of f D zu". Note also, that we

have chosen the harmonic extension, which minimises kd zu"k2
L

2
.B";g/

among all

extensions with given boundary values zu"."; �/ D "ˇ cos � , hence Estimate (4.1)

cannot hold either for any extension operator E" having the uniform extension

property Definition 4.1 (ii), as (setting f D E"u)

ˇ
ˇd".J

1f; u/ � d.f; J 10u/
ˇ
ˇ

kf kH1.X;g/kukH1.X";g/

D
kd.E"u/k2

L
2

.B";g/

kE"ukH1.X;g/kukH1.X";g/

�
kd zu"k2

L
2

.B";g/

Cextkuk2
H1.X";g/

�! �2ˇ
Cext.ˇ2 C 1/

> 0:

4.2. Application: many small balls as Neumann obstacles. We now let B" be

the disjoint union of many balls: Assume that for each " > 0 there is �" such that

"=�" ! 0 (e.g., �" D "˛ for some 0 < ˛ < 1). Assume additionally, that .I"/" is a

family of �"-separated subsets I" � X (i.e., different points in I" have distance at

least 2�", see Definition 3.11). We denote by

B" WD B".I"/ and X" D X n B"

the "-neighbourhood of all points in I" resp. its complement in X . Note that, by

the �"-separation, B" consists of jI"j-many disjoint balls around each point in I".

Let us first show the uniform extension property of Definition 4.1 (ii): We

define

E"WH1.X"; g/ �! H
1.X; g/; u 7�! zu;

where zu denotes the harmonic extension on B" with respect to the Euclidean
metric geucl on B" (the metric geucl;p is defined in (3.4) on each small ball B".p/

in B", p 2 I", " � r0).

We first need an estimate of the harmonic extension from an annulus to the

inside ball:

Lemma 4.5. For 0 < " � 1, let B" and B2" be Euclidean balls in Rn of radius "
and 2" around 0. For u 2 H

1.B2" n B"/, denote by zu the harmonic extension of
u into B". Then zu 2 H

1.B"/ and there exist constants C0; C1 > 0 depending only
on the dimension n such that

Z

B"

jzuj2 � C0

Z

B2"nB"

.juj2 C "2jduj2/ and
Z

B"

j dzuj2 � C1

Z

B2"nB"

jduj2

for all u 2 H
1.B2" n B"/.
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Proof. This result is proven in [40]. For the convenience of the reader, we repeat

the proof using a scaling argument.

For u 2 H
1.B2" n B"/ let f .x/ D u."x/. Then f 2 H

1.B2 n B1/ and we have

the scaling behaviour
Z

B2nB1

jf j2 D "�n

Z

B2"nB"

juj2 and

Z

B2nB1

jdf j2 D "2�n

Z

B2"nB"

jduj2

We know that z�WH1.B2 n B1/ ! H
1.B1/, f 7! zf , is a continuous operator. In

particular, there exists a constant C0 > 0 depending only on n such that
Z

B1

.j zf j2 C jd zf j2/ � C0

Z

B2nB1

.jf j2 C jdf j2/

holds. After scaling, we obtain
Z

B"

j Quj2 � C0

Z

B2"nB"

.juj2 C "2jduj2/ � C0

Z

B2"nB"

.juj2 C jduj2/

as " � 1. For the control of the derivative, we remark that the harmonic extension

of the constant function 1 onB2nB1 is the constant function 1 onB1. Therefore, we

can assume that u (and after rescaling also f ) is orthogonal to 1. If �1 denote the

first positive eigenvalue of the Neumann problem of the standard annulusB2 n xB1,

we can conclude with the min-max principle and obtain
Z

B2nB1

jf j2 � 1

�1

Z

B2nB1

jdf j2;

so that Z

B1

jd zf j2 � C0

�

1C 1

�1

� Z

B2nB1

jdf j2:

Since both sides scale with the same order, rescaling gives
Z

B"

jd zuj2 � C0

�

1C 1

�1

�

„ ƒ‚ …

DWC1

Z

B2"nB"

jduj2: �

Proposition 4.6. Assume that .X; g/ is a Riemannian manifold with harmonic
radius r0 > 0. Assume additionally that I" is 2"-separated for each " 2 .0; r0=2/.
Then there is a constant Cext > 0 such that

kzukH1.B2";g/ � CextkukH1.B2"nB";g/
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for all u 2 H
1.X"; g/ and all ". In particular, there exists Cext � 1 such that

kE"k � Cext for all " 2 .0; r0=2/, i.e., the extension operator given by E"u D zu
has the uniform extension property (Definition 4.1 (ii)).

Proof. We have

kzuk2
H1.B";g/

D
X

p2I"

kzuk2
H1.B".p/;g/

� Kn=2C1
X

p2I"

kzuk2
H1.B".p/;geucl/

� Kn=2C1.C0 C C1/
X

p2I"

kuk2
H1.B2".p/nB".p/;geucl/

� K.nC2/.C0 C C1/
X

p2I"

kuk2
H1.B2".p/nB".p/;g/

DW C 2
extkuk2

H1.B2"nB";g/

using Corollary 3.6 (ii) and Lemma 4.5. �

The proof of the following theorem follows now directly from Theorem 4.3

together with Proposition 3.12 (.B"; B�.I"// and hence .B"; X/ are �n."=�"/-non-

concentrating, see Definition 4.1 (i)), Proposition 3.3 (for the elliptic regularity

assumption) and Proposition 4.6 (Recall that, by Proposition 3.5, bounded geom-

etry implies that the harmonic radius r0 is strictly positive; we always assume that

the separation distance �" fulfils 0 < 2" < �" < r0 for all " small enough):

Theorem 4.7. Let .X; g/ be a complete Riemannian manifold with bounded
geometry, and letB" D �S

p2I"
B".p/ be the union of �"-separated balls of radius ".

If "=�" ! 0, then .B"/" is Neumann-asymptotically fading, i.e., the energy form
d.X;g/ and the (Neumann) energy form d

N
.X";g/

are ı"-quasi-unitarily equivalent of
order k D 2 with

ı" D O."=�"/ if n � 3,
resp.

ı" D O.
p

log.�"="/"=�"/ if n D 2.

The error depends only on m, K and �0, see (3.3a) and (3.1). In particular, if
�" D "˛ with ˛ 2 .0; 1/, then ı" D O."1�˛/ if n � 3 resp. ı" D O."1�˛

pjlog "j/
if n D 2.
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Example 4.8. For a single ball of radius " removed from a bounded subdomainX

of R2 with Neumann boundary conditions on the ball and Dirichlet ones on @X ,

Ozawa [33] proved that, for simple eigenvalues, the difference of the perturbed

and unperturbed k-th eigenvalue is of order "2 (he even gave a precise asymptotic

expression in terms of the k-th eigenfunction and its gradient). Hempel [21]

generalised the result for the first eigenvalue to irregular obstacles and higher

dimensions n � 2 (obtaining the convergence rate "n in some cases). Our results

(together with the eigenvalue convergence (1.2b) of Theorem 1.2) only give the

weaker estimate O.ı"/ D O."1�0/ for the eigenvalue difference. Here, notation

ı" D O."
�0/ means that there is �0 > 0 such that ı"="

�� ! 0 as " ! 0 for all

� 2 .0; �0/.

Remark 4.9. If ˛ D 1, or, more generally, �"=" converges to a constant, then

we do not expect that the Neumann Laplacian converges to the free Laplacian

on X in general. If the balls are placed on a periodic lattice of order ", and if

their radius is ", then we are in the setting of homogenisation (with Neumann

boundary conditions), and we expect that the limit operator is no longer the free

Laplacian, see e.g. [2] and also [30, Chapter 5] and very recently [42]. Suslina

proved operator norm estimates for the resolvents on a periodic problem. Using a

scaling argument, she works on an "-independent space.

5. Dirichlet obstacles without an effect

5.1. Abstract Dirichlet obstacles without effect. Let us now consider the same

problem, but with Dirichlet boundary conditions on the obstacles:

Definition 5.1. We say that a family .B"/" of closed subsets of a Riemannian

manifold .X; g/ is Dirichlet-asymptotically fading (of order k � 2) if there exists

a sequence .�"/" of Lipschitz-continuous cut-off functions �"WX ! Œ0; 1� with

supp�" � X" such that the following conditions are fulfilled.

(i) Non-concentrating property. We assume that .BC
" ; X/ is ı0

"-non-concentra-

ting with ı0
" ! 0, where BC

" WD supp.1 � �"/. (It follows that B" � BC
" .)

(ii) The cut-off function has moderate decay of order k � 2, i.e.,

TC
" WHk.X; g/ �! L2.T

�BC
" ; g/; f 7�! f �

B
C
"
d�"

has norm kTC
" k D ıC

" ! 0 as " ! 0.
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�".x/

x

B"

BC
"

B".p/

BC
" .p/

p

Figure 1. Dark grey: the obstacle setB" (consisting here of the disjoint union of ballsB".p/

as in Subsection 5.2); dark and light grey: the setBC
" (again consisting of the disjoint union

of ballsBC
" .p/), and a profile of the cut-off function �" (dotted line, 0 onB", 1 outsideBC

" ).

If B" is a union of small balls, then this problem is the famous crushed ice
problem of [40], see below in Subsection 5.2.

Our next main result is the following:

Theorem 5.2. Let .X; g/ be an elliptically regular Riemannian manifold of order
2 and k and .B"/" be a family of closed subsets of X . If .B"/" is Dirichlet-
asymptotically fading (of order k), then the energy form d.X;g/ of .X; g/ and the
(Dirichlet) energy form d

D
.X";g/

of .X"; g/ with X" D X nB" are ı"-quasi-unitarily
equivalent of order k with ı" D max¹ı0

"; Cell:reg;2ı
0
" C Cell:reg;kı

C
" º.

Proof. We show again that the hypotheses3 of Definition 2.1 are fulfilled, and

specify the spaces and transplantation operators by

J W H WD L2.X; g/ �! zH WD L2.X"; g/; f 7�! f �X"
;

J 1W H1 WD H
1.X; g/ �! zH1 WD VH1.X"; g/; f 7�! �"f;

J 0W zH D L2.X"; g/ �! H D L2.X; g/; u 7�! Nu;
J 10W zH1 D VH1.X"; g/ �! H

1 D H
1.X; g/; u 7�! Nu;

where Nu denotes the extension of uWX" ! C by 0 on B".

We check the hypotheses of Definition 2.1: We easily see that

J 0 D J �; JJ 0 D id zH; J 10 D J 0� zH1 :

As in the Neumann case, we have kJ k D 1 and (2.3a) is fulfilled with ı D 0.

3 Note that the Dirichlet fading case is in some sense dual to the Neumann case, as here, J 1

needs a (more complicated) cut-off function and J 10 is simply the extension by 0.
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The first estimate in (2.3b) follows from the non-concentrating property Defi-

nition 5.1 (i), namely we have

kf � J 0Jf kL
2

.X;g/ D kf kL
2

.B";g/ � kf k
L

2
.B

C
" ;g/

� ı0
"kf kH1.X;g/:

Moreover, Jf � J 1f D .1� �"/f , hence

kJf � J 1f kL
2

.X";g/ D k.1� �"/f kL
2

.X";g/ � kf k
L

2
.B

C
" \X";g/

� kf k
L

2
.B

C
" ;g/

� ı0
"kf kH1.X;g/

by the same argument. Finally,

jd.f; J 10u/ � d".J
1f; u/j

D jhdf � d.�"f /; dui
L

2
.T �B

C
" ;g/

j
� jh.1 � �"/df ; dui

L
2

.T �B
C
" ;g/

j C jhfd�"; dui
L

2
.T �B

C
" ;g/

j
� .kdf k

L
2

.T �B
C
" ;g/

C kfd�"kL
2

.T �B
C
" ;g/

/kduk
L

2
.T �B

C
" ;g/

� .ı0
"kf kH2.X;g/ C ıC

" kf k
Hk.X;g//kukH1.X";g/

� .Cell:reg;2ı
0
"k.�.X;g/ C 1/f k C ıC

" Cell:reg;kk.�.X;g/ C 1/k=2f k/kukH1.X";g/

D .Cell:reg;2ı
0
" C Cell:reg;kı

C
" /kf kkkuk1

by the non-concentrating property together with Proposition 3.9 and the elliptic

regularity assumption and the moderate decay property Definition 5.1 (ii). �

5.2. Application: many small balls as Dirichlet obstacles. The obstacles are

of the same kind as in Subsection 4.2. Let I" be �"-separated as before with

0 < �" < r0 for " 2 .0; "0/ and some "0 > 0, where r0 denotes the harmonic

radius of .X; g/. Let .�/CW .0; "0/ ! .0; r0/ be a function such that " < "C � �"=2

for all " 2 .0; "0/.

Let

BC
" WD B"C.I"/ D

[

p2I"

B"C.p/:

We now check the conditions of Definition 5.1 and need good cut-off functions.

Define by h D hn the radially symmetric, harmonic function in dimension n given

by

h.s/ WD
8

<

:

� 1

.n� 2/sn�2
; n > 2;

ln s; n D 2:

(5.1)
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�".x/

B".p/ BC
" .p/

B�"
.p/

�"

"C

"
x

x

Figure 2. The obstacle (union of balls) of radius " (dark grey); the separation balls (very

light grey and dotted balls) of radius �" and the intermediate balls (light grey and dashed)

of radius "C.

