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Nodal line estimates for the second Dirichlet eigenfunction
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Abstract. We study the nodal curves of low energy Dirichlet eigenfunctions in generalized

curvilinear quadrilaterals. The techniques can be seen as a generalization of the tools

developed by Grieser-Jerison in a series of works on convex planar domains and rectangles

with one curved edge and a large aspect ratio. Here, we study the structure of the nodal curve

in greater detail, in that we find precise bounds on its curvature, with uniform estimates

up to the two points where it meets the domain at right angles, and show that many of

our results hold for relatively small aspect ratios of the side lengths. We also discuss

applications of our results to Courant-sharp eigenfunctions and spectral partitioning.
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1. Introduction and statement of results

Understanding the fundamental modes of vibration of a compact domain is a

longstanding problem. The original motivation was to describe how a metal sheet

with a given shape would vibrate when struck at some fundamental frequency. The

main goal being to understand the structure of the set of points in the sheet that are

stable, i.e. that are not vibrating. These non-vibrating regions are the zero sets of

the Laplace eigenfunctions corresponding to solving the Helmholtz equation on

https://creativecommons.org/licenses/by/4.0/
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the domain that represents the metal sheet. In the 17th century R. Hook observed

these patterns by spilling sand on a glass sheet, and striking the sheet with a

violin bow. When the sheet starts vibrating, the sand rearranges itself across the

sheet until it is placed on the non-vibrating areas, thus exhibiting the zero sets

for the corresponding eigenfunction. This experiment was later reproduced by

E. Chladni, who was the first to record an extensive list of zero set configurations.

It is nowadays known as the Chladni plates experiment.

We dedicate this article to giving a precise description of the structure of

the zero set of the second eigenfunction for a planar domain whose shape is

obtained after perturbing a rectangle. While we focus on the second Dirichlet

eigenfunction, the techniques developed here can be applied to the low-lying

eigenfunctions in general up to a frequency depending upon the length of the

domain. Also, there are natural generalizations to Neumann (or more generally

Robin) boundary conditions, but for the sake of clarity and presentation we will

focus on Dirichlet domains at present.

We note that low-lying eigenvalues and eigenfunctions of the Laplacian on

a compact domain also play a role in understanding random walks ([14]), heat

conductivity ([18]) and more. See for instance the recent works [22, 19] and

references therein for a nice overview of applications and modern topics in the

theory of eigenfunctions and nodal sets.

In this work, we study the second Dirichlet eigenfunction of the Laplacian on

a planar domain �, so that

´

�v.x; y/ D ��v.x; y/ in �;

v.x; y/ D 0 on @�;

where � is the corresponding eigenvalue. The domain � is a curvilinear rectangle

that is very nearly rectangular in a Gromov–Hausdorff sense to be made precise

below in (1). For convenience, we normalize v so that kvkL1 D 1. We are

interested in studying the nodal set of v, which we denote by

� D ¹.x; y/ 2 V�W v.x; y/ D 0º:

To do this we build off the pioneering works of Jerison [13] and Grieser and

Jerison [6, 7, 8], who studied the low energy eigenfunctions in convex domains

and rectangles of high aspect ratio with one curved edge. For convex domains

they studied the location of the maximum and nodal line of the first and second

Dirichlet eigenfunction respectively, giving estimates that are uniform as the

eccentricity of the domain increases. They also derived a method to do a very

detailed asymptotic analysis of the location of the nodal line or the location of the
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maximum for low energy Dirichlet eigenfunction in a rectangle with one curved

side. This method is the starting point for our work on curvilinear rectangles.

On a rectangle, the zero set of the second eigenfunction for the Laplacian is a

straight line, perpendicular to the long sides, that divides the rectangle in two equal

pieces. Here, we study the zero set of the second eigenfunction v on a region �

that is a perturbation of a rectangle. Indeed, we extend the results in [8] to explore

the precise dependence of the nodal set on the properties of the bounding curves

and the aspect ratio of the underlying region �.

We obtain estimates on the width and regularity of the nodal line of v, with

explicit bounds, tracking how the slope and curvature of the nodal line depend

upon the top and bottom curve. In particular, we show that there are distinct

differences in the nodal line depending upon if some of the bounding curves are

flat or if they are curved. As we are imposing Dirichlet boundary conditions,

the eigenfunction v vanishes on the boundary of the domain, and analyzing the

behavior of the nodal line becomes increasingly delicate as it approaches the

boundary. Our techniques allow us to obtain estimates that are uniform up to

the boundary and show that the nodal line meets the boundary of � orthogonally

at two points.

To state our results precisely, we first define the class of domains � under

consideration. Let �B; �T; �L; �R be functions defining a region � in R2 that is a

perturbation of the rectangle Œ0; N � � Œ0; 1�, for N > 0, of the form

� D
°

.x; y/ 2 R2W x 2
h

� 1

2
; N C 1

2

i

; y 2
h

� 1

2
;

3

2

i

;

�B.x/ � y � �T.x/; �L.y/ � x � �R.y/
±

:

(1)

Γ

Ω

N

2
0 N

1

η

δ

N3

φ
T

φ
B

φ
L

φ
R



326 T. Beck, Y. Canzani, and J. L. Marzuola

The functions �L, �R defining the sides of the domain are in C 2
�� � 1

2
; 3

2

�IR�

,

with

�� � �L � 0; N � �R � � C N;
ˇ

ˇ

ˇ

d j

dyj
�L

ˇ

ˇ

ˇ � �;
ˇ

ˇ

ˇ

d j

dyj
�R

ˇ

ˇ

ˇ � �; (2)

for j D 1; 2 and some � > 0. The functions �B, �T defining the top and bottom

are in C 1
�� � 1

2
; N C 1

2

�IR�

, with

j�Bj � ı

N 3
; j�T � 1j � ı

N 3
;

ˇ

ˇ

ˇ

d j

dxj
�B

ˇ

ˇ

ˇ � zCj

ı

N 3
;

ˇ

ˇ

ˇ

d j

dxj
�T

ˇ

ˇ

ˇ � zCj

ı

N 3
; (3)

for j � 1 and constants zCj > 0. Here 0 < ı < 1
5
, and N � 5. Note that as �, ı

tend to 0, the domain � becomes rectangular.

In the case of the rectangle Œ0; N � � Œ0; 1� with N > 1, the second Dirichlet

eigenfunction is given by v.x; y/ D sin
�

2�x
N

�

sin.�y/ and the nodal line � is

precisely the straight line N
2

� .0; 1/. The theorem below shows how � changes

under the above perturbations of the rectangle. Let �xWR2 ! R be the projection

onto the x-axis.

Theorem 1.1. There exist c > 0, C > 0, such that �x.�/ � �

N
2

� C.� C ı/;
N
2

C C.� C ı/
�

and has diameter bounded by

diam.�x.�// � C
�

�e�cN C ı

N 2

�

:

Moreover, there exists a function g.y/ such that � \ V� D ¹.x; y/ 2 V�W x D g.y/º,
with

jg0.y/j C jg00.y/j � C
�

�e�cN C ı

N 2

�

:

The nodal line � \ V� touches the boundary of � at precisely 2 points, and it meets

the boundary orthogonally at these points.

Here and throughout, constants denoted by c, C , C1, etc, depend on the

constants zCj , but are independent of �, ı, and N . (In fact we will only require

control on derivatives up to j D 5.)

Increasing the length of the rectangle by a perturbation of size � decreases

the eigenvalue by O.�N �3/, while increasing the width of the rectangle by a

perturbation of size ıN �3 decreases the eigenvalue by O.ıN �3/. Thus, by our

choice of perturbations to the rectangle, when � and ı are of comparable size, each

perturbation leads to the same change in the eigenvalue. Increasing the length of
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the rectangle by a perturbation of size � should move the nodal set by an amount �

(see, for example, Theorem 1 in [6]). Analogous to this, we will see that a global

y-perturbation of size ıN �3 leads to the nodal line moving by an amount at most

ı from the unperturbed case. Near the nodal set we will show that the x-derivative

of the eigenfunction is of size N �1 and the y-perturbation gives an error of size

ıN �3 to the eigenfunction from a sinusoidal function. This is the reason for the

error term ıN �2 appearing in the width and curvature of the nodal line.

