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Abstract. We consider the Schrödinger operator on a finite interval with an L1-potential.
We prove that the potential can be uniquely recovered from one spectrum and subsets
of another spectrum and point masses of the spectral measure (or norming constants)
corresponding to the first spectrum. We also solve this Borg–Marchenko-type problem
under some conditions on two spectra, when missing part of the second spectrum and
known point masses of the spectral measure have different index sets.
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1. Introduction

In this paper, we consider the Schrödinger (Sturm–Liouville) equation

Lu D �u00 C qu D zu

on the interval .0; �/ with the boundary conditions

u.0/ cos ˛ � u0.0/ sin ˛ D 0;

u.�/ cos ˇ C u0.�/ sin ˇ D 0;

https://creativecommons.org/licenses/by/4.0/
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and a real-valued potential q 2 L1.0; �/. The spectrum �˛;ˇ of the Schrödinger
operator L corresponding to these boundary conditions defines a discrete subset
of the real line, bounded from below, diverging to C1.

Direct spectral problems aim to get spectral information from the potential.
In inverse spectral problems, the goal is to recover the potential from spectral
information, such as the spectrum, the norming constants, the spectral measure or
Weyl–Titchmarsh m-function. These notions are discussed in Section 2.

The first inverse spectral result on Schrödinger operators is given by Ambarzu-
mian [1]. He considered continuous potential with Neumann boundary conditions
at both endpoints (˛ D ˇ D �=2) and showed that q � 0 if the spectrum consists
of squares of integers.

Later Borg [12] proved that an L1-potential is uniquely recovered from two
spectra corresponding to various pairs of boundary conditions and sharing the
same boundary conditions at � (ˇ1 D ˇ2), one of which should be Dirichlet
boundary condition at 0 (˛1 D 0). Levinson [34] extended Borg’s result by
removing the restriction of Dirichlet boundary condition at 0.

Furthermore, Marchenko [38] observed that the spectral measure (or Weyl–
Titchmarsh m-function) uniquely recovers an L1-potential.

Another classical result is due to Hochstadt and Lieberman [27], which says
that if the first half of an L1-potential is known, one spectrum recovers the whole.

Statements of these classical results are given in Section 3.1.

Gesztesy, Simon and del Rio [13] generalized Levinson’s theorem to three
spectra, by showing two thirds of the union of three spectra is sufficient spectral
data to recover an L1-potential.

Later on, Gesztesy and Simon [20] observed that extra smoothness conditions
on the potential change required spectral data to recover the potential. They proved
that the knowledge of the eigenvalues can be replaced by information on the
derivatives of the potential. In addition, they [20] also generalized the Hochstadt–
Lieberman theorem in the sense that more than the first half of an L1-potential
and a sufficiently large subset of a spectrum recover the potential.

Afterwards, Amour, Raoux, and Faupin [3, 4] proved similar results using extra
information on the smoothness of the potential.

In a remarkable result, Horváth [28] characterized unique recovery of a po-
tential in terms of completeness of an exponential system depending on given
eigenvalues and known part of the potential. This observation opened a new path
[5, 28, 31, 37] by connecting inverse spectral problems and completeness of ex-
ponential systems.
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Moreover, Horváth and Sáfár [31] proved similar results in terms of a cosine
system. The cosine system depends on subsets of eigenvalues and norming con-
stants and their spectral data consists of these two subsets.

Recently, Makarov and Poltoratski [37] gave a version of Horváth’s theo-
rem [28] in terms of exterior Beurling–Malliavin density by combining Horváth’s
result and the Beurling–Malliavin theorem. In the same paper, they obtained an-
other characterization result, which is an uncertainty version of Borg’s theorem.
As their spectral data, they considered a set of intervals known to include two
spectra and characterized the inverse spectral problem in terms of a convergence
criterion on this set of intervals.

All of these results mentioned above are discussed in Section 3.2.

Classical theorems of Borg, Levinson, Marchenko, Hochstadt, and Lieberman
led to various other inverse spectral results on Schrödinger operators (see [2, 19,
23, 24, 25, 26, 29, 39, 41, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52] and references
therein). These problems can be divided into two groups. In Borg–Marchenko-
type spectral problems, one tries to recover the potential from spectral data.
However, Hochstadt–Lieberman-type (or mixed) spectral problems recover the
potential using a mixture of partial information on the potential and spectral data.

In the present paper, our interest is on regular Schrödinger operators with
summable potentials on a finite interval. However, many problems with locally
summable potentials [14, 15, 16, 17, 21, 30, 32] or on various settings such as half-
line [17, 19, 20, 22, 42, 44], real-line [17, 19, 21, 22, 44] or graphs [8, 9, 10, 11, 53]
are solved.

Borg’s, Levinson’s and Hochstadt and Lieberman’s theorems suggest that one
spectrum gives exactly one half of the full spectral information required to recover
the potential. Recalling the fact that the spectral measure is a discrete measure
supported on a spectrum, the same can be said for the set of point masses of the
spectral measure. As follows from Marchenko’s theorem, the set of point masses
of the spectral measure (or the set of norming constants) gives exactly one half of
the full spectral information required to recover the potential.

These observations allow us to formulate the following question:

Inverse problem. Do one spectrum and partial information on another spectrum

and the set of point masses of the spectral measure corresponding to the first

spectrum recover the potential?

This Borg–Marchenko-type problem can be seen as a combination of Levin-
son’s and Marchenko’s results.
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In the present paper, we answer this question positively. First, we give a proof
with the most common boundary conditions, Dirichlet (u D 0) and Neumann
(u0 D 0). Theorem 4.2 solves this inverse spectral problem when given part of
the point masses of the spectral measure corresponding to the Dirichlet–Dirichlet
spectrum matches with the missing part of the Neumann–Dirichlet spectrum, i.e.
they share same index sets. In Theorem 4.6 and Theorem 4.8, we consider the
non-matching index sets case with some restrictions on two spectra.

In order to deal with general boundary conditions we introduce a more general
m-function in Section 4.3. With this m-function, we extend Theorem 4.2 in
Theorem 4.11 to general boundary conditions. In Theorem 4.13 and Theorem 4.14
we consider the non-matching index sets case.

The paper is organized as follows.

� In Section 2.1 we discuss spectra of Schrödinger operators and their asymp-
totics for various boundary conditions.

� In Section 2.2 we define Weyl–Titchmarsh m-function and spectral measure
for Schrödinger operators.

� In Section 3.1 we recall statements of the classical results of Ambarzumian,
Borg, Levinson, Marchenko, Hochstadt, and Lieberman.

� In Section 3.2 we discuss some recent results in the finite interval setting with
summable potential.

� In Section 4.1 we give a representation of Weyl–Titchmarsh m-function as
an infinite product and prove the inverse spectral problem mentioned above
with Dirichlet–Dirichlet, Neumann–Dirichlet boundary conditions.

� In Section 4.2 we consider the same problem in the non-matching index sets
case.

� In Section 4.3 we introduce a more general m-function and solve the inverse
spectral problem corresponding to this m-function with general boundary
conditions in both the matching and non-matching index sets cases.

� In Appendix A we list all definitions and theorems from complex function
theory used in this paper.

2. Preliminaries

2.1. One-dimensional Schrödinger operator on a finite interval. As it was
defined in the introduction, we consider the Schrödinger equation

Lu D �u00 C qu D zu (2.1)
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on the interval .0; �/ associated with the boundary conditions

u.0/ cos ˛ � u0.0/ sin ˛ D 0; (2.2)

u.�/ cos ˇ C u0.�/ sin ˇ D 0; (2.3)

where ˛; ˇ 2 Œ0; �/ and the potential q 2 L1.0; �/ is real-valued.
The spectrum �˛;ˇ of the Schrödinger operator

LW u 7�! �u00 C qu;

with q 2 L1 and boundary conditions (2.2), (2.3) is a discrete real sequence,
bounded from below. Adding a positive constant to the potential q, shifts the
spectrum by the same constant. This allows us to assume wlog �˛;ˇ � RC.
Throughout the paper we assume N D ¹1; 2; 3; : : : º. Asymptotic behavior of the
spectrum �˛;ˇ D ¹anºn2N, depending on the signs of ˛ and ˇ, is given below.

If ˛ ¤ 0, ˇ ¤ 0, then

an D .n � 1/2 C 2

�
Œcot.ˇ/ C cot.˛/� C 1

�

�
Z

0

q.x/dx C ˛n (2.4)

where ˛n D o.1/ as n ! C1.
If ˛ D 0, ˇ D 0, then

an D n2 C 1

�

�
Z

0

q.x/dx C ˛n (2.5)

where ˛n D o.1/ as n ! C1.
If ˛ ¤ 0, ˇ D 0, then

an D
�

n � 1

2

�2

C 2

�
cot.˛/ C 1

�

�
Z

0

q.x/dx C ˛n (2.6)

where ˛n D o.1/ as n ! C1.
If ˛ D 0, ˇ ¤ 0, then

an D
�

n � 1

2

�2

C 2

�
cot.ˇ/ C 1

�

�
Z

0

q.x/dx C ˛n (2.7)

where ˛n D o.1/ as n ! C1.
In the case q 2 L2.0; �/, the same asymptotics are valid with ¹˛nºn2N 2 l2.
One can find these results in the classical texts on Schrödinger operators, for

instance [35] or [36].
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2.2. Weyl–Titchmarsh m-function and the spectral measure. Let us choose
the boundary condition (2.2) and introduce two solutions sz.t / and cz.t / of (2.1)
satisfying the initial conditions

sz.0/ D sin.˛/; s0
z.0/ D cos.˛/;

cz.0/ D cos.˛/; c0
z.0/ D � sin.˛/:

Definition 2.1. The norming constant �˛ , for the eigenvalue an is defined as

�˛.an/ WD
�

Z

0

jsan
.t /j2dt:

Note that sz.t / and cz.t / are linearly independent solutions and their Wron-
skian satisfies W.cz; sz/ D 1. This allows us to represent uz.t /, a solution of (2.1)
with boundary conditions uz.�/ D sin ˇ, u0

z.�/ D � cos ˇ, as

uz.t / D cz.t / C m˛;ˇ .z/sz.t /;

where

m˛;ˇ .z/ D �W.cz; uz/

W.sz; uz/
:

This is how we derive the m-function.

Definition 2.2. Weyl–Titchmarsh m-function with the boundary conditions (2.2)
and (2.3) is defined as

m˛;ˇ .z/ WD cos.˛/u0
z.0/ C sin.˛/uz.0/

� sin.˛/u0
z.0/ C cos.˛/uz.0/

;

where ˛; ˇ 2 Œ0; �/.