Note that h0.s/ D 1=sn�1. Furthermore, let z�"WX ! Œ0; 1� be the radial cut-off

function given by

z�".r/ D

8

ˆ
ˆ̂
<

ˆ̂

:̂

0; 0 � r � ";

h.r/ � h."/
h."C/ � h."/ ; " � r � "C;

1; "C � r:

This function is Lipschitz-continuous. We define the cut-off function of Defini-

tion 5.1 by

�".x/ WD z�".d.x; p// for x 2 B�"
.p/ (5.2)

for each p 2 I" and extend it by 1 on X n B�"
; again �" is Lipschitz-continuous.

Clearly, supp.1� �"/ D BC
" and �"�B"

D 0 by definition.

Remark 5.3. For the moderate decay property of Definition 5.1 (ii), we need to

control kfd�"kL
2

.B
C
" ;g/

and will use Sobolev embedding theorems. If we stay

in the L2-world, the order k must satisfy k > dimX=2 to have control of the

L1-norm of f by its Hk-norm, and we only need cut-off functions satisfying

kd�"kL
2

.T �B
C
" ;g/

! 0 as " ! 0. The counterpart are stronger assumptions



258 C. Anné and O. Post

concerning the sectional curvature to control the norm of Hk with the graph

norm in H
k.�

.X;g/
/ in Definition 3.1: typically, one needs uniform bounds on

the derivatives of the sectional curvature up to order .k � 2/. We explain another

approach in Remark 5.8.

In the sequel, we prefer to use only a lower bound on the Ricci curvature, using

Hölder inequalities and the Sobolev embeddings given in Proposition A.1. For this

argument, we need the estimate kd�"kLq.T �B
C
" ;g/

! 0 as " ! 0 for some q, see

Proposition 5.5.

As proposed, we now want to use the Hölder estimate

kfd�"kL
2

.T �B
C
" ;g/

� kf k
L2pn.B

C
" /

kd�"kL2qn.T �B
C
" /

(5.3)

with 1 � pn; qn � 1 such that 1=pn C 1=qn D 1. For this estimates it is good

that qn is as small as possible, but the Sobolev embedding forces that pn is not

too large, at least for higher dimensions. This restriction leads us to introduce the

following definition of pn and qn, namely

pm D n

n � 4 if n � 5, p4 D 2

ˇ
; p3 D p2 D 1; (5.4a)

qn D n

4
if n � 5, q4 D 2

2� ˇ ; q3 D q2 D 1; (5.4b)

with ˇ 2 .0; 1� if n D 4, similarly as in [27].

Lemma 5.4. The cut-off function �" at a ball B"C.p/ satisfies

kd�"kL2qn.T �B
"C .p/;g/ D Oı"

for all p 2 I", where

Oı" D O."1�ˇ / if n � 3 with ˇ D ˇn

8

ˆ̂
<

ˆ
:̂

D 0; n � 5;

2 .0; 1/; n D 4;

D 1=2; n D 3;

resp.

Oı" D O.1=
p

log."C="// if n D 2.
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Proof. We calculate

kd�"k2qn

L2qn .T �B
"C .x/;g/

� KqnCn=2 voln�1.S
n�1/

"C
Z

"

j�0
".r/j2qnrn�1 dr

D KqnCn=2 voln�1.S
n�1/

.h."C/ � h."//2qn

"C
Z

"

r .1�2qn/.n�1/ dr

DW . Oı"/
2qn

using Corollary 3.6 (ii). If n ¤ 2 the exponent of r in the integral is different to

�1, thus

Oı2qn
" D

8

ˆ
ˆ̂
<

ˆ̂

:̂

KqnCn=2
voln�1.S

n�1/."n�2qn.n�1/ � ."C/.n�2qn.n�1///

.h."C/ � h."//2qn.2qn.n� 1/ � n/ if n � 3,

K2
2�

.log "C � log "/
if n D 2,

by the definition of h in (5.1). The result follows. �

We can now show the moderate decay property of Definition 5.1 (ii):

Proposition 5.5. Assume that .X; g/ is a complete manifold with bounded geom-
etry and let I" be �"-separated, then there exists ıC

" such that

kfd�"kL
2

.T �B
C
" ;g/

� ıC
" kf kH2.�

.X;g/
/

for all " > 0 with "C � �"=4 and f 2 dom�
.X;g/

, where

ıC
" D

8

ˆ
<

:̂

O
�� "

"C

�1�ˇ 1

"C

�

if n � 3;

O.1=."C
p

log."C="/// if n D 2,

with ˇ D ˇn as in Lemma 5.4. In particular, if ıC
" ! 0 as " ! 0, then the cut-off

function has moderate decay of order k D 2, i.e., Definition 5.1 (ii) is fulfilled.
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Proof. We have

kfd�"k2

L
2

.T �B
C
" ;g/

D
X

p2I"

kfd�"k2
L

2
.T �B

"C .p/;g/

�
X

p2I"

kf k2
L2pn .B

"C .p/;g/kd�"k2
L2qn .T �B

"C .p/;g/

� C 2
Sob."

C/�2an Oı2
"

X

p2I"

kf k2
H2.B

4"C .p/;g/

� C 2
ell:reg;2C

2
Sob."

C/�2an Oı2
"

„ ƒ‚ …

DW.ıC
" /2

kf k2
H2.�

.X;g/
/

where we used Hölder’s inequality for the first inequality, Proposition A.1 and

Lemma 5.4 for the second inequality and Proposition 3.3 for the last one. �

Note that we have the integral estimate in Lemma 5.4 only for single balls, and

used the supremum when considering all balls in the previous proof.

Recall that, by Proposition 3.5, bounded geometry implies that the harmonic

radius r0 is strictly positive; we always assume that the separation distance �"

fulfils 0 < 2" < �" < r0 for all " small enough. Recall that the exponent of " in

the following theorem has the form

1 � ˇ
2 � ˇ

8

ˆ̂
ˆ̂

<̂

ˆ
ˆ̂
ˆ̂
:

D 1

2
if n � 5,

2 �

0; 1
2

�

for ˇ 2 .0; 1/ if n D 4,

D 1

3
if n D 3,

where ˇ D ˇn is defined in Lemma 5.4.

Theorem 5.6. Let .X; g/ be a complete Riemannian manifold of bounded geom-
etry. Moreover, let B" D �S

p2I"
B".p/ be the union of balls of radius " centred at

the points of the �"-separated set I". If n � 3 assume that

!" WD ".1�ˇ/=.2�ˇ/

�"

�! 0 as " ! 0:

If n D 2 assume that

!" WD 1

�"

pjlog "j
�! 0 as " ! 0:

Then .B"/" is Dirichlet-asymptotically fading, i.e., the energy form d.X;g/ and the
(Dirichlet) energy form d

D
.X";g/

are ı"-quasi-unitarily equivalent (of order k D 2)

with ı" D O.
p
!"/ if n � 3 and ı" D O.

p

jlog!"j!"/ if n D 2.
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Proof. According to Definition 5.1, Theorem 5.2 and Proposition 5.5, we have to

find "C such that ı0
" D O.�n."

C=�"// ! 0 and ıC
" D O.."="C/1�ˇ="C/ ! 0. We

set

"C D �"

p
!":

First, we have "C=�" D p
!" ! 0 and "C ! 0 by our assumption, hence

ı0
" D O.�n.

p
!"// by Proposition 3.12.

If n � 3, then ıC
" is of order

� "

"C

�1�ˇ 1

"C
D

� "

�"

�1�ˇ 1

�"

� !�.2�ˇ/=2
" D !2�ˇ

" � !�.2�ˇ/=2
" D !.2�ˇ/=2

" :

Since ˇ < 1 we have .2 � ˇ/=2 � 1=2, and the error term from ı0
" D O.

p
!"/

wins, hence ı" D O.
p
!"/ as error in the quasi-unitary equivalence.

If n D 2, then ıC
" is of order

1

"C
p

jlog "j
D 1

�"
p
!"

p

jlog "j
D p

!":

As a consequence,

."C/2 log
�"C

"

�

D ."C/2.jlog "j C log "C/ � 1

2
."C/2jlog "j;

for " 2 .0; 1/ as ."C/2 log."C/ ! 0 and ."C/2jlog "j ! 1. Finally, we have

1

"C
p

jlog."C="/j
�

p
2

"C
pjlog "j D

p

2!":

In particular, the error term from ı0
" wins again, hence we obtain

ı" D O.
p

jlog!"j!"/: �

We now make the previous theorem more explicit by assuming that �" D "˛

for some ˛ 2 .0; 1/:

Corollary 5.7. Let .X; g/ be a complete Riemannian manifold of bounded geom-
etry. Moreover, let B" D �S

p2I"
B".p/ be the union of balls of radius " centred

at the points of the �"-separated set I". Assume that �" D "˛ for ˛ 2 .0; 1=2/ if
n � 4 and ˛ 2 .0; 1=3/ if n D 3 and �" D jlog "j�˛ if n D 2 for ˛ 2 .0; 1=2/.



262 C. Anné and O. Post

Then .B"/" is Dirichlet-asymptotically fading, i.e., the energy form d.X;g/ and
the (Dirichlet) energy form d

D
.X";g/

are ı"-quasi-unitarily equivalent (of order
k D 2) with

ı" D

8

ˆ̂
ˆ
<̂

ˆ̂
ˆ
:̂

O.".1=2�˛/=2/; n � 5;

O.".1=2�˛/=2�0/; n D 4;

O.".1=3�˛/=2/; n D 3;

O.jlog "j.˛�1=2/=2 logjlog "j/; n D 2:

For the notation ı" D O."
�0/ see the end of Example 4.8.

Proof. If n � 3 we just have to assume that

!" D "
1�ˇ
2�ˇ

�˛ �! 0

as " ! 0, and this is equivalent with 1�ˇ
2�ˇ

> ˛. If n � 5 this means 1=2 > ˛,

if n D 3 it is 1=3 > ˛. If n D 4, we can choose ˇ 2 .0; 1/ for given ˛ 2 .0; 1
2
/

such that 1
2
> 1�ˇ

2�ˇ
> ˛; the smaller we choose ˇ, the better and closer the error

ı" comes to O.".1=2�˛/=2/. If n D 2, we have

!" D jlog "j˛�1=2 �! 0

as " ! 0, since ˛ 2 .0; 1=2/. The error term is then as given above. �

Remark 5.8. Note that the critical parameter for the balls to fade is the capacity
(see the discussion in [40] or [27]). In our notation, the capacity of the balls of

radius " with �"-separated balls (�" D "˛) is vanishing if "n�2 � �n
" , i.e., if

.n� 2/=n > ˛ for n � 3, or jlog "j�1=2 � �" for n D 2. In particular, our result is

optimal in small dimensions n 2 ¹2; 3; 4º, as we can come arbitrarily close to the

critical separation parameter. If n � 5, our result is no longer optimal (as we have

to assume ˛ < 1=2 instead of the optimal bound ˛ < .n� 2/=n). This is the price

to pay for only staying at second order Sobolev spaces (see also Remark 5.3): If

we actually use a result by [11, Proposition 1.3] stating that

jf .x0/j � c.n/

N
X

j D0

r�n=2C2j k.�.X;g//
jf kL

2
.Br .x0//;

provided 0 < r � min¹jKj�1=2; �0º, where jKj is the maximal absolute value of

the sectional curvature, �0 is the injectivity radius andN D Œn=4�C1. In particular,
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we can use a similar argument as in Proposition 5.5 to show that

kfd�"k2

L
2

.T �B
C
" ;g/

�
X

p2I"

kf k2
L1.B

"C .p/;g/kd�"k2
L

2
.T �B

"C .p/;g/

� c0.n/"n�2."C/�nk.�.X;g/ C 1/Nf k2
L

2
.X;g/

as kd�"k2
L

2
.T �B

"C .p/;g/
D O."n�2/ uniformly in p 2 I" (for n � 3). In particular,

if we choose again "C D �"

p
!" and �" D "˛, we can find for any ˛ 2 .0; .n�2/=n/

a sequence !" ! 0 such that ıC
" D O.."C/�n=2".n�2/=2/ D O.".n�2�n˛/=2!�n

" /

and ı0
" D O.

p
!"/. As a consequence, the energy form d.X;g/ and the (Dirichlet)

energy form d
D
.X";g/

are ı"-quasi-unitarily equivalent with ı" D O.ıC
" C ı0

"/, but

now of order k D 2N D 2C2Œn=4�. Hence we obtain also the optimal ball density

for dimensions n � 5, but the price is a higher resolvent power (namely the power

m D max¹k � 2; 0º D 2Œn=4�, see Definition 1.1 and Section 2) entering in the

resolvent convergence.

The opposite effect of solidifying happens if ˛ > .n� 2/=n, see (6.4).

6. Solidifying obstacles for Dirichlet boundary conditions

6.1. Abstract solidifying Dirichlet obstacles. Let us now consider the case,

when the obstacles fill out some closed subset S , on which the limit operator has a

Dirichlet boundary condition (it “solidifies” on S ). We assume that the obstacles

B" in some sense “converge” to S in the following sense:

Definition 6.1. We say that a family .B"/"2.0;"0� of closed subsets of a Riemannian

manifold .X; g/ is Dirichlet-asymptotically solidifying towards a closed subsetS if

there is a sequence .�"/" of Lipschitz-continuous cut-off functions �"WX ! Œ0; 1�

with supp.�"/ � X0 WD X n S such that the following conditions are fulfilled (we

let X" WD X n B").

(i) Non-concentrating property. We assume that .A"; X"/ is ı0
"-non-concentra-

ting of order 1 with ı0
" ! 0, and .A"; X0/ is ı00

" -non-concentrating of order

2 with ı00
" ! 0, where A" WD supp.d�"/ is an annulus region around the

boundary of S .