An immediate feature to note is that in the special case of flat upper and lower

boundaries (�B.x/ � 0, �T.x/ � 1), we can set ı D 0 and the factor of ı
N 2

does not appear in the estimates of Theorem 1.1. Therefore, in this flat case the

diameter of the nodal line, diam.�x.�//, is exponentially small in N (rather than

the polynomial decay in N when ı ¤ 0).

From Theorem 1.1 we see that for N sufficiently large (and ı � C �), the pertur-

bation of the nodal line from straight is smaller than that of the side perturbations

�L.x/, �R.x/. In the flat case, �B.x/ � 0, �T.x/ � 1, we can track the constants

in the proof of Theorem 1.1 (see Section 5) to obtain an explicit lower bound on

the size of N required for this to occur:

Corollary 1.1. There exists a constant N0 > 0 such that for N � N0 and ı � �,

diam.�x.�// � �

2
and jg0.y/j C jg00.y/j � �

2
:

In the flat case, �B.x/ � 0, �T.x/ � 1, for each N � 8, we can take � < �.N0/

and the above estimates hold.

By controlling the behavior of the nodal line up to the boundary, we are able to

show for the class of domains under consideration that the nodal line is not closed,

but meets the boundary (orthogonally) at two points. More generally, Payne [17]

conjectured that the nodal line of the second eigenfunction of a bounded planar

domain touches the boundary at 2 points. This was proved for smooth, convex

domains by Melas [16], but a counterexample (for a non-simply connected pla-

nar domain) was given by M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and

Nadirashvili [12].

In [3], Freitas and Krejc̆ir̆ík study the Dirichlet Laplacian for a class of thin

curved tubes. As the volume of the cross-section tends to 0 they establish the con-

vergence of the eigenvalues and eigenfunctions in terms of an ordinary differential

operator on the base curve of the tube. In particular, they locate the nodal set to

sufficient precision to also deduce that the nodal set must intersect the boundary.

Krejc̆ir̆ík and Tus̆ek also prove an analogous result for domains consisting of a thin
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tubular neighborhood of a hypersurface, [15]. The idea of reducing to an associ-

ated ordinary differential operator has also been used extensively by Friedlander

and Solomyak [4] and [5] and Borisov and Freitas [2] to obtain asymptotics of

the eigenvalues, eigenfunctions, and resolvent of the Dirichlet Laplacian in thin

domains.

Applications to partitioning algorithms. Recently, in work on graph and data

partitioning algorithms, Szlam et al. in [21, 20] observed the following. If one

studies a dense graph that is properly embedded in a domain in R2 using iterated

cuts along nodal sets of the first eigenvector of the graph Laplacian, then the

regions tend towards rectangles of bounded aspect ratios. Here, the iteration

must be stopped after a finite number of cuts depending upon the graph density

in order for the sets to have a geometric interpretation (and hence “rectangles”

being recognizable) rather than just a combinatorial set of vertices of the graph.

The underlying idea of graph partitions are for instance to cluster data points or

to provide a good foundation for a wavelet basis to name just two. There is also

the continuum limit version of this, in which one could ask to partition a planar

domain using the first non-trivial Neumann or second Dirichlet eigenfunction

respectively. Again, for a very general boundary, one expects that such partitions

would converge rapidly to a set of near rectangles.

We can use Corollary 1.1 to illustrate such a convergence is possible at least

at the outset. Let us focus on the flat top and bottom case for simplicity, with

N � 8, and � D �.N / sufficiently small. Given such a domain �, we can form

2 new domains by cutting � along the nodal line �. Using the estimates above,

we can ensure that these two new domains are of the form of � but with roughly

N1 � N=2 length scale in the x direction, and that one side of the new domain

satisfies a stronger curvature bound than that of �. We can continue to iterate this

procedure j times until N=2j � Nj � 8, with the curvature of one side decreasing

in each iteration by Corollary 1.1. However, at some point in the process we once

again arrive at a curvilinear quadrilateral with aspect ratio small enough such

that the constants fall outside the scope of our strong quantitative estimates. The

fluctuations do not decrease as clearly using our methods beyond that point as we

would need stronger control over the constants c; C in Theorem 1.1, and hence

stronger control on the constituent curves of the domain. Cutting along the nodal

line will thus result in a dynamical system of domains with bounded aspect ratios

such that the spectral cuts rely on the structure of the iterated component curves.

Analogously, for the general top and bottom boundaries considered here, using

the estimates in Corollary 1.1, given �, ı, with ı � �, and for N sufficiently large,

we can repeat the above scenario, to again give a possible sequence of domains
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converging to a rectangle up to a point where we saturate the aspect ratios for which

we can prove strong decreasing bounds on the curvature of the component curves.

We leave this as a conjecture and focus here on proving quantitative estimates in

nearly rectangular domains.

Another partitioning related to the nodal set of Dirichlet eigenfunctions of the

Laplacian is the following. Given a domain � and integer k � 2, a spectral

minimal k-partition of � is a partition of � into k disjoint sets �i that minimizes

maxi �.�i /. Here �.�i / is the first Dirichlet eigenvalue of �i . If k D 2, then

the spectral minimal partition is given by the nodal domains of a second Dirichlet

eigenfunction of �. More generally, if a k-th Dirichlet eigenfunction has exactly

k-nodal domains (and so gives equality in the Courant nodal domain Theorem),

then these nodal domains form a minimal k-partition. See the survey paper of

Helffer [9] for greater discussion of spectral minimal partitions and references.

It is therefore important to classify examples where the Courant nodal domain

Theorem is sharp. For instance, it is a direct computation to observe that the

third Dirichlet eigenfunction of the rectangle has three nodal domains whenever

the aspect ratio is greater than
p

8=3. This result and many others on spectral

partitions and Courant sharp eigenfunctions can be found for instance in the

seminal work [10]. Using the techniques presented here, for any fixed j � 2, by

taking N sufficiently large, for all 2 � k � j , the k-th Dirichlet eigenfunction of

the perturbed rectangle has exactly k nodal domains (with nodal set approximately

equal to the union of the k � 1 lines
®

l
k

N
¯ � Œ0; 1� for 1 � l � k � 1). Thus, in

this case, the nodal domains will provide a spectral minimal k-partition.

Outline of the paper. The structure of the rest of the paper as follows. In Sec-

tion 2 we describe an adiabatic approximation of the eigenfunction that is a key

ingredient in the proof of Theorem 1.1. This type of approximation, which can

be viewed as an approximate separation of variables for our approximately rect-

angular domain, has been used in the work of Grieser and Jerison [6] and [8].

