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Abstract. The norm resolvent convergence of discrete Schrödinger operators to a contin-
uum Schrödinger operator in the continuum limit is proved under relatively weak assump-
tions. This result implies, in particular, the convergence of the spectrum with respect to the
Hausdorff distance.
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1. Introduction

We consider a Schrödinger operator

H D H0 C V.x/; H0 D �4; x 2 R
d ;

onH D L2.Rd /, where d � 1, and corresponding discrete Schrödinger operators:
We let h > 0 be the mesh size, and we write

Hh D `2.hZd /; hZd D ¹.hz1; : : : ; hzd / j z 2 Z
d º;

with the norm kvk2
h

D hd
P

jv.hz/j2 for v 2 Hh. We denote the standard basis
of Rd by ej D .ıjk/d

kD1
2 R

d , j D 1; : : : ; d . Our discrete Schrödinger operator
is

Hh D H0;h C V.z/; z 2 hZd ;
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where

H0;hv.z/ D h�2

d
X

j D1

.2v.z/ � v.z C hej / � v.z � hej //; v 2 Hh:

We suppose:

Assumption A. V is a real-valued continuous function on R
d , and bounded from

below. .V .x/ C M/�1 is uniformly continuous with some M > 0, and there is
c1 > 0 such that

c�1
1 .V .x/ C M/ � V.y/ C M � c1.V .x/ C M/; if jx � yj � 1:

The above assumption implies V is slowly varying in some sense, and uni-
formly continuous relative to the size of V.x/. Under the assumption, H is essen-
tially self-adjoint, and Hh is self-adjoint (cf. Reed-Simon [16], Theorem X.28).
We note that H and Hh may be considered as quadratic forms with natural form
domains. The assumption is satisfied if V is bounded and uniformly continuous.
V.x/ D ahxi� with a; � > 0, also satisfies the assumption.

For ' 2 S.Rd /, h > 0 and z 2 hZd , we set

'h;z.x/ D '.h�1.x � z//; x 2 R
d ;

and we define Ph D Ph;' WH ! Hh by

Phu.z/ WD h�d

Z

Rd

'h;z.x/u.x/dx; h > 0; z 2 hZd :

The adjoint operator is given by

P �
h v.x/ D

X

z2hZd

'h;z.x/v.z/; h > 0; v 2 Hh:

It is easy to observe that P �
h

is an isometry and hence Ph is a partial isometry,
if and only if ¹'1;z j z 2 Z

d º is an orthonormal system. This condition is also
equivalent to the condition:

X

n2Zd

j O'.� C n/j2 D 1 for � 2 R
d ; (1)

where O' is the Fourier transform:

O'.�/ D F'.�/ D

Z

Rd

e�2�ix��'.x/dx; � 2 R
d :
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This claim is well-known, but we give its proof in Appendix for the completeness
(Lemma A.1). We note operators of this form have been extensively studied
in the context of signal analysis and wavelet analysis (see, e.g., [13], [7]). By
this observation, we learn that there is a large class of '’s satisfying the above
condition. In this paper, we use Ph to identify Hh with a subspace of H. We
suppose:

Assumption B. ' satisfies the condition (1), and suppŒ O'� � .�1; 1/d .

Theorem 1.1. Suppose Assumptions A and B. Then, for any � 2 CnR,

kP �
h .Hh � �/�1Ph � .H � �/�1kB.H/ �! 0 as h ! 0:

Furthermore, if .V .x/ C M/�1 is uniformly Hölder continuous of order ˛ 2 .0; 1�

with some M > 0, then for any 0 < ˇ < ˛,

kP �
h .Hh � �/�1Ph � .H � �/�1kB.H/ � C�hˇ for h 2 .0; 1�:

Here B.X/ denotes the Banach space of the operators on a Banach space X .
Combining this with the argument of Theorem VIII.23 (b) in [17], we obtain the
following corollary. We denote the spectrum of a self-adjoint operator A by �.A/,
and the spectral projection by EA.�/ for � � R.