(ii) Spectrally solidifying. We assume B" � S and that there is Nı" ! 0 as " ! 0

such that

kuk
L

2
. VSn xB";g/

� Nı"kukH1.X";g/

for all u 2 VH1.X"; g/ and " 2 .0; "0�.
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(iii) The cut-off functions �" have moderate decay in the sense that

ıC
" WD ı0

"ı
00
" kd�"k1 �! 0

as " ! 0, where ı0
" and ı00

" are given in (i).

X

A"

S

B"

B�"

Figure 3. The solidifying part S (light grey and dotted) with the annulus region A" (middle

dark grey and dotted) and the obstacles B" inside (dark grey balls); the larger balls B�"

(dashed lines) for a uniformly locally finite cover of the annulus region and the solidifying

part S .

A sufficient condition for the spectral non-concentration property of Defini-

tion 6.1 (ii) is as follows (explaining also the terminology) (Rauch and Taylor [40]

say that such obstacles “become solid” in S ).

Proposition 6.2. Assume that �" is the bottom of the spectrum of the Laplacian

on VS n xB" with Dirichlet boundary conditions on @B" n@S and Neumann boundary
condition on @S . If lim"!0 �" D 1, then .B"/" is spectrally solidifying.

Proof. Note that the mentioned Laplacian is the operator associated with the

quadratic form given by kduk2

L
2

.T �. VSn xB"/;g/
with domain

u 2 ¹ f � VSn xB"
j f 2 VH1.X"/ º:

By the variational characterisation of the first eigenvalue, we have

�" D inf

²
R

VSn xB"
jduj2 dg

R

VSn xB"
juj2 dg

ˇ
ˇ
ˇu 2 VH1.X"/ n ¹0º

³

:

From this characterisation via an infimum, we conclude

kuk
L

2
. VSn xB";g/

� 1p
�"

kduk
L

2
.T �. VSn xB"/;g/

� 1p
�"

kukH1.X";g/:

As �" ! 1, we can choose Nı" D 1=
p
�" ! 0 as " ! 0. �
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Remark 6.3. There is a subtle point in Definition 6.1 (i) and (iii): if we would

assume that .A"; X0/ is ı"-non-concentrating for the same ı" D ı0
" D ı00

" , then

ıC
" will most likely not converge to 0 as it contains the cut-off function, see also

Remark 6.15 for details. This is why we have two different assumptions of non-

concentration in Definition 6.1 (i).

In the applications below in Subsection 6.2 we show similarly as in Proposi-

tion 6.2 that .A"; X"/ is non-concentrating of order 1, see Proposition 6.7.

We extend our notion of elliptic regularity (Definition 3.1) of a manifold

.X0; g/ with boundary and Dirichlet boundary conditions as follows: We say that

.X0; g/ is elliptically regular, i.e., we have dom�D
.X0;g/

� H
2.X0; g/ and there is

Cell:reg � 1 such that

kf kH2.X0;g/ � Cell:regk.�D
.X0;g/ C 1/f kL

2
.X0;g/

for all f 2 H
2.�D

.X0;g/
/ D dom�D

.X0;g/
, where �D

.X0;g/
denotes the Dirichlet

Laplacian on .X0; g/.

Our next main result is as follows:

Theorem 6.4. Let .X; g/ be a Riemannian manifold and .B"/" be a family of
closed subsets ofX that is Dirichlet-asymptotically solidifying towards S . Assume
in addition that .X0; g/ is elliptically regular where X0 D X n S .

Then the Dirichlet energy form d
D
.X0;g/

of .X0; g/ and the Dirichlet energy form

d
D
.X";g/

of .X"; g/ with X" D X n B" are ı"-quasi-unitarily equivalent of order 2

with ı" D max¹ Nı"; Cell:reg.ı
00
" C ıC

" /º.

Proof. We show again that the hypotheses4 of Definition 2.1 are fulfilled. Here,

X0 � X", so extension by 0 and restriction are swapped. We set

J W H WD L2.X0; g/ �! zH WD L2.X"; g/; f 7�! Nf;
J 1W H1 WD VH1.X0; g/ �! zH1 WD VH1.X"; g/; f 7�! Nf;
J 0W zH D L2.X"; g/ �! H D L2.X0; g/; u 7�! u�X0

;

J 10 W zH1 D VH1.X"; g/ �! H
1 D VH1.X0; g/; u 7�! �"u;

where Nf denotes the extension of f WX0 ! C by 0 onto X", as X0 � X".

4 Note that the Dirichlet solidifying case is in some sense dual to the Dirichlet fading case:

Here, we have again X0 � X", hence J 10 is more complicated (as in the Neumann fading case).
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We check the hypotheses of Definition 2.1: We easily see that

J 0 D J �; J 0J D idH; J 1 D J�
H1 :

As in the Neumann case, we have kJ k D 1 and (2.3a) is fulfilled with ı D 0.

The second estimate in (2.3b) follows from the spectral non-concentrating

property Definition 6.1 (ii), namely we have

ku � JJ 0ukL
2

.X;g/ D kuk
L

2
. VSn xB";g/

� Nı"kukH1.X";g/:

Moreover, J 0u � J 10u D ..1� �"/u/�X0
, hence

kJ 0u � J 10ukL
2

.X0;g/ D k.1� �"/ukL
2

.X0;g/

� kukL
2

.A";g/ � ı0
"kukH1.X";g/

by the non-concentration property of .A"; X0/ in Definition 6.1 (i) (implying the

same property for .A"; X"/ as X0 � X"). Finally,

jd".J
1f; u/ � d.f; J 10u/j

D jhdf ; d..1 � �"/u/iL
2

.T �A";g/j
� jhdf ; .1� �"/duiL

2
.T �A";g/j C jhdf ; u d�"iL

2
.T �A";g/j

� kdf kL
2

.T �A";g/.kdukL
2

.T �A";g/ C kukL
2

.A";g/kd�"k1/

� ı00
" kf kH2.X0;g/.1C ı0

"kd�"k1/kukH1.X";g/

� Cell:reg.ı
00
" C ıC

" /k.�D
.X0;g/ C 1/f kkuk1

by the non-concentrating property of order 2 in Definition 6.1 (i) for the second last

estimate and the elliptic regularity assumption and the moderate decay property

(Definition 6.1 (iii)) for the last estimate. �

6.2. Application: many solidifying small balls as Dirichlet obstacles. The

obstacles are of the same kind as in Subsection 4.2 but denser: let now I" be

"-separated and let B" D S

p2I"
B".p/ be the disjoint union of balls of radius ".

Before checking the conditions of Definition 6.1, we first need the following result:

Lemma 6.5 (Rauch and Taylor [40]). Assume that � > " and that

A";�.0/ WD B�.0/ n B".0/

is an annulus with inner radius " and outer radius � in Euclidean space Rn.
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Denote by �eucl
" the first eigenvalue of the Laplacian with Dirichlet boundary

condition on the inner sphere, and Neumann on the outer sphere. Then there
exists a constant Ceucl > 0 (depending only on the dimension) such that

�eucl
" � Ceucl"

n�2

�n
for n � 3,

resp.

�eucl
" � Ceucl

�2jlog "j for n D 2.

for all 0 < " < � < r0.

Definition 6.6. We say that ¹B�"
.p/ºp2I"

is a uniformly locally finite cover of S

if there is "0 > 0 and N 2 N such that

j¹p 2 I" jB�"
.p/\ B�"

.q/ ¤ ; ºj � N (6.1a)

and

S � B�"
D

[

p2I"

B�"
.p/ (6.1b)

for all q 2 I" and all " 2 .0; "0�.

Proposition 6.7. Assume that .X; g/ is a Riemannian manifold with bounded
geometry with harmonic radius r0>0. Let "; �" 2 .0; r0/ such that 0<"<�"<r0.
Assume that I" is "-separated and that .B�"

.p//p2I"
is a uniformly locally finite

cover of S .
Then we have

kuk
L

2
. VSn xB";g/

� kukL
2

.A";�" ;g/ � Nı"kukH1.X";g/ (6.2)

for all u 2 H
1.X"; g/, where A";�"

D B�"
n xB" and Nı" D C!" for some constant

C > 0 depending only on N , K and n and where

!" D
q

�n
"="

n�2 .n � 3/; (6.3a)

resp.

!" D �"

p

jlog "j .n D 2/: (6.3b)

In particular, if !" ! 0 as " ! 0 then .B"/" is spectrally solidifying (see
Definition 6.1 (ii)).



268 C. Anné and O. Post

Proof. Note first that VS n xB" � A";�"
, hence we have

kuk2

L
2

. VSn xB";g/
� kukL

2
.A";�" ;g/ �

X

p2I"

kuk2
L

2
.A";�" .p/;g/

� KnC1

Ceucl

� �n
"

"n�2

X

p2I"

kduk2
L

2
.T �A";�" .p/;g/

� NKnC1

Ceucl
„ ƒ‚ …

DWC 2

� �
n
"

"n�2
kduk2

L
2

.T �A";�" ;g/

using Corollary 3.6 (ii) and Lemma 6.5, where A";�.p/ WD VB�.p/ n xB".p/

is the annulus with inner radius " and outer radius � around p and A";� WD
S

p2I"
A";�.p/. �

Remark 6.8. If �" D "˛ with ˛ 2 .0; 1/, then B" is spectrally solidifying, i.e.,

!" D ".n˛�.n�2//=2 ! 0 if and only if

n � 2
n

< ˛: (6.4)

The value ˛0 D .n � 2/=n is actually the critical parameter for the "˛-separation

of balls when the behaviour changes from fading (˛ 2 .0; ˛0/ as in Section 5 to

solidifying (˛ 2 .˛0; 1/ as in this section. If ˛ D .n � 2/=2 and under suitable

additional assumptions on the spacing of the obstacles, one obtains a different

limit, due to a homogenisation effect, see e.g. [27]) and the references cited therein

and in Section 1.2.

To check the remaining properties of Definition 6.1 we need some regularity

on Y D @S .

Assumption 6.9 (geometric assumption on the boundary of the solidifying set).

We assume that Y D @S is a smooth manifold with embedding �WY ,! X

and induced metric h WD ��g, we assume also that Y admits a uniform tubular
neighbourhood, i.e., that Y has a global normal unit vector field EN (so Y is

orientable) and that there is r0 > 0 such that

expWY � Œ0; r0/ �! X; .y; t/ 7�! expy.t
EN.y// (6.5)

is a diffeomorphism.



Wildly perturbed manifolds 269

Remark 6.10. This assumption includes the fact that the principal curvatures of

the hypersurface Y are bounded by a constant depending on 1=r0 and �0, see

e.g. [23, Corollory 3.3.2]. But our assumption is stronger: we need also that Y

does not admit infinitely close points which are far away for the inner distance.

Let " 7! Q" 2 .0; r0/ be a function of " such that Q" ! 0 as " ! 0 (to be specified

later). Moreover set

A" WD ¹ x 2 X0 D X n S j d.x; S/ < Q" º:
Then A" has tubular coordinates .r; y/ 2 .0; Q"/� Y by Assumption 6.9.

Let z�WR ! Œ0; 1� be a smooth function with z�.r/ D 0 for r � 0, � strictly

monotone on .0; 1/ and z�.r/ D 1 for r � 1 and kz�0k1 � 2. We then define

�Q".x/ WD z�
�d.x; S/

Q"
�

(6.6)

as cut-off function. We clearly have kd�z"k1 � 2= Q" and A" D supp.d�Q"/ \X0

Before using the cut-off function �Q", we use Proposition 6.7 to show the

following result:

Proposition 6.11. Assume that .X; g/ has bounded geometry with harmonic
radius r0 > 0. Assume additionally that

A" � B�"
(6.7)

(it then follows that A" � B�"
n xB") and that (6.2) holds. Then

kukL
2

.A";g/ � Nı"kukH1.X";g/

for all u 2 H
1.X"; g/ and Q" 2 .0; r0/ ( Nı" D O.!"/ and !" are given in Proposi-

tion 6.7) and (6.3), respectively. In particular, .A"; X"/ is Nı"-non-concentrating
of order 1.

Proof. As A" � A";�"
D B�"

n xB", we have

kukL
2

.A";g/ � kukL
2

.A";�" ;g/ � Nı"kukH1.X";g/

using (6.2). �

Remark 6.12. Note that there is a hidden assumption on Q" and �" in A" � B�"
:

namely, asA" is the Q"-neighbourhood of S andB" � S , such an inclusion can only

be true if Q"=�" tends to 0 or at least is bounded. This assumption is the reason why

we will not come arbitrarily close to the critical parameter for the spacing of the

balls, where the behaviour changes from fading to solidifying, see Remark 6.19.
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Proposition 6.13. Assume that .X; g/ has bounded curvature with harmonic
radius r0 > 0. Assume additionally that .Y; h/ is a complete smooth orientable
hypersurface admitting a uniform tubular neighbourhood also with radius r0 > 0.
Then there is ı00

" D O.
pQ"/ depending only on Y and r0 such that

kdf kL
2

.A";g/ � ı00
" kf k

H2.X0;g/

for all f 2 H
2.X0; g/ and Q" 2 .0; r0/. In particular, .A"; X0/ is ı00

" -non-
concentrating of order 2.

Proof. From Lemma A.3 (with z" and r0 instead of " and "C) we conclude that

.A"; X0/ is ı00
" -non-concentrating with ı00

" D Cr0;Y

p Q"=r0, and Proposition 3.9 then

yields

kdf kL
2

.A";g/ � ı00
" kf k

H2.Ar0
;g/ � ı00

" kf k
H2.X0;g/

for all f 2 H
2.X0; g/. �

Recall that the parameter !" is defined in (6.3).

Corollary 6.14. Let " 7! Q" 2 .0; r0/ be a function with Q" ! 0 as " ! 0. Assume
that !2

" = Q" ! 0 as " ! 0. Then the cut-off function �Q" has moderate decay, i.e.,
Definition 6.1 (iii) is fulfilled with ıC

" D O.!"=
pQ"/.

Proof. We have

ıC
" D Nı"ı

00
" kd�"k1 � 2CCr0;Y!"

s

Q"
r0

� 2Q"

as kd�"k1 � 2= Q", and hence ıC
" ! 0 as " ! 0 by the assumption !2

" = Q" ! 0. �

Remark 6.15. There is a subtle point in the combination of arguments for the

non-concentrating property: If we used for Proposition 6.13 an analogue result as

for Proposition 6.11 (with ı0
" instead of Nı" also of order

pQ"), then ıC
" would not

tend to 0, as ı0
"ı

00
" is of order Q", but kd�"k1 is of order Q"�1. So we need somehow

also VS n B" for the convergence. In particular, we need that A" is covered by B�"
,

which assures that the balls in B" are not too far separated, see Remark 6.12. This

is also the reason why we need the additional regularity on @S in Assumption 6.9.

We can now state our main result of solidifying of a union of many balls.
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Theorem 6.16. Let .X; g/ be a complete Riemannian manifold of bounded ge-
ometry with harmonic radius r0 > 0 and let B" D �S

p2I"
B".p/ be the union of

"-separated balls of radius ". Assume that there are �" 2 .0; r0/ and Q" 2 .0; r0/

such that

�" �! 0 and Q" �! 0 as " ! 0;

and such that the following holds.

(i) We have !" ! 0, where

!" WD
8

<

:

p

�n
"="

n�2 if n � 3 and

�"

p

jlog "j if n D 2.

(ii) There is a closed subset S � X with smooth boundary Y D @S admitting a
uniform tubular neighbourhood of radius r0 > 0; denote by A" the (outer)
Q"-neighbourhood. Moreover,

!"pQ" �! 0 as " ! 0.

(iii) We have B" � S and A" � B�"
, and the latter cover .B�"

.p//p2I"
is

uniformly locally bounded (see (6.1)). Moreover, assume that

Q"
�"

is bounded as " ! 0.

Then .B"/" is Dirichlet-asymptotically solidifying towards S , i.e., the Dirichlet
energy form d

D
.X0;g/

and the Dirichlet energy form d
D
.X";g/

are ı"-quasi-unitarily
equivalent with

ı" D O
�

max
°

!";
p

Q"; !"pQ"
±�

:

(Recall that X" D X n B" and X0 D X n S .)

Proof. By Proposition 6.11, .A"; X"/ is Nı"-non-concentrating of order 1with ı0
" D

Nı" D O.!"/. Moreover, by Proposition 6.13, .A"; X0/ is ı00
" -non-concentrating of

order 1 with ı00
" D O.

pQ"/. In particular, Definition 6.1 (i) is fulfilled. For the

elliptic regularity assumption we remark that the proof of Proposition 3.3 based

on (3.2) works as well for the Dirichlet Laplacian. Definition 6.1 (ii) is fulfilled

by Proposition 6.7 with Nı" D O.!"/, and finally, Definition 6.1 (iii) is fulfilled

by Corollary 6.14 with ıC
" D 2 Nı"ı

00
"=z" D O.!"=

pQ"/. The total error ı" is now of

order as the maximum of Nı", ı
00
" and ıC

" . �
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Remark 6.17. There is a competition between Q"=�" to be bounded and

!"=
pQ" ! 0. Choosing simply Q" D "� and �" D "˛ implies that � � ˛

(by the boundedness of Q"=�" D "��˛) and that .n˛ � .n � 2//=2 > � (as

!"=
pQ" D ".n˛�.n�2//=2��/ ! 0). Together, these two requirements imply

n˛ � .n � 2/ > 2˛, i.e., ˛ > 1. This is in contradiction with " < �" D "˛ .

We therefore use the more advanced setting Q" WD !
2

" for 
 2 .0; 1/ in the

next corollary. This setting and the requirement that !" ! 0 imply that Q" ! 0,

ı00
" D O.!



" / and ıC

" D O.!
1�

" / as " ! 0. Only the requirements �" ! 0 and

Q"=�" bounded remain to be checked.

Let us now specify �" and Q" and show that the assumptions of Theorem 6.4 can

actually be fulfilled:

Corollary 6.18. Let .X; g/ be a complete Riemannian manifold of bounded ge-
ometry with harmonic radius r0 > 0 and let B" D �S

p2I"
B".p/ be the union of

"-separated balls of radius ". Assume that �" D "˛ with ˛ 2 .0; 1/ and that the
following holds:

(i) there is a closed subset S � X with smooth boundary Y D @S admitting a
uniform tubular neighbourhood of radius r0 > 0;

(ii) we have B" � S and A" � B�"
, and the latter cover .B�"

/p2I"
is uniformly

locally bounded (see (6.1)). Moreover, assume that

n � 2
n � 1 < ˛ < 1 if n � 3

and

0 < ˛ < 1 if n D 2.

Then .B"/" is Dirichlet-asymptotically solidifying towards S , i.e., the Dirichlet
energy form d

D
.X0;g/

and the Dirichlet energy form d
D
.X";g/

are ı"-quasi-unitarily
equivalent with ı" ! 0 given in (6.8).

Proof. We check the conditions of Theorem 6.16. Let n � 3. From

˛ >
n � 2
n � 1 >

n� 2

n
;

we conclude that ˛ > .n � 2/=n and hence !" D ".n˛�.n�2//=2 ! 0 as " ! 0. If

n D 2, then !" D "˛jlog "j ! 0 for any ˛ > 0. In particular, Theorem 6.16 (i) is

fulfilled.
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For Theorem 6.16 (ii), we set Q" WD !
2

" for 
 > 0, then Q" ! 0 as before.

Moreover,
!"pQ" D !1�


" �! 0 as " ! 0

provided 
 < 1. For the final requirement Theorem 6.16 (iii), we specify 
 2
.0; 1/: if n � 3 and ˛ > .n � 2/=.n� 1/, then

Q"
�"

D ".n˛�.n�2//
�˛ D O.1/ () .n˛�.n�2//
 � ˛ () 
 � ˛

n˛ � .n� 2/
:

The latter can only be true for some 
 < 1 if and only if

1 >
˛

n˛ � .n� 2/
() ˛ >

n � 2
n � 1:

If n D 2, then
Q"
�"

D "˛.2
�1/jlog "j
 D O.1/ () 
 >
1

2

for any ˛ > 0. From Theorem 6.16 we conclude the result with error of order

ı" D O.!max¹
;1�
º
" /: (6.8)

�

Remark 6.19. Unfortunately, the condition

˛ >
n � 2
n � 1

is not the optimal one, namely ˛ > .n�2/=n. Note that the condition comes from

the boundedness of Q"=�" in Theorem 6.16 (iii).