It is well known that Weyl m-function m˛;ˇ is a meromorphic Herglotz func-
tion. The definition of a Herglotz function and other definitions and results
from complex function theory used in this paper can be found in Appendix A.
Everitt [18] proved that the Weyl m-function has the asymptotic

m0;ˇ .z/ D i
p

z C o.1/

for ˛ D 0, and

m˛;ˇ .z/ D cos ˛

sin ˛
C 1

sin2 ˛

ip
z

C O
� 1

jzj

�
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for ˛ 2 .0; �/ as z goes to infinity in the upper half plane. Asymptotics of Weyl
m-function and Herglotz representation theorem imply that m˛;ˇ is represented
as the Herglotz integral of a discrete positive Poisson-finite measure supported on
the spectrum �˛;ˇ :

m˛;ˇ .z/ D a C
Z

R

h 1

t � z
� t

1 C t2

i

d�˛;ˇ .t /; (2.8)

where a D Re.m˛;ˇ .i//, �˛;ˇ D ¹anºn2N and �˛;ˇ D
P

n2N nıan
. The measure

�˛;ˇ is the spectral measure of the Schrödinger operator L corresponding to the
m-function m˛;ˇ . The point masses of the spectral measure is represented in terms
of norming constants as n D .�˛.an//�1:

Definition 2.3. The spectral measure of the Schrödinger operator L corresponding
to the m-function m˛;ˇ (or the boundary conditions (2.2), (2.3)) is defined as

�˛;ˇ WD
X

n2N

ıan

�˛.an/
;

where ˛; ˇ 2 Œ0; �/ and �˛;ˇ D ¹anºn2N.

Since �˛;ˇ is a Poisson-finite measure, the spectrum and the point masses of
the spectral measure satisfy

X

n2N

n

1 C a2
n

< 1:

These properties of the m-function, the spectral measure and a detailed dis-
cussion of one dimensional Schrödinger operators appear in Chapter 9 of [43].

In order to illustrate what we have discussed so far, let us consider the free
operator (q � 0) with Dirichlet (u D 0) and Neumann (u0 D 0) boundary
conditions.

Example 2.4. The spectra, the m-function and the spectral measure for q � 0

on .0; �/ with Dirichlet–Dirichlet, Neumann–Dirichlet, and Neumann–Neumann
boundary conditions are as follows:

�DD WD �0;0 D ¹n2ºn2N;

m0;0 D �
p

z cot.
p

z�/;

�0;0 D 2

�

1
X

nD1

n2ın2 I
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�ND WD ��=2;0 D
°�

n � 1

2

�2±

n2N
;

m�=2;0 D tan.
p

z�/p
z

;

��=2;0 D 2

�

1
X

nD1

ı.n�1=2/2 I

�NN WD ��=2;�=2 D ¹.n � 1/2ºn2N;

m�=2;�=2 D cot.
p

z�/p
z

;

��=2;�=2 D 2

�

1
X

nD1

ı.n�1/2 :

Figure 1. The graph of Weyl m-function m0;0 on R, Neumann–Dirichlet spectrum �ND (�)
and Dirichlet–Dirichlet spectrum �DD (�) for the free operator (q � 0).

3. Inverse spectral theory of regular Schrödinger operators

3.1. Classical results. The first inverse spectral result on Schrödinger operators
was given by Ambarzumian.
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Theorem 3.1 (Ambarzumian [1]; see Horváth [28]). Let q 2 C Œ0; �� and let

��=2;�=2 D ¹n2º1
nD0. Then q � 0.

Later Borg found that in most cases two spectra is the required spectral infor-
mation to recover the operator uniquely.

Theorem 3.2 (Borg [12]; see Horváth [28]). Let q 2 L1.0; �/, �1 D �0;ˇ ,

�2 D �˛2;ˇ , sin ˛2 ¤ 0 and

Q�2 D
´

�2 if sin ˇ D 0;

�2 n ¹a1º if sin ˇ ¤ 0:

Then �1 [ Q�2 determines the potential and no proper subset has the same property.

A Schrödinger operator (or a potential) is said determined (or recovered) by
its spectral data, if any other operator with the same data must have the same
potential a.e. on .0; �/. Levinson extended Borg’s result by removing the Dirichlet
boundary condition restriction from the first spectrum.

Theorem 3.3 (Levinson [34]; see Horváth [28]). Let q 2 L1.0; �/ and suppose

sin.˛1 � ˛2/ ¤ 0. Then �˛1;ˇ and �˛2;ˇ determine the potential.

Marchenko showed that the spectral measure or the corresponding Weyl
m-function provides sufficient spectral data to recover the potential uniquely.

Theorem 3.4 (Marchenko [38]; see Teschl [43], Section 9.4). Let q 2 L1.0; �/.

Then �˛;ˇ or m˛;ˇ determines the potential.

In the notations of Section 2.2, Marchenko’s theorem says that the spectrum
�˛;ˇ D ¹anºn2N and the point masses ¹nºn2N of the corresponding spectral
measure (or the norming constants ¹�˛.an/ºn2N) provide sufficient spectral data
to recover the operator uniquely.

Hochstadt and Lieberman observed that one spectrum recovers the potential if
the first half of it is known.

Theorem 3.5 (Hochstadt and Lieberman [27]). Let q 2 L1.0; �/. Then q on

.0; �=2/ and �˛;ˇ determine the potential.

3.2. Some recent results in the finite interval case. For any discrete real se-
quence A D ¹xnºn2N, xn ! 1 the counting function is defined as

nA.t / WD
X

xn�t

1:
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Gesztesy, Simon and del Rio generalized Levinson’s theorem to three spectra.

Theorem 3.6 (del Rio, Gesztesy, and Simon [13]). Let q 2 L1.0; �/. Then

S � �˛1;ˇ [ �˛2;ˇ [ �˛3;ˇ satisfying

nS .t / � .2=3/n.�˛1;ˇ[�˛2;ˇ[�˛3;ˇ/.t /

for sufficiently large t > 0, determine the potential.

Gesztesy and Simon observed that the knowledge of the eigenvalues can be
replaced by information on the derivatives of the potential around the midpoint of
the interval.

Theorem 3.7 (Gesztesy and Simon [21]). Let q 2 L1.0; �/, ˛; ˇ ¤ 0 and

q 2 C 2k.�=2 � �; �=2 C �/ for some k 2 N and � > 0. Then q on .0; �=2/

and �˛;ˇ except for k C 1 eigenvalues determine the potential.

In the same paper, they generalized Hochstadt–Lieberman theorem.

Theorem 3.8 (Gesztesy and Simon [21]). Let q 2 L1.0; �/ and �=2 < a < � .

Then q on .0; a/ and S � �˛;ˇ satisfying

nS .t / � 2.1 � a=�/n�˛;ˇ
.t / C a=� � 1=2

for sufficiently large t > 0, determine the potential.

Amour, Raoux, and Faupin proved similar results using extra information on
smoothness of the potential.

Theorem 3.9 (Amour and Raoux [4]). Let ˛; ˇ1; ˇ2 ¤ 0, p 2 Œ1; 1/, q1; q2 2
L1.0; �/, q1 � q2 2 Lp.a; �/ and �=2 < a < � . If q1 D q2 a.e. on .0; a/ and

S � �˛;ˇ1
.q1/ \ �˛;ˇ2

.q2/ satisfies

2.1 � a=�/n� .t / C C � nS .t / � 2.1 � a=�/n�.t / C 1=.2p/ C 2a=� � 2

for a real number C and sufficiently large t > 0, where � denotes either of

�˛;ˇk
.qk/, then q1 D q2 a.e. on .0; �/.

Theorem 3.10 (Amour, Faupin, and Raoux [3]). Let ˛; ˇ1; ˇ2 ¤ 0, k 2 ¹0; 1; 2º,
p 2 Œ1; 1/, q1; q2 2 W k;1.0; �/, q1 � q2 2 W k;p.a; �/ and �=2 < a < � . If

q1 D q2 on .0; a/ and S � �˛;ˇ1
.q1/ \ �˛;ˇ2

.q2/ satisfying

nS .t / � 2.1 � a=�/n� .t / � k=2 C 1=.2p/ C a=� � 3=2

for sufficiently large t > 0, where � denotes either of �˛;ˇk
.qk/, then q1 D q2 a.e.

on .0; �/.
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Theorem 3.11 (Amour, Faupin, and Raoux [3]). Let ˛; ˇ1; ˇ2 ¤ 0, k 2 ¹0; 1; 2º,
p 2 Œ1; 1/, q1; q2 2 W k;1.0; �/, q1 � q2 2 W k;p.a; �/ and �=2 < a < � . If

q1 D q2 on .0; a/ and S � �˛;ˇ1
.q1/ \ �˛;ˇ2

.q2/ satisfying

2.1 � a=�/n� .t / C C � nS .t / � 2.1 � a=�/n�.t / � k=2 C 1=.2p/ C 2a=� � 2

for sufficiently large t > 0, where � denotes either of �˛;ˇk
.qk/, then q1 D q2 a.e.

on .0; �/.

Horváth proved a remarkable characterization theorem, which represents a
connection between inverse spectral theory and completeness of exponential sys-
tems.

Theorem 3.12 (Horváth [28]). Let 1 � p � 1, q 2 Lp.0; �/, 0 � a < � and

�n 2 �˛;0. Then q on .0; a/ and the eigenvalues �n determine q if and only if the

system

e.ƒ/ D ¹e˙2i�x; e˙2i
p

�nx W n � 1º

is complete in Lp.a � �; � � a/ for some � ¤ ˙
p

�n.

Horváth and Sáfár proved similar results for the norming constants in terms of
a cosine system. For a sequence ƒ D ¹�1; �2; : : : º � R and a subset S � ƒ they
considered the following cosine system:

C.ƒ; S/ D ¹cos.2
p

�nt /W n 2 Nº [ ¹t cos.2
p

�nt /W �n 2 Sº:

Theorem 3.13 (Horváth and Sáfár [31]). Let ˇ ¤ 0, 1 � p � 1, q 2 L1.0; �/,

q 2 Lp.a; �/, 0 � a < � and

ƒ D ¹�nW �n 2 �˛n;ˇ ; n 2 Nº

be a subset of eigenvalues such that �n 6! �1 are different real numbers and

S � ƒ. Then q on .0; a/, ƒ and ¹�˛n
.�n/º�n2S determine q if the system C.ƒ; S/

is complete in Lp.0; � � a/.

For Dirichlet boundary condition Horváth and Sáfár obtained an optimal con-
dition.

Theorem 3.14 (Horváth and Sáfár [31]). Let us have the assumptions of Theo-

rem 3.13, but ˇ D 0. Let � ¤ ˙
p

�n, � 2 R. Then the system C.ƒ; S/ [
¹cos.2

p
�t/º is complete in Lp.0; � � a/ if and only if q on .0; a/, ƒ and

¹�˛n
.�n/º�n2S determine q.
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Makarov and Poltoratski gave a characterization theorem in terms of exterior
Beurling–Malliavin density as a corollary of Horváth’s result [28] (Theorem 3.12
above) and the Beurling–Malliavin theorem [6, 7].

If ¹Inºn2N is a sequence of disjoint intervals on the real line, it is called short

if
X

n2N

jInj2

1 C dist2.0; In/
< 1

and long otherwise.
If ƒ is a sequence of real points, its exterior (effective) Beurling–Malliavin

density is defined as

D�.ƒ/ D sup¹d W there exists a long ¹Inº such that

#.ƒ \ In/ � d jInj; for all n 2 Nº:

For a non-real sequence its density is defined as D�.ƒ/ D D�.ƒ0/, where
ƒ0 is a real sequence �0

n D
�

Re 1
�n

��1
, if ƒ has no imaginary points, and as

D�.ƒ/ D D�..ƒ C c/0/ otherwise.
For any complex sequence ƒ its radius of completeness is defined as

R.ƒ/ D sup¹aW ¹ei�zº�2ƒ is complete in L2.0; a/º:

Now we are ready to state one of the fundamental results of Harmonic Analysis.

Theorem 3.15 (Beurling–Malliavin theorem [6, 7]). Let ƒ be a discrete sequence.

Then

R.ƒ/ D 2�D�.ƒ/:

Let us note that Makarov and Poltoratski considered the Schrödinger equation
Lu D �u00 C qu D z2u and the m-function corresponding to this equation,
which is obtained by applying the square root transform to the m-function we
have discussed so far. Let us denote their m-function by Qm.

Theorem 3.16 (Makarov, Poltoratski [37]). Let ƒ D ¹�nºn2N be a sequence of

discrete non-zero complex numbers, q 2 L2.0; �/ and 0 � a � 1. The following

statements are equivalent:

(1) q on .0; d/ for some d > a and ¹ Qm.�n/ºn2N determine q;

(2) �D�.ƒ/ � 1 � a.

Makarov and Poltoratski’s observation shows that Horváth’s theorem estab-
lishes equivalence between mixed spectral problems for Schrödinger operators and
the Beurling–Malliavin problem on completeness of exponentials in L2 spaces.

In the same paper they obtained an uncertainty version of Borg’s theorem.
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Theorem 3.17 (Makarov, Poltoratski [37]). Let ¹Inºn2N be a sequence of intervals

on R and q 2 L2.0; �/. The following statements are equivalent:

(1) the condition �DD[�ND �
S

n2N In and q on .0; �/ for some � > 0 determine

the potential q;

(2) for any long sequence of intervals ¹Jnºn2N,

P

In\Jn
log� jInj

jJnj ¹ 0

as n ! 1.

4. An inverse spectral problem with mixed data

4.1. The main result with Dirichlet–Dirichlet and Neumann–Dirichlet bound-

ary conditions. We prove our main result, Theorem 4.2, by representing the
Weyl–Titchmarsh m-function as an infinite product in terms of Dirichlet–Dirichlet
(˛ D 0, ˇ D 0) and Neumann–Dirichlet (˛ D �=2, ˇ D 0) spectra. We follow
the notations introduced in Example 2.4 for these two spectra, i.e. �DD WD �0;0

and �ND WD ��=2;0. For simplicity, let us also denote m0;0 by m. For any infinite
product (or sum) defined on an open set � � C, normal convergence means that
the product (or the sum) converges uniformly on every compact subset of �.

Lemma 4.1. The m-function of a regular Schrödinger operator .q 2 L1.0; �//

for Dirichlet–Dirichlet boundary conditions (˛ D 0, ˇ D 0) has representations

in terms of Dirichlet–Dirichlet and Neumann–Dirichlet spectra:

m.z/ D C
� z

b1

� 1
�

Y

n2N

� z

bnC1

� 1
�� z

an

� 1
��1

; (4.1)

and

m.z/ D �C
Y

n2N

� z

bn

� 1
�� z

an

� 1
��1

; (4.2)

where C > 0, �DD D ¹anºn2N, �ND D ¹bnºn2N and the product converges

normally on C n
S

n2N an.

Proof. Let m D u0
z.0/=uz.0/ be the Weyl m-function with boundary conditions

u.�/ D 0, u0.�/ D �1. Since m is a meromorphic Herglotz function, ‚ WD m�i
mCi

is
the corresponding meromorphic inner function. See Appendix A for the definition
of a meromorphic inner function and the relation between Herglotz and inner
functions.
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Let us define the E WD ¹z 2 RW Im ‚.z/ > 0º. The set E is given in terms of
�DD D ¹anºn2N and �ND D ¹bnºn2N, namely E D .�1; b1/ [

S

n2N.an; bnC1/.
The characteristic function of E coincides with the real part of the function

1
i�

log
�

i 1C‚
1�‚

�

a.e. on R. Since m is a meromorphic Herglotz function mapping
R to R a.e., log.m/ D log.i 1C‚

1�‚
/ is a well-defined holomorphic function on CC

and its imaginary part takes values 0 and � a.e. on R. Therefore 1
i�

log.m/ D
1

i�
log

�

i 1C‚
1�‚

�

and the Schwarz integral of �E , S�E
differ by a purely imaginary

number on a.e. R, i.e.

1

i�
log

�

i
1 C ‚

1 � ‚

�

D S�E
C ic D P�E

C iQ�E
C ic; c 2 R;

where P and Q are Poisson and conjugate Poisson integrals of �E , respectively.
Definitions of S , P and Q appear in the appendix. Therefore

i
1 C ‚

1 � ‚
D exp.i�S�E

� �c/ D exp.i�P�E
� �Q�E

� �c/; c 2 R:

On the real line, exp.Sh/ D exp.h C i Qh/ for any Poisson-summable function h,
where Qh is the Hilbert transform of h. If we let h WD �E , then

Qh.x/ D 1

�

h

log
�

q

1 C b2
1

jx � b1j

�

C
X

n2N
log

� jx � anj
jx � bnC1j

�

C 1

2

X

n2N
log

�1 C b2
nC1

1 C a2
n

�i

:

Therefore

exp.�� Qh.x// D jx � b1j
q

1 C b2
1

Y

n2N

jx � bnC1j
jx � anj

Y

n2N

� 1 C a2
n

1 C b2
nC1

�1=2

:

Noting that exp.i�h/ is �1 on E and 1 on R n E, the Weyl m-function can be
given in terms of �DD and �ND a.e. on R:

m.x/ D i
1 C ‚.x/

1 � ‚.x/

D exp.i�S�E
� �c/

D x � b1
q

1 C b2
1

Y

n2N

x � bnC1

x � an

Y

n2N

� 1 C a2
n

1 C b2
nC1

�1=2

exp.��c/

D C
� x

b1

� 1
�

Y

n2N

� x

bnC1

� 1
�� x

an

� 1
��1

;

where C D exp.��c/
Q

n2N

p
1Ca2

n

an

bnp
1Cb2

n

.
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Since m.z/ and C
�

z
b1

� 1
�

Q

n2N
�

z
bnC1

� 1
��

z
an

� 1
��1

are meromorphic
functions that agree a.e. on R, they are identical by the identity theorem for
meromorphic functions. This gives the first representation (4.1). The second
representation (4.2) follows from normal convergence of ¹z=bn � 1ºn2N to �1

in C. �

Using this representation of the m-function, we prove our main result. At this
point let us note that the points in a spectrum are enumerated in increasing order,
which is done following the asymptotics (2.4)–(2.7).

Theorem 4.2. Let q 2 L1.0; �/ and A � N. Then ¹anºn2N, ¹bnºn2NnA and

¹nºn2A determine the potential q, where �DD D ¹anºn2N, �ND D ¹bnºn2N are

Dirichlet–Dirichlet and Neumann–Dirichlet spectra and ¹nºn2N are point masses

of the spectral measure �0;0 D
P

n2N nıan
.

Proof. By representation (2.8) of the m-function as a Herglotz integral of the
spectral measure, knowing n means knowing Res.m; an/. Therefore, in terms
of the m-function our claim says that the set of poles, ¹anºn2N, the set of zeros
except the index set A, ¹bnºn2NnA, and the residues with the same index set A,
¹Res.m; an/ºn2A determine the m-function uniquely. Before starting to prove this
claim let us briefly list the main steps of the proof. We will use similar ideas
to prove our results in non-matching index sets case and for general boundary
conditions.

Step 1. Reduce the claim to the problem of unique recovery of the infinite product

G.z/ WD �C
Y

n2A

� z

bn

� 1
�� z

an

� 1
��1

from its sets of poles and residues.

Step 2. Observe that G.z/ is a meromorphic Herglotz function and has a repre-
sentation in terms of its poles, residues and a linear polynomial dz C e.

Step 3. Show uniqueness of d .

Step 4. Show uniqueness of e.

Step 5. Use the representation from Step 2 to get uniqueness of the two spectra
and prove the claim by Borg’s theorem.
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Step 1. From Lemma 4.1, the Weyl m-function can be represented in terms of
�DD and �ND,

m.z/ D �C
Y

n2N

� z

bn

� 1
�� z

an

� 1
��1

:

Note that for any k 2 A, we know

Res.m; ak/ D C.bk � ak/
ak

bk

Y

n2N
n¤k

�ak

bn

� 1
��ak

an

� 1
��1

: (4.3)

Let m.z/ D F.z/G.z/, where F and G are two infinite products defined as

G.z/ WD �C
Y

n2A

� z

bn

� 1
�� z

an

� 1
��1

; F.z/ WD
Y

n2NnA

� z

bn

� 1
�� z

an

� 1
��1

:

Also note that at any point of ¹anºn2A, the infinite product

F.z/ D
Y

n2NnA

� z

bn

� 1
�� z

an

� 1
��1

(4.4)

is known.

Conditions (4.3) and (4.4) imply that for any k 2 A, we know

Res.G; ak/ D Res.m; ak/

F.ak/
;

i.e. we know all of the poles and residues of G.z/, but none of its zeros. We claim
that G.z/ can be uniquely recovered from this data set.

Step 2. Let us observe that arg.G.z// D � �
P

n2AŒarg.z � bn/ � arg.z � an/�.
Since zeros and poles of G.z/ are real and interlacing, 0 < arg.G.z// < � for any
z in the upper half plane, i.e. G.z/ is a meromorphic Herglotz function. Therefore
by C̆ebotarev’s theorem, see Theorem A.1, G.z/ has the representation

G.z/ D dz C e C
X

n2A

An

� 1

an � z
� 1

an

�

; (4.5)

where d � 0, e 2 R and
P

n2A An=a2
n is absolutely convergent.

Note that Ak D � Res.G.z/; ak/ for any k 2 A, which means there are only
two unknowns on the right hand side of (4.5), namely constants d and e.



Mixed data in inverse spectral problems 297

Step 3. Now let us show uniqueness of G.z/ by showing uniqueness of dz C e.
Let zG.z/ be another infinite product sharing same properties with G.z/, namely:

� the infinite product zG.z/ is defined as

zG.z/ WD � zC
Y

n2A

� z

Qbn

� 1
�� z

Qan

� 1
��1

;

where zC > 0, the set of poles ¹ Qanºn2A satisfies asymptotics (2.5) and the set
of zeros ¹ Qbnºn2A satisfies asymptotics (2.6);

� G.z/ and zG.z/ share same set of poles with equivalent residues at the corre-
sponding poles, i.e. Qak D ak and Res. zG; ak/ D Res.G; ak/ for any k 2 A;

� by the equivalence of poles and residues of G.z/ and zG.z/ and C̆ebotarev’s
theorem, zG.z/ has the representation

zG.z/ D Qdz C Qe C
X

n2A

An

� 1

an � z
� 1

an

�

; (4.6)

where Qd � 0, Qe 2 R.

Note that we defined Qan and Qbn only for n 2 A. Let Qan WD an and Qbn WD bn

for every n 2 N n A. Let us also note that ¹ Qanºn2N and ¹ Qbnºn2N are interlacing
sequences so that they represent two spectra of a potential function Qq.x/.

Let k 2 A and bk ¤ Qbk. Since G.bk/ D 0 and zG. Qbk/ D 0, using representa-
tions (4.5) and (4.6) we get

�dbk � e D
X

n2A

An

� 1

an � bk

� 1

an

�

; (4.7)

� Qd Qbk � Qe D
X

n2A

An

� 1

an � Qbk

� 1

an

�

; (4.8)

G. Qbk/ D G. Qbk/ � zG. Qbk/ D .d � Qd/ Qbk C e � Qe: (4.9)

Replacing e � Qe by G. Qbk/ � .d � Qd/ Qbk and taking difference of (4.7) and (4.8)
we get

dbk � Qd Qbk � d Qbk C Qd Qbk C G. Qbk/ D
X

n2A

An

� Qbk � bk

.an � Qbk/.an � bk/

�

:

Dividing both sides by Qbk. Qbk � bk/ we get

�d

Qbk

C G. Qbk/

Qbk. Qbk � bk/
D

X

n2A

� An

Qbk.an � Qbk/.an � bk/

�

: (4.10)
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Note that since ¹anºn2A satisfies asymptotics (2.5) and ¹bnºn2A, ¹ Qbnºn2A sat-
isfy asymptotics (2.6), the inequalities

j Qbk.an � bk/.an � Qbk/j�1 � j Qbn.an � bn/.an � Qbn/j�1 � 2=a2
n (4.11)

are valid for any k 2 A, for sufficiently large n 2 A. In addition,
P

n2A An=a2
n

is absolutely convergent. Therefore right hand side of (4.10) converges to 0 as k

goes to 1. Also note that by (4.9), left hand side of (4.10) is

�d

Qbk

C G. Qbk/

Qbk. Qbk � bk/
D �d

Qbk

C G. Qbk/ � zG. Qbk/

Qbk. Qbk � bk/

D � d

Qbk

C 1

Qbk � bk

h

d � Qd C e � Qe
Qbk

i

:

(4.12)

Now let us show Qbk � bk converges to 0 as k goes to 1. Recall that poles of G

and zG satisfy asymptotics

n2 C 1

�

�
Z

0

q.x/dx C ˛n and n2 C 1

�

�
Z

0

Qq.x/dx C Q̨n;

respectively, where ˛n D o.1/ and Q̨n D o.1/ as n ! 1. Equivalance of poles of
G and zG imply equivalence of

R �

0
q.x/dx and

R �

0
Qq.x/dx. Therefore bn and Qbn

satisfy asymptotics

�

n � 1

2

�2

C 1

�

�
Z

0

q.x/dx C ˇn and
�

n � 1

2

�2

C 1

�

�
Z

0

q.x/dx C Q̌
n;

where ˇn D o.1/ and Q̌
n D o.1/ as n ! 1. Hence Qbk � bk D o.1/ as k goes

to 1. Therefore by (4.12), left hand side of (4.10) goes to 1 if d � Qd ¤ 0, so we
get a contradiction unless d D Qd . This implies that G.z/� zG.z/ is a real constant,
which is G.0/ � zG.0/ D zC � C .

Step 4. Now let us show zC � C D 0. Positivity of . Qbk � bn/=. Qbk � an/ for
all n ¤ k, which follows from interlacing property of ¹anºn2N and ¹bnºn2N and
interlacing property of ¹anºn2N and ¹ Qbnºn2N, implies sgn. zC �C / D sgn. Q̌

k �ˇk/

for all k 2 N, i.e. ¹bnºn2A and ¹ Qbnºn2A are interlacing sequences.
Let us assume zC > C and wlog the two spectra lie on the positive real line.

This implies Qbn > bn for all n 2 A. Observe that
Q

n2A
Qbn=bn is finite, since

X

n2A

Qbn � bn

bn

D
X

n2A

Q̌
n � ˇn

bn

� max
n2A

. Q̌
n � ˇn/

X

n2A

1

bn

< 1:
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Therefore the infinite product H.z/ WD G.z/= zG.z/ is represented as

H.z/ WD G.z/

zG.z/
D C

zC
Y

n2A

z � bn

bn

Qbn

z � Qbn

D C

zC
Y

n2A

Qbn

bn

Y

n2A

z � bn

z � Qbn

:

Let us denote the constant factor of H.z/ by N WD .C= zC /
Q

n2A
Qbn=bn. Then

by interlacing property of ¹bnºn2A and ¹ Qbnºn2A, the infinite product �H is a
meromorphic Herglotz function and hence by Theorem A.1 it is represented as

� H.z/ D �N
Y

n2A

z � bn

z � Qbn

D Dz C E C
X

n2A

Bn

� 1

z � Qbn

C 1

Qbn

�

; (4.13)

where Bk D � Res.H; Qbk/ and D; E 2 R.
Now let us show that ¹Bk= Qbkºk2A is summable:

ˇ

ˇ

ˇ

ˇ

Bk

Qbk

ˇ

ˇ

ˇ

ˇ

D N
Qbk � bk

bk

Y

n2A
n¤k

Qbk � bn

Qbk � Qbn

� N
Qbk � bk

Qbk

Y

n2A
1�n�k�1

Qbk � bn

Qbk � Qbn

D N
Qbk � bk

Qbk

Y

n2A
1�n�k�1

�

1 C
Qbn � bn

Qbk � Qbn

�

D N
Qbk � bk

Qbk

Y

n2A
1�n�k�1

�

1 C
Q̌
n � ˇn

.k � 1=2/2 � .n � 1=2/2 C Q̌
k � Q̌

n

�

� N
Qbk � bk

Qbk

Y

n2A
1�n�k�1

�

1 C
Q̌
n � ˇn

.n C 1 � 1=2/2 � .n � 1=2/2 C Q̌
k � Q̌

n

�

� N
Qbk � bk

Qbk

M

k�1
Y

nD1

�

1 C 1

2n

�

;

for sufficiently large k, where M is a real constant independent of k. Since
Qbk � bk D o.1/, Qbk D O.k2/ and

Qk�1
nD1.1 C 1=2n/ D O.

p
k/ as k goes to 1, we

get the asymptotics Bk= Qbk D o.1=k3=2/ as k goes to 1 and hence
P

n2A Bn= Qbn

is absolutely convergent. Then by letting z tend to �1 in (4.13) we get

�N D lim
t!�1

�

Dt C E C
X

n2A

Bn

Qbn

C
X

n2A

Bn

t � Qbn

�
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and hence D D 0 and �N D E C
P

n2A Bn= Qbn, i.e. �H.z/ has the representation

� H.z/ D N �
X

n2A

Bn

z � Qbn

: (4.14)

Noting that H.bk/ D 0 and Res.G; ak/ D Res. zG; ak/, i.e. H.ak/ D 1 for all
k 2 A, we get

1 D H.ak/ � H.bk/ D �N C
X

n2A

Bn

ak � Qbn

C N �
X

n2A

Bn

bk � Qbn

D
X

n2A

Bn

.bk � ak/

.ak � Qbn/.bk � Qbn/
:

Each term of the infinite sum on the right end is positive, so by letting k go to 1
we get the following contradiction.

1 D lim
k!1

X

n2A

Bn

.bk � ak/

.ak � Qbn/.bk � Qbn/
D

X

n2A

Bn lim
k!1

.bk � ak/

.ak � Qbn/.bk � Qbn/
D 0:

Similar arguments give another contradiction when zC < C , so C D zC .

Step 5. Step 4 implies uniqueness of dz C e, i.e. uniqueness of G.z/ and hence
uniqueness of ¹bnºn2A. After unique recovery of the two spectra �DD D ¹anºn2N
and �ND D ¹bnºn2N, the potential is uniquely determined by Borg’s theorem. �

Remark 4.3. If we let A D N, Theorem 4.2 gives Marchenko’s theorem with
Dirichlet–Dirichlet, Neumann–Dirichlet boundary conditions as a corollary. By
letting A D ;, we get the statement of Borg’s theorem with Dirichlet–Dirichlet,
Neumann–Dirichlet boundary conditions.

Remark 4.4. Spectral data of Theorem 4.2 can be seen as ¹anºn2N, ¹bnºn2NnA

and ¹�˛.an/ºn2A, where ¹�˛.an/ºn2A is the set of norming constants for �DD D
¹anºn2N.

4.2. Non-matching index sets. If the known point masses of the spectral mea-
sure and unknown eigenvalues of the Neumann–Dirichlet spectrum have dif-
ferent index sets, one needs some control over eigenvalues of the Dirichlet–
Dirichlet spectrum corresponding to known point masses and unknown part of
the Neumann–Dirichlet spectrum. In this case we get a C̆ebotarev type represen-
tation result. Before the statement, let us clarify the notations we use. For any
subsequence ¹akn

ºn2N � �DD and ¹bln
ºn2N � �ND, by Akn;m and Akn

we denote
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the residues at akn
of partial and infinite products, respectively, consisting of these

subsequences:

Akn;m WD Res.Gm; akn
/ D akn

bln

.akn
� bln

/
Y

1�j �m

j ¤n

akj

blj

akn
� blj

akn
� akj

;

Akn
WD Res.G; akn

/ D akn

bln

.akn
� bln

/
Y

j 2N
j ¤n

akj

blj

akn
� blj

akn
� akj

;

where

Gm.z/ WD
m

Y

nD1

� z

bln

� 1
�� z

akn

� 1
��1

; G.z/ WD
Y

n2N

� z

bln

� 1
�� z

akn

� 1
��1

:

Note that these subsequences are ordered according to their indices, i.e.
akn

< aknC1
and bln

< blnC1
for any n 2 N. This follows from the asymptotics

of the spectra.