The approximation has also been used in [1] for numerical analysis of eigenfunc-

tions in partially rectangular billiards, and in [11] to analyze non-concentration

of eigenfunctions in partially rectangular billiards. In Section 3, we establish the

desired properties of the width and regularity of the nodal line using the adiabatic

approximation. Then, in Section 4 we demonstrate how in the flat case, we have

simple ODE estimates to establish the approximation, and following this, we prove

the error estimates for the approximation for our general class of domains. Lastly,

in Section 5 we compute an explicit Hadamard variation formula to evaluate the

effect the side perturbations have on the eigenfunction. This will in particular al-
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low us to track the constants appearing in the proof of Theorem 1.1 in the flat case

and prove Corollary 1.1.
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2. The Adiabatic Ansatz

A key ingredient in the proof of Theorem 1.1 is to establish properties of a Fourier

decomposition of the eigenfunction v.x; y/. For convenience, we introduce the

height function

h.x/ WD �T.x/ � �B.x/;

and note that by (3) we have 1 � 2ı
N 3 � h.x/ � 1 C 2ı

N 3 for all x 2 Œ0; N �. For

.x; y/ 2 � with 0 � x � N , we write v as

v.x; y/ D v1.x/ sin.ˇ.x; y// C E.x; y/; (4)

where

ˇ.x; y/ WD �.y � �B.x//

h.x/

and where the function v1.x/ is given by

v1.x/ D 2

h.x/

�T.x/
Z

�B.x/

v.x; y/ sin.ˇ.x; y// d y:

We will view the first term in the right hand side of (4) as the main term, with

E.x; y/ an error term when N is large, and ı, � are small. The function v1.x/ is

the first Fourier mode in the y-direction. To prove Theorem 1.1 we will use this

decomposition of v, and will require a lower bound on jv0
1.x/j, together with upper

bounds on v1.x/, E.x; y/ and their derivatives. In fact, to prove the estimates

on regularity of the nodal line near @�, we need to consider a larger class of
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decompositions of v. Given .x0; y0/ 2 �, suppose that .x1; y1/ 2 @�, with y1 D
�B.x1/ and d..x0; y0/; @�/ D d..x0; y0/; .x1; y1//. We now rotate the domain so

that .x1; y1/ is vertically below .x0; y0/. More precisely, we intoduce the new

coordinates . Qx; Qy/ D F �1.x; y/, where F is the linear isometry obtained by

rotating around .x0; y0/ followed by a vertical shift so that .x1; y1/ D F. Qx0; 0/. We

then define w. Qx; Qy/ to be equal to the eigenfunction v in these rotated coordinates,

w D v ı F:

Remark 2.1. By the bounds on �0
B.x/ and �0

T.x/ from (3), there exists C > 0

such that the angle of rotation is bounded by C ı
N 3 .

The function w satisfies

.� C �/w D 0

in the domain

z� D ¹. Qx; Qy/W �L. Qy/ � Qx � �R. Qy/; �B. Qx/ � Qy � �T. Qx/º;

with wj@ z� D 0. In particular, for 0 � Qx � N , we have

w. Qx; �B. Qx// D w. Qx; �T. Qx// D 0:

Here �B, �T satisfy the bounds

j�B. Qx/j � 2ı

N 3
.1 C j Qx � Qx0j/; j�T. Qx/ � 1j � 2ı

N 3
.1 C j Qx � Qx0j/;

ˇ

ˇ

ˇ

d j

d Qxj
�B. Qx/

ˇ

ˇ

ˇ � 2 zCj

ı

N 3
;

ˇ

ˇ

ˇ

d j

d Qxj
�T. Qx/

ˇ

ˇ

ˇ � 2 zCj

ı

N 3
; (5)

j � 1. Up to the factor of 2, the derivative bounds are the same as for �B, �T.

Moreover, by the construction of F , we have �B. Qx0/ D �0
B. Qx0/ D 0. The functions

�L. Qy/, �R. Qy/ satisfy

�� � ı

N 3
� �L. Qy/ � ı

N 3
; � ı

N 3
� �R. Qy/ � N � � C ı

N 3
;

ˇ

ˇ

ˇ

d j

d Qyj
�L. Qy/

ˇ

ˇ

ˇ � � C ı

N 3
;

ˇ

ˇ

ˇ

d j

d Qyj
�R. Qy/

ˇ

ˇ

ˇ � � C ı

N 3
; (6)

for j D 1; 2. We can make the analogous definition if the closest point to .x0; y0/

lies on the upper boundary of �. For ease of notation, we now drop the tildes, and

for each function w.x; y/ coming from such a rotation, for x 2 Œ0; N � we write

w.x; y/ D w1.x/ sin. Q̌.x; y// C zE.x; y/; (7)
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where

Q̌.x; y/ WD �.y � �B.x//

Qh.x/
;

for the new height function Qh.x/ D �T.x/��B.x/. To prove Theorem 1.1, we will

use the proposition below which gives properties of these decompositions.

Proposition 2.1. There exist positive constants c, C such that the following prop-

erties hold. For each decomposition, there exists a unique point x0 2 �

1
4
N; 3

4
N

�

such that w1.x0/ D 0, and this point lies in the interval
�

N
2

� C.� C Nı/;
N
2

C C.� C Nı/
�

. Moreover, for x 2 �

1
4
N; 3

4
N

�

,

jw0
1.x/j � C �1N �1;

and for x 2 Œ1; N � 1�, 0 � j � 3, we have

jw.j /
1 .x/j � CN �j and sup

y2Œ�B.x/;�T.x/�

jrj zE.x; y/j � C
�

�e�cN C ı

N 3

�

:

Proposition 2.1 is proved in Section 4.

Remark 2.2. When the rotation is trivial, w is equal to v and the decomposition

reduces to the one for v given in (4). Therefore, the properties in this proposition

also hold for v1.x/ and E.x; y/. In fact, in this case, the unique point x0 where

v1.x0/ D 0 lies in the interval

hN

2
� C.� C ı/;

N

2
C C.� C ı/

i

:

3. Estimates on the nodal line

In this section we will prove Theorem 1.1 assuming that Proposition 2.1 holds. We

first establish an upper bound on the width of the projection to the x-axis of the

nodal line in terms of the error E and its derivatives. We will require a different

argument to control the behavior of the nodal line near the boundary, and so we

set

S.x/ D SB.x/ [ ST.x/ WD
h

�B.x/; �B.x/ C 1

4

i

[
h

�T.x/ � 1

4
; �T.x/

i

:

We continue to write

h.x/ D �T.x/ � �B.x/ and ˇ.x; y/ D �.y � �B.x//=h.x/:
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Since h.x/� 1
2

for all x, we have that 0�ˇ.x; y/� �
2

on SB and 3�
2

�ˇ.x; y/��

on ST. Therefore, this choice yields

sin.ˇ.x; y// � 2

�
ˇ.x; y/ D 2.y � �B.x//

h.x/
; y 2 SB.x/;

and similarly

sin.ˇ.x; y// � 2.�T.x/ � y/

h.x/
; y 2 ST.x/:

Applying Proposition 2.1, we let x0 be the unique point in the interval
�

1
4
N; 3

4
N

�

where v1.x0/ D 0. Using the decomposition of v from (4), define

zI to be the smallest interval with x0 2 zI and such that

sup
x2Œ0;N �

y2S.x/c

jE.x; y/j <
1

2
inf

x2 zI c

jv1.x/j
h.x/

;(A)

sup
x2Œ0;N �

y2S.x/

j@yE.x; y/j < 2 inf
x2 zI c

jv1.x/j
h.x/

:(B)

Lemma 3.1. If x 2 zI c , then v.x; y/ ¤ 0 for all y 2 .�B.x/; �T.x//.

Proof of Lemma 3.1. Let y 2 S.x/c . Then,

sin.ˇ.x; y// � sin
�

ˇ
�

x; �B.x/ C 1

4

��

� 1

2h.x/

and so

jv.x; y/j D jv1.x/ sin.ˇ.x; y// C E.x; y/j � jv1.x/j 1

2h.x/
� jE.x; y/j > 0: (8)

By assumption (A), this is strictly positive. Now let y 2 SB.x/. Then, since

E.x; �B.x// D 0, we have jE.x; y/j � .y � �B.x// supy2SB.x/ j@yE.x; y/j. Also,

using that sin.ˇ.x; y// � 2.y��B.x//
h.x/

we obtain

jv.x; y/j D jv1.x/ sin.ˇ.x; y// C E.x; y/j
� .y � �B.x//

�

jv1.x/j 2

h.x/
� sup

y2SB.x/

j@yE.x; y/j
�

> 0;
(9)

and by assumption (B) this is strictly positive. The case y 2 ST.x/ is treated in

the same way. �



334 T. Beck, Y. Canzani, and J. L. Marzuola

We now define the interval I ,

I WD Œx0 � �; x0 C ��

where

� WD sup
x2 zI

h.x/

2 inf
x2 zI

jv0
1.x/j max

°

4 sup
.x;y/2�

x2 zI

jE.x; y/j; sup
.x;y/2�

x2 zI

j@yE.x; y/j
±

:

Lemma 3.2. If x 2 I c , then v.x; y/ ¤ 0 for all y 2 .�B.x/; �T.x//.

Proof of Lemma 3.2. Let y 2 S.x/c . Then, as in (8),

jv.x; y/j � jv1.x/j 1

2h.x/
� jE.x; y/j:

Also, since v1.x0/ D 0, we have jv1.x/j � jx � x0j infx2 zI jv0
1.x/j. Therefore,

jv.x; y/j > 0 provided

jx � x0j >
2h.x/ supy jE.x; y/j

infx2 zI jv0
1.x/j ;

and the latter always holds if jx � x0j > � .

Now let y 2 SB.x/. Then, as in (9)

jv.x; y/j � .y � �B.x//
�

jv1.x/j 2

h.x/
� sup

y2SB.x/

j@yE.x; y/j
�

and using jv1.x/j � jx � x0j infx2 zI jv0
1.x/j gives

jv.x; y/j � .y � �B.x//
� 2

h.x/
jx � x0j inf

x2 zI

jv0
1.x/j � sup

y2SB.x/

j@yE.x; y/j
�

Therefore, from the definition of � , jv.x; y/j > 0 for jx � x0j > � . �

Using Proposition 2.1 and Remark 2.2, there exist c > 0 and C > 0 such that

� � C
�

�e�cN C ı
N 2

�

and I � �

N
2

� CN.� C ıN �1/; N
2

C CN.� C ıN �1/
�

, and

so the estimate on the width and location of the nodal line in Theorem 1.1 follows

immediately from Lemma 3.2.

To study the regularity of the nodal line, we use the coordinate change de-

scribed in Section 2. For a given .x0; y0/ with v.x0; y0/ D 0, y0 � 1
2
, this coor-

dinate change transforms .x0; y0/ to . Qx0; Qy0/ and the eigenfunction v to w. Qx; Qy/.

Dropping the tildes, we have .� C �/w D 0 in the domain

z� D ¹.x; y/W �L.y/ � x � �R.y/; �B.x/ � y � �T.x/º; (10)
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with w.x; �B.x// D w.x; �T.x// D 0. Moreover, �B.x0/ D �0
B.x0/ D 0. Setting

Qh.x/ D �T.x/ � �B.x/, Q̌ D �.y��B.x//
Qh.x/

, we decompose w.x; y/ as in (7). Note

that in the case of a flat top and bottom boundary, the coordinate change is trivial,

and w is identically equal to v. The case y0 � 1
2

is treated in the analogous way

by making a rotation about the top boundary.

We set zS.x/ D zSB.x/ [ zST.x/ D �

�B.x/; �B.x/ C 1
4

� [ �

�T.x/ � 1
4
; �T.x/

�

,

and to establish the regularity of the nodal line, we first study it away from the

boundary of z�. Define

e1 WD sup
.x;y/2 z�

x2I

j@x
zE.x; y/j C � sup

x2I

jw1.x/j sup
x2I

. Qh.x/�2.j Qh0.x/j C j�0
B.x/�T.x/j//

(11)

and

ƒ1 WD 1

2
inf
x2I

jw0
1.x/j
Qh.x/

� e1: (12)

We will show in the proof of Lemma 3.3 that ƒ1 provides a lower bound for

j@xw.x0; y0/j for points .x0; y0/ 2 w�1.0/ with y0 2 zS.x0/c .

Lemma 3.3. Suppose that ƒ1 > 0. Then, for every .x0; y0/ 2 w�1.0/ with

y0 2 zS.x0/c there exist a smooth real valued function g and a neighborhood

U of .x0; y0/ such that

w�1.0/ \ U D ¹.x; y/ 2 U W x D g.y/º;

with

jg0.y/j � 1

ƒ1

�

� sup
x2I

jw1.x/j
Qh.x/

C sup
.x;y/2 z�

x2I

j@y
zE.x; y/j

�

:

Proof Lemma 3.3. Note that for all .x; y/ 2 z�

@xw.x; y/ D w0
1.x/ sin. Q̌.x; y// C w1.x/@x

Q̌.x; y/ cos. Q̌.x; y// C @x
zE.x; y/;

and

@x
Q̌.x; y/ D � �

Qh.x/2
.y Qh0.x/ C �0

B.x/�T.x//: (13)

Therefore,

j@xw.x; y/j � jw0
1.x/j sin. Q̌.x; y// � jw1.x/@x

Q̌.x; y/ cos. Q̌.x; y// C @x
zE.x; y/j:
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Let .x0; y0/2w�1.0/, and suppose that y0 2 zS.x0/c . Then, using sin. Q̌.x0; y0//�
1

2 Qh.x0/
we get

j@xw.x0; y0/j � 1

2
inf
x2I

jw0
1.x/j
Qh.x/

� e1 D ƒ1; (14)

with e1 as defined in (11). Thus, j@xw.x0; y0/j > 0 since ƒ1 > 0 by assumption.

This implies the existence of the graph function g along a neighborhood of

w�1.0/ \ ¹.x; y/ 2 �W y 2 zS.x/cº. Note that for every y

g0.y/ D �@yw.g.y/; y/

@xw.g.y/; y/
: (15)

We next find an upper bound for j@yw.g.y/; y/j. Since for all .x; y/ 2 �

@yw.x; y/ D �
w1.x/

Qh.x/
cos. Q̌.x; y// C @y

zE.x; y/;

then

j@yw.x; y/j � � sup
x2I

jw1.x/j
Qh.x/

C sup
.x;y/2 z�

x2I

j@y
zE.x; y/j: (16)

This together with (14) yield the claimed bound on jg0.y/j when y 2 zS.x/c. �

To study the regularity of the nodal line near @ z�, we define

e2 WD sup
x2I

y2 zSB.x/

j@y@x
zE.x; y/j C � sup

x2I

jw1.x/j sup
.x;y/2 z�

x2I

j Qh0.x/j
Qh.x/2

(17)

and

ƒ2 WD 2 inf
x2I

jw0
1.x/j
Qh.x/

� e2: (18)

We will show in Lemma 3.4 that ƒ2 provides a lower bound for j@xw.x0; y0/j for

all points .x0; y0/ 2 w�1.0/.

Lemma 3.4. If ƒ2 > 0, there exist a neighborhood U of .x0; y0/, and smooth real

valued function g, such that w�1.0/ \ U D ¹.x; y/ 2 U W x D g.y/º; and

jg0.y/j � jyj
ƒ2

sup
x2I

y2 zSB.x/

�1

2
Qh.x/�2.1 C j�00

B.x/j/j@y
zE.x; y/j

C 1

2
j�00

B.x/jj@2
yE.x; y/j C j@3

yE.x; y/j
�

:

Furthermore, w�1.0/ meets @ z� orthogonally.
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Proof Lemma 3.4. Since @x
zE.x; �B.x// D 0, we have @x

zE.x0; 0/ D 0, and so

j@x
zE.x0; y0/j � y0 sup

y2 zSB.x0/

j@y@x
zE.x0; y/j:

In addition, using �B.x0/ D �0
B.x0/ D 0, we know that sin. Q̌.x0; y0// � 2

Qh.x0/
y0

and @x
Q̌.x0; y0/ D � �

Qh.x0/2
y0

Qh0.x0/. Therefore,

j@xw.x0; y0/j � y0

�

2 inf
x2I

jw0
1.x/j
Qh.x/

� e2

�

D ƒ2 y0: (19)

This proves the existence of g. For .x0; y0/ 2 w�1.0/, with y0 2 zSB.x0/ we have

w1.x0/ D � zE.x0;y0/

sin. Q̌.x0;y0//
. Therefore,

@yw.x0; y0/ D � 1

Qh.x0/
zE.x0; y0/

� cos. Q̌.x0; y0//

sin. Q̌.x0; y0//
C @y

zE.x0; y0/:

Note that � cos.�s/
sin.�s/

D 1
s
.1 � r.s// with 0 � r.s/ � �2

2
jsj2 for jsj < 1

2
. Since

Q̌.x0; y0/ D �y0

Qh.x0/
, it follows that

@yw.x0; y0/ D � 1

y0

zE.x0; y0/
�

1 � r
� y0

Qh.x0/

��

C @y
zE.x0; y0/

D � 1

y0

zE.x0; y0/ C @y
zE.x0; y0/ C 1

y0

zE.x0; y0/r
� y0

Qh.x0/

�

:

(20)

Moreover,

1

y0

zE.x0; y0/ D @y
zE.x0; 0/ C 1

2
@2

y
zE.x0; 0/y0 C 1

6
@3

y
zE.x; y1/y2

0 ;

for some y1 2 zSB.x0/, and

@y
zE.x0; y0/ D @y

zE.x0; 0/ C @2
y

zE.x0; 0/y0 C 1

2
@3

y
zE.x0; y2/y2

0 ;

for some y2 2 zSB.x0/. In particular, (20) yields

@yw.x0; y0/ D 1

2
@2

y
zE.x0; 0/y0 C 1

2
@3

y
zE.x0; y2/y2

0

� 1

6
@3

y
zE.x; y1/y2

0 C 1

y0

zE.x0; y0/r
� y0

Qh.x0/

�

:
(21)



338 T. Beck, Y. Canzani, and J. L. Marzuola

Next, note that since zE.x0; 0/ D 0, there exists y2 2 zSB.x/ such that zE.x0; y0/ D
@y

zE.x0; y3/y0. Since 0 � r.s/ � �2

2
jsj2 for jsj < 1

2
, it follows that

j@yw.x0; y0/j � 1

2
j@2

y
zE.x0; 0/jy0 C 1

2
j@3

y
zE.x0; y2/jy2

0

C 1

6
j@3

y
zE.x0; y1/jy2

0 C �2

2
Qh.x0/�2j@y

zE.x0; y3/jy2
0 :

Therefore,

j@yw.x0; y0/j � 1

2
y0j@2

y
zE.x0; 0/j

C y2
0 sup

x2I

y2 zSB.x/

h

j@3
y

zE.x; y/j C �2

2
Qh.x0/�2j@y

zE.x; y/j
i

:
(22)

In the same way, we have

@yw.x0; 0/ D �
�

2 Qh.x0/
y2

0@2
y

zE.x0; y1/

sin
�

�y0

Qh.x0/

� C @y
zE.x0; 0/r

� y0

Qh.x0/

�

;

and

j@yw.x0; 0/j � y0 sup
x2I

y2 zSB.x/

j@2
y

zE.x; y/j C �2

2
Qh.x0/�2y2

0 j@y
zE.x0; 0/j: (23)

To improve (22) and obtain a y2
0 in the upper bound, we need better control on

@2
y

zE.x0; 0/ in (21). To do this we note

@2
y

zE.x0; 0/ D @2
yw.x0; 0/

D �@2
xw.x0; 0/ � �w.x0; 0/

D �@2
xw.x0; 0/

D ��00
B.x0/@yw.x0; 0/;

(24)

where the last equality was obtained after differentiating w.x; �B.x// � 0 twice

and using �0
B.x0/ D �B.x0/ D 0. From (22) it follows that for y 2 zSB.x/ and

.x; y/ 2 w�1.0/,

j@yw.x0; y0/j � y2
0 sup

x2I

y2 zSB.x/

��2

2
Qh.x/�2.1 C j�00

B.x/j/j@y
zE.x; y/j

C 1

2
j�00

B.x/jj@2
yE.x; y/j C j@3

yE.x; y/j
�

:

(25)

The bound on g0 follows from combining (15) with (19) and (25). In particular

g0.0/ D 0, showing that w�1.0/ meets @ z� orthogonally. �
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Applying Proposition 2.1, the estimate on jg0.y/j given in Theorem 1.1 follows

immediately from Lemmas 3.3 and 3.4. The following lemma gives the desired

uniform bound on g00.y/ and completes the proof of Theorem 1.1.

Lemma 3.5. There exist constants c > 0, C such that

jg00.y/j � C
�

�e�cN C ı

N 2

�

:

Proof of Lemma 3.5. Let .x0; y0/ be a point on the nodal line �. Then, differen-

tiating w.g.y/; y/ D 0 twice gives the expression

g00.y0/ D 1

.@xw.x0; y0//3
..@yw.x0; y0//2@2

xw.x0; y0/

C .@xw.x0; y0//2@2
yw.x0; y0/

� 2@yw.x0; y0/@xw.x0; y0/@x@yw.x0; y0//:

(26)

To bound the denominator, we use the lower bounds on @xw.x0; y0/ from (14) (in

the centre) and (19) (near the boundary). By Proposition 2.1 this implies that

j@xw.x0; y0/j � C �1N �1jy0j:

We also have upper bounds on @yw.x0; y0/ from (16) (in the centre) and (25) (near

the boundary), which again using Proposition 2.1 gives

j@yw.x0; y0/j � C jy0j2
�

�e�cN C ı

N 3

�

:

Finally, from Proposition 2.1 we have

j@x@yw.x0; y0/j � CN �1 and j@2
xw.x0; y0/j � CN �2;

and combining (24) with

j@2
yw.x0; y0/j � j@2

yw.x0; 0/j C jy0j sup
y2Œ0;y0�

j@3
yw.x0; y0/j;

gives

j@2
yw.x0; y0/j � C jy0j

�

�e�cN C ı

N 3

�

:

Using these estimates gives the desired bound for the expression for g00.y0/ in (26).

�
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Remark 3.1. In the case of flat upper and lower boundaries, we have the following

estimates on the quantities appearing in the numerator of (26). First, @yv.x0; y0/

satisfies

j@yv.x0; y0/j � � sup
x2I

jv1.x/j C sup
.x;y/2�

x2I

j@yE.x; y/j for
1

4
� y0 � 3

4
;

j@yv.x0; y0/j � y2
0 sup

.x;y/2�

x2I

h

j@3
yE.x; y/ C 1

2
j@yE.x; y/j

i

for y0 � 1

4
; y0 � 3

4
;

where in the second inequality we have used (22) (and the fact that @2
yE.x0; 0/ D 0

in the flat case). We also immediately have the estimates on the second derivatives

of v of

j@x@yv.x0; y0/j � � sup
x2I

jv0
1.x/j C sup

.x;y/2�

x2I

j@x@yE.x; y/j;

j@2
xv.x0; y0/j � sup

x2I

jv00
1.x/j C sup

.x;y/2�

x2I

j@2
xE.x; y/j:

Finally,

j@2
yv.x0; y0/j � �2 sup

x2I

jv1.x/j C sup
.x;y/2�

x2I

j@2
yE.x; y/j for

1

4
� y0 � 3

4

j@2
yv.x0; y0/j � �3y0 sup

x2I

jv1.x/j C y0 sup
.x;y/2�

x2I

j@3
yE.x; y/j for y0 � 1

4
; y0 � 3

4
;

where in the second inequality, we have used j@2
yv.x0; y0/j � j@2

yv.x0; 0/j C
y0 supy2Œ0;y0� j@3

yv.x0; y/j, and that @2
yv.x0; 0/ D 0 in the flat case. We will use

these estimates in Section 5 when we explicitly track the constants in the flat case.

4. Proof of Proposition 2.1

In this section we will prove Proposition 2.1 by establishing the required properties

of the decompositions of v and w defined in (4) and (7). From the definition of

the domain � from (1), � contains the rectangle Œ0; N � � �

ı
N 3 ; 1 � ı

N 3

�

, and is

contained in the rectangle Œ�2�; N C 2��� �� ı
N 3 ; 1C ı

N 3

�

. Therefore, by domain

monotonicity for Dirichlet eigenvalues we have the following lemma.

Lemma 4.1. The second Dirichlet eigenvalue � satisfies

�2
�

1 C 2
ı

N 3

��2

C 4�2.N C 4�/�2 � � � �2
�

1 � 2
ı

N 3

��2

C 4�2N �2:
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We can use this eigenvalue bound to obtain control on the growth of the

eigenfunction v away from the left and right sides of �.

Lemma 4.2. There exists a constant C .depending only on zC1, zC2 from (3)/ with

the following properties. First, jrv.x; y/j � C for .x; y/ 2 �, and moreover for

all y,

jv.x; y/j � CN �1.� C x/ for x � 1

2
N;

jv.x; y/j � CN �1.� C N � x/ for x � 1

2
N:

Proof of Lemma 4.2. The boundary of � is C 2-smooth, except at 4 points where

the C 2-curves meet at a convex angle. This ensures that the gradient of v

is bounded. To obtain the pointwise estimate on v we follow the proof of

Lemma 3.12 (a) in [7]. We define a comparison function R.x; y/ by

R.x; y/ D C1 sin
�

�
x C �

c1N

�

sin
�

�
y � ıN �3

1 C 2ıN �3

�

:

Here c1 > 0 is chosen so that .� C �/R.x; y/ < 0 for .x; y/ 2 � with x �
1
2
c1N � �. This is possible by the eigenvalue upper bound on � from Lemma 4.1.

Since v vanishes on @� and its gradient is bounded, we can then choose the

constant C1 so that jv.x; y/j � R.x; y/ for .x; y/ 2 � with x D 1
2
c1N � �.

Moreover, R > 0 on the part of @� with x � 1
2
c1N � �. Therefore, by applying

the maximum principle to v and R to the subset of � with x � 1
2
c1N � � we have

jv.x; y/j � R.x; y/ for .x; y/ 2 � with x � 1

2
c1N � �:

This gives the desired estimate on jv.x; y/j for x � 1
2
N and the case of x � 1

2
N

can be handled analogously. �

We recall that the function w satisfies .�C�/w D 0 in the domain z� as in (10),

with w.x; �B.x// D w.x; �T.x// D 0. We recall that �B, �T, �R, �L, satisfy the

bounds (5) and (6). The function w is equal to v in the rotated coordinates, and

as noted in Remark 2.1, the angle of rotation in the definition of w is bounded by

C ı
N 3 for some C > 0. Therefore, by Lemma 4.2 we have jrw.x; y/j � C and

jw.x; y/j � CN �1.� C ıN �2 C x/ for x � 1

2
N; (27a)

jw.x; y/j � CN �1.� C ıN �2 C N � x/ for x � 1

2
N: (27b)
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Defining a height function by Qh.x/ D �B.x/ � �T.x/ � 3
5
, we write w as the

Fourier series

w.x; y/ D
X

k�1

wk.x/ sin.k Q̌.x; y//:

Here the k-th mode wk.x/ is given by

wk.x/ D 2

Qh.x/

�T.x/
Z

�B.x/

w.x; y/ sin.k Q̌.x; y// d y:

To prove Proposition 2.1, we will first bound each mode wk.x/, then sum over k,

and finally use elliptic estimates to extend these to derivative bounds. To estimate

wk.x/, we use the eigenfunction equation to find the equation that it satisfies,

and then use the Duhamel principle to find an implicit expression. To bound this

expression we need control on the boundary values wk.0/, wk.N /.

Lemma 4.3. There exists a constant C such that

jwk.0/j C jwk.N /j � C
� �

N
C ı

N 3

�

:

Proof of Lemma 4.3. By definition

wk.0/ D 2

Qh.0/

�T.0/
Z

�B.0/

w.0; y/ sin.k Q̌.0; y// d y: (28)

The estimate on jwk.0/j therefore follows immediately from (27). The estimate

for wk.N / follows in the same way. �

Proof of Proposition 2.1: flat case. Let us first consider the case of a flat top and

bottom, with w D v, and �B.x/ � 0, �T.x/ � 1. In this case, we can remove the

factor of ı
N 3 in the estimate in Lemma 4.3 above. Using that .� C �/v.x; y/ D 0

for 0 � x � N , the function vk.x/ D 2
R 1

0
v.x; y/ sin.k�y/ d y satisfies the ODE

v00
k.x/ C .� � �2k2/vk.x/ D 0: (29)

Writing �2
k

D �2k2 � � � �2.k2 � 1/ � 4�2N �2 � .k2 � 2/�2 for k � 2 (by

Lemma 4.1, provided N � 2), we therefore have, for k � 2,

vk.x/ D 1

e�kN � e��kN
.vk.0/.e�k.N �x/ � e�k.x�N // C vk.N /.e�kx � e��kx//

D 1

sinh.�kN /
.vk.0/ sinh.�k.N � x// C vk.N / sinh.�kx//:

(30)
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Writing v.x; y/ D v1.x/ sin.�y/ C E.x; y/ as in (4), this expression gives

jE.x; y/j � C �e�cN , and likewise for derivatives of E.x; y/. For k D 1,

4�2.N C 4�/�2 � � � �2 � 4�2N �2;

and we set �2
1 D � � �2. The function v1.x/ satisfies

v1.x/ D v1.0/ cos.�1x/ C v1.N / � v1.0/ cos.�1N /

sin.�1N /
sin.�1x/: (31)

Setting A1 D v1.N /�v1.0/ cos.�1N /
sin.�1N /

gives jv1.x/ � A1 sin.�1x/j � C �=N , and

since kvkL1 D 1, this implies that jjA1j � 1j � C �=N . The estimates from

Proposition 2.1 then follow readily from the expressions in (30) and (31).

Proof of Proposition 2.1: general case. In the general case, wk.x/ satisfies an

approximate version of the ODE in (29), with an error depending on �B.x/, �T.x/

and their first two derivatives: Fix x� 2 Œ0; N �, and set

ek.x; y/ D 2

Qh.x/
sin.k Q̌.x; y//: (32)

Lemma 4.4. The function wk.x/ satisfies the equation

w00
k.x/ C

�

� � �2k2

Qh.x�/2

�

wk.x/ D Fk.x/;

where Fk.x/ has the bound

jFk.x/j � C k
�ˇ

ˇ

ˇ

1

Qh.x/2
� 1

Qh.x�/2

ˇ

ˇ

ˇ C j�0
T.x/j C j�0

B.x/j C j�00
T.x/j C j�00

B.x/
ˇ

ˇ

ˇ

�

;

for an absolute constant C .

Proof of Lemma 4.4. The function Fk.x/ is equal to

Fk.x/ D �2k2
� 1

Qh.x/2
� 1

Qh.x�/2

�

wk.x/

C 2

�T.x/
Z

�B.x/

@xw.x; y/@xek.x; y/ d y C
�T.x/
Z

�B.x/

w.x; y/@2
xek.x; y/ d y:

(33)
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Applying the bounds we have derived for w in (27) and the definition of ek in (32),

the terms that do not immediately obey the estimate of the lemma are the first term

and the term in the final integral given by

� 2k2

Qh.x/

�T.x/
Z

�B.x/

w.x; y/.@x
Q̌.x; y//2 sin.k Q̌.x; y// d y: (34)

This is because this is the only term in the final integral in (33) for which a factor

k2 appears in the expression for @2
xe.x; y/. All of the other terms in the last two

integrals in (33) contain at most one derivative of w, two derivatives of �T and �B,

and one factor of k. After an integration by parts wk.x/ is equal to

2

k�

�T.x/
Z

�B.x/

@yw.x; y/ cos.k Q̌.x; y// d y;

and (34) can be written as

�2k

�

�T.x/
Z

�B.x/

@y.w.x; y/.@x
Q̌.x; y//2/ cos.k Q̌.x; y// d y:

Since j@yw.x; y/j is bounded by a constant, both of these terms are of the desired

form. �

The function wk.x/ also satisfies the boundary conditions

wk.0/ D ˛
.1/

k
; wk.N / D ˛

.2/

k
;

where ˛
.i/

k
are values coming from the side variation of the domain, wih bounds

in Lemma 4.3.

For k D 1, set

�2
1 D � � �2

Qh.x�/2
� 0

and, for k � 2, set

�2
k D �k.x�/2 D �2k2

Qh.x�/2
� � � 0:
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Lemma 4.5. Define the functions W1.x/ and Wk.x/ ( for k � 2) by

W1.x/ D 1

�1

sin.�1x/; Wk.x/ D 1

2�k

.e�kx � e��kx/ D 1

�k

sinh.�kx/:

Then,

w1.x/ D
N

Z

x

W1.t � x/F1.t / d t C A1 sin.�1.N � x// C ˛
.2/
1 cos.�1.N � x//;

with

˛
.1/
1 D

N
Z

0

W1.t /F1.t / d t C A1 sin.�1N / C ˛
.2/
1 cos.�1N /:

Also,

wk.x/ D
x

Z

0

Wk.x � t /Fk.t / d t C Ake�kx C Bke��kx;

for constants Ak, Bk , with

˛
.1/

k
D Ak C Bk;

˛
.2/

k
D Ake�kN C Bke��kN C

N
Z

0

Wk.N � t /Fk.t / d t:

Proof of Lemma 4.5. The functions W1.x/ and Wk.x/ satisfy

W 00
1 .x/ C �2

1W1.x/ D 0; W1.0/ D 0; W 0
1.0/ D 1;

W 00
k .x/ � �2

kWk.x/ D 0; Wk.0/ D 0; W 0
k.0/ D 1:

The lemma then follows from Lemma 4.4 and the boundary conditions of wk.x/

at x D 0; N . �

Combining Lemmas 4.4 and 4.5, we can bound wk.x/.

Proposition 4.1. There exist constants c, C , such that for x 2 Œ0; N �, k � 2,

jwk.x/j � C
� �

N
e�c�kd.x/ C k�1 ı

N 3

�

:

Here d.x/ D min¹x; N � xº is the distance of x from the endpoints of Œ0; N �.
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Proof of Proposition 4.1. We fix x� 2 Œ0; N �, and use Lemmas 4.4 and 4.5 to

bound wk at x D x� (with a bound independent of x�). The constants Ak, Bk

from Lemma 4.5 can be written for k � 2 as

Ak D � 1

2�k

N
Z

0

Wk.N � t /

Wk.N /
Fk.t / d t C �e��kN ˛

.1/

k
C ˛

.2/

k

e�kN � e��kN
;

with Bk D ˛
.1/

k
� Ak. From Lemma 4.4, we have the bound

jFk.t /j � C k
ı

N 3
.1 C jt � x�j/; (35)

and from Lemma 4.3, jwk.0/j; jwk.N /j � C
�

�
N

C ı
N 3

�

. Therefore, since �k �
�

p
k2 � 2, the only terms in the expression for wk.x�/ from Lemma 4.5 that do

not immediately satisfy the required estimates are

x�

Z

0

Wk.x� � t /Fk.t / d t � 1

2�k

e�kx�

N
Z

0

e�k.N �t/

e�kN
Fk.t / d t:

However, these integrals can be combined to be written as

� 1

2�k

x�

Z

0

e��k.x��t/Fk.t / d t � 1

2�k

N
Z

x�

e�k.x��t/Fk.t / d t: (36)

Using the bound on Fk.t / from (35) and integrating gives the desired bound. �

We write

w.x; y/ D w1.x/ sin. Q̌.x; y// C
X

k�2

w.x; y/ sin.k Q̌.x; y//

D V1.x; y/ C QE.x; y/:

Summing the estimate from Proposition 4.1 over k we can control the L2-norm

of zE. For the rest of the section, fix x� 2 Œ1; N � 1� and denote the cross-section

at x� by U.x�/ D z� \ ¹.x; y/W x D x�º.

Corollary 4.1. There exist constants c, C such that

k zEkL2.U.x�// � C
� �

N
e�cd.x�/ C ı

N 3

�

:
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We now convert this L2-estimate into bounds on derivatives of zE.

Proposition 4.2. For each j � 0, and with c > 0 as in Corollary 4.1, there exists

a constant Cj such that

k zEkH j .U.x�// � Cj

� �

N
e�cd.x�/ C ı

N 3

�

:

Proof of Proposition 4.2. To obtain this estimate on zE we find the elliptic equa-

tion that it satisfies. For V1.x; y/ WD w1.x/ sin
�

�.y��B.x//
Qh.x/

�

, we have

�V1.x; y/ D 2

Qh.x/

�

�T.x/
Z

�B.x/

@2
xw.x; y0/ sin. Q̌.x; y0// d y0

�

sin. Q̌.x; y//

� �2

Qh.x/2
V1.x; y/ C G1.x; y/

D � �V1.x; y/ C G1.x; y/:

The function G1.x; y/ consists of terms where at least one derivative in x has been

applied to a factor of �T.x/ or �B.x/, and so for each j � 0, there exists a constant

Cj such that

kG1kH j .U.x�// � Cj

ı

N 3
: (37)

Using the eigenfunction equation, zE.x; y/ satisfies

´

� zE.x; y/ D �� zE.x; y/ � G1.x; y/ in z�;

zE.x; y/ D 0 on @ z�:

Applying elliptic estimates to this equation, (37) and the estimate on zE from

Corollary 4.1 establishes the proposition. �

Using Proposition 4.2, we can obtain more refined information about the first

Fourier mode w1.x/ and complete the proof of Proposition 2.1.

Proposition 4.3. There exists a constant C such that in the interval
�

N
4

; 3N
4

�

the

function w1.x/ has a unique zero at x D x0 with
ˇ

ˇx0� N
2

ˇ

ˇ � C.�CNı/. Moreover,

jw0
1.x/j � C �1N �1 for this range of x, and for x 2 Œ0; N �, 1 � j � 3, we have,

jw1.x/ � A1 sin.�1.N � x//j � C.�=N C ı/; jw.j /
1 .x/j � CN �j :

Here the constant A1 is as in Lemma 4.5 and satisfies jjA1j � 1j � C.�=N C ı/.
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Proof of Proposition 4.3. By Lemma 4.1,
ˇ

ˇ�1 � 2�
N

ˇ

ˇ � CN �2.ı C �/ for a

constant C . Therefore, using the expression for w1.x/ from Lemma 4.5 and the

bound jF1.t /j � C ı
N 3 .1 C jt � x�j/ from Lemma 4.4, we have

jw1.x/ � A1 sin.�1.N � x//j � C.�=N C ı/: (38)

Here C is a constant (changing from line-to-line). Moreover, since kwkL1 D 1,

and

w.x; y/ D w1.x/ sin
� Q̌.x; y/

�

C zE.x; y/;

combining (38) with Proposition 4.2, we have

jjA1j � 1j � C.�=N C ı/:

To complete the proof of the lemma, we need to bound w0
1.x/. Differentiating the

expression from Lemma 4.5 gives

w0
1.x/ D �

N
Z

x

W 0
1.t � x/F1.t / d t � �1A1 cos.�1.N � x//

C �1˛
.2/
1 sin.�1.N � x//:

In particular jw0
1.x/ C �1A1 cos.�1.N � x//j � CN �1.� C ı/, and combining

this with the estimate for A1 gives the required bound for jw0
1.x/j. The expression

for w00
1.x/ from Lemma 4.4 gives jw00

1.x/j � CN �2, and differentiating we have

jw000
1 .x/j � CN �3. Since jw0

1.x/j is non-zero on bigŒN
4

; 3N
4

�

, w1.x/ has at most

one zero in this interval. The function sin.�1.N � x// has its unique zero in this

interval at Qx0, with
ˇ

ˇ Qx0 � N
2

ˇ

ˇ � C.ı C �/, and its derivative is bounded below by

C �1N �1. Therefore, w1.x/ also has a unique zero at x D x0, and by (38) we have
ˇ

ˇx0 � N
2

ˇ

ˇ � CN.�=N C ı/. �

Remark 4.1. In the case that no rotation has been applied (so that v1 D w1),

the function F1.t / from Lemma 4.4 satisfies the stronger bound jF1.t /j � C ı
N 3 .

Inserting this stronger estimate into the argument above, the point x0 satisfies
ˇ

ˇx0 � N
2

ˇ

ˇ � C.� C ı/.

5. An explicit Hadamard variation formula and constant tracking

To prove Proposition 2.1, we used the estimate on the boundary values of the

Fourier modes, wk.0/ and wk.N /, in Lemma 4.3, which follows directly from a
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pointwise estimate on the eigenfunction. In order to track the constants appearing

in the error estimates in Proposition 2.1 in the flat case, we require a more explicit

bound on these boundary values. We do this as follows, using a variant of a

calculation given in [8].

Proposition 5.1. There exists a constant C such that

ˇ

ˇ

ˇ

ˇ

wk.0/ � 4�

N

�T.0/
Z

�B.0/

�L.y/ sin. Q̌.0; y// sin.k Q̌.0; y// d y

ˇ

ˇ

ˇ

ˇ

� C.� C ıN �3/.�3=4 C ı C k2.� C ıN �3/2/:

(39)

Proof of Proposition 5.1. We extract the main term in wk.0/ as follows. First, we

integrate by parts to write wk.0/ as

2

�T.0/
Z

�B.0/

w.0; y/ sin.k Q̌.0; y// d y

D 2

Z

@ z�0

w.x; y/
@

@�
.x sin.k Q̌.0; y/// d �

D �2

Z

@ z�0

@w

@�
.x; y/x sin.k Q̌.0; y// d �

C 2
�

� � k2�2

Qh.0/2

�

Z

z�0

w.x; y/x sin.k Q̌.0; y// d x d y:

(40)

The domain z�0 is the domain ¹.x; y/ 2 z�W �L.y/ � x � 0º. The second integral

in (40) is bounded in absolute value by C k2.� C ıN �3/3. The first integral

in (40) consists of three terms. Two of these integrals are over portions of the

top and bottom boundaries of z� of length bounded by C.� C ıN �3/, and so since

the gradient of w is bounded, these integrals are bounded in absolute value by

C.� C ıN �3/2. The remaining contribution to (40) is given by

�2

�T.0/
Z

�B.0/

.@x � �0
L.y/@y/w.�L.y/; y/�L.y/ sin.k Q̌.0; y// d y: (41)

To pick out the main term in (41) we write

w.x; y/ D sin.�1.N � x// sin. Q̌.0; y// C B.x; y/;
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with �2
1 D �2

1.0/ D �� �2

Qh.0/2
and for an error term B.x; y/ to be estimated below.

Using
ˇ

ˇ�1 � 2�
N

ˇ

ˇ � CN �2.� C ı/, (41) becomes

4�

N

�T.0/
Z

�B.0/

�L.y/ sin. Q̌.0; y// sin.k Q̌.0; y// d y

� 2

�T.0/
Z

�B.0/

.@x � �0
L.y/@y/B.�L.y/; y/�L.y/ sin.k Q̌.0; y// d y

(42)

up to an error C.�Cı/.�CıN �3/. We are left to bound the second integral in (42),

and to do this we will use the results of Section 4 to estimate B.x; y/. Summing

the estimate from Proposition 4.1 over k � 2, we obtain a bound on zE.x; y/ for

x � 0 of

k zE.x; y/kL2.U.x// � C
� �

N max¹1; xºe�cx C ı

N 3

�

;

for constants c, C , where we recall that U.x/ is the cross-section of z� at x.

Combining this with Proposition 4.3 shows that for 0 � x � 1, we have

kB.x; y/kL2.U.x// � C
� �

N max¹1; xºe�cx C ı

N 3

�

C C.�N �1 C ı/: (43)

Using Lemma 4.2, we can also bound B.x; y/ in a different way for 0 � x � 1 via

jB.x; y/j � jw.x; y/j C j sin.�1.N � x// sin. Q̌.0; y//j
� CN �1.� C ıN �2 C x/:

(44)

In particular, using (43) and (44), we have kBk
L2. z�1/

� C.�3=4 C ı/. Moreover,

B satisfies the equation

�B D �w C
�

�2
1 C �2

Qh.0/2

�

.w � B/ D �
�

�2
1 C �2

Qh.0/2

�

B:

We can use this to bound the second integral in (42). Let �.x/ be a smooth cut-off

function, equal to 1 for x � 1
4

and 0 for x � 3
4
. There exists an extension H.x; y/

of sin.�1.N � x// sin. Q̌.0; y//
ˇ

ˇ

xD�L.y/
to z�1, with H.1; y/ � 0 such that

kHkH 1.�1/ � C �:

The function �.x/B.x; y/ � H.x; y/ therefore vanishes on @ z�1, and satisfies

�.�.x/B.x; y/ � H.x; y// D .��/B C 2r�:rB C ��B � �H DW F:
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Elliptic estimates therefore imply that

k�B � HkH 1. z�1/ � kF kH �1. z�1/ � C.kBkL2. z�1/ C kHkH 1. z�1//:

Using kBk
L2. z�1/

� C.�3=4 C ı/, we have the same bound on k�B � HkH 1.�1/.

Elliptic estimates thus give







@B

@�







L2.D/
� C.�3=4 C ı/;

where

D D ¹.�L.y/; y/W �B.0/ � y � �T.0/º:
Applying this estimate in the second integral in (42), we see that the integral can

be bounded by C.� C ıN �3/.�3=4 C ı/, and this therefore concludes the proof of

the proposition. �

Now consider the case where the domain � has flat top and bottom boundaries

(so that �T.x/ D 1, �B.x/ D 0). Proposition 5.1 then allows us to track the

constants appearing in the error estimates in Proposition 2.1. Given N (not

necessarily large) and a small constant c > 0, we can choose � D �.N / sufficiently

small so that

jvk.0/j; jvk.N /j � 8�

N
C c

� �

N
C k2�

N 2

�

:

By choosing c small compared to 8, we can use this in (30) and (31) to get explicit

estimates on E.x; y/ and its derivatives, with the estimates not depending on any

unknown constants. Using this in the quantities appearing in Section 3, for any

N � 8 fixed and � D �.N / sufficiently small, this provides the following bounds

and proves Corollary 1.1. We have

� � 10�4�;

where we recall from Lemma 3.2 that the width of the nodal line is bounded by

2� . Moreover, we have

ƒ1 � 0:3; ƒ2 � 1:2;

and from Lemmas 3.3 and 3.4 this gives the upper bound on jg0.y/j of

jg0.y/j � 10�2�:

Finally, inserting the bounds from Remark 3.1 on the terms appearing in g00.y/

gives

jg00.y/j � 10�2�:
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