Appendix A. Sobolev estimates on balls on manifolds

Proposition A.1. Assume that .X; g/ is complete and has bounded geometry with
harmonic radius r0 > 0. Then there is a constant CSob > 0 such that

kf kL2pn .Br .x/;g/ � CSob r
�an kf kH2.B4r .x/;g/

for all x 2 X , r � r0=4 and f 2 H
2.B4r .x/; g/, where

pn D

8

ˆ
<̂

ˆ
:̂

n
n�4

; n � 5;

2
ˇ
; ˇ 2 .0; 1�; n D 4;

1; n 2 ¹2; 3º;
an D

8

ˆ
ˆ̂

<̂

ˆ
ˆ̂

:̂

2; n � 5;

2 � ˇ; ˇ 2 .0; 1�; n D 4;

3=2; n D 3;

1; n D 2:

(A.1)
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Proof. The Sobolev embedding theorem in Rn states that H1
q.R

n/ � Lp.R
n/ is

a continuous embedding provided 1=p D 1=q � 1=n (see e.g. [1, Theorem 5.4]

or [20, Theorem 2.5]). Thus, using a cut-off function we conclude that there exists

a constant Cp;q > 0 such that

kf kLp.B1.0/;geucl/ � Cp;q kf k
H

1
q.B2.0/;geucl/

for all f 2 H
1
q.R

n/. By a scaling argument we conclude that

kf kLp.Br .0/;geucl/ � Cp;q

2n=q
rn. 1

p � 1
q /kf k

H
1
q.B2r .0/;geucl/

D Cp;q

2n=q
r�1kf k

H
1
q.B2r .0/;geucl/

for all f 2 H
1
q;loc.R

n/. Finally, by the hypothesis of bounded geometry, we obtain

kf kLp.Br .x/;g/ � C.p; q;K/r�1kf k
H

1
q.B2r .x/;g/ (A.2)

for all f 2 H
1
q;loc.X; g/ and x 2 X as soon as 2r � r0. To obtain the desired

estimate we have to apply this argument twice.

If n � 5, let p and p0 be such that

1

p0
D 1

2
� 1

n
and

1

p
D 1

p0
� 1

n
;

thus
1

p
D 1

2
� 2

n
D n� 4

2n
:

Let f 2 H
2
2.X; g/, and r � r0=4. We know already that

kf kLp.Br .x/;g/ � C.p; q;K/ r�1kf k
H

1
p0 .B2r .x/;g/:

Moreover, applying (A.2) to the function ' D jdf j we obtain

kdf kLp0 .B2r .x/;g/ � C.p0; 2; K/ r�1k jdf j kH1.B4r .x/;g/

We now argue as in (3.9) and estimate jd'jg � jr2f jg , hence we have

kf kLp.Br .x/;g/ � C.p;K/ r�2kf kH2.B4r .x/;g/

for all f 2 H
2
2.X; g/ and x 2 X with C.p;K/ D C.p0; 2; K/C.p; p0; K/ and

pn D p=2 D .n � 4/=n. For small dimensions, we can use the following special
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Sobolev embeddings results: there exists a constant C > 0 such that

kf kL1.B1.0// � Ckf k
H

1
q.B2.0//; kf kL1.Br .0// � r�n=qCkf k

H
1
q.B2r .0// (A.3)

kf kLp.B1.0// � Ckf k
H

1
n.B2.0//; kf kLp.Br .0// � rn=p�1Ckf k

H
1
n.B2r .0// (A.4)

for all f 2 H
1
q.B2.0/; geucl/ and q > n resp. q D n and p 2 Œn;1/, see [1,

Theorem 5.4].

For n D 4, choose p0 D 4 and p � 4, then we have, applying (A.4) and using

the assumption of bounded geometry,

kf kLp.Br .x/;g/ � C.p;K/ r4=p�2kf kH2.B4r .x/;g/

for all f 2 H
2
2.X; g/ and x 2 X . We hence choose p4 D p=2 D 2=ˇ with

ˇ 2 .0; 1�.
For n D 3, choose p0 D 6 and p D 1, then we have, applying (A.3) using the

assumption of bounded geometry,

kf kL1.Br .x/;g/ � C.1; K/ r�3=2kf kH2.B4r .x/;g/:

for all f 2 H
2
2.X; g/ and x 2 X .

Finally, for n D 2, choose p0 D 4 and p D 1, then

kf kL1.Br .x/;g/ � C.1; K/ r�1kf kH2.B4r .x/;g/

for all f 2 H
2
2.X; g/ and x 2 X . �

Remark A.2. If we apply directly the Sobolev embedding theorem [1, Theo-

rem 5.4] for Euclidean balls, then we would obtain an estimate

kf kL2p.B1.0/;geucl/ � Cp;nkf kH2.B1.0/;geucl/

for some Cp;n > 0 and after a scaling argument we obtain

kf kL2p.Br .0/;geucl/ � Cp;nr
n=.2p/�n=2kf kH2.Br .0/;geucl/

for all r 2 .0; 1� and f 2 H
2.Br.0/; geucl/. But then, we need an estimate of the

Euclidean derivative jr2f j2 in terms of jr2
gf j2g , but

.r2
gf /ij D @ijf �

X

k

�k
ij@kf;

hence we would need additional assumptions on the derivative of the metric

(entering in the Christoffel symbols �k
ij ).
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Lemma A.3. Assume that .X; h/ has bounded geometry with harmonic radius
r0 > 0 and that .Y; h/ is a complete orientable submanifold of codimension 1 in
X (a hypersurface). We assume that Y admits a uniform tubular neighbourhood
(as defined in Assumption 6.9) also with radius r0 > 0

Let " and "C such that 0 < " < "C < r0 � 1. Then there is Cr0;Y > 0

depending only on Y and r0 such that

kf kL
2

.B".Y /;g/ � Cr0;Y

� "

"C

�1=2

kf kH1.B
"C .Y /;g/

for all f 2 H
1.X; g/.

Proof. In the coordinates defined by exp in (6.5) the metric is of the form

dt2 C h.t/ where h.t/ is metric on Y equal to h at t D 0. We then apply [35,

Lemma A.2.16] with a D " and b D "C and obtain that .Œ0; "� � Y; Œ0; "C� � Y /
is 2."="C/-non-concentrating (provided "C < 1). Moreover, .B".Y /; g/ is an al-

most product in the sense of App. A.2 in [35], and the relative distortion factor isp
C r0;Y . �
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