Lemma 4.5. Let ¹akn
ºn2N � �DD and ¹bln

ºn2N � �ND satisfy following proper-

ties:

� limm!1
Pm

nD1.jAkn;m � Akn
j=a2

kn
/ < 1;

� ¹Akn
=a2

kn
ºn2N 2 l1.

Then

G.z/ D cz2 C dz C e C
X

n2N
Akn

� 1

z � akn

C 1

akn

�

; (4.15)

where c; d; e are real numbers, Akn
is the residue of G.z/ at the point z D akn

and the sum converges normally on C n
S

n2N akn
.

Proof. Let p.z/ be the difference of G.z/ and the infinite sum on the right hand
side of (4.15). Then, p.z/ is an entire function, since the infinite product and the
infinite sum share the same set of poles with equivalent degrees and residues. We
represent Gm.z/ as partial sums:

m
Y

nD1

� z

bln

� 1
�� z

akn

� 1
��1

D
m

X

nD1

Akn;m

� 1

z � akn

C 1

akn

�

C 1;

where Akn;m D Res.Gm; akn
/.



302 B. Hatinoğlu

Let Cn be the circle with radius bln
centered at the origin. This sequence of

circles satisfy following properties:

� Cn omits all the poles akn
;

� each Cn lies inside CnC1;

� the radius of Cn, bln
diverges to infinity as n goes to infinity.

Then,

max
z2Ct

ˇ

ˇ

ˇ

p.z/ � 1

b2
lt

ˇ

ˇ

ˇ D max
z2Ct

ˇ

ˇ

ˇ

G.z/ � 1 �
P

n2N Akn

�

1
z�akn

C 1
akn

�

b2
lt

ˇ

ˇ

ˇ

D 1

b2
lt

max
z2Ct

lim
m!1

ˇ

ˇ

ˇ

m
X

nD1

Akn;m

� 1

z � akn

C 1

akn

�

�
m

X

nD1

Akn

� 1

z � akn

C 1

akn

�ˇ

ˇ

ˇ

D lim
m!1

1

b2
lt

max
z2Ct

ˇ

ˇ

ˇ

m
X

nD1

.Akn;m � Akn
/

z

akn
.z � akn

/

ˇ

ˇ

ˇ

� lim
m!1

1

b2
lt

m
X

nD1

jAkn;m � Akn
j blt

akn
jblt

� akn
j

D lim
m!1

m
X

nD1

jAkn;m � Akn
j 1

akn
blt

jblt
� akn

j

� lim
m!1

m
X

nD1

jAkn;m � Akn
j 1

akn
bl1

jbl1
� akn

j

� lim
m!1

C 0
m

X

nD1

jAkn;m � Akn
j

a2
kn

< 1:

Note that the second inequality is a consequence of

sup
t2N

.blt
jblt

� akn
j/�1 � .bl1

jbl1
� akn

j/�1;

which follows from asymptotics of ¹anºn2N and ¹bnºn2N. Therefore jp.z/ � 1j �
C 00jzj2 on the circle Ct for any t 2 N, where C 0 and C 00 are real numbers. By
the maximum modulus theorem and the entireness of p.z/, we conclude that p.z/

is a polynomial of at most second degree. Since G.0/; G0.0/ and G00.0/ are real
numbers, c; d; e 2 R. �
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Using this C̆ebotarev type representation we prove our main result in non-
matching index sets case with Dirichlet–Dirichlet, Neumann–Dirichlet boundary
conditions. However, we need extra information of an eigenvalue from ¹bln

ºn2N.

Theorem 4.6. Let q 2 L1.0; �/, and ¹akn
ºn2N � �DD, ¹bln

ºn2N � �ND satisfy

following properties:

� limm!1
Pm

nD1.jAkn;m � Akn
j=a2

kn
/ < 1;

� ¹Akn
=a2

kn
ºn2N 2 l1.

Then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2Nn¹sº and ¹kn

ºn2N determine the potential q for

any s 2 N, where �DD D ¹anºn2N, �ND D ¹bnºn2N are Dirichlet–Dirichlet and

Neumann–Dirichlet spectra and ¹nºn2N are point masses of the spectral measure

�0;0 D
P

n2N nıan
.

Proof. By representation of the m-function as the Herglotz integral of the spectral
measure, from n, we know Res.m; an/. Therefore, in terms of the m-function
our claim says that the set of poles, ¹anºn2N, the set of zeros except the index set
¹lnºn2Nn¹sº, ¹bls

º [ ¹bnºn2Nn¹lnºn2N
, and the residues with the index set ¹knºn2N,

¹Res.m; akn
/ºn2N determine the m-function uniquely.

From Lemma 4.1, the Weyl m-function can be represented in terms of �DD and
�ND,

m.z/ D �C
Y

n2N

� z

bn

� 1
�� z

an

� 1
��1

:

Note that for any n 2 N, we know

Res.m; akn
/ D C.bkn

� akn
/
akn

bkn

Y

j 2N
j ¤kn

�akn

bj

� 1
��akn

aj

� 1
��1

: (4.16)

Let m.z/ D F.z/G.z/, where F and G are two infinite products defined as

G.z/ WD �C
Y

n2N

� z

bln

� 1
�� z

akn

� 1
��1

;

F.z/ WD
Y

n2Nn¹lnºn2N

� z

bn

� 1
�

Y

n2Nn¹knºn2N

� z

an

� 1
��1

:

Also note that F.akn
/ is known for any n 2 N. This condition and (4.16) imply

that for any n 2 N, we know

Res.G; akn
/ D Res.m; akn

/

F.akn
/

:
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By Lemma 4.5, G.z/ has the following representation

G.z/ D cz2 C dz C e C
X

n2N
Akn

� 1

z � akn

C 1

akn

�

; (4.17)

where Akn
D Res.G; akn

/. In order to show uniqueness of G.z/, let us consider
zG.z/ similar to the proof of Theorem 4.2, i.e. zG.z/ has the following properties.

� The infinite product zG.z/ is defined as

zG.z/ WD � zC
Y

n2N

� z

Qbln

� 1
�� z

Qakn

� 1
��1

;

where zC > 0, the set of poles ¹ Qakn
ºn2N satisfies asymptotics (2.5) and the set

of zeros ¹ Qbln
ºn2N satisfies asymptotics (2.6). For the given eigenvalues from

�ND D ¹bnºn2N, let Qbn be defined as bn, i.e. Qbj WD bj for j 2 N n ¹lnºn2N.
Similarly let Qaj WD aj for j 2 N n ¹knºn2N.

� G.z/ and zG.z/ share same set of poles with equivalent residues at the cor-
responding poles, i.e. Qakn

D akn
and Res. zG; akn

/ D Res.G; akn
/ for any

n 2 N.

� G.z/ and zG.z/ share one zero, namely bls
D Qbls

.

� By the equivalence of poles and residues of G.z/ and zG.z/ and Lemma 4.5,
zG.z/ has the representation

zG.z/ D Qcz2 C Qdz C Qe C
X

n2N
Akn

� 1

akn
� z

� 1

akn

�

; (4.18)

where Qc, Qd , Qe 2 R.

Let m 2 N n ¹sº and blm
¤ Qblm

. Since G.blm
/ D 0 and zG. Qblm

/ D 0, using
representations (4.17) and (4.18) we get

�cb2
lm

� dblm
� e D

X

n2N
Akn

� 1

akn
� blm

� 1

akn

�

; (4.19)

�Qc Qb2
lm

� Qd Qblm
� Qe D

X

n2N
Akn

� 1

akn
� Qblm

� 1

akn

�

; (4.20)

G. Qblm
/ D G. Qblm

/ � zG. Qblm
/ D .c � Qc/ Qb2

lm
C .d � Qd/ Qblm

C e � Qe: (4.21)

Taking difference of (4.19) and (4.20) and replacing e � Qe by

G. Qblm
/ � .c � Qc/ Qb2

lm
� .d � Qd/ Qblm
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we get

cb2
lm

� c Qb2
lm

C dblm
� d Qblm

C G. Qblm
/ D

X

n2N
Akn

� Qblm
� blm

.akn
� Qblm

/.akn
� blm

/

�

:

Dividing both sides by Qblm
. Qblm

� blm
/ we get

�c.blm
C Qblm

/

Qblm

C �d

Qblm

C G. Qblm
/

Qblm
. Qblm

� blm
/

D
X

n2N

� Akn

Qblm
.akn

� Qblm
/.akn

� blm
/

�

:

(4.22)
Note that since ¹anºn2N satisfies asymptotics (2.5) and ¹bnºn2N, ¹ Qbnºn2N sat-

isfy asymptotics (2.6), the inequalities

j Qblm
.akn

� blm
/.akn

� Qblm
/j�1 � j Qbkn

.akn
� bkn

/.akn
� Qbkn

/j�1 � 2=a2
kn

are valid for any m 2 Nn¹sº and for sufficiently large n 2 N. Recall that Qbkj
WD bkj

if kj … ¹lnºn2N. In addition,
P

n2N Akn
=a2

kn
is absolutely convergent. Therefore

right hand side of (4.22) converges to 0 as m goes to 1. Also note that by (4.21),
left hand side of (4.22) is

�c.blm
C Qblm

/ � d

Qblm

C G. Qblm
/

Qblm
. Qblm

� blm
/

D �c.blm
C Qblm

/ � d

Qblm

C G. Qblm
/ � zG. Qblm

/

Qblm
. Qblm

� blm
/

D �c.blm
C Qblm

/ � d

Qblm

C 1

Qblm
� blm

h

.c � Qc/ Qblm
C d � Qd C e � Qe

Qblm

i

:

Let us observe that

lim
m!1

�c.blm
C Qblm

/ � d

Qblm

D �2c:

Now let us show Qblm
� blm

converges to 0 as m goes to 1. Recall that poles of G

and zG satisfy asymptotics

k2
n C 1

�

�
Z

0

q.x/dx C ˛kn
and k2

n C 1

�

�
Z

0

Qq.x/dx C Q̨kn

respectively, where ˛n D o.1/ and Q̨n D o.1/ as n ! 1. Equivalance of poles of
G and zG imply equivalence of

R �

0 q.x/dx and
R �

0 Qq.x/dx. Therefore blm
and Qblm
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satisfy asymptotics

�

lm � 1

2

�2

C 1

�

�
Z

0

q.x/dx C ˇlm
and

�

lm � 1

2

�2

C 1

�

�
Z

0

q.x/dx C Q̌
lm

;

where ˇm D o.1/ and Q̌
m D o.1/ as m ! 1. Hence Qblm

� blm
D o.1/ as m goes

to 1. Therefore left hand side of (4.22) goes to 1 if c� Qc ¤ 0 or d � Qd ¤ 0, so we
get a contradiction unless c D Qc and d D Qd . This implies that G.z/� zG.z/ is a real
constant. However, G.z/ and zG.z/ share the zero bls

. This implies uniqueness of
G.z/ and hence uniqueness of ¹bln

ºn2N. After unique recovery of the two spectra
�DD and �ND, the potential is uniquely determined by Borg’s theorem. �

We also get the uniqueness result without knowing any point from ¹bln
ºn2N,

but this requires absolute convergence of
Q

n2N akn
=bln

. By absolute convergence
of

Q

n2N akn
=bln

we mean absolute convergence of
P

n2N.akn
=bln

� 1/. Note
that Limit Comparison Test implies that

Q

n2N akn
=bln

is absolutely convergent
if and only if

Q

n2N bln
=akn

is absolutely convergent. Absolute convergence of
Q

n2N akn
=bln

also implies the two conditions in Lemma 4.5, so in this case
Lemma 4.5 can be written in the following form.

Lemma 4.7. Let ¹akn
ºn2N � �DD and ¹bln

ºn2N � �ND such that
Q

n2N.akn
=bln

/

is absolutely convergent. Then

G.z/ D cz2 C dz C e C
X

n2N
Akn

� 1

z � akn

C 1

akn

�

;

where c; d; e are real numbers, Akn
is the residue of G.z/ at the point z D akn

and the sum converges normally on C n
S

n2N akn
.

Proof. We will show that absolute convergence of
Q

n2N.akn
=bln

/ implies the two
conditions in Lemma 4.5, but first we begin by showing that absolute convergence
of

Q

n2N.akn
=bln

/ implies ¹1=.akn
� bln

/ºn2N 2 l1. Since
Q

n2N.akn
=bln

/ is
absolutely convergent,

X

n2N

ˇ

ˇ

ˇ

akn
� bln

bln

ˇ

ˇ

ˇ D
X

n2N

ˇ

ˇ

ˇ

ˇ

k2
n � .ln � 1=2/2 C ˛kn

� ˇln

.ln � 1=2/2 C .1=�/
R �

0
q.x/dx C ˇln

ˇ

ˇ

ˇ

ˇ

< 1;
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i.e. ¹.k2
n � l2

n C ln/= l2
nºn2N 2 l1. Note that limn!1 akn

=bln
D 1 implies

limn!1 kn=ln D 1. Therefore

1 >
X

n2N

ˇ

ˇ

ˇ

k2
n � l2

n C ln

l2
n

ˇ

ˇ

ˇ

D
X

n2N

kn C ln

ln

ˇ

ˇ

ˇ

ˇ

kn � ln C ln=.kn C ln/

ln

ˇ

ˇ

ˇ

ˇ

�
N

X

nD1

ˇ

ˇ

ˇ

kn � ln C ln=.kn C ln/

ln

ˇ

ˇ

ˇ C
1

X

nDN C1

ˇ

ˇ

ˇ

1=4

ln

ˇ

ˇ

ˇ

� c1

X

n2N

1

ln
;

where N 2 N and c1 > 0, i.e. ¹1=lnºn2N 2 l1 and by Limit Comparison Test
¹1=knºn2N 2 l1. Therefore ¹1=.akn

� bln
/ºn2N 2 l1, since 1=jakn

� bln
j �

1=jakn
� bkn

j D O.1=kn/ as n goes to 1.
The partial product GN defined in the beginning of Section 4.2 can be repre-

sented as

GN .z/ D
N

X

nD1

Akn;N

z � akn

C
N
Y

nD1

akn

bln

;

and hence

lim
N !1

N
X

nD1

Akn;N

akn

D lim
N !1

h

N
Y

nD1

akn

bln

� GN .0/
i

D
Y

n2N

akn

bln

� 1 2 R: (4.23)

Since ¹1=akn
ºn2N 2 l1, existence of this limit implies limN !1

PN
nD1 jAkn;N =a2

kn
j

exists.
Now we are ready to prove the first assumption in Lemma 4.5, i.e.

lim
N !1

N
X

nD1

.jAkn;N
� Akn

j=a2
kn

/ < 1:

For n < N , let us define

Pkn;N WD
1
Y

mDN C1

akm

blm

akn
� blm

akn
� akm

:

Then

jAkn;N
� Akn

j
a2

kn

D
ˇ

ˇ

ˇ

�Akn;N

akn

��akn
� bln

akn

Œ1 � Pkn;N �
�� 1

akn
� bln

�ˇ

ˇ

ˇ: (4.24)
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Using (4.23), absoulte convergence of
Q

n2N.akn
=bln

/ and hence absolute conver-
gence of

P

n2NŒ.akn
� bln

/=akn
� we get that the limits

lim
N !1

N
X

nD1

Akn;N

akn

and lim
N !1

N
X

nD1

�akn
� bln

akn

Œ1 � Pkn;N �
�

converge.
Recall that we have also showed ¹1=.akn

� bln
/ºn2N 2 l1. Therefore by (4.24)

we get the first assumption in Lemma 4.5,

lim
N !1

N
X

nD1

jAkn;N
� Akn

j
a2

kn

< 1:

After recalling that we showed existence of limN !1
PN

nD1 jAkn;N =a2
kn

j, we get
the second assumption in Lemma 4.5, i.e. ¹Akn

=a2
kn

ºn2N 2 l1 as follows:

lim
N !1

N
X

nD1

jAkn
j

a2
kn

� lim
N !1

N
X

nD1

jAkn
� Akn;N j
a2

kn

C lim
N !1

N
X

nD1

jAkn;N j
a2

kn

< 1:

Now using Lemma 4.5 we get the desired result. �

Theorem 4.8. Let q 2 L1.0; �/ and ¹akn
ºn2N � �DD, ¹bln

ºn2N � �ND such that
Q

n2N.akn
=bln

/ is absolutely convergent. Then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2N and

¹kn
ºn2N determine the potential q, where �DD D ¹anºn2N, �ND D ¹bnºn2N are

Dirichlet–Dirichlet and Neumann–Dirichlet spectra and ¹nºn2N are point masses

of the spectral measure �0;0 D
P

n2N nıan
.

Proof. One can use Lemma 4.7 and follow the proof of Theorem 4.6 until the last
step, i.e. showing uniqueness of the two spectra after obtaining that G.z/� zG.z/ is a
real constant, so let us show G.z/� zG.z/ D 0. The main differences in this case are
that G and zG do not share any zero and the infinite products

Q

n2N.akn
=bln

/ and
Q

n2N.akn
= Qbln

/ are absolutely convergent. Let us recall that the infinite products
G and zG have the following representations:

G.z/ D cz2 C dz � C C
X

n2N
Akn

� 1

z � akn

C 1

akn

�

;

zG.z/ D cz2 C dz � zC C
X

n2N
Akn

� 1

z � akn

C 1

akn

�

:

Therefore by taking difference of G.z/ and zG.z/ we get G.z/ C C D zG.z/ C zC ,
i.e.

�C
Y

n2N

� z

bln

�1
�� z

akn

�1
��1

CC D � zC
Y

n2N

� z

Qbln

�1
�� z

akn

�1
��1

C zC: (4.25)
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Note that since the infinite products
Q

n2N.akn
=bln

/,
Q

n2N.akn
= Qbln

/ are abso-
lutely convergent and the two spectra ¹anºn2N, ¹bnºn2N lie on the positive real
line, the infinite products on the two sides of (4.25) are uniformly convergent on
the second quadrant. Hence by letting z go to infinity on the second quadrant we
get

� C
Y

n2N

akn

bln

C C D � zC
Y

n2N

akn

Qbln

C zC: (4.26)

Recall that
Q

n2N Qbln
=bln

is finite, since

X

n2N

j Qbln
� bln

j
bln

D
X

n2N

j Q̌
ln

� ˇln
j

bln

� max
n2N

j Q̌
ln

� ˇln
j
X

n2N

1

bln

< 1:

Therefore the infinite product H.z/ WD G.z/= zG.z/ is represented as

H.z/ WD G.z/

zG.z/
D C

zC
Y

n2N

z � bln

bln

Qbln

z � Qbln

D C

zC
Y

n2N

Qbln

bln

Y

n2N

z � bln

z � Qbln

:

We know that G and zG share same poles with equivalent residues at the
corresponding poles. Therefore for any m 2 N

1 D H.akm
/ D C

zC

Y

n2N

Qbln

bln

Y

n2N

akm
� bln

akm
� Qbln

: (4.27)

Now let us find the limit of the infinite product on the right end of (4.27) as m

goes to 1. This infinite product is uniformly convergent if and only if the infinite
sum

X

n2N

�akm
� bln

akm
� Qbln

� 1
�

D
X

n2N

Qbln
� bln

akm
� Qbln

(4.28)

is uniformly convergent. Note that asymptotics of the two spectra imply

Qblj � blj D o.1/

as j goes to infinity. Then the asymptotics of ¹akn
ºn2N; ¹bln

ºn2N and ¹ Qbln
ºn2N

together with absolute convergence of the infinite products
Q

n2N.akn
=bln

/,
Q

n2N.akn
= Qbln

/ imply that

X

n2N

ˇ

ˇ

ˇ

Qbln
� bln

akm
� Qbln

ˇ

ˇ

ˇ �
X

n2N

ˇ

ˇ

ˇ

Qbln
� bln

akn
� Qbln

ˇ

ˇ

ˇ < 1; (4.29)

since ¹1=.akn
� Qbln

/ºn2N 2 l1 as we discussed in the proof of Lemma 4.7.
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Therefore by letting m go to 1 in (4.27) we get zC=C D
Q

j 2N
Qblj =blj . If we

define  WD
Q

n2N akn
=bln

and Q WD
Q

n2N akn
= Qbln

, we get zC=C D = Q . This

identity and (4.26) imply
 � 1

Q � 1
D 

Q and hence  D Q . Therefore C D zC .

This implies uniqueness of G.z/ and hence uniqueness of ¹bln
ºn2N. After unique

recovery of the two spectra �DD and �ND, the potential is uniquely determined by
Borg’s theorem. �

4.3. General boundary conditions. As discussed in Section 2.2, the Weyl
m-function for the Schrödinger equation

Lu D �u00 C qu D zu (4.30)

with boundary conditions

u.0/ cos ˛ � u0.0/ sin ˛ D 0; (4.31)

u.�/ cos ˇ C u0.�/ sin ˇ D 0; (4.32)

is defined as

m˛;ˇ .z/ D cos.˛/u0
z.0/ C sin.˛/uz.0/

� sin.˛/u0
z.0/ C cos.˛/uz.0/

;

where uz.t / is a solution of (4.30) satisfying (4.32) and ˛; ˇ 2 Œ0; �/. In order
to prove our result with boundary conditions (4.31) and (4.32) we need to con-
sider more general m-functions. Recall that we have defined the m-function in
Section 2.2 by introducing two solutions sz.t / and cz.t / of (4.30) satisfying the
initial conditions

sz.0/ D sin.˛/; s0
z.0/ D cos.˛/;

cz.0/ D cos.˛/; c0
z.0/ D � sin.˛/;

and uz.t /, a solution of (4.30) with boundary conditions uz.�/ D sin ˇ, u0
z.�/ D

� cos ˇ. The same steps to define the m-function as in Section 2.2 can be followed
if cz.t / is a linearly independent solution with W.cz; sz/ D 1. Therefore we
introduce two solutions sz.t / and cz.t / of (4.30) satisfying the initial conditions

sz.0/ D sin.˛2/; s0
z.0/ D cos.˛2/;

cz.0/ D sin.˛1/

sin.˛1 � ˛2/
; c0

z.0/ D cos.˛1/

sin.˛1 � ˛2/
;

for ˛1; ˛2 2 Œ0; �/, sin.˛1 � ˛2/ ¤ 0 and same uz.t /. Then we can define the
m-function m˛1;˛2;ˇ .
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Definition 4.9. The m-function m˛1;˛2;ˇ is defined as

m˛1;˛2;ˇ .z/ WD 1

sin.˛2 � ˛1/

h� sin.˛1/u0
z.0/ C cos.˛1/uz.0/

� sin.˛2/u0
z.0/ C cos.˛2/uz.0/

i

;

where ˛1; ˛2; ˇ 2 Œ0; �/, sin.˛2 � ˛1/ ¤ 0 and uz.t / is a solution of (4.30) with
boundary conditions uz.�/ D sin ˇ, u0

z.�/ D � cos ˇ.

Remark 4.10. The m-function m˛;ˇ we discussed in Section 2.2 is obtained by
letting ˛1 D ˛ � �=2 and ˛2 D ˛, i.e. m˛� �

2
;˛;ˇ .z/ D m˛;ˇ .z/.

The m-function m˛1;˛2;ˇ .z/ is a meromorphic Herglotz function having real
zeros on �˛1;ˇ and real poles on �˛2;ˇ , which are interlacing. It is a meromor-
phic Herglotz function, since m0;ˇ .z/ D u0

z.0/=uz.0/ is a meromorphic Herglotz
function and sgnŒIm.m˛1;˛2;ˇ .z//� D sgnŒIm.m0;ˇ .z//�. Therefore Herglotz rep-
resentation theorem implies

m˛1;˛2;ˇ .z/ D az C b C
Z

h 1

t � z
� t

1 C t2

i

d�˛1;˛2;ˇ .t /;

where a; b 2 R and �˛1;˛2;ˇ is a positive discrete Poisson-summable measure
supported on the spectrum �˛2;ˇ . Let us call �˛1;˛2;ˇ the spectral measure corre-
sponding to .˛1; ˛2; ˇ/. Now we prove our results with general boundary condi-
tions.

Theorem 4.11. Let q 2 L1.0; �/, A � N, sin.˛2 �˛1/ ¤ 0 and ˛1; ˛2; ˇ 2 Œ0; �/.

Then ¹anºn2N, ¹bnºn2NnA and ¹nºn2A determine the potential q, where �˛2;ˇ D
¹anºn2N, �˛1;ˇ D ¹bnºn2N are two spectra and ¹nºn2N are point masses of the

spectral measure �˛1;˛2;ˇ D
P

n2N nıan
.

Proof. Wlog let an and bn be positive for all n 2 N. We follow the arguments we
used in the proofs of Lemma 4.1 and Theorem 4.2, but there are two differences:
asymptotics of the two spectra, depending on ˛1; ˛2; ˇ and hence the order relation
betweeen an and bn. Thus, we consider the following cases.

(i) ˛1 ¤ 0, ˛2 ¤ 0, ˛1 > ˛2. When ˇ ¤ 0, the two spectra �˛2;ˇ D ¹anºn2N and
�˛1;ˇ D ¹bnºn2N satisfy the asymptotics (2.4) and hence an > bn for all n 2 N.
Therefore using the proof of Lemma 4.1, m˛1;˛2;ˇ .z/ can be represented as (4.2).
Using this representation and C̆ebotarev’s theorem as we discussed in the proof
of Theorem 4.2, the meromorphic Herglotz function G.z/ defined as

G.z/ WD �C
Y

n2A

� z

bn

� 1
�� z

an

� 1
��1

(4.33)
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has the following representation:

G.z/ D dz C e C
X

n2A

An

� 1

z � an

C 1

an

�

:

Only unknown constants on the right hand side are d and e. In order to show
uniqueness of the linear term dz C e, let us introduce zG.z/ as we did in the proof
of Theorem 4.2:

� the infinite product zG is defined as

zG.z/ WD � zC
Y

n2A

� z

Qbn

� 1
�� z

Qan

� 1
��1

;

where zC > 0, the set of poles ¹ Qanºn2A and the set of zeros ¹ Qbnºn2A satisfy
asymptotics (2.4). Let Qak WD ak and Qbk WD bk for k 2 N n A;

� G and zG share same set of poles with equivalent residues at the correspond-
ing poles, i.e. Qak D ak and Res. zG; ak/ D Res.G; ak/ for any k 2 A;

� by the equivalence of poles and residues of G and zG and C̆ebotarev’s theo-
rem, zG.z/ has the representation

zG.z/ D Qdz C Qe C
X

n2A

An

� 1

z � an

C 1

an

�

;

where Qd � 0, Qe 2 R.

Therefore difference of G and zG is a linear polynomial, i.e.

G.z/ � zG.z/ D .d � Qd/z C e � Qe (4.34)

Note that since ¹anºn2N, ¹bnºn2N and ¹ Qbnºn2N are subsets of .0; 1/ and satisfy
asymptotics (2.4), for any x 2 .�1; 0/ we get

jG.x/ � zG.x/j �
ˇ

ˇ

ˇC
Y

n2A

� x

bn

� 1
�� x

an

� 1
��1ˇ

ˇ

ˇ C
ˇ

ˇ

ˇ

zC
Y

n2A

� x

Qbn

� 1
�� x

an

� 1
��1ˇ

ˇ

ˇ

� C
Y

n2A

an

bn

C zC
Y

n2A

an

Qbn

< 1:

Convergence of the infinite product
Q

n2A an=bn follows from the fact that

X

n2A

an � bn

bn

� M
X

n2A

1

n2
;
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for some M < 1, since asymptotics (2.4) imply jan�bnj � M1 for some M1 < 1
independent of n and an D n2 C o.n2/, bn D n2 C o.n2/ as n goes to infinity.
Therefore

lim
x!�1

j.d � Qd/x C e � Qej D lim
x!�1

jG.x/ � zG.x/j D
ˇ

ˇ

ˇC
Y

n2A

an

bn

� zC
Y

n2A

an

Qbn

ˇ

ˇ

ˇ < 1;

so we get a contradiction unless d D Qd . This implies that G.z/ � zG.z/ is a real
constant, which is G.0/ � zG.0/ D zC � C . In order to show zC D C , we follow
exactly the same arguments used in the proof of Theorem 4.2.

This gives uniqueness of G.z/ and hence uniqueness of ¹bnºn2A. After unique
recovery of the two spectra �˛2;ˇ and �˛1;ˇ , Levinson’s theorem uniquely deter-
mines the potential.

When ˇ D 0, one can apply same arguments. The only difference appears in
asymptotics of �˛2;ˇ D ¹anºn2N and �˛1;ˇ D ¹bnºn2N, which does not affect the
result.

(ii) ˛1 ¤ 0, ˛2 D 0, ˇ D 0. The two spectra �˛2;ˇ D ¹anºn2N and �˛1;ˇ D
¹bnºn2N satisfy the asymptotics (2.5) and (2.6) respectively. One then obtains the
result by following the proofs of Lemma 4.1 and Theorem 4.2.

(iii) ˛1 ¤ 0, ˛2 D 0, ˇ ¤ 0. The two spectra �˛2;ˇ D ¹anºn2N and �˛1;ˇ D
¹bnºn2N satisfy the asymptotics (2.7) and (2.4) respectively, which is similar to
the previous case.

(iv) ˛1 ¤ 0, ˛2 ¤ 0, ˛1 < ˛2 or ˛1 D 0, ˛2 ¤ 0, ˇ ¤ 0 or ˛1 D 0, ˛2 ¤ 0,

ˇ D 0. In all of these three cases, an < bn for all n 2 N. Therefore using the
proof of Lemma 4.1, m˛1;˛2;ˇ .z/ can be represented as

m˛1;˛2;ˇ .z/ D C
Y

n2N

� z

bn

� 1
�� z

an

� 1
��1

:

In order to represent G.z/ as (4.33), an extra factor is required, so we shift indices
of bn up by one inside A and let b1 be a positive real number less than a1,
assuming wlog 1 2 A. Then z�b1

b1
G.z/ can be represented as (4.33). Using

this representation and C̆ebotarev’s theorem, the meromorphic Herglotz function
z�b1

b1
G.z/ has the following representation:

�z � b1

b1

�

G.z/ D az C b C
X

n2A

An

� 1

an � z
� 1

an

�

:
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Therefore if we introduce zG.z/ similar to the previous cases, then z�b1

b1
G.z/ and

z�b1

b1

zG.z/ share the same set of poles ¹anºn2A with the same residues ¹�Anºn2A

and have the sets of zeros ¹bnºn2A and ¹b1º [ ¹ Qbnºn2An¹1º respectively, so the
difference of z�b1

b1
G.z/ and z�b1

b1

zG.z/ is a linear polynomial with real coefficients

and hence G.z/ � zG.z/ is a real constant, which is G.0/ � zG.0/ D zC � C . In
order to show zC D C , we follow exactly the same arguments used in the proof of
Theorem 4.2.

This implies uniqueness of G.z/ and hence uniqueness of ¹bnºn2A. After
unique recovery of the two spectra �˛2;ˇ and �˛1;ˇ , Levinson’s theorem uniquely
determines the potential. �

Remark 4.12. Theorem 4.11 gives Marchenko’s theorem with the m-function
m˛1;˛2;ˇ as a corollary if we let A D N. By letting A D ;, we get the statement
of Levinson’s theorem.

For the non-matching index sets case, let us recall the definitions of Akn;m

and Akn
:

Akn;m WD akn

bln

.akn
� bkn

/

m
Y

j D1

j ¤n

akj

blj

akn
� blj

akn
� akj

;

Akn
WD akn

bln

.akn
� bkn

/

1
Y

j D1

j ¤n

akj

blj

akn
� blj

akn
� akj

:

We can prove Theorem 4.6 and Theorem 4.8 with general boundary conditions
following the same proofs. However, if boundary conditions ˛1 and ˛2 are
nonzero, then we need that eventually the two index sets ¹knºn2N and ¹lnºn2N
have no common element.

Theorem 4.13. Let q 2 L1.0; �/, sin.˛2 � ˛1/ ¤ 0, ˛1; ˛2; ˇ 2 Œ0; �/ and

¹akn
ºn2N � �˛2;ˇ , ¹bln

ºn2N � �˛1;ˇ satisfy following properties:

� limm!1
Pm

nD1.jAkn;m � Akn
j=a2

kn
/ < 1;

� ¹Akn
=a2

kn
ºn2N 2 l1.

(i) If ˛1 D 0 or ˛2 D 0, then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2Nn¹sº and ¹kn

ºn2N
determine the potential q for any s 2 N, where �˛2;ˇ D ¹anºn2N, �˛1;ˇ D ¹bnºn2N
are two spectra and ¹nºn2N are point masses of the spectral measure �˛1;˛2;ˇ D
P

n2N nıan
.
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(ii) If ˛1 ¤ 0, ˛2 ¤ 0 and there exists N 2 N such that kn ¤ ln for all n > N ,

then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2Nn¹sº and ¹kn

ºn2N determine the potential q for

any s 2 N, where �˛2;ˇ D ¹anºn2N, �˛1;ˇ D ¹bnºn2N are two spectra and ¹nºn2N
are point masses of the spectral measure �˛1;˛2;ˇ D

P

n2N nıan
.

Proof. In the proof of Theorem 4.6 we used the inequalities (4.11), namely

j Qblm
.akn

� blm
/.akn

� Qblm
/j�1 � j Qbkn

.akn
� bkn

/.akn
� Qbkn

/j�1 � 2=a2
kn

:

If ˛1 D 0 or ˛2 D 0, these inequalities are still valid for any m 2 N n ¹sº and
for sufficiently large n 2 N. Recall that Qbkj

WD bkj
if kj … ¹lnºn2N.

If ˛1 ¤ 0, ˛2 ¤ 0 and there exists N 2 N such that kn ¤ ln for all n > N , we
modify these inequalities as follows:

j Qblm
.akn

� blm
/.akn

� Qblm
/j�1 � j QbknC1.akn

� bknC1/.akn
� QbknC1

/j�1 � 2=a2
kn

;

which are valid for any m 2 N n ¹sº and for sufficiently large n 2 N.
After getting these inequalities we apply proofs of Lemma 4.5 and Theorem

4.6 with the m-function m˛1;˛2;ˇ and the spectral measure �˛1;˛2;ˇ and obtain
uniqueness of ¹bln

ºn2N. Even though asymptotics of the spectra may be different
than Dirichlet–Dirichlet, Neumann–Dirichlet case, the same arguments can be
used. After unique recovery of the two spectra �˛2;ˇ and �˛1;ˇ , Levinson’s
theorem uniquely determines the potential. �

Theorem 4.14. Let q 2 L1.0; �/, sin.˛2 � ˛1/ ¤ 0, ˛1; ˛2; ˇ 2 Œ0; �/ and
Q

n2N akn
=bln

be absolutely convergent, where ¹akn
ºn2N � �˛2;ˇ , ¹bln

ºn2N �
�˛1;ˇ .

(i) If ˛1 D 0 or ˛2 D 0, then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2N and ¹kn

ºn2N deter-

mine the potential q, where �˛2;ˇ D ¹anºn2N, �˛1;ˇ D ¹bnºn2N are two spectra

and ¹nºn2N are point masses of the spectral measure �˛1;˛2;ˇ D
P

n2N nıan
.

(ii) If ˛1 ¤ 0, ˛2 ¤ 0 and there exists N 2 N such that kn ¤ ln for all n > N ,

then ¹anºn2N, ¹bnºn2N n ¹bln
ºn2N and ¹kn

ºn2N determine the potential q, where

�˛2;ˇ D ¹anºn2N, �˛1;ˇ D ¹bnºn2N are two spectra and ¹nºn2N are point masses

of the spectral measure �˛1;˛2;ˇ D
P

n2N nıan
.

Proof. If ˛1 D 0 or ˛2 D 0, we follow the proofs of Lemma 4.7 and Theorem 4.8
with the m-function m˛1;˛2;ˇ and the spectral measure �˛1;˛2;ˇ and obtain unique-
ness of ¹bln

ºn2N. After unique recovery of the two spectra �˛2;ˇ and �˛1;ˇ , Levin-
son’s theorem uniquely determines the potential.

If ˛1 ¤ 0, ˛2 ¤ 0 and there exists N 2 N such that kn ¤ ln for all n > N , then
the only difference appears in showing ¹1=.akn

�bln
ºn2N 2 l1, so let us show that
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absolute convergence of
Q

n2N.akn
=bln

/ implies ¹1=.akn
� bln

/ºn2N 2 l1. Since
Q

n2N.akn
=bln

/ is absolutely convergent,

X

n2N

ˇ

ˇ

ˇ

akn
� bln

bln

ˇ

ˇ

ˇ D
X

n2N

ˇ

ˇ

ˇ

.kn � 1/2 � .ln � 1/2 C 1 C ˛kn
� ˇln

.ln � 1/2 C 2 C .2=�/
R �

0 q.x/dx C ˇln

ˇ

ˇ

ˇ < 1;

i.e. ¹.k2
n � l2

n � 2kn C 2ln/= l2
nºn2N 2 l1. Here 1 D 2Œcot.˛2/ � cot.˛1/�=� , 2 D

2Œcot.ˇ/Ccot.˛1/�=� and wlog we assume ˇ ¤ 0. Note that limn!1 akn
=bln

D 1

implies limn!1 kn=ln D 1. Therefore

1 >
X

n2N

ˇ

ˇ

ˇ

k2
n � l2

n � 2.kn � ln/

l2
n

ˇ

ˇ

ˇ

D
X

n2N

kn C ln � 2

ln

ˇ

ˇ

ˇ

kn � ln

ln

ˇ

ˇ

ˇ

�
N

X

nD1

ˇ

ˇ

ˇ

kn � ln

ln

ˇ

ˇ

ˇ C
1

X

nDN C1

1

ln

� c1

X

n2N

1

ln

where N 2 N and c1 > 0, so ¹1=lnºn2N 2 l1 and hence by Limit Comparison
Test ¹1=knºn2N 2 l1. Therefore ¹1=.akn

� bln
/ºn2N 2 l1, since for n > N ,

1=jakn
�bln

j � 1=jakn
�bknC1j D O.1=kn/ as n goes to 1. Now we apply proofs

of Lemma 4.7 and Theorem 4.8 with the m-function m˛1;˛2;ˇ and the spectral
measure �˛1;˛2;ˇ and obtain uniqueness of ¹bln

ºn2N. After unique recovery of
the two spectra �˛2;ˇ and �˛1;ˇ , Levinson’s theorem uniquely determines the
potential. �

Appendix A. Complex function theoretical tools

In this section we recall some definitions and theorems from complex function
theory used in our discussions. We follow [40].

A function on R is Poisson-summable if it is summable with respect to the
Poisson measure …, defined as d… WD dx=.1 C x2/. The space of Poisson-
summable functions on R is denoted by L1

….
The Schwarz integral of a Poisson-summable function f is

Sf .z/ D 1

i�

Z

R

� 1

t � z
� t

1 C t2

�

f .t/dt:
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The Schwarz integral of a real valued Poisson-summable function is given in terms
of its Poisson and conjugate Poisson integrals:

Sf D Pf C iQf;

Pf .z/ D 1

�

Z

y

.t � x/2 C y2
f .t/dt;

Qf .z/ D 1

�

Z

� x � t

.x � t /2 C y2
C 1

1 C t2

�

f .t/dt:

A measure � on R is Poisson-finite if
R

1
1Ct2 d j�j.t / < 1. The Schwarz

integral of a Poisson-finite measure �, defined as

S�.z/ D 1

i�

Z

R

� 1

t � z
� t

1 C t2

�

d�.t/;

is analytic in the upper half-plane CC.
Outer functions in CC are analytic functions of the form eSf for f 2 L1

….
Inner functions in CC are bounded analytic functions with non-tangential

boundary values, equal to 1 in modulus, almost everywhere on R. If an inner
function extends to C meromorphically, it is called meromorphic inner function,

usually denoted by ‚.
Hilbert transform of f 2 L1

…, denoted by Qf , is defined as the singular integral

Qf .x/ D 1

�
p.v.

Z

h 1

x � t
C t

1 C t2

i

f .t/dt;

where p.v. denotes the Cauchy principal value. It is the angular limit of Qf D
Im Sf , hence the outer function eSf coincides with ef Ci Qf on R.

A meromorphic function is said real if it maps real numbers to real numbers on
its domain. A meromorphic Herglotz function m is a real meromorphic function
with positive imaginary part on CC. It has negative imaginary part on C� via the
relation m. Nz/ D m.z/.

There is a one-to-one correspondence between meromorphic inner functions
and meromorphic Herglotz functions via equations

m D i
1 C ‚

1 � ‚
; ‚ D m � i

m C i
:

A meromorphic Herglotz function can be described as the Schwarz integral of
a positive discrete Poisson-finite measure:

m.z/ D az C b C iS�;
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where a � 0, b 2 R. The term iS is also called Herglotz integral and usually
denoted by H . This representation is valid even if the Herglotz function can not
be extended meromorphically to C, in which case � may not be discrete. It is
called Herglotz representation theorem. C̆ebotarev proved a similar result.

Theorem A.1 (C̆ebotarev [33]). If the real meromorphic function m maps CC
onto CC, then its poles ¹akºk2Z are all real and simple, and it may be represented

in the form

m.z/ D az C b C
M

X

kDN

Ak

� 1

ak � z
� 1

ak

�

;

where a � 0, b 2 R, �1 � N < M � 1, Ak � 0 and the sum
PM

kDN Ak=a2
k

converges.
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