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Resolvent of the generator of the C0-group

with non-basis family of eigenvectors

and sharpness of the XYZ theorem
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Abstract. The paper presents an explicit form of the resolvent and characterisation of

the spectrum for the class of generators of C0-groups with purely imaginary eigenvalues,

clustering at i1, and complete minimal non-basis family of eigenvectors, constructed

recently by the authors in [28]. The discrete Hardy inequality serves as the cornerstone

for the proofs of the corresponding results. Furthermore, it is shown that the main result on

the Riesz basis property for invariant subspaces of the generator of the C0-group (the XYZ

theorem), obtained a decade ago by G. Q. Xu, S. P. Yung and H. Zwart in [31] and [32], is

sharp.
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1. Introduction

Problems of spectral theory for nonselfadjoint (NSA) operators attract more and

more growing interest of experts in different fields of mathematics and natural

sciences, see, e.g., [4], [5], [6], [7], [15], [16], [17] [23], [28], [31], [32] and the

references therein. This is primarily caused by the recent progress in theoretical

physics of non-Hermitian systems [4] on the one hand, and, on the other, by the

fact that many mathematical models of dynamical processes lead to the study of

1 The author is partially supported by the State Fund For Fundamental Research of Ukraine

(project no. ˆ83=82� 2018).
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linear evolution equations

´
Px.t/ D Ax.t/; t � 0;

x.0/ D x0 2 H;
(1)

in Hilbert spacesH with unbounded NSA operator A.

In last years NSA Schrödinger operators are studied very intensively, see [7],

[8], [15], [16], [17], [23] and, especially, [4], [5], and [6]. In 2000 E.B. Davies [7]

studied NSA anharmonic oscillators

L˛ D � d2

dx2
C cjxj˛; (2)

defined on L2.R/ as the closure of the associated quadratic form defined on

C1
0 .R/, where ˛ > 0; c 2 C n R; j arg cj < C.˛/. He proved that for all ˛ > 0

the spectrum of L˛ consists of discrete simple eigenvalues and, if we denote them

in nondecreasing modulus order by �n; j�nj ! 1, and consider corresponding

one-dimensional spectral projections Pn, then the norms kPnk grow more rapidly

than any polynomial of n as n ! 1, see [6] and [7]. Davies called operators

with such spectral behavior by spectrally wild ones. A family of eigenvectors of

spectrally wild operator, although can be complete and minimal in a space, cannot

constitute a Schauder basis. E.g., the eigenvectors of L˛ , where <.c/ > 0, are

dense in L2.R/ if either ˛ � 1, or 0 < ˛ < 1 and j arg cj < ˛�=2, see [7]. We

recall that a sequence ¹�nº1
nD1 of a Banach space X forms a Schauder basis of X

provided each x 2 X has a unique norm-convergent expansion x D
P1
nD1 cn�n:

In 2004 E.B. Davies and A.B.J. Kuijlaars proved that spectral projections Pn

of the operator L2, where c D ei� , 0 < j� j < �; grow exponentially [8]:

lim
n!1

1

n
ln kPnk D 2<¹f .r.�/e i�

4 /º;

where f .z/ D ln.zCg.z//� zg.z/, g.z/ D .z2�1/1=2, r.�/ D .2 cos.�=2//�1=2.

These studies were continued by R. Henry, who determined exponential

growth rates of spectral projections of the so-called complex Airy operator L1,

where c D ei� , 0 < j� j < 3�
4

, and anharmonic oscillators L2k ; k 2 N; where

c D ei� , 0 < j� j < .kC1/�
2k

; see [15], [16]. Moreover, in [17] Henry studied spec-

tral projections Pn of the complex cubic oscillator Cˇ D � d2

dx2 C ix3C iˇx; ˇ � 0

with domain H 2.R/ \ L2.RI x6dx/ � L2.R/ and showed that for all ˇ � 0 we

have limn!1
1
n

ln kPnk D �p
3
:

Recently, B. Mityagin et al. considered NSA perturbations of selfadjoint

Schrödinger operators with single-well potentials and demonstrated that norms
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of spectral projections Pn of these operators can grow at intermediate levels, from

arbitrary slowly to exponentially fast [23]. In particular, natural classes of oper-

ators with projections obeying limn!1
1
n ln kPnk D C; where C 2 .0;1/ and

 2 .0; 1/; were found.

On the other hand, in “good” situation, i.e. when the operator A has a Riesz

basis of A-invariant subspaces, the system (1) can be split into countable family

of subsystems (each subsystem lives in a corresponding A-invariant subspace)

and we can make conclusions on the behavior of (1) on the basis of the study of

its subsystems, see, e.g., [22], [24], [25], [26], [27], [31], [32], and the references

therein. That is why Riesz bases are convenient tools of infinite-dimensional linear

systems theory and the following question is important.

Question 1. Which conditions are sufficient to guarantee that A has a Riesz basis

of eigenvectors (or A-invariant subspaces)?

For equivalent definitions and stability properties of Schauder bases of sub-

spaces (Schauder decompositions) and Riesz bases of subspaces we refer to [19],

[20], [21], and the references therein.

A number of recent papers are devoted to Question 1 in the case when A

is a perturbation of selfadjoint, nonnegative operator with discrete spectrum,

including perturbations of harmonic oscillator type operators. We refer to [23],

Section 4.3, for the brief overview of the corresponding results.

In the study of (in fact, quite old) Question 1 a breakthrough was made by

G. Q. Xu, S. P. Yung and H. Zwart – the XYZ Theorem:

XYZ Theorem ([31] and [32]). Suppose that the following three conditions hold:

(1) the operator A generates the C0-group on a Hilbert spaceH ;

(2) the set of eigenvalues ¹�nº1
nD1 of A is a union of K < 1 interpolation

sequencesƒk, 1 � k � K: In other words, ¹�nº1
nD1 D

SK
kD1ƒk, where

min
k

inf
�n;�m2ƒk Wn¤m

j�n � �mj > 0I (3)

(3) generalized eigenvectors (eigen- and rootvectors) of A form a dense set.

Then there exists a certain sequence of (multidimensional, if K > 1) spectral

projections ¹Pnº1
nD1 of A such that ¹PnH º1

nD1 forms a Riesz basis of subspaces

in H with supn2N dimPnH � K:

We note that operators satisfying conditions 1–3 of the XYZ Theorem naturally

arise from applications, e.g., in the analysis of neutral type systems [24], [25], [26],

and [27].
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However, it was totally unclear: what if the eigenvalues of A lie in a strip,

parallel to imaginary axis, and do not satisfy the condition of separation (3)? In

particular:

Question 2. Is it possible to construct the unbounded generator of the C0-group

with eigenvalues ¹�nº1
nD1 � iR not satisfying (3) and dense family of eigenvec-

tors, which does not form a Riesz basis?

In [28] the authors obtained an affirmative answer to the Question 2 and

presented the class of infinitesimal operators with such eigenvalues ¹�nº1
nD1 and

complete minimal family of eigenvectors, which, however, does not form even a

Schauder basis. To formulate the corresponding result we need to consider the

following classes of sequences.

Definition 1.1 ([28]). Let k 2 N and � stands for the difference operator. Then

we define classes of sequences

Sk D ¹¹f .n/º1
1 � RW lim

n!1
f .n/ D C1I ¹nj�jf .n/º1

1 2 `1 for 1 � j � kº:

Clearly for all k we have that ¹ln nº1
nD1 2 Sk but ¹

p
nº1
nD1 … Sk.

Theorem 1.2 ([28]). Let ¹enº1
nD1 be a Riesz basis of a Hilbert spaceH and k 2 N.

(1) The space Hk.¹enº/ D ¹x D .f/
P1
nD1 cnenW ¹cnº1

nD1 2 `2.�k/º is a separa-

ble Hilbert space. Here .f/
P1
nD1 cnen denotes a formal series and `2.�

k/ D
¹s D ¹˛nº1

nD1 � CW�ks 2 `2º:
(2) The sequence ¹enº1

nD1 is dense and minimal in Hk.¹enº/, but it is not uni-

formly minimal in Hk.¹enº/. Hence ¹enº1
nD1 does not form a Schauder basis

of Hk.¹enº/.
(3) The operator AkWHk.¹enº/ � D.Ak/ 7! Hk.¹enº/; defined by

Akx D Ak.f/

1X

nD1
cnen D .f/

1X

nD1
if .n/ � cnen;

where ¹f .n/º1
nD1 2 Sk, with domain

D.Ak/ D
°
x D .f/

1X

nD1
cnen 2 Hk.¹enº/W ¹f .n/ � cnº1

1 2 `2.�k/
±
; (4)

generates the C0-group ¹eAkt ºt2R on Hk.¹enº/, which acts for every t 2 R

by the formula

eAktx D eAkt .f/

1X

nD1
cnen D .f/

1X

nD1
eitf .n/cnen:
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Similar results take place for the case of operators with the same spectral

behaviour on certain Banach spaces p̀;k.¹enº/; p > 1; k 2 N, see [28]. Note

that if we take, e.g., ¹f .n/ D
p
nº1
nD1 … Sk for any k, and define the operator

A1 on H1.¹enº/ as in Theorem 1.2, then A1 will not generate a C0-semigroup on

H1.¹enº/, see [28], Proposition 7, Proposition 8.

The paper has two purposes. The first is to obtain an explicit form of the resol-

vent and to characterise the spectrum of the class of generators Ak of C0-groups

from Theorem 1.2. We note that Theorem 1.2 together with the XYZ Theorem

show that Theorem 1.1 from [32] dealing with the case of simple eigenvalues

¹�nº1
nD1 in the XYZ Theorem, satisfying

inf
n¤m

j�n � �mj > 0;

is sharp, see also Example 1.3 in [32]. The second purpose of the paper is to

demonstrate that Theorem 1.2 means that the XYZ Theorem is also sharp, see

Section 2.

Acknowledgment. The authors are grateful to anonymous referees for valuable

suggestions, which led to improvements in the paper.

2. The XYZ Theorem is sharp

We will use the notation from [28], see also Theorem 1.2. By Proposition 3

of [28] we have that for any k 2 N the sequence ¹enº1
nD1 is dense and minimal

in Hk.¹enº/, but it is not uniformly minimal in Hk.¹enº/. It means that for each

n 2 N

%.en;Lin ¹ej ºj¤n/ > 0;

but

inf
n2N

%.en;Lin ¹ej ºj¤n/ D 0;

where %.x; Y / denotes a standard distance from the point x to a set Y , defined by

%.x; Y / D inf
y2Y

kx � yk:

Let ¹�nº1
nD1 be dense and minimal sequence in a Hilbert space H , but is not

uniformly minimal inH . Then it can happen that there exists a splitting of ¹�nº1
nD1

into infinite number of disjoint groups with at most K < 1 elements in each of

them, i.e.

¹�nº1
nD1 D ¹¹�j ºj2En

º1
nD1;
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where

1[

nD1
En D N; En \Em D ; if n ¤ m; jEnj � K for all n; (5)

such that the corresponding sequence of subspaces ¹Lin¹�nºn2En
º1
nD1 constitute a

Riesz basis of subspaces ofH with uniform bound of dimensions of all subspaces

not exceeding K. See e.g. Example 1.3 in [32] for details. In order to show that

the XYZ Theorem is sharp we will prove that this situation is impossible for our

construction from Theorem 1.2. More precisely, thereby we demonstrate that if the

eigenvalues of the generator of the C0-group in a Hilbert space do not satisfy (3),

then the conclusion of the XYZ Theorem can be false. Furthermore, we will prove

a little more.

Theorem 2.1. Let k 2 N and ¹enº1
nD1 � Hk.¹enº/ be a sequence from Theo-

rem 1.2. Suppose that ¹Enº1
nD1 is an arbitrary decomposition of N into disjoint

sets, i.e.
1[

nD1
En D N; En \ Em D ;; n ¤ m:

Then ¹Lin¹ej ºj2En
º1
nD1 does not form a Schauder decomposition of Hk.¹enº/.

Proof. Fix k 2 N and assume the opposite, i.e. let there exists a decomposition

of N into disjoint sets,

1[

nD1
En D N; En \Em D ;; n ¤ m;

such that ¹Mn D Lin¹ej ºj2En
º1
nD1 constitutes a Schauder decomposition of

Hk.¹enº/. Then, by the definition of the Schauder decomposition, every x 2
Hk.¹enº/ can be uniquely represented in a series

x D
1X

nD1
xn;

where xn 2 Mn for each n 2 N, and there exists an associated sequence of

coordinate linear projections ¹Pnº1
nD1 defined by Pnx D Pn

P1
mD1 xm D xn;

where xn 2 Mn; n 2 N. It follows that for every n; j 2 N

Pnej D
´
ej ; j 2 En;
0; j … En:

(6)
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Consider an element x� D .f/
P1
jD1 ej 2 Hk.¹enº/: Then, taking into ac-

count (6), we have that for every n 2 N

Pnx
� D Pn

�
.f/

1X

jD1
ej

�
D .f/

X

j2En

ej : (7)

We recall that the norm in a Hilbert spaceHk.¹enº/ is defined by

kxkk D
.f/

1X

nD1
cnen


k

D


1X

nD1
.cn � C 1k cn�1 C � � � C .�1/kC1C k�1

k cn�kC1 C .�1/kcn�k/en
;

where x D .f/
P1
nD1 cnen 2 Hk.¹enº/; Cmk are binomial coefficients, k � k denotes

the norm in an initial Hilbert space H and c1�j D 0 for all j 2 N, see [28].

Since ¹enº1
nD1 is a Riesz basis of H (see Theorem 1.2), there exist two constants

M � m > 0 such that for every y D
P1
nD1 ˛nen 2 H we have

mkyk2 �
1X

nD1
j˛nj2 � Mkyk2: (8)

By virtue of (7) and (8) we obtain that for every n 2 N

kPnx�k2k D
.f/

X

j2En

ej


2

k
D

.f/
1X

jD1
�j .n/ej


2

k
� .2k�1/2

M
;

where for every n; j 2 N

�j .n/ D
´
1; j 2 En;
0; j … En:

Thus kPnx�kk ¹ 0 as n ! 1, which means that x� can not be represented

in a convergent series
1X

nD1
x�
n D

1X

nD1
Pnx

�;

where x�
n 2 Mn for each n 2 N. So we arrived at a contradiction with the

definition of the Schauder decomposition. �

Theorem 2.1 leads to the following.

Corollary 2.2. The XYZ Theorem is sharp. None of its conditions can be removed.
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Proof. Indeed, condition 3 of the XYZ Theorem obviously can not be removed.

If one removes condition 2 but conditions 1 and 3 are fulfilled, then, by virtue of

Theorem 2.1, the class of counterexamples are given by Theorem 1.2.

Let us remove condition 1. Suppose that conditions 2 and 3 are satisfied,

operatorA does not generate theC0-group onH butA generates theC0-semigroup

on H . Then the counterexample is given as follows.

Let ¹�nº1
nD1 be a bounded non-Riesz basis of H , i.e. bounded conditional

basis. It means that ¹�nº1
nD1 constitutes a Schauder basis ofH , but does not form

a Riesz basis of H , and we have

0 < inf
n

k�nk; sup
n

k�nk < 1:

Since ¹�nº1
nD1 is a Schauder basis of H , every x 2 H has a unique norm-

convergent expansion

x D
1X

nD1
cn�n:

Then we define the operator A W H � D.A/ 7! H as follows,

Ax D A

1X

nD1
cn�n D �

1X

nD1
ncn�n;

where

D.A/ D
°
x D

1X

nD1
cn�n 2 H W

1X

nD1
ncn�n 2 H

±
:

It can be easily shown that A generates the C0-semigroup on H , the spectrum

of A is pure point and consists of simple eigenvalues �n, n 2 N, with correspond-

ing eigenvectors ¹�nº1
nD1, see, e.g., [14]. Finally, it is not hard to prove that, if

¹Enº1
nD1 is a decomposition of N into disjoint sets with at most K elements in

each of them, such that (5) holds, then

¹Lin ¹�j ºj2En
º1
nD1

does not form a Riesz basis of subspaces of H . �

For our construction of generators of C0-groups with complete minimal non-

basis family of eigenvectors in special classes of Banach spaces p̀;k.¹enº/; p > 1;
k 2 N (see Theorem 16 in [28]), we have a result similar to the Theorem 2.1.

Here ¹enº1
nD1 denotes an arbitrary symmetric basis of an initial Banach space p̀,

p � 1: Recall that Schauder basis ¹enº1
nD1 is called symmetric provided any its
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permutation ¹e�.n/º1
nD1, �.n/WN 7! N, also forms a Schauder basis, equivalent to

¹enº1
nD1. For any p � 1 and k 2 N the space

p̀;k.¹enº/ D
°
x D .f/

1X

nD1
cnenW ¹cnº1

nD1 2 p̀.�
k/

±
;

where .f/
P1
nD1 cnen also denotes a formal series and

p̀.�
k/ D ¹s D ¹˛nº1

nD1 � CW�ks 2 p̀º;

is a separable Banach space, isomorphic to p̀, see [28]. If p > 1, then, according

to Proposition 5 of [28], the sequence ¹enº1
nD1 is dense and minimal in p̀;k.¹enº/,

p > 1; k 2 N, but it is not uniformly minimal in p̀;k.¹enº/, so ¹enº1
nD1 does

not form a Schauder basis of p̀;k.¹enº/. Using similar arguments we obtain the

following result, analogous to Theorem 2.1.

Theorem 2.3. Let k 2 N and ¹enº1
nD1 � p̀;k.¹enº/, p � 1; be a sequence defined

above. Suppose that ¹Enº1
nD1 is an arbitrary decomposition ofN into disjoint sets.

Then ¹Lin¹ej ºj2En
º1
nD1 does not form a Schauder decomposition of p̀;k.¹enº/.

3. The resolvent and spectrum of generators of C0-groups

with non-basis family of eigenvectors

Recall that if p > 1 and an � 0 for n 2 N, then the discrete Hardy inequality

states that
1X

nD1

�1
n

nX

kD1
ak

�p
<

� p

p � 1

�p 1X

nD1
apn (9)

with the exception of the case when an D 0 for all n 2 N. Moreover, the constant�
p
p�1

�p
is the best possible.

The following theorem provides an explicit form of the resolvent for the class

of generators AkWHk.¹enº/ � D.Ak/ 7! Hk.¹enº/, k 2 N, of C0-groups from

Theorem 1.2 and the description of the spectrum �.Ak/ of generators Ak:

Theorem 3.1. Let k 2 N and Ak be the operator from Theorem 1.2. Then:

(i) �.Ak/ D �p.Ak/ D ¹if .n/º1
1 .

(ii) The resolvent of Ak is given by the following formula:

.Ak � �I/�1x D .f/

1X

nD1

cnen

if .n/ � �
; � 2 �.Ak/ D C n ¹if .n/º1

1 ; (10)

where x D .f/
P1
nD1 cnen 2 Hk.¹enº/:
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Proof. First we prove the Theorem for the case k D 1.

Let us prove that �.A1/ D C n ¹if .n/º1
1 is the resolvent set of the operator A1

and the operator

A.�/x D .f/

1X

nD1

1

if .n/ � �
cnen;

where � ¤ if .n/ for all n 2 N and x D .f/
P1
nD1 cnen 2 H1.¹enº/; is the resolvent

of A1.

To this end denote �n D if .n/; n 2 N. Recall that the norm in Hilbert space

H1.¹enº/ is

kxk1 D
.f/

1X

nD1
cnen


1

D


1X

nD1
.cn � cn�1/en

;

where k � k denotes the norm in an initial Hilbert space H and c0 D 0, see [28].

Observe that

kA.�/xk21 D
.f/

1X

nD1

cnen

�n � �


2

1
D

 c1e1

�1 � � C
1X

nD2

� cn

�n � � � cn�1
�n�1 � �

�
en


2

D
 c1e1

�1 � �
C

1X

nD2

� cn

�n � �
� cn�1
�n � � C cn�1

�n � � � cn�1
�n�1 � �

�
en


2

�
�

1X

nD1

cn � cn�1
�n � � en

 C


1X

nD2

� 1

�n � �
� 1

�n�1 � �

�
cn�1en


�2

D .†1 C†2/
2 � 2†21 C 2†22:

Now consider

�W inf
n2N

j�n � �j � a > 0:

Since ¹enº1
nD1 is a Riesz basis of a Hilbert spaceH (see Theorem 1.2), there exist

two constants M � m > 0 such that for every y D
P1
nD1 ˛nen 2 H we have

mkyk2 �
1X

nD1
j˛nj2 � Mkyk2: (11)

Applying (11) we obtain that

†21 � 1

m

1X

nD1

jcn � cn�1j2
j�n � �j2 � 1

ma2

1X

nD1
jcn � cn�1j2 � M

ma2
kxk21: (12)

Since
1

�n � � � 1

�n�1 � �
D �n�1 � �n

.�n � �/.�n�1 � �/
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for n � 2, by virtue of (11) we conclude that

†22 � 1

m

1X

nD2

j�n�1 � �nj2jcn�1j2
j�n � �j2j�n�1 � �j2 � 1

ma4

1X

nD2

jcn�1j2
n2

n2j�f .n/j2:

Note that ¹f .n/º1
nD1 2 S1, hence nj�f .n/j 2 `1 by the definition of the class S1,

see Definition 1.1. Denote

C D sup
n2N

nj�f .n/j:

Then, since for n � 2

cn�1 D
n�1X

jD1
.cj � cj�1/;

we obtain that

†22 � C 2

ma4

1X

nD2

jcn�1j2
n2

D C 2

ma4

1X

nD2

�1
n

ˇ̌
ˇ
n�1X

jD1
.cj � cj�1/

ˇ̌
ˇ
�2

� C 2

ma4

1X

nD1

�1
n

nX

jD1
jcj � cj�1j

�2
:

By virtue of the Hardy inequality (9) for p D 2 and (11) we obtain

†22 � 4C 2

ma4

1X

nD1
jcn � cn�1j2 � 4MC 2

ma4
kxk21:

Combining this with (12) we finally arrive at the estimate

kA.�/xk21 �
� 2
a2

C 8C 2

a4

�M
m

kxk21 (13)

and A.�/ 2 ŒH1.¹enº/�; i.e. A.�/ is a linear bounded operator.

Further let VN D Lin¹enºNnD1: Then for xN 2 VN we have

.A1 � �I/A.�/xN D A.�/.A1 � �I/xN D xN : (14)

Note that A1 is closed as the generator of the C0-group by Theorem 1.2 and

Lin¹Vnº1
nD1 D Lin¹enº1

nD1 D H1.¹enº/:
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Fix arbitrary x 2 H1.¹enº/. Then we can find the sequence ¹xN º1
ND1 with

xN 2 VN such that xN ! x as N ! 1. Since A.�/ is bounded, we have that

zN D A.�/xN ! A.�/x D z:

By virtue of (14) we obtain that

.A1 � �I/zN D xN ! x and zN ! z

as N ! 1. Since A1 is closed this implies that z 2 D.A1/ and

.A1 � �I/z D x:

Thus for all x 2 H1.¹enº/ we have that

A.�/x 2 D.A1/ and .A1 � �I/A.�/x D x; (15)

so A.�/ is the right inverse of A1 � �I .

Now take z 2 D.A1/ and consider x D .A1��I/z: Then by (15) we have that

x D .A1 � �I/A.�/x D .A1 � �I/A.�/.A1 � �I/z:

Consequently,

.A1 � �I/.z � A.�/.A1 � �I/z/ D x � x D 0: (16)

To show that ker.A1 � �I/ D ¹0º for � ¤ �n; n 2 N; we suppose that

.A1 � �I/x D .A1 � �I/.f/

1X

nD1
cnen D .f/

1X

nD1
.�n � �/cnen D 0:

It follows that

j.�1 � �/c1j2 C
1X

nD2
j.�n � �/cn � .�n�1 � �/cn�1j2 D 0:

Since � ¤ �1; we obtain that c1 D 0 and for any n � 2;

.�n � �/cn � .�n�1 � �/cn�1 D 0: (17)

Since � ¤ �n; n 2 N; from (17) we consistently get cn D 0 for all n � 2; and

hence x D 0:

Since ker.A1 � �I/ D ¹0º for � ¤ �n; n 2 N; then by (16) we have for every

z 2 D.A1/
z D A.�/.A1 � �I/z;
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and, combining this equality with (15), we infer that � 2 �.A1/ and A.�/ D
.A1 � �I/�1 is the resolvent of A1. Besides, we proved that

¹� 2 CW� ¤ if .n/; n 2 Nº � �.A1/:

Finally we observe that since �n 2 �.A1/; n 2 N; A1 is closed, the spectrum

of closed operator is closed set and the set ¹if .n/º1
1 contains all its limit points,

then �.A1/ D �p.A1/ D ¹if .n/º1
1 and

�.A1/ D ¹� 2 CW� ¤ if .n/; n 2 Nº D C n �.A1/:

The proof in the case k � 2 is based on a combination of ideas of the proof

for the case k D 1 with technical combinatorial elements like in the proof of

Theorem 11 from [28] and can be performed similarly to the above. �

Remark 3.2. Operators with simple eigenvalues ¹�nº1
nD1 not satisfying the con-

dition 2 of the XYZ Theorem and non-basis family of eigenvectors are considered

in recent applications. In [2] the author study the stability of the normal state

of superconductors in the presence of electric currents in the large domain limit

using the time-dependent Ginzburg–Landau model. The study involves spectral

analysis of the operator LWD.L/ 7! L2.R;C/, defined by

L D � d2

dx2
C ix;

where D.L/ D ¹ 2 L2.RC;C/W x 2 L2.RC;C/;  2 H 2
0 .RC;C/º: Let

¹�nº1
nD1 � R denotes the non-increasing sequence of zeroes of Ai.z/, Airy

function. Then ¹�nº1
nD1, where �n D e� 2�

3
i�n; n 2 N; is a sequence of

eigenvalues of L [2]. Since limn!1�n D �1 and limn!1 j�nC1 � �nj D 0

(see [30]), the eigenvalues ¹�nº1
nD1 of L obey the condition

lim
n!1

j�nC1 � �nj D 0

and, hence, the set ¹�nº1
nD1 cannot be decomposed into a finite number of setsƒk

satisfying (3).

The eigenfunctions of L are

Q n D Ai.e
�
6
ix C �n/ 2 H 2

0 .RC;C/; n 2 N:

Normalized eigenfunctions  n D Q n

k Q nk ; n 2 N; are dense in L2.R;C/, as it is

proved in [2], but do not form a Schauder basis of L2.R;C/, since L is spectrally

wild [7].
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Define operators fAk W p̀;k.¹enº/ � D.fAk/ 7! p̀;k.¹enº/ on a class of Banach

spaces p̀;k.¹enº/; p > 1; k 2 N, see [28] or Section 2, as follows:

fAkx D fAk.f/
1X

nD1
cnen D .f/

1X

nD1
if .n/ � cnen; (18)

where ¹f .n/º1
nD1 2 Sk, with domain

D.fAk/ D
°
x D .f/

1X

nD1
cnen 2 p̀;k.¹enº/W ¹f .n/ � cnº1

nD1 2 p̀.�
k/

±
: (19)

Then, by virtue of Theorem 16 in [28], fAk generates the C0-group ¹eeAkt ºt2R
on p̀;k.¹enº/, which acts on p̀;k.¹enº/ for every t 2 R by the formula

eeAktx D eeAkt .f/

1X

nD1
cnen D .f/

1X

nD1
eitf .n/cnen: (20)

An explicit form of the resolvent and the description of the spectrum �.fAk/ of

generators fAk are provided by the following theorem, similar to the Theorem 3.1.

Theorem 3.3. Let k 2 N, p > 1; and fAk be the operator defined above. Then,

(i) �.fAk/ D �p.fAk/ D ¹if .n/º1
1 ;

(ii) the resolvent of fAk is given by the formula

.fAk � �I/�1x D .f/

1X

nD1

cnen

if .n/ � �
; � 2 �.fAk/ D C n ¹if .n/º1

1 ; (21)

where x D .f/
P1
nD1 cnen 2 p̀;k.¹enº/:

Proof. If ¹enº1
nD1 is a symmetric basis of p̀, then there exist two constants

zM � Qm > 0 such that for every Qy D
P1
nD1 ˛nen 2 p̀ we have

Qmk Qykp �
1X

nD1
j˛njp � zMk Qykp ;

see [28] for details. Thus the proof repeats ideas and lines of the proof of

Theorem 3.1. �

It is well known that the spectrum does not contain much information about

the behaviour of NSA operator A, see also [5], [6]. For this reason the notion of
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pseudospectra was introduced and came into play [29]. The pseudospectra of A

is the family of sets °
� 2 CW k.A� �I/�1k � 1

"

±
">0

and it describes the behaviour of NSA operator A much more effectively than the

spectrum, see [5], [6], [29].

Another way to control the resolvent is to obtain for it estimates from above,

see [5], [7], and works [18], [10], [11], [12], where direct links between the

polynomial growth of theC0-semigroup ¹eAtºt�0 in t and asymptotic behaviour of

the corresponding resolvent .A��I/�1 along vertical lines were established. Note

that C0-semigroups and C0-groups with polynomial growth condition naturally

appear in theory and applications of evolution equations, see, e.g., [3], [13], [27].

Remark 3.4. It was established in [28] that the constructed C0-groups ¹eAkt ºt2R
on Hk.¹enº/ from Theorem 1.2 are polynomially bounded. More precisely,

C0-groups ¹eAktºt2R grow in norm as t ! ˙1 but there exists a polynomial

pk with positive coefficients such that deg pk D k and for every t 2 R we have

keAktk � pk.jt j/:

For details see Proposition 12 from [28]. The similar result is true for the case of

C0-groups ¹eeAktºt2R on Banach spaces p̀;k.¹enº/, p > 1; k 2 N, with generators

from Theorem 3.3, see Proposition 17 from [28]. Thus we can apply results

from [10], [11], [18] to describe the asymptotic behaviour of the corresponding

resolvents.

In the forthcoming work we will prove the sharpness of polynomial growth of

C0-groups ¹eAkt ºt2R, ¹eeAktºt2R.

Finally we note that, by virtue of Theorem 7.4 from [1] (p. 91), the weak

spectral mapping theorem holds for our classes of C0-groups, since they are

polynomially bounded. In other words it means that for all t 2 R

�.eAkt / D et�.Ak/; �.e
eAkt / D et�.eAk/:
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