Corollary 1.2. Suppose Assumptions A and B. Let a; b 2 R, a < b, be not

in �.H/. Then a; b … �.Hh/ for sufficiently small h > 0 and

kP �
h EHh

..a; b//Ph � EH ..a; b//kB.H/ �! 0 as h ! 0:

We denote the Hausdorff distance between sets X; Y � C by

dH.X; Y / D max¹sup
x2X

d.x; Y /; sup
y2Y

d.y; X/º;

where d.�; �/ denotes the standard distance in C. It is not difficult to show
dH.�.A/; �.B// � kA � Bk for normal operators A and B (see Lemma A.2 in
Appendix). Thus we also have the following result. We note this result is inde-
pendent of Assumption B, since the identification operators Ph do not appear in
the statement.

Corollary 1.3. Suppose Assumptions A. Then for M > � inf �.H/,

dH.�..Hh C M/�1/; �..H C M/�1// �! 0; as h ! 0:
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Similar convergences in the norm resolvent sense are studied by Exner and
Post, where convergence of operators on manifolds and graphs is considered.
See [8] and references therein. In numerical analysis, the convergence of spectrum
is studied extensively in the context of domain truncations, and general notions of
convergence, e.g., generalized norm resolvent convergence and generalized strong

resolvent convergence (see [3] and references therein). The general framework
of convergence is analogous to our result, but the models are quite different and
hence analytic methods also differ considerably. We also note that for spectral
consequence of our main result (Corollary 1.3), we simply adopt the argument of
the Reed-Simon textbook [16].

There are studies concerning continuum limits of NLS equations, in many
cases, mainly with applications to numerical analysis. We refer Bambusi and Pe-
nati [2], Hong and Yang [9] and references therein. For linear discrete Schrödinger
operators, Rabinovich [15] has studied the relation between the essential and dis-
crete spectra of the discrete and continuum Schrödinger operators, provided V is
bounded and uniformly continuous. Approximations of spectrum of continuum
Schrödinger operators are studied by the Galerkin method ([5, 11, 18, 19]) and
domain truncations ([4]).

In Section 2, we give the proof of our main theorem, and proofs of several
technical lemmas are given in Appendix.

2. Proof

We denote the discrete Fourier transform

FhWHh �! yHh D L2.h�1
T

d /; T D R=Z;

by
Fhv.�/ D hd

X

z2hZd

e�2�iz��v.z/; � 2 h�1
T

d ; v 2 Hh:

Fh is unitary, and its adjoint is given by

F �
h g.z/ D

Z

h�1Td

e2�iz��g.�/d�; z 2 hZd ; g 2 yHh:

2.1. Convergence of the free Hamiltonian. If we set H0.�/ D j2��j2, it is
well-known that H0 D F

�H0.�/F on H. Similarly, if we set

H0;h.�/ D 2h�2

d
X

j D1

.1 � cos.2�h�j //; � 2 h�1
T

d ;
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then H0;h D F �
h

H0;h.�/Fh. We denote

Qh WD FhPhF
�W yH �! yHh:

The following formula is convenient in the following argument. It is well-known
in signal analysis (see, e.g., [13]), but we give a proof in Appendix for the
completeness.

Lemma 2.1. For f 2 S.Rd /,

Qhf .�/ D
X

n2Zd

O'.h� C n/f .� C h�1n/; � 2 h�1
T: (2)

For g 2 yHh,

Q�
hg.�/ D O'.h�/ Qg.�/; � 2 R

d ; (3)

where Qg is the periodic extension of g on R
d .

Lemma 2.2. For � 2 C n RC there is C > 0 such that

k.1 � P �
h Ph/.H0 � �/�1kB.H/ � C h2; h > 0:

Proof. We first note

k.1 � P �
h Ph/.H0 � �/�1kB.H/ D k.1 � Q�

hQh/.j2��j2 � �/�1k
B. yH/

;

where yH D FŒH� D L2.Rd /. Let f 2 yH and g D .j2��j2 � �/�1f . Then we
have, by using the above lemma,

.1 � Q�
hQh/g.�/ D .1 � j O'.h�/j2/g.�/ � O'.h�/

X

n¤0

O'.h� C n/g.� C h�1n/:

For the first term in the right hand side, we observe by Assumption B that
j O'.h�/j D 1 if j�j � h�1ı with some ı > 0. Then we learn

k.1 � j O'.h�/j2/g.�/k yH � sup
j�j>h�1ı

jj2��j2 � �j�1kf k yH � C h2kf k yH:

For the second term, we note that the terms in the summation vanish except
for n 2 ¹0; ˙1ºd n 0. Using the support condition of O' again, we learn that
O'.h�/ O'.h� C n/ D 0 if j� C h�1nj � h�1ı with some ı > 0. Thus we can use the
same argument to show that the second term is bounded by C h2. �

Lemma 2.3. For � 2 C n RC there is C > 0 such that

k.H0;h � �/�1Ph � Ph.H0 � �/�1kB.H;Hh/ � C h2; h > 0:
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Proof. Since P �
h

is isometric, it suffices to estimate

k.H0;h � �/�1Ph � Ph.H0 � �/�1k

D kP �
h .H0;h � �/�1Ph � P �

h Ph.H0 � �/�1k

D kQ�
h.H0;h.�/ � �/�1Qh � Q�

hQh.H0.�/ � �/�1k:

Then we compute, for f 2 S.Rd /,

.Q�
h.H0;h.�/ � �/�1Qh � Q�

hQh.H0.�/ � �/�1/f .�/

D
X

n2Zd

O'.h�/ O'.h� C n/Bh.� C h�1n/f .� C h�1n/;

where Bh.�/ WD .H0;h.�/ � �/�1 � .H0.�/ � �/�1. We note, as well as in the
proof of Lemma 2.2, O'.h�/ O'.h� � n/ vanishes except for n 2 ¹0; ˙1ºd .

By the Taylor expansion, we have

jH0;h.�/ � H0.�/j � C h�2.hj�j/4 D C h2j�j4; h > 0; � 2 R
d :

On the other hand, if h� 2 suppŒ O'�, we have H0;h.�/ � c0j�j2 with some c0 > 0.
These imply

j O'.h�/j2jBh.�/j � C h2j O'.h�/j2; h > 0; � 2 R
d ;

with some C > 0. On the support of O'.h�/ O'.h� C n/, n ¤ 0, we have H0;h.� C

h�1n/ � c1h�2, H0.� C h�1n/ � c1h�2 with some c1 > 0, and hence jBh.�/j D

O.h2/ as h ! 0. Combining these, we learn

j.Q�
h.H0;h.�/ � �/�1Qh � Q�

hQh.H0.�/ � �/�1/f .�/j

� C h2
X

n2¹0;˙1ºd

jf .� C h�1n/j; � 2 R
d ;

and the assertion follows. �

2.2. Relative boundedness. For simplicity, in this subsection, we suppose V �

1 without loss of generality. In particular, V.x/�1 is uniformly bounded, and

c�1
1 V.x/ � V.y/ � c1V.x/ for x; y 2 R

d ; jx � yj � 1: (4)

Lemma 2.4. Suppose Assumption A. Then V is H -bounded, and hence H0 is also

H -bounded.
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Proof. By the quadratic inequality, it is easy to observe V 1=2 and .H0 C 1/1=2 are
H 1=2-bounded. Let � 2 C 1

0 .Rd / be a smooth cut-off function such that �.x/ � 0,
suppŒ�� � ¹jxj � 1º and

R

�.x/dx D 1. Then we set zV D ��V , and we use zV � 1

as a smooth weight function comparable to V . By (4), we have

c�1
1 V.x/ � zV.x/ � c1V.x/; x 2 R

d :

By elementary computation, we also have

j@˛
x

zV.x/j � C˛
zV.x/; x 2 R

d

with some C˛ > 0, where ˛ 2 Z
d
C. It suffices to show zV is H -bounded.

We write W.x/ D zV.x/1=2 � 1, and compute

zVH �1 D WH �1W C W ŒW; H �1�

D .WH �1=2/.WH �1=2/� C WH �1ŒH; W �H �1:

The first term in the right hand side is bounded since W is H 1=2-bounded. We
note

ŒH; W � D �@x � @xW.x/ � @xW.x/ � @x ;

and @x is H 1=2-bounded. We also note

j@xW.x/j D
1

2
zV �1=2.x/j@x

zV.x/j � C W.x/

with some C > 0, and hence @xW is H 1=2-bounded. Thus we learn

WH �1ŒH; W �H �1 D .WH �1=2/.@xH �1=2/�..@xW /H �1=2/H �1=2

� .WH �1=2/..@xW /H �1=2/�.@xH �1=2/H �1=2

is bounded, and hence zV is H -bounded. �

Lemma 2.5. Suppose Assumption A. Then V is Hh-bounded uniformly in h > 0,

and hence H0;h is also Hh-bounded uniformly in h > 0.

Proof. The proof is analogous to that of Lemma 2.4. We note W D zV 1=2 and
H

1=2

0;h
are uniformly H

1=2

h
-bounded. We similarly have

zVH �1
h D .WH

�1=2

h
/.WH

�1=2

h
/� C WH �1

h ŒHh; W �H �1
h ;

and the first term in the right hand side is uniformly bounded.
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For the second term, we recall that H0;h D
Pd

j D1 r�
j rj , where

rj v.z/ WD
1

h
.v.z C hej / � v.z//; v 2 Hh:

Then we learn

ŒW; Hh� D

d
X

j D1

.Œrj ; W ��rj � r�
j Œrj ; W �/:

By elementary computations, we can show Œrj ; W �W �1 is bounded uniformly in
h, and hence WH �1

h
ŒHh; W �H �1

h
is bounded uniformly in h.

Finally, H0;h D Hh � V is also Hh-bounded uniformly in h. �

2.3. Proof of Theorem 1.1

Lemma 2.6. If G is a bounded uniformly continuous function, then

kGPh � PhGkB.H;Hh/ �! 0; h ! 0:

If, in addition, G is uniformly Hölder continuous of order ˛ 2 .0; 1�, then

kGPh � PhGkB.H;Hh/ � C"h
˛�"; h > 0;

with any " > 0.

Proof. We note

.GPh � PhG/u.z/ D

Z

R
d

K.x; zI h/u.x/dx;

where
K.x; zI h/ WD h�d .G.z/ � G.x//'.h�1.x � z//:

By Schur’s lemma, we have

kGPh � PhGk �
p

K1K2;

where

K1 D sup
z2hZd

Z

Rd

jK.x; z/jdx; K2 D ess sup
x2Rd

hd
X

z2hZd

jK.x; z/j:

We set
R.ı/ WD sup

x;y2Rd ;

jx�yj<ı

jG.x/ � G.y/j
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and we choose n > d . Then we have
Z

R
d

jK.x; z/jdx D

Z

jx�zj<ı

jK.x; z/jdx C

Z

jx�zj�ı

jK.x; z/jdx

� CR.ı/

Z

jyj<ı

hhyi�nh�d dy C C

Z

jyj�ı

hhyi�nh�d dy

� C 0R.ı/ C C 0hh�1ıi�.n�d/:

By the same computation, we also have

hd
X

z2hZd

jK.x; z/j � CR.ı/ C C hh�1ıi�.n�d/:

Combining these and setting ı D h
 with 
 2 .0; 1/, we obtain

kGPh � PhGk � CR.h
 / C C h.1�
/.n�d/:

By the assumption, R.ı/ ! 0 as ı ! 0, and we conclude the first assertion.
If G is uniformly Hölder continuous of order ˛, then R.ı/ � Cı˛, and

hence the right hand side of the above estimate is O.h˛
 / C O.h.1�
/.n�d//.
We can choose 
 very close to 1, and n very large so that ˛
 � ˛ � " and
.1 � 
/.n � d/ � ˛ � ", and we have the second assertion. �

Proof of Theorem 1.1. We compute

P �
h .Hh � �/�1Ph � .H � �/�1

D P �
h .Hh � �/�1Ph � P �

h Ph.H � �/�1 � .1 � P �
h Ph/.H � �/�1

D P �
h .Hh � �/�1.PhH � HhPh/.H � �/�1 � .1 � P �

h Ph/.H � �/�1:

By Lemmas 2.2 and 2.4, we learn

k.1 � P �
h Ph/.H � �/�1k � C h2:

The other term is estimated as follows:

k.Hh � �/�1.PhH � HhPh/.H � �/�1k

� k.Hh � �/�1.PhH0 � H0;hPh/.H � �/�1k

C k.Hh � �/�1.PhV � VhPh/.H � �/�1k

� C k.H0;h � �/�1.PhH0 � H0;hPh/.H0 � �/�1k

C C k.V � �/�1.PhV � VPh/.V � �/�1k

D C k.H0;h � �/�1Ph � Ph.H0 � �/�1k

C C k.V � �/�1Ph � Ph.V � �/�1k;
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where we have used Lemmas 2.4 and 2.5 for the second inequality. The two terms
in the right hand side are estimated using Lemmas 2.3 and 2.6, respectively, to
complete the proof. �

Appendix A. Proof of some lemmas

Here we give the proofs of several technical lemmas.

Lemma A.1. Let ' 2 S.Rd /. Then, the following are equivalent.

(1) P �
h

is isometric.

(2) Ph is a partial isometry onto Hh.

(3)
R

Rd '.x/'.x � n/dx D ın;0 for n 2 Z
d .

(4)
P

n2Zd j O'.� C n/j2 D 1 for � 2 R
d , where O' D F'.

Proof. (1) and (2) are equivalent by the standard properties of adjoint operators.
Since (2) implies the orthonormality of the basis ¹h� d

2 'h;zºz2hZd , we learn
Z

Rd

'.x/'.x � n/dx D hd

Z

Rd

'h;0.x/'h;hn.x/dx D ı0;n;

which implies (3). For the equivalence of (3) and (4), we learn by Parseval’s
identity

Z

R
d

'.x/'.x � n/dx D

Z

R
d

O'.�/e�2�in�� O'.�/d�

D

Z

Rd

e2�in�� j O'.�/j2d�

D

Z

Td

X

m2Zd

e2�in�.�Cm/j O'.� C m/j2d�

D

Z

Td

e2�in��
X

m2Zd

j O'.� C m/j2d�;

where T
d D .R=Z/d ' Œ0; 1/d . Since ¹e2�in��ºn2Zd is a complete orthonormal

basis of L2.Td /, we conclude that (3) is equivalent to (4). �
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Lemma A.2. For normal operators A and B , dH.�.A/; �.B// � kA � Bk.

Proof. It suffices to show that dist.�; �.B// > kA � Bk implies � … �.A/. This
condition implies k.A�B/.B ��/�1k < 1, since k.B ��/�1k � 1=dist.�; �.B//

provided B is normal. Hence the Neumann series

.A � �/�1 D .B � � C A � B/�1

D .B � �/�1.1 C .A � B/.B � �/�1/�1

D .B � �/�1

1
X

nD0

.�1/n..A � B/.B � �/�1/n

converges, and thus we learn � … �.A/. �

Proof of Lemma 2.1. We compute

Qhf .�/ D hd
X

z2hZd

e�2�iz��

�

h�d

Z

Rd

'h;z.x/

Z

Rd

e2�ix��f .�/d�dx

�

D
X

z2hZd

e�2�iz��

Z

Rd

'h;z.x/

Z

Rd

e2�ix��f .�/d�dx

D hd
X

z2hZd

Z

Rd

e2�iz�.���/ O'.h�/f .�/d�

D hd
X

z2hZd

X

n2Zd

Z

h�1.Td Cn/

e2�iz�.���/ O'.h�/f .�/d�

D hd
X

z2hZd

X

n2Zd

Z

h�1
T

d

e2�iz�.���/ O'.h� C n/f .� C h�1n/d�

D hd
X

z2hZd

Z

h�1
T

d

e2�iz�.���/
X

n2Zd

O'.h� C n/f .� C h�1n/d�

D
X

n2Zd

O'.h� C n/f .� C h�1n/:

We have used the Fourier inversion formula for the last equality. We also have

hQ�
hg; f i D

Z

h�1
T

d

X

n2Zd

g.�/ O'.h.� C h�1n//f .� C h�1n/d�

D

Z

Rd

Qg.�/ O'.h�/f .�/d�;

and this implies (3). �
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