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Abstract. We investigate spectral properties of Kirchhoff Laplacians on radially symmetric

antitrees. This class of metric graphs admits a lot of symmetries, which enables us to

obtain a decomposition of the corresponding Laplacian into the orthogonal sum of Sturm–

Liouville operators. In contrast to the case of radially symmetric trees, the deficiency

indices of the Laplacian defined on the minimal domain are at most one and they are equal

to one exactly when the corresponding metric antitree has finite total volume. In this case,

we provide an explicit description of all self-adjoint extensions including the Friedrichs

extension.

Furthermore, using the spectral theory of Krein strings, we perform a thorough spectral

analysis of this model. In particular, we obtain discreteness and trace class criteria, a crite-

rion for the Kirchhoff Laplacian to be uniformly positive and provide spectral gap estimates.

We show that the absolutely continuous spectrum is in a certain sense a rare event, however,

we also present several classes of antitrees such that the absolutely continuous spectrum of

the corresponding Laplacian is Œ0; 1/.
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1. Introduction

This paper is devoted to one particular class of infinite quantum graphs, namely

Kirchhoff Laplacians on radially symmetric antitrees. Antitrees appear in the

study of discrete Laplacians on graphs at least since the 1980’s (see [12] and

also [11, Section 2]) and they attracted a considerable attention after the work of

Wojciechowski [47]. More precisely, Wojciechowski used them in [47] (see also

[30, §6] and [23]) to construct graphs of polynomial volume growth for which

the combinatorial Laplacian is stochastically incomplete and the bottom of the

essential spectrum is strictly positive, which is in sharp contrast to the manifold

setting (cf. [9], [21], [22]). These apparent discrepancies were resolved later using

the notion of intrinsic metrics, with antitrees appearing as key examples for certain

thresholds (see [18, 24, 25, 29]). During the recent years, antitrees were also

actively studied from other perspectives and we only refer to a brief selection of

articles [1], [8], [11], [20], [42], where further references can be found.

In this paper, we consider antitrees from the perspective of quantum graphs

and perform a detailed spectral analysis of the Kirchhoff Laplacian on radially

symmetric antitrees. Our discussion includes characterization of self-adjointness

and a complete description of self-adjoint extensions, spectral gap estimates and

spectral types (discrete, singular and absolutely continuous spectrum).

Before proceeding further, let us first recall necessary definitions. Let Gd D
.V;E/ be a connected, simple (no loops or multiple edges) combinatorial graph.

Fix a root vertex o 2 V and then order the graph with respect to the combinatorial

spheres Sn, n 2 Z�0 (notice that S0 D ¹oº).
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Definition 1.1. A connected simple rooted (infinite) graph Gd is called an antitree

if every vertex in Sn, n � 1,1 is connected to all vertices in Sn�1 and SnC1 and no

vertices in Sk for all jk � nj ¤ 1.

Notice that combinatorial antitrees admit radial symmetry and every antitree

is uniquely determined by its sphere numbers sn D #Sn, n � 0 (see Figure 1).

If every edge of Gd is assigned a length jej 2 .0; 1/, then G D .Gd ; j � j/ is

called a metric graph. Upon identifying each edge e with the interval of length jej,
G may be considered as a “network” of intervals glued together at the vertices.

In the following we shall denote combinatorial and metric antitrees by Ad and,

respectively, A. The analog of the Laplace–Beltrami operator for metric graphs is

the Kirchhoff Laplacian H (or Kirchhoff–Neumann Laplacian, see Section 3.1),

also called a quantum graph. It acts as an edgewise (negative) second derivative

fe 7! � d2

dx2
e

fe, e 2 E, and is defined on edgewise H 2-functions satisfying

continuity and Kirchhoff conditions at the vertices (we refer to [2, 3, 15, 17, 32, 39]

for more information and references).

S0

S1

S2

S3

Figure 1. Antitree with sphere numbers sn D n C 1.

Our approach employs the high degree of symmetry and this naturally demands

symmetry assumptions also on the choice of edge lengths:

Hypothesis 1.2. We shall assume that the metric antitree A is radially symmetric,

that is, for each n � 0, all edges connecting combinatorial spheres Sn and SnC1

have the same length, say `n > 0.

One of our main motivations is Lemma 8.9 in [32]. More precisely, the sym-

metry of antitrees structure turned out useful in studying isoperimetric estimates

1 By definition, the root o is connected to all vertices in S1 and no vertices in Sk , k � 2.
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and we were even able to compute explicitly the bottom of the essential spec-

trum of some (non-equilateral) quantum graphs (see [32, §8.2]). Despite an enor-

mous interest in quantum graphs during the last two decades, to the best of our

knowledge a detailed discussion of their spectral properties without further re-

strictions on edges lengths (for instance, one of the most common assumptions is

infe2E jej > 0) has so far been obtained only for a few models and the most stud-

ied ones are radially symmetric trees (see e.g. [6, 10, 16, 36, 37, 44]). However,

the assumption that G is a tree prevents many interesting phenomena to happen

(for instance, by [32, Lemma 8.1], in this case the Kirchhoff Laplacian, actually,

its Friedrichs extension, is boundedly invertible if and only if supe2E jej < 1; in

fact, this condition is only necessary in general [43]). Hence our goal in this work

is to present a model which can be thoroughly analyzed but still exhibits in some

sense rich spectral behavior.

Let us now briefly describe the content of the paper and our main results. To

some extent we follow the approach developed by Naimark and Solomyak for

radially symmetric trees (see [36, 37] and also [10, 43, 44]) and use some ideas

from [8], where discrete Laplacians on radially symmetric “weighted” graphs have

been analyzed. However, some modifications are necessary since comparing to

[10, 37, 44] we are dealing with a completely different class of graphs (antitrees

have a lot of cycles) and, in contrast to discrete Laplacians [8], we have to deal

with unbounded operators (even when restricting to compact subsets of a metric

graph) and in this case a search for reducing subspaces is a rather complicated

task.2

First of all, the radial symmetry of A naturally hints to consider the space Fsym

of radially symmetric functions (w.r.t. the root o 2 V). It turns out that Fsym is

indeed reducing for the pre-minimal Kirchhoff Laplacian H0 (this means that H0

as well as its closure H D SH0, the minimal Kirchhoff Laplacian, commutes with

the orthogonal projection onto Fsym) and its restriction H0 � Fsym is unitarily

equivalent to a pre-minimal Sturm–Liouville operator H0 defined in L2..0;L/I �/

by the differential expression

� WD � 1

�.t/

d

dt
�.t/

d

dt
; �.t/ D

X

n�0

snsnC11Œtn;tnC1/.t /; (1.1)

2 After the submission of our paper we learned about the preprint [7] dealing with a similar

decomposition in the general case of family preserving metric graphs, which includes antitrees

as a particular example. However, the main focus of [7] is on the existence of a decomposition in

a rather general situation, whereas in our work we use it mainly as a starting point for the spectral

analysis.



Quantum graphs on antitrees 415

and subject to the Neumann boundary condition at x D 0. Here t0 D 0,

tn D
P

k�n�1 `k for all n � 1 and L D
P

n�0 `n (see Section 3.2). Moreover, the

remaining part of H D SH0 decomposes into an infinite sum of self-adjoint (regu-

lar) Sturm–Liouville operators (see Theorem 3.5; its proof is given in Sections 2

and 3). This decomposition is the starting point of our analysis since it enables

us to investigate H using the well-developed spectral theory of Sturm–Liouville

operators. For example, this immediately provides a self-adjointness criterion to-

gether with a complete description of self-adjoint extensions of H (see Section 4).

Namely, since all the summands in (3.18) except H D H0 are self-adjoint opera-

tors, we reduce the problem to the study of the operator H0. Employing Weyl’s

limit point/limit circle classification, we obtain in Theorem 4.1 that deficiency in-

dices of H are at most 1. Moreover, H is self-adjoint if and only if A has infinite

total volume, i.e.

vol.A/ WD
X

e2E
jej D

X

n�0

snsnC1`n D
LZ

0

�.t/dt D 1:

If A has finite total volume, vol.A/ < 1, all self-adjoint extensions can be

described through a single boundary condition (in particular, this also provides

a description of the domain of the Friedrichs extension). Moreover, all of their

spectra are purely discrete and eigenvalues satisfy Weyl’s law (see Corollary 5.1).

If vol.A/ D 1, i.e., H is self-adjoint, it was already observed in [32, Sec-

tion 8.2] that �.H/ is not necessarily discrete. In Section 5, we characterize the

cases when H has purely discrete spectrum and when its resolvent H�1 belongs

to the trace class (see Theorem 5.4 and Theorem 5.6). Let us stress that our main

tool is the spectral theory of Krein strings [27] (see also [13]). More precisely, by

a simple change of variables H can be transformed into the string form (see (5.12))

and then one simply needs to use the corresponding results from [26, 27]. Sec-

tion 6 is devoted to spectral estimates, i.e., the investigation of the bottom of the

spectrum �0.H/ of H, �0.H/ WD inf �.H/. This can be solved again by using

the results of Kac and Krein from [26]. More precisely, we characterize the pos-

itivity of �0.H/ (Theorem 6.1 and Theorem 6.3) and derive two-sided estimates

(Remark 6.2). Let us also mention at this point that the decomposition (3.18)

indicates the way to compute the isoperimetric constant of a radially symmetric

antitree (see Theorem 7.1) and hence it is interesting to compare Theorem 6.1 and

Theorem 6.3 with the estimates obtained recently in [32] (see Remark 7.2).

To our best knowledge, the theory of Krein strings is applied in the context

of quantum graphs for the first time. In fact, most of the analysis in Sections 5

and 6 can be performed with the help of Muckenhoupt inequalities [35] since
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the questions addressed in these sections allow a variational reformulation (in

particular, Solomyak used this approach in [44] to investigate quantum graphs on

radially symmetric trees). However, spectral theory of strings enables us to treat

more subtle problems (like the study of the structure of the essential spectrum

of H). In Section 9, we employ the recent results from [4] and [14] on the

absolutely continuous spectrum of strings to construct several classes of antitrees

with absolutely continuous spectrum supported on Œ0; 1/. For instance, if

inf
n�0

`n > 0;

1X

nD1

�snC2

sn

� 1
�2

< 1; (1.2)

then �ac.H/ D Œ0; 1/ (see Theorem 9.6). Notice that to prove this claim we em-

ploy the analog of the Szegő theorem for strings recently established by Bessonov

and Denisov [4]. Antitrees with polynomially growing sphere numbers satisfy the

last assumption, however, it can be shown that in this case the usual trace class

arguments do not apply (see Remark 9.4). Let us also emphasize that similar

to the case of trees quantum graphs typically have purely singular spectrum in

the case of antitrees (see Section 8). However, to the best of our knowledge, the

only known examples of quantum graphs on trees having nonempty absolutely

continuous spectrum are eventually periodic radially symmetric trees (see [16,

Theorem 5.1]).

In the final section we demonstrate our results by considering two special

classes of antitrees and complement the results of [32, Section 8.2]. In Sec-

tion 10.1 we consider antitrees with exponentially increasing sphere numbers and

demonstrate that in this case there are a lot of similarities with the spectral proper-

ties of quantum graphs on radially symmetric trees. Antitrees with polynomially

increasing sphere numbers are treated in Section 10.2 and this class of quantum

graphs exhibits a number of interesting phenomena. For example, one can show

a transition from absolutely continuous spectrum supported on Œ0; 1/ to purely

discrete spectrum (see Corollary 10.7).

2. Decomposition of L2.A/

2.1. Auxiliary subspaces. Let A be a metric radially symmetric antitree with

sphere numbers ¹snºn�0 and lengths ¹`nºn�0. Upon identifying every edge e with

a copy of the interval Ie D Œ0; jej� and considering A as the union of all edges

glued together at certain endpoints, one can introduce the Hilbert space L2.A/ of
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functions f WA ! C as L2.A/ D
L

e L2.e/. Next, denote

tn WD
n�1X

j D0

j̀ ; In WD Œtn; tnC1/;

and let Hn WD C
snsnC1 , n � 0. Notice that snsnC1 is the number of edges in EC

n ,

where EC
n is the set of edges connecting Sn with SnC1. Enumerating the vertices

in each sphere, let each entry aij of some a D .aij /i;j 2 Hn correspond to a

coefficient of the edge e 2 EC
n connecting the i-th vertex of Sn with the j -th

vertex of SnC1. Moreover, we can identify each function f WA ! C in a natural

way with the sequence of functions f D .f n/n�0 such that f nW In ! Hn. In fact,

f n is given by

f n
i;j .t / WD f .xij .t //; t 2 In; (2.1)

where xij .t / is the unique x 2 A, such that jxj D t and x lies on the edge

connecting the i-th vertex in Sn with the j -th vertex of SnC1. Notice that the

map

U W L2.A/ �!
M

n�0

L2.InIHn/;

f 7�! f D .f n/n�0;

(2.2)

is an isometric isomorphism since

.f; g/L2.A/ D
X

n�0

Z

I n

.f n.t /; gn.t //Hn
dt (2.3)

for all f; g 2 L2.A/. Next we introduce the following subspaces:

H
sym
n WD ¹a 2 Hn j aij D a11 for all i; j º;

HC
n WD

°
a 2 Hn

ˇ̌
ˇ aij D ai1 for all i; j; and

X

i;j

aij D
X

i

ai1 D 0
±
;

H�
n WD

°
a 2 Hn

ˇ̌
ˇ aij D a1j for all i; j; and

X

i;j

aij D
X

j

a1j D 0
±
;

H
0
n WD

°
a 2 Hn

ˇ̌
ˇ

X

j

aij D 0 for all i and
X

i

aij D 0 for all j
±
:

It is straightforward to check that the above spaces are mutually orthogonal and

their dimensions are given by

dim.H
sym
n / D 1; dim.H0

n/ D .sn � 1/.snC1 � 1/;

dim.HC
n / D sn � 1; dim.H�

n / D snC1 � 1:
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Hence Hn admits the decomposition

Hn D
´
H

sym
n ˚ H�

n ; n D 0;

H
sym
n ˚ HC

n ˚ H�
n ˚ H0

n; n � 1:
(2.4)

Notice that if sn D 1 for some n � 1, then HC
n D H0

n D H0
n�1 D H�

n�1 D ¹0º.
One can also describe the above subspaces by identifying Hn with the tensor

product Csn ˝ C
snC1 . For example, setting

1sn
WD .1; 1; : : : ; 1„ ƒ‚ …

sn

/ 2 C
sn ; 1n WD 1sn

˝ 1snC1
2 Hn; (2.5)

for all n � 0, we get

H
sym
n D span¹1nº: (2.6)

Moreover, denote

!n WD e2�i=sn ; n � 0;

and set

aj
sn

WD ¹!j
n ; : : : ; !j.sn�1/

n ; 1º 2 C
sn ; j 2 ¹1; : : : ; snº: (2.7)

Notice that ¹aj
sn

ºsn

j D1 forms an orthogonal basis in C
sn for all n � 0. In particular,

a
sn
sn

D 1sn
and ka

j
sn

k2 D sn. Hence setting

ai;j
n WD ai

sn
˝ aj

snC1
2 Hn; (2.8)

where 1 � i � sn and 1 � j � snC1, we easily get

HC
n D span¹ai

sn
˝ 1snC1

j 1 � i < snº D span¹ai;snC1
n j 1 � i < snº;

H�
n D span¹1sn

˝ aj
snC1

j 1 � j < snC1º D span¹asn;j
n j 1 � j < snC1º;

H
0
n D span¹ai;j

n j 1 � i < sn; 1 � j < snC1º:
(2.9)

Finally, observe that

kai;j
n k2 D snsnC1 (2.10)

for all 1 � i � sn, 1 � j � snC1 and n � 0.

2.2. Definition of the subspaces. The decomposition (2.4) naturally induces a

decomposition of the Hilbert space L2.A/. First consider the subspace

Fsym WD ¹f 2 L2.A/ j f nW In �! H
sym
n ; n � 0º: (2.11)

Clearly, it consists of functions which depend only on the distance to the root:

Fsym D ¹f 2 L2.A/ j f .x/ D f .y/ if jxj D jyjº: (2.12)
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Moreover, its orthogonal complement is given by

F
?
sym D ¹f 2 L2.A/ j f nW In �! .H

sym
n /?; n � 0º

D
°
f 2 L2.A/

ˇ̌
ˇ

X

e2EC
n

fe � 0; n � 0
±
:

(2.13)

Next we need to decompose F?
sym. Set

F0
n WD ¹f 2 L2.A/ j f nW In �! H0

nI f k � 0; k ¤ nº (2.14)

for all n � 1. Taking into account the definition of H0
n, it is not difficult to see that

F0
n D

´
f 2 L2.A/

ˇ̌
ˇ̌
ˇ

f � 0 on A n EC
nP

e2EC
v

fe D
P

e2E�
u

fe � 0 for all v 2 Sn; u 2 SnC1

µ
:

Here, for every v 2 V, EC
v and E�

v denote the edges connecting v with the next

and, respectively, previous combinatorial spheres.

We need to be more careful with the remaining part since our aim is to find

reducing subspaces for the quantum graph operator H. For every v 2 V n ¹oº,
define the subspace zFv consisting of functions which vanish away of Ev, where

Ev is the set of edges emanating from v. Moreover, on the corresponding star Ev

they depend only on the distance to the root, that is,

zFv WD
´

f 2 L2.A/

ˇ̌
ˇ̌ f � 0 on A n Ev

f .x/ D f .y/ for a.e. x; y 2 Ev; jxj D jyj

µ
: (2.15)

Notice that zFv and zFu are orthogonal for u ¤ v if u and v are not adjacent vertices.

Next for all n � 1 consider the spaces

zFn WD
M

v2Sn

zFv; n � 1; (2.16)

and

Fn WD zFn 	 Fsym D
°
f 2 zFn

ˇ̌
ˇ

X

e2EC
m

fe � 0; m � 0
±
: (2.17)

Notice that with respect to the decomposition (2.4), we have

Fn D
´

f 2 L2.A/

ˇ̌
ˇ̌ f n�1W In�1 �! H�

n�1; f nW In �! HC
n

f m � 0; m ¤ n � 1; n

µ
: (2.18)



420 A. Kostenko and N. Nicolussi

Thus, we arrive at the following result.

Lemma 2.1. The Hilbert space L2.A/ admits the decomposition

L2.A/ D Fsym ˚
M

n�1

Fn ˚
M

n�1

F
0
n: (2.19)

Proof. The orthogonality of the subspaces in (2.19) follows directly from (2.3)

and (2.4). Hence we only need to show that every f 2 L2.A/ is contained in the

right-hand side of (2.19). Since L2.A/ D
L

e2E L2.e/, it suffices to prove this

claim in the case when f is zero except on a single edge e 2 E. Suppose that

e 2 EC
n for some n � 0. Then for almost every t 2 In we have

f n.t / D P
sym
n .f n.t // C PC

n .f n.t // C P�
n .f n.t // C P0

n.f n.t // 2 Hn;

where P
j
n is the orthogonal projection in Hn onto H

j
n, j 2 ¹sym; C; �; 0º. Define

fj WA ! C as the function identified with the sequence of functions fj D .f k
j /k�0

given by

f k
j .t / WD P

j

k
.f k.t //; j 2 ¹sym; C; �; 0º;

for a.e. t 2 Ik . Then fj 2 L2.A/ for all j 2 ¹sym; C; �; 0º and

f D fsym C fC C f� C f0:

Since f k
j .t / 2 H

j

k
for a.e. t 2 Ik , we conclude that fsym 2 Fsym, f0 2 F0

n, fC 2 Fn

and f� 2 FnC1. �

Our next aim is to write down explicit formulas for projections onto the

subspaces in the decomposition (2.19). First, for any Qf 2 L2.In/ and a 2 Hn, we

set Qf WD Qf ˝a. Recalling that every function f WA ! C can be identified via (2.2)

with the sequence of vector-valued functions f D .f n/n�0, we denote

Fn
a

WD ¹f 2 L2.A/ j f n D f n ˝ a; f n 2 L2.In/I f k � 0; k ¤ nº: (2.20)

Note that the orthogonal projection P n
a of L2.A/ onto Fn

a is given by

.U.P n
a

f //.t/ WD

8
<̂

:̂

0; t … In;

1

kak2
.f n.t /; a/Hn

a; t 2 In;
(2.21)

where U is the isometric isomorphism (2.2).

Combining the form of P n
a with the decomposition (2.4) and (2.6), (2.9), we

easily obtain the following result.
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Lemma 2.2. Let 1n 2 Hn and a
i;j
n 2 Hn, n � 0 be given by (2.5) and (2.8). Then

the orthogonal projections in the decomposition (2.19) are given by

Psym D
X

n�0

P n
1n; (2.22)

P 0
n D

X

1�i<sn
1�j <snC1

P n

a
i;j
n

; n � 1; (2.23)

Pn D
sn�1X

j D1

P n�1

a
sn�1;j

n�1

C
sn�1X

iD1

P n

a
i;snC1
n

; n � 1: (2.24)

3. Reduction of the quantum graph operator

In this section, we show that each of the spaces in the above decomposition (2.19)

is reducing for the quantum graph operator with Kirchhoff conditions and also

obtain a description of the corresponding restrictions.

3.1. Kirchhoff’s Laplacian. Let us briefly recall the definition of the Laplacian

on a metric graph (for details we refer to [3, 17, 32]). Let L2.A/ be the correspond-

ing Hilbert space and the subspace of compactly supported L2-functions will be

denoted by L2
c.A/. Moreover, denote by H 2.A n V/ the subspace of L2.A/ con-

sisting of edgewise H 2-functions, that is, f 2 H 2.A n V/ if f 2 H 2.e/ for every

e 2 E, where H 2.e/ is the usual Sobolev space. The Kirchhoff (or Kirchhoff–

Neumann) boundary conditions at every vertex v 2 V are then given by

8
<
:

f is continuous at v;
P

e2Ev
f 0

e .v/ D 0;
(3.1)

where

fe.v/ WD lim
xe!v

f .xe/; f 0
e .v/ WD lim

xe!v

f .xe/ � fe.v/

jxe � vj ; (3.2)

are well defined for all f 2 H 2.A n V/ and every vertex v 2 V. Imposing

these boundary conditions and restricting to compactly supported functions we get

the pre-minimal operator H0 acting edgewise as the (negative) second derivative

fe 7! � d2

dx2
e

fe, e 2 E on the domain

dom.H0/ D ¹f 2 H 2.A n V/ \ L2
c.G/ j f satisfies (3.1); v 2 Vº: (3.3)
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The operator H0 is symmetric and its closure H D SH0 is called the minimal

Kirchhoff Laplacian.

First, we need the following simple but useful fact.

Lemma 3.1. Let f 2 L2.A/ and f D Uf be given by (2.2). Then f 2 dom.H0/

if and only if f D .f n/n�0 satisfies the following conditions:

(i) f n � 0 for all sufficiently large n,

(ii) f n
i;j 2 H 2.In/ for all n � 0,

(iii) for all j 2 ¹1; : : : ; s1º

f 0
1;j .0C/ D f 0

1;1.0C/;

s1X

j D1

.f 0
1;j /0.0C/ D 0;

(iv) for all n � 1, i 2 ¹1; : : : ; snº,

f n
i;j .tnC/ D f n�1

k;i .tn�/;

snC1X

j D1

.f n
i;j /0.tnC/ D

sn�1X

kD1

.f n�1
k;i /0.tn�/:

Proof. The proof is straightforward. We only need to mention that (i) is equivalent

to the fact that f is compactly supported; (ii) means that f belongs to the Sobolev

space H 2 on each edge e 2 E; (iii) and (iv) are continuity and Kirchhoff’s

conditions at the vertices. �

3.2. The subspaceFsym. Set IL D Œ0;L/, and define the lengthL and the weight

function �W IL ! R�0 by

�.t/ D
X

n�0

snsnC11In
.t /; t 2 Œ0;L/I L D

X

n�0

`n: (3.4)

Consider the (pre-minimal) operator H0 defined in L2.ILI �/ by the Sturm–

Liouville differential expression

� D � 1

�.t/

d

dt
�.t/

d

dt
; (3.5)

on the domain

dom.H0/ D ¹f 2 L2
c.ILI �/ j f; �f 0 2 AC.IL/; �f 2 L2.ILI �/I f 0.0/ D 0º:

(3.6)
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More concretely, H0 acts as a negative second derivative and its domain dom.H0/

consists of functions f 2 L2.ILI �/ having compact support in IL, belonging to

H 2 on every interval In and at each point tn satisfying the boundary conditions

8
<
:

f is continuous at tn;

sn�1f 0.tn�/ D snC1f 0.tnC/:
(3.7)

Here we set s�1 WD 0 in the case n D 0 for notational simplicity and the

corresponding condition (3.7) reads as the Neumann boundary condition at t D 0.

Lemma 3.2. The subspace Fsym reduces the operator H0. Moreover, its restric-

tion H0 � Fsym onto Fsym is unitarily equivalent to the operator H0.

Proof. First let us show that fsym WD Psymf 2 dom.H0/ for every f 2 dom.H0/.

In fact, we need to show that fsym D Ufsym satisfies conditions (i)–(iv) of

Lemma 3.1. Clearly, by continuity of f and (2.21), (2.22), fsym satisfies (i) and (ii).

Moreover, both .fsym/n
i;j .tnC/ and .fsym/n

k;m
.tnC1�/ depend only on n � 0. Since

f satisfies both (iii) and (iv), we obtain that .fsym/0
1;j .0C/ does not depend on j

and

.fsym/n
i;j .tnC/ D 1

snsnC1

.f n.tnC/; 1n/Hn

D 1

sn�1sn

.f n�1.tn�/; 1n�1/Hn�1

D .fsym/n�1
k;i .tn�/

for all i 2 ¹1; : : : ; snº and n � 1. Similarly,

snC1X

j D1

.f 0
sym/n

i;j .tnC/ D 1

sn

..f n/0.tnC/; 1n/Hn
D 1

sn

X

i;j

.f n
i;j /0.tnC/

D 1

sn

snX

iD1

snC1X

j D1

.f n
i;j /0.tnC/ D 1

sn

snX

iD1

sn�1X

kD1

.f n�1
k;i /0.tn�/

D 1

sn

..f n�1/0.tn�/; 1n�1/Hn�1
D

sn�1X

kD1

.f 0
sym/n�1

k;i .tn�/;

(3.8)

which holds for all i 2 ¹1; : : : ; snº, n � 1. Moreover, for n D 0 we have

.f 0
sym/0

1;j .0C/ D 1

s1

s1X

mD1

.f 0
1;m/0.0C/ D 0
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for all j 2 ¹1; : : : ; s1º. Hence fsym D Psymf 2 dom.H0/ for all f 2 dom.H0/.

Noting that H0 is symmetric and Fsym is clearly invariant for H0 we conclude that

Fsym is reducing for H0.

To prove the last claim, observe that the subspace Fsym is isometrically iso-

morphic to the Hilbert space L2.ILI �/. Indeed, for every f 2 Fsym, set

Qf .t/ WD 1

snsnC1

X

e2EC
n

f .xe.t // D 1

k1nk2
.f n.t /; 1n/Hn

; t 2 In; n � 0; (3.9)

where xe.t / is the unique point on e satisfying jxe.t /j D t . Consider the map

Us WFsym �! L2.ILI �/;

f 7�! Qf :
(3.10)

Clearly, for every f 2 Fsym, f n.t / D Qf .t/ ˝ 1n for a.e. t 2 In and hence

k Qf k2
L2.ILI�/

D
X

n�0

snsnC1k Qf k2
L2.In/

D
X

n�0

kf nk2
L2.InIHn/

D kfk2 D kf k2
L2.A/

:

It turns out that

H0 D Us.H0 � Fsym/U �1
s : (3.11)

Indeed, H0 acts as the negative second derivative on every edge e 2 E and hence

for every f 2 Fsym we get

.Us.H0f //.t/ D � Qf 00.t /; t 2 In;

for all n � 0. Therefore, it remains to show that Us.Fsym \dom.H0// D dom.H0/.

In fact, we only need to show that every Qf D Usf with f 2 Fsym satisfies (3.7) if

and only if f 2 dom.H0/. Indeed, by (3.9) and continuity of f , Qf .tnC/ D Qf .tn�/

for all n � 1 if f 2 Fsym \ dom.H0/. Moreover, similar to (3.8) one checks that

snC1
Qf 0.tnC/ D sn�1

Qf 0.tn�/; n � 0;

exactly when f 2 Fsym \ dom.H0/. This finishes the proof of Lemma 3.2. �

3.3. Restriction toF0
n
. Our next aim is to show that eachF0

n, n � 1, is a reducing

subspace for H0 and its restriction is unitarily equivalent to .sn�1/.snC1�1/ copies

of hn, the second derivative with the Dirichlet boundary conditions on L2.In/,

hn WD � d 2

dt2
; dom.hn/ D ¹f 2 H 2.In/ j f .tnC/ D f .tnC1�/ D 0º: (3.12)

By Lemma 2.2, this will be a consequence of the following lemma.
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Lemma 3.3. Let n � 1 be such that sn > 1 and snC1 > 1. Then each of the

subspaces Fn
a
, where a D a

i;j
n with 1 � i < sn and 1 � j < snC1, is reducing for

the operator H0. The restricted operator H0 � Fn
a

is unitarily equivalent to the

operator hn defined by (3.12).

Proof. Clearly, Fn
a

is invariant for H0. Since H0 is symmetric, we only have to

prove that Qf WD P n
a

f 2 dom.H0/ whenever f 2 dom.H0/. In fact, we need to

show that Qf WD U.P n
a

f / given by (2.21) satisfies conditions (i)–(iv) of Lemma 3.1.

Conditions (i) and (ii) are obviously satisfied since f 2 dom.H0/ and by the

definition of U.P n
a

f /. Since Qf m D 0 for all m ¤ n and n � 1, (iii) clearly holds

and, moreover, we need to verify (iv) only at tn and tnC1.

Let us start with continuity. Suppose a D a
i;j
n for some 1 � i < sn and

1 � j < snC1. First observe that

Qf n
k;m.tnC/ D Qf n

k;m.tnC1�/ D 0

for all k 2 ¹1; : : : ; snº and m 2 ¹1; : : : ; snC1º. Indeed,

lim
t!tnC

.f n.t /; a/Hn
D .f n.tnC/; a/Hn

D
snX

kD1

f n
k;1.tnC/!�ik

n

snC1X

mD1

!
�jm
nC1 D 0:

Here we employed the continuity of f , f n
k;j

.tnC/ D f n
k;1

.tnC/ for all j 2
¹1; : : : ; snC1º, together with (2.8). This shows that Qf satisfies the first condition

in (iv).

Next observe that

snC1X

mD1

.Qf n
k;m/0.tnC/ D !ik

n

snsnC1

..f n/0.tnC/; a/Hn

snC1X

mD1

!
jm
nC1 D 0

for all k 2 ¹1; : : : ; snº. Since .Qf n�1/0 D 0, Qf satisfies (iv) at tn. Similar arguments

shows that (iv) holds true at tnC1 as well. This finishes the proof of the inclusion
Qf D P n

a
f 2 dom.H0/.

Finally, noting that

U n
a

W L2.In/ �! Fn
a
;

f 7�! f � a

kak ;
(3.13)

establishes an isometric isomorphism of L2.In/ onto Fn
a, it is straightforward to

verify the last claim and we leave it to the reader. �
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3.4. Restriction to Fn. Next, we show that Fn, n � 1 is reducing for H0 as well

and the corresponding restriction is unitarily equivalent to sn � 1 copies of the

operator Qhn defined by

Q�n D � 1

�.t/

d

dt
�.t/

d

dt
;

on L2..tn�1; tnC1/I �/ and equipped with Dirichlet conditions at the endpoints.

Here the weight function � is defined by (3.4). The domain of Qhn admits a very

simple description since inside In�1 and In the differential expression Q�n reduces

to the negative second derivative and hence dom. Qhn/ consists of functions which

are H 2 in In�1 and In, satisfy the Dirichlet conditions at tn�1 and tnC1 and also

the following coupling conditions at tn:

´
f .tnC/ D f .tn�/;

sn�1f 0.tn�/ D snC1f 0.tnC/:
(3.14)

Recall that Fn D ran.Pn/, where the projection Pn is given by (2.24). By (2.8)

and (2.5),

a
sn�1;j
n�1 D 1sn�1

˝ aj
sn

; a
j;snC1
n D aj

sn
˝ 1snC1

;

and hence

Pn D
sn�1X

j D1

.P n�1

1sn�1
˝a

j
sn

C P n

a
j
sn˝1snC1

/: (3.15)

Denoting the summands in (3.15) by zP j
n , j 2 ¹1; : : : ; sn � 1º, we set

zFj
n WD ran. zP j

n / D Fn�1

1sn�1
˝a

j
sn

˚ Fn

a
j
sn˝1snC1

: (3.16)

Since Fn D
Lsn�1

j D1
zFj

n , these claims will follow from the following lemma:

Lemma 3.4. Every subspace zFj
n with n � 1 and j 2 ¹1; : : : ; sn � 1º, is reducing

for the operator H0. Moreover, its restriction onto zFj
n is unitarily equivalent to Qhn.

Proof. Since zFj
n is invariant for H0 and H0 is symmetric, we only need to show

that for every f 2 dom.H0/ its projection Qf WD zP j
n f onto zFj

n also belongs to

dom.H0/. Following step by step the proof of Lemma 3.3, we only need to show

that Qf WD U Qf satisfies condition (iv) of Lemma 3.1 at tn.

First observe that by (2.21)

Qf .t / D

8
<
:

Qfn�1.t /.1sn�1
˝ a

j
sn

/; t 2 In�1;

Qfn.t /.a
j
sn

˝ 1snC1
/; t 2 In;

(3.17)
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where

Qfn�1.t / D 1

sn�1sn

.f n�1.t /; a
sn�1;j
n�1 /Hn�1

; Qfn.t / D 1

snsnC1

.f n.t /; a
j;snC1
n /Hn

:

Notice that

Qfn�1.tn�/ D 1

sn�1sn

sn�1X

kD1

snX

mD1

f n�1
k;m .tn�/!�jm

n D 1

sn

snX

mD1

f n�1
1;m .tn�/!�jm

n

and

Qfn.tnC/ D 1

snsnC1

snX

mD1

snC1X

kD1

f n
m;k.tnC/!�jm

n D 1

sn

snX

mD1

f n
m;1.tnC/!�jm

n :

However, by Lemma 3.1,

f n�1
1;m .tn�/ D f n

m;1.tnC/; m 2 ¹1; : : : ; snº;

and hence we get

Qf n�1
1;k .tn�/ D !

jk
n

sn

snX

mD1

f n�1
1;m .tn�/!�jm

n

D !
jk
n

sn

snX

mD1

f n
m;1.tnC/!�jm

n

D Qf n
k;1.tnC/

for all k 2 ¹1; : : : ; snº. This shows that Qf satisfies the first equality in condition (iv)

of Lemma 3.1. Let us check the second one. However, we have

sn�1X

kD1

.Qf n�1
k;m /0.tn�/ D

sn�1X

kD1

Qf 0
n�1.tn�/!jm

n D sn�1
Qf 0
n�1.tn�/!jm

n

D !
jm
n

sn

snX

lD1

!�jl
n

sn�1X

kD1

.f n�1
k;l /0.tn�/

D !
jm
n

sn

snX

lD1

!�jl
n

snC1X

kD1

.f n
l;k/0.tnC/ D snC1

Qf 0
n.tnC/!jm

n

D
snC1X

kD1

Qf 0
n.tnC/!jm

n

D
snC1X

kD1

.Qf n
m;k/0.tnC/:
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This shows that Qf satisfies all the conditions of Lemma 3.1 and hence that Qf 2
dom.H0/.

It remains to notice that the map U
j
n W L2..tn�1; tnC1/I �/ ! zFj

n defined

by (3.17) is an isometric isomorphism and .U
j
n /�1.H0 � zFj

n/U
j
n D Qhn. �

3.5. The decomposition of the operator H. Combining the results of Sec-

tions 3.2–3.4, we arrive at the following decomposition of quantum graph op-

erators on radially symmetric anti-trees.

Theorem 3.5. Let A be an infinite radially symmetric antitree. The decomposi-

tion (2.19) reduces the operator H. Moreover, with respect to this decomposition,

H is unitarily equivalent to the following orthogonal sum of Sturm–Liouville op-

erators

H ˚
M

n�1

� .sn�1/.snC1�1/M

j D1

hn

�
˚

M

n�1

�sn�1M

j D1

Qhn

�
; (3.18)

where H D H0 and the operators H0, hn, and Qhn are defined in Sections 3.2, 3.3,

and 3.4, respectively.

4. Self-adjointness

Theorem 3.5 reduces the spectral analysis of quantum graph operators on radially

symmetric antitrees to the analysis of certain classes of Sturm–Liouville operators.

Moreover, the Sturm–Liouville operators hn and Qhn in the decomposition (3.18)

are self-adjoint for all n � 1 and their spectra can be computed explicitly. This

enables us to perform a rather detailed study of spectral properties of the operator

H D H0. We begin with the characterization of self-adjoint extensions of the

operator H.

Theorem 4.1. Let A be an infinite radially symmetric antitree.

(i) The operator H is self-adjoint if and only if the total volume of A is infinite,

vol.A/ WD
X

e2E.A/

jej D
X

n�0

snsnC1`n D 1: (4.1)

(ii) If vol.A/ < 1, then the deficiency indices of H equal 1 and self-adjoint

extensions of H form a one-parameter family H� WD H� � dom.H� /, � 2
Œ0; �/, and

dom.H� / D ¹f 2 dom.H�/ j cos.�/f .L/ C sin.�/f 0.L/ D 0º;
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where

f .L/ WD lim
t!L

.UsPsymf /.t/; (4.2)

f 0.L/ WD lim
t!L

�.t/.UsPsymf /0.t /; (4.3)

and the operators Psym and Us are given, respectively, by (2.22) and (3.10).

Proof. (i) By Theorem 3.5, the operator H is self-adjoint only if so are the

operators on the right-hand side in the decomposition (3.18). However, both hn

and Qhn are self-adjoint for all n � 1. The self-adjointness criterion for H D H0

follows from the standard limit point/limit circle classification (see, e.g., [46]).

Namely, the equation �y D 0 with � given by (3.5), has two linearly independent

solutions

y1.t / � 1; y2.t / D
tZ

0

ds

�.s/
:

Now one simply needs to verify whether or not both solutions y1 and y2 belong

to L2.ILI �/. Clearly, y1 2 L2.ILI �/ exactly when the series in (4.1) converges.

Moreover, it is straightforward to check that y2 2 L2.ILI �/ if and only if the

series X

n�0

snsnC1`n

� X

k�n

`k

skskC1

�2

(4.4)

converges. Since snsnC1 � 1 for all n � 0, this series converges exactly when the

series in (4.1) converges. The Weyl alternative finishes the proof of (i).

(ii) The above considerations imply that the deficiency indices of H and H

coincide. However, the deficiency indices of H are at most 1. Thus, if the operator

H is not self-adjoint, its deficiency indices equal 1. Moreover, one can easily

describe all self-adjoint extensions of H. First of all, for every g 2 dom.H�
0/ D

dom.H�/ the following limits

lim
t!L

Wt .g; y1/; lim
t!L

Wt .g; y2/

exist and are finite (see, e.g., [46]). Here Wt .g; h/ D g.t/.�h0/.t / � .�g0/.t /h.t/

is the modified Wronskian. Thus for every g 2 dom.H�
0/ the following limits

g.L/ WD lim
t!L

g.t/; g0
�.L/ WD lim

t!L
�.t/g0.t / (4.5)

exist and are finite. Hence self-adjoint extensions of H form a one-parameter

family

dom.H.�// D ¹g 2 dom.H�
0/ j cos.�/g.L/ C sin.�/g0

�.L/ D 0º; � 2 Œ0; �/:

It remains to use (3.11) and (2.22). �
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Remark 4.2. Let us mention that in the case vol.A/ < 1 the Friedrichs extension

of H coincides with the operator H� with � D 0. Moreover, it is possible to show

that in fact the limits in (4.2) and (4.3) coincide with

lim
jxj!L

f .x/; lim
t!L

X

jxjDt

f 0.x/

for every f in the domain of H�. In particular, this would imply that the Friedrichs

extension of H is simply given as the restriction of H� to functions vanishing at L.

Let us also mention that H� D H�
0 in fact coincides with the maximal operator,

that is dom.H�/ consists of functions f 2 L2.A/\H 2.AnV/ satisfying boundary

conditions (3.1) for all v 2 V and such that f 00 2 L2.A/.

5. Discreteness

As an immediate corollary of Theorem 4.1 we obtain the following result.

Corollary 5.1. If vol.A/ < 1, then the spectrum of each self-adjoint extension

H� of H is purely discrete and, moreover,

N.�I H� / D vol.A/

�

p
�.1 C o.1//; � ! 1; (5.1)

for all � 2 Œ0; �/.

Here N.�I A/ is the eigenvalue counting function of a (bounded from below)

self-adjoint operator A with purely discrete spectrum. Namely,

N.�I A/ D #¹kW �k.A/ � �º;

where ¹�k.A/ºk�0 are the eigenvalues of A (counting multiplicities) ordered in

the increasing order.

Proof. By Theorem 3.5,

�.H� / D �.H.�// [
[

n�1

�.hn/ [
[

n�1

�. Qhn/: (5.2)

Since sn � 1 for all n � 1, vol.A/ < 1 implies that `n D o.1/ as n ! 1 and

hence both sets
S

n�1 �.hn/ and
S

n�1 �. Qhn/ have no finite accumulation points.

It remains to note that the spectrum of H.�/ is discrete in this case as well.



Quantum graphs on antitrees 431

According to the decomposition (3.18), we clearly have

N.�I H� / D N.�I H.�// C
X

n�1

.sn � 1/.snC1 � 1/N.�I hn/ C
X

n�1

.sn � 1/N.�I Qhn/:

It is well known that (cf., e.g., [19, Chapter 6.7])

N.�I H.�// D L

�

p
�.1 C o.1//; � ! 1;

for all � 2 Œ0; �/. Taking into account that

�.hn/ D
°�2k2

`2
n

±
k�1

; (5.3)

we clearly have

N.�I hn/ D
�

`n

�

p
�

�
(5.4)

for all � � 0, where b�c is the usual floor function. Moreover,

�
`n�1

�

p
�

�
C

�
`n

�

p
�

�
� N.�I Qhn/ �

�
`n�1

�

p
� C 1

2

�
C

�
`n

�

p
� C 1

2

�
;

(5.5)

for all � > 0. The latter follows by employing the standard Dirichlet–Neumann

bracketing, that is, one can estimate the eigenvalues of Qhn via the eigenvalues of

the operators QhD
n and QhN

n subject to Dirichlet, respectively, Neumann boundary

conditions at tn:

�k. QhN
n / � �k. Qhn/ � �k. QhD

n /; k � 1: (5.6)

Combining (5.4) with (5.5) and using a very simple estimate (see Lemma 5.2

below), we immediately arrive at (5.1). �

Lemma 5.2. Let ¹anºn�1 and ¹bnºn�1 be nonnegative sequences such that

lim
n

bn D 0 and
X

n

anbn < 1:

Then for every ˛ 2 Œ0; 1/,

lim
�!1

X

n�1

an

jbn� � bbn� C ˛c j
�

D 0: (5.7)
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Proof. Indeed,

X

n�1

an

jbn� � bbn� C ˛c j
�

D
X

nWbn< 1�˛
�

C
X

nWbn� 1�˛
�

an

jbn� � bbn� C ˛c j
�

:

The first summand can be estimated as follows

X

nWbn< 1�˛
�

an

jbn� � bbn� C ˛c j
�

D
X

nWbn< 1�˛
�

anbn D o.1/;

as � ! 1. Moreover, we have

X

nWbn� 1�˛
�

an

jbn� � bbn� C ˛c j
�

�
X

nWbn� 1�˛
�

an

1

�
D o.1/;

as � ! 1, which proves the claim. �

Remark 5.3. We are not aware (except a few special cases) of a closed form of

eigenvalues of Qhn. It is not difficult to show that �. Qhn/ consists of simple positive

eigenvalues ¹ Q�kºk�1 satisfying (5.5) and even to express �. Qhn/ with the help of

the arctangent function with two arguments, although this does not lead to a closed

formula.

In the case vol.A/ D 1, the spectrum of H may have a rather complicated

structure. In particular, it may not be purely discrete. The next result provides a

criterion for H to have purely discrete spectrum. Set

L� WD
LZ

0

dx

�.x/
D

X

n�0

`n

snsnC1

: (5.8)

Theorem 5.4. Let A be an infinite radially symmetric antitree with vol.A/ D 1.

Then the spectrum of H is discrete if and only if the following conditions are

satisfied:

(i) `n ! 0 as n ! 1;

(ii) L� < 1;

(iii) we have

lim
n!1

nX

kD0

skskC1`k

X

k�n

`k

skskC1

D 0: (5.9)
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Proof. Denote

H1 WD
M

n�1

� .sn�1/.snC1�1/M

j D1

hn

�
; H2 WD

M

n�1

� sn�1M

j D1

Qhn

�
: (5.10)

By Theorem 4.1(i), H is self-adjoint and hence (3.18) implies that

�.H/ D �.H/ [ �.H1/ [ �.H2/ D �.H/ [
[

n�1

�.hn/ [
[

n�1

�. Qhn/: (5.11)

Thus the spectrum of H is discrete if and only if the spectra of all three operators

H, H1 and H2 are discrete.

In order to investigate the operator H, we need to transform it to the Krein string

form by using a suitable change of variables (x 7!
xR
0

ds
�.s/

) and then to apply the

Kac–Krein criterion [26]. To be more precise, it is straightforward to verify that H

is unitarily equivalent to the operator Qh defined in the Hilbert space L2.Œ0;L�/I Q�/

by the differential expression

Q� D � 1

Q�.x/

d 2

dx2
(5.12)

and subject to the Neumann boundary condition at x D 0. Here

Q� WD �2 ı g�1; (5.13)

where g�1 is the inverse of the function gW Œ0;L/ ! Œ0;L�/ given by

g.x/ D
xZ

0

ds

�.s/
; L� WD g.L/ D

LZ

0

ds

�.s/
: (5.14)

Notice that g is strictly increasing and locally absolutely continuous on Œ0;L/ and

maps Œ0;L/ onto Œ0;L�/. Hence its inverse g�1W Œ0;L�/ ! Œ0;L/ is also strictly

increasing and locally absolutely continuous on Œ0;L�/.

Applying the Kac–Krein criterion (see [26], [27, §11.9]), we conclude that H

has purely discrete spectrum if and only if L� < 1 and

lim
x!L

ˆ.x/ D 0; (5.15)

where ˆW Œ0;L/ ! R�0 is given by

ˆ.x/ WD
xZ

0

�.s/ds �
LZ

x

ds

�.s/
; x 2 Œ0;L/: (5.16)
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First of all, observe that

ˆ.x/ �
tnC1Z

0

�.s/ds �
LZ

tn

ds

�.s/
D

nX

kD0

skskC1`k

X

k�n

`k

skskC1

for all x 2 Œtn; tnC1/ and hence sufficiency of (5.9) follows. Moreover, straightfor-

ward calculations show that

ˆ
� tn C tnC1

2

�
D

� n�1X

kD0

skskC1`k C snsnC1

`n

2

�� X

k�nC1

`k

skskC1

C `n

2snsnC1

�

� 1

4

nX

kD0

skskC1`k

X

k�n

`k

skskC1

;

which implies the necessity of (5.9). Notice also that the right-hand side in the

last inequality is strictly greater than 1
4
`2

n, which also implies (i).

It remains to note that the spectra of the operators H1 and H2 are discrete if

condition (i) is satisfied (see (5.3) and (5.4)). �

Remark 5.5. Let us mention that in fact both conditions (i) and (ii) in Theorem 5.4

follow from (iii).

If vol.A/ D 1 and the corresponding Hamiltonian H has purely discrete

spectrum, it follows from the proof of Weyl’s law (5.1) that N.�IH/p
�

! 1 as

� ! 1. However, we can characterize radially symmetric antitress such that

the resolvent of the corresponding quantum graph operator H belongs to the trace

class.

Theorem 5.6. Let A be an infinite radially symmetric antitree with vol.A/ D 1.

Also, let the spectrum of H be purely discrete. Then3

X

�2�.H/

1

�
< 1 (5.17)

if and only if X

n�1

snsnC1`2
n < 1; (5.18)

and
X

n�0

`n

snsnC1

n�1X

kD0

skskC1`k < 1: (5.19)

3 The summation in (5.17) is according to multiplicities.
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Proof. As in the proof of Theorem 5.4, observe that the spectrum of H consists

of three sets of eigenvalues. Let us denote the second and the third summands

in (3.18) by H1 and H2, respectively. The spectrum of the self-adjoint operator

hn is given by (5.3) and hence

X

�2�.H2/

1

�
D

X

n�1

.sn�1/.snC1�1/
X

k�1

`2
n

�2k2
D 1

6

X

n�1

.sn�1/.snC1�1/`2
n: (5.20)

Similarly, using the Dirichlet–Neumann bracketing (5.6), we get

X

�2�.H1/

1

�
�

X

n�1

.sn � 1/
X

�2�.QhN
n /

1

�

D
X

n�1

.sn � 1/
X

k�1

`2
n�1

�2.k � 1=2/2
C `2

n

�2.k � 1=2/2

D 1

2

X

n�1

.sn � 1/.`2
n�1 C `2

n/ � 1

2

X

n�0

.sn C snC1 � 2/`2
n:

Using the Dirichlet eigenvalues, one can prove a similar bound from below.

Moreover, combining the latter with (5.18) implies that the resolvents of both H1

and H2 belong to the trace class exactly when
X

n�1

.snsnC1 � 1/`2
n < 1: (5.21)

Next observe that 0 2 �.H/ exactly when 1 2 L2.ILI �/, which is equivalent

to vol.A/ < 1. Thus 0 is not an eigenvalue of H whenever vol.A/ D 1. Finally,

applying M. G. Krein’s theorem to the operator H (see [26], [27, §11.10]), we

conclude that H�1 is trace class if and only if L� < 1 and

LZ

0

1

�.x/

xZ

0

�.s/ds dx < 1: (5.22)

However, using (3.4), we get

LZ

0

1

�.x/

xZ

0

�.s/ds dx D
X

n�0

tnC1Z

tn

1

�.x/

xZ

0

�.s/ds dx

D
X

n�0

1

snsnC1

tnC1Z

tn

� n�1X

kD0

skskC1`k C snsnC1.x � tn/
�

dx

D
X

n�0

`n

snsnC1

n�1X

kD0

skskC1`k C 1

2

X

n�0

`2
n:
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Notice that the latter in particular shows that ¹`nºn�0 2 `2 and combining this fact

with (5.21) we arrive at (5.18). This completes the proof. �

Remark 5.7. Using the same arguments and the results from [28, 41] one would

be able to characterize radially symmetric antitrees such that the resolvent of

the corresponding Kirchhoff Laplacian belongs to the Schatten–von Neumann

ideal Sp, p 2 .1=2; 1/ (and even to other trace ideals), however, these results

look cumbersome and we decided not to include them.

6. Spectral gap estimates

We restrict our discussion to the case vol.A/ D 1 for several reasons. Of course,

the main one is the fact that in this case H0 is essentially self-adjoint and this

simplifies some considerations. However, for finite volume metric graphs the

corresponding estimates remain to be true for the Friedrichs extension of H0.

Theorem 6.1. Let A be an infinite radially symmetric antitree with vol.A/ D 1.

Then the bottom of the spectrum �0.H/ D inf �.H/ of H is strictly positive if and

only if the following conditions are satisfied:

(i) `�.A/ D supn�0 `n < 1;

(ii) L� D
P

n�0
`n

snsnC1
< 1;

(iii) we have

C.L/ WD sup
x2.0;L/

xZ

0

�.s/ds �
LZ

x

ds

�.s/
< 1: (6.1)

Moreover, we have the following estimate

1

4C.L/
� �0.H/ � 1

C.L/
: (6.2)

Proof. Since vol.A/ D 1, the operator H is self-adjoint by Theorem 4.1. More-

over, by Theorem 3.5, we have

�0.H/ D min¹�0.H/; �0.H1/; �0.H2/º; (6.3)

where H1 and H2 are given by (5.10). Observe that

�0.H/ D �0.H/: (6.4)
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Indeed, it suffices to compare the domains of H0 and hn, Qhn and then exploit the

Rayleigh quotient. For instance,

�0.H/ D inf
f 2dom.H0/

f ¤0

.Hf; f /L2.ILI�/

kf k2
L2.ILI�/

� inf
f 2dom.H0/

supp.f /�Œtn�1;tnC1�

.Hf; f /L2.ILI�/

kf k2
L2.ILI�/

� inf
f 2dom.Qhn/

f ¤0

. Qhnf; f /L2.In�1[InI�/

kf k2
L2.In�1[InI�/

D �0. Qhn/:

The operator H can be studied in the framework of Krein strings, however,

we need to apply the Kac–Krein criteria [26] to the dual string since both Corol-

lary 1.1 and Remark 2.2 in [26] are stated subject to the Dirichlet boundary condi-

tion at x D 0. For a detailed discussion of dual strings we refer to [27, §12] and the

desired connection is [27, equality (12.6)]4. More precisely, assuming L� < 1
and then applying Theorem 1 from [26], we get the estimate

x.M �1.1/ � M �1.x// � 1

�0.H/
; (6.5)

which holds for all x > 0. Here M �1 denotes the inverse to the function

M W Œ0;L�/ ! Œ0; 1/ defined by (see also (5.13) and (5.14))

M.x/ WD
xZ

0

Q�.s/ds D
xZ

0

.�2 ı g�1/.s/ds D
g�1.x/Z

0

�.s/ds: (6.6)

Notice that M is a strictly increasing absolutely continuous function mapping

Œ0;L�/ onto Œ0; 1/ (the latter follows from the assumption vol.A/ D 1). Thus

equation (6.5) is equivalent to

M.x/.L� � x/ � 1

�0.H/
; x 2 .0;L�/: (6.7)

4 This statement can be seen as the analog of the abstract commutation: for a closed operator

A acting in a Hilbert space H, the operators .A�A/ �ker.A/? and .AA�/ �ker.A�/? are unitarily

equivalent.
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By changing variables, we end up with the following estimate

sup
x2.0;L/

xZ

0

�.s/ds �
LZ

x

ds

�.s/
� 1

�0.H/
: (6.8)

Applying Theorem 3 from [26] and using the same arguments, we end up with the

lower bound

1

4�0.H/
� sup

x2.0;L/

xZ

0

�.s/ds �
LZ

x

ds

�.s/
: (6.9)

Taking into account [26, Remark 2.2], we conclude that the condition L� < 1
is also necessary for the positivity of �0.H/. It remains to note that the necessity

of (i) follows from (iii). Indeed, assuming the converse, that is, there is a sequence

of lengths `nk
tending to infinity, and then choosing xnk

as the middle points

of the corresponding intervals, one immediately concludes that C.L/ D 1 by

evaluating (6.1) at xnk
. �

Remark 6.2. Arguing as in the proof of Theorem 5.4 one can show that condi-

tions (i)–(iii) in Theorem 6.1 can be replaced by the single condition

sup
n�0

nX

kD0

skskC1`k

X

k�n

`k

skskC1

< 1: (6.10)

However, this expression provides only an upper bound on C.L/:

sup
n�0

nX

kD0

skskC1`k

X

k�nC1

`k

skskC1

� C.L/ � sup
n�0

nX

kD0

skskC1`k

X

k�n

`k

skskC1

:

(6.11)

Since 0 is not an eigenvalue of H if vol.A/ D 1, �0.H/ > 0 is equivalent to

�ess
0 .H/ > 0, where �ess

0 .H/ denotes the bottom of the essential spectrum of H,

�ess
0 .H/ WD inf �ess.H/. Thus Theorem 6.1 also provides a criterion for �ess

0 .H/ to

be strictly positive. Moreover, by employing Glazman’s decomposition principle

one can prove a similar to (6.1) bound on �ess
0 .H/.

Theorem 6.3. Let A be an infinite radially symmetric antitree with vol.A/ D 1.

Then �ess
0 .H/ > 0 if and only if (6.10) holds true. Moreover,

1

4Cess.L/
� �ess

0 .H/ � 1

Cess.L/
; (6.12)
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where the constant Cess.L/ is given by

Cess.L/ D lim
x!L

sup
y2.x;L/

yZ

x

�.s/ds �
LZ

y

ds

�.s/
: (6.13)

A few remarks are in order.

Remark 6.4. (i) The equality Cess.L/ D 0 implies Theorem 5.4.

(ii) One can prove Theorem 6.1 avoiding the use of the Kac–Krein results [26].

Namely, with the help of the Rayleigh quotient, one can rewrite the inequality

�0.H/ > 0 as a variational problem and then apply Muckenhoupt’s inequalities

(see, e.g., [33, §1.3.1], [35]). In particular, M. Solomyak employed this approach

in the study of quantum graph operators on radially symmetric trees (see [44, §5]).

(iii) It is interesting to compare Theorems 6.1 and 6.3 with volume growth

estimates (cf. [45]). For instance, by [32, Theorem 7.1],

�0.H/ � �ess
0 .H/ � 1

4
v.A/2; (6.14)

where

v.A/ WD lim inf
n!1

1Pn
kD0 `k

log
� nX

kD0

skskC1`k

�
: (6.15)

However, this result applies only if L D
P

n�0 `n D 1.

7. Isoperimetric constant

Recall that [32, §3] the isoperimetric constant ˛.G/ of a metric graph G is

˛.G/ WD inf
zG

degG.@zG/

vol.zG/
; (7.1)

where the infimum is taken over all finite connected subgraphs zG D .zV; zE/. Here

@zG D ¹v 2 zV j degzG.v/ < degG.v/º;

is the boundary of zG and

degG.@zG/ WD
X

v2@zG

degzG.v/; vol.zG/ WD
X

e2zE

jej: (7.2)

Computation of the isoperimetric constant is known to be an NP-hard problem,

however, due to the presence of symmetries, we are able to find ˛.A/ for radially

symmetric antitrees.
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Theorem 7.1. The isoperimetric constant of a radially symmetric antitree A is

˛.A/ D inf
n�0

snsnC1Pn
kD0 skskC1`k

: (7.3)

Proof. The decomposition obtained in Theorem 3.5 suggests to take the infimum

in (7.1) only over radially symmetric subgraphs. Namely, choosing An for every

n � 0 as the subgraph consisting of all edges between the root o and the combi-

natorial sphere SnC1, we have @An D SnC1 and degAn
.v/ D sn for all vertices

v 2 SnC1. Hence by (7.1) we get

˛.A/ � deg.@An/

vol.An/
D snsnC1P

k�n skskC1`k

: (7.4)

Thus it remains to show that indeed it suffices to restrict the infimum in (7.1) to the

family ¹Anºn�0. Observe that ¹Anºn�0 is a net, that is, for every finite connected

subgraph zA of A there is n � 0 such that zA is a subgraph of An. Hence we will

proceed by induction in n.

Let us start with subgraphs zA ¨ A0. Then zA consists of m < s0s1 edges of

E
C
0 and vol.zA/ D m`0. Moreover, for all vertices of zA, degzA.v/ < degA.v/ and

hence deg.@zA/ D 2m, which implies

deg.@zA/

vol.zA/
D 2m

m`0

D 2

`0

>
deg.@A0/

vol.A0/
D 1

`0

:

Take n � 1 and assume that

deg.@zA/

vol.zA/
� inf

k�n�1

deg.@Ak/

vol.Ak/
D inf

k�n�1

skskC1P
j �k sj sj C1 j̀

(7.5)

holds for all connected subgraphs zA � An�1. Take now a connected subgraph
zA � An such that zA 6� An�1. The latter in particular implies that V.zA/ \ Sn ¤ ;
and V.zA/\SnC1 ¤ ;. We can also assume that V.zA/\Sn�1 ¤ ; since otherwise

E.zA/ � EC
n and hence in this case

deg.@zA/

vol.zA/
D 2

`n

>
snsnC1P

k�n skskC1`k

D deg.@An/

vol.An/
: (7.6)

Let us first show that without loss of generality we can take zA such that each

edge e 2 E.zA/ contains at least one vertex in Vint.zA/ WD V.zA/ n @zA. Indeed, if

not, consider the induced subgraph zAint, which we can split into a finite disjoint

union of connected subgraphs ¹zAj º. In particular, zVint D
S

j V.zAj /. Let Gj be the



Quantum graphs on antitrees 441

star-like subgraphs of A with edge sets E.Gj / D
S

v2V. zAj / Ev. By construction,

Gj � An and each edge of Gj contains a vertex from V.Gj / n @Gj D V.zAj /.

Moreover, let Er D E.zA/ n
S

j E.Gj / be the remaining edges of zA. Then it is

straightforward to verify (see also [38, proof of Lemma 3.5]) that

deg.@zA/

vol.zA/
D

P
j deg.@Gj / C 2#ErP

j vol.Gj / C
P

e2Er
jej � min

j;e2Er

°deg.@Gj /

vol.Gj /
;

2

jej

±
:

Taking into account (7.6), this proves the claim.

Consider a new graph zA0 obtained from zA by adding all possible edges con-

necting Sn with Sn�1 and SnC1 such that the new graph zA0 is connected. By con-

struction, zA0 � An. Moreover, SnC1 � @zA0 and deg zA0.v/ D sn for all v 2 SnC1.

Hence

deg.@zA0/

vol.zA0/
� snsnC1

vol.An/
D deg.@An/

vol.An/
:

We also need another subgraph zA00 of zA obtained by removing the edges of zA
connecting SnC1 with Sn n @zA and also Sn n @zA with the vertices in Sn�1 \ @zA.

The obtained graph zA00 is a connected subgraph of An�1 and hence satisfies the

induction hypothesis (7.5). Our aim is to show that

deg.@zA/

vol.zA/
� min

°deg.@zA0/

vol.zA0/
;
deg.@zA00/

vol.zA00/

±
; (7.7)

Denoting M WD #.Sn \ zVint/ and N WD #.Sn�1 \ @zA/, we get

vol.zA0/ D vol.zA/ C .sn � M/snC1`n C .sn � M/N `n�1; (7.8)

and

vol.zA00/ D vol.zA/ � MsnC1`n � MN `n�1: (7.9)

Moreover, a careful inspection shows that

deg.@zA0/ � deg.@zA/ C .sn � M/.snC1 � sn�1 C 2N /; (7.10)

and

deg.@zA/ D deg.@zA00/ C M.snC1 � sn�1 C 2N /: (7.11)

Now observe that if (7.7) fails to hold, then (7.9) and (7.11) would imply

snC1 C 2N � sn�1

snC1`n C N `n�1

<
deg.@zA/

vol.zA/
; (7.12)
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and, moroever, (7.8) and (7.10) lead to

snC1 C 2N � sn�1

snC1`n C N `n�1

>
deg.@zA/

vol.zA/
: (7.13)

This contradiction proves (7.7) and hence finishes the proof of (7.3). �

Remark 7.2. A few remarks are in order.

(i) By the Cheeger-type estimate [32, Theorem 3.4], we have

�0.H/ � 1

4
˛.A/2: (7.14)

Comparing (7.14) and (7.3) with (6.2) and (6.11), we conclude that positivity

of the isoperimetric constant is indeed only sufficient for �0.H/ > 0. For

example, ˛.A/ D 0 whenever vol.A/ D 1 and ¹snsnC1ºn�0 has a bounded

subsequence.

(ii) The isoperimetric constant ˛.A/ measures the ratio of the number of bound-

ary points of An to the volume of An and thus provides a lower bound

for �0.H/. The volume growth estimate (6.14) provides an upper bound by

relating the exponential growth of the volume of An with its diameter. Notice

that the volume of the subgraphAn also appears in (6.10)–(6.11). The mean-

ing of the other quantity in (6.11), namely, of
P

k�n
`k

skskC1
, which however

provides two-sided estimates, remains unclear to us.

8. Singular spectrum

Using the isometric isomorphism

U�W f 7�! p
�f

between Hilbert spaces L2.ILI �/ and L2.IL/, it is straightforward to check that

the pre-minimal operator H0 defined in Section 3.2 is unitarily equivalent to the

operator Qh0 defined in L2.IL/ by

Qh0f D �f 00; f 2 dom. Qh0/ D U�.dom.H0//;

dom. Qh0/ D
°
f 2 L2

c.IL/
ˇ̌
ˇ 1

p
�

f;
p

�f 0 2 AC.IL/; f 0.0/ D 0; f 00 2 L2.IL/
±
:

Since � is piece-wise constant on .0;L/, the domain of Qh0 consists of compactly

supported functions f 2 L2
c.IL/ such that f 2 H 2.In/ for all n � 0 and also
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satisfying the following boundary conditions

f 0.0/ D 0I f .tnC/ D
r

snC1

sn�1

f .tn�/; f 0.tnC/ D
r

sn�1

snC1

f 0.tn�/;

for all n � 1. Denote the closure of Qh0 by zH. The operator zH has actively been

studied since its spectral properties play a crucial role in understanding spectral

properties of Kirchhoff Laplacians on radial metric trees (let us only mention

[6, 16]). It turns out that one can immediately apply most of the results from [6]

and [16] in order to prove the corresponding spectral properties of Kirchhoff

Laplacians on radially symmetric antitrees. However, we need the following

assumptions on the geometry of metric antitrees:

Hypothesis 8.1. There is a positive lower bound on the edge lengths,

`�.A/ WD inf
n�0

`n > 0;

and sphere numbers are such that

lim inf
n�0

snC2

sn

> 1: (8.1)

In this case clearly L D
P

n�0 `n D 1 and hence both operators H and Qh are

self-adjoint. The next result is the analog of [6, Theorem 2].

Theorem 8.2. Assume Hypothesis 8.1. If in addition

sup
n�0

`n D 1; (8.2)

then �.H/ D R�0 and �ac.H/ D ;.

Proof. By Theorem 3.5, it suffices to show that �.zH/ D R�0 and �ac.zH/ D ;
since zH D U�HU �1

� . However, the latter follows from [6, Theorem 6]. �

Moreover, using the results from [31, §4] and arguing as in the proof of [34,

Theorem 1] (see also [17, Theorem 5.20]), one can prove the following statement.

Theorem 8.3. Assume Hypothesis 8.1. If in addition

sup
n�0

snC2

sn

D 1; (8.3)

then �ac.H/ D ;.
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In contrast to radially symmetric trees, antitrees always have a rather rich point

spectrum (see Theorem 3.5). Moreover, under the assumptions of Hypothesis 8.1

this point spectrum is not a discrete subset, that is, it has finite accumulation points

(see Remark 5.3). On the other hand, similar to [6, Theorem 7], we can construct

a class of antitrees such that �.H/ is purely singular continuous. Moreover, it is

possible to show that under the assumption `�.A/ > 0 this situation is in a certain

sense typical (cf. [6, Theorems 4 and 8]). Let us only mention the following

Remling-type result (cf. [40, Theorem 1.1]).

Theorem 8.4. Assume Hypothesis 8.1. Also, assume that the sets ¹`nºn�0 and® snC2

sn

¯
n�0

are finite. Then �ac.H/ ¤ ; if and only if the sequence
®�

`n;
snC2

sn

�¯
n�0

is eventually periodic.

The proof is again omitted since it is analogous to that of [16, Theorem 5.1].

9. Absolutely continuous spectrum

The decomposition (3.18) shows that

�ac.H/ D �ac.H/ (9.1)

and both have multiplicity at most 1. The results of the previous section show that

antitrees with nonempty absolutely continuous spectrum is a rare event. Our main

aim in this section is to apply two recent results from [4] and [14] on the absolutely

continuous spectrum of Krein and generalized indefinite strings, respectively, in

order to construct several classes of antitrees with rich absolutely continuous

spectra, however, which are not eventually periodic in the sense of Theorem 8.4.

We begin with the following result.

Theorem 9.1. Let A be an infinite radially symmetric antitree such that

L D
X

n�0

`n D 1:

Also, let � be the function given by (3.4). If

X

n�0

� nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4

�
< 1; (9.2)

then �ac.H/ D R�0.
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Proof. We only need to use Theorem 2 from [4]. Indeed, as we know (see the

proof of Theorem 6.1), the operator H is unitarily equivalent to the Krein string

operator Qh given by (5.12)–(5.14). Applying now Theorem 2 from [4] to the

operator zH, after straightforward calculations the corresponding condition (1.9)

from [4] turns into (9.2). �

Remark 9.2. Let us mention that in Theorem 9.1, upon suitable modifications of

[4, Theorem 2], one can replace the intervals .n; n C 2/ by intervals In, n � 0

which “asymptotically” behave like .n; n C 2/ (actually, by intervals with lengths

uniformly bounded from above as well as by a positive constant from below and

satisfying a suitable overlapping property [5]), however, one has to replace 4 by a

square of the length of the corresponding interval:

X

n�0

� Z

In

�.x/dx

Z

In

dx

�.x/
� jInj2

�
< 1: (9.3)

Let us first demonstrate the above result by considering an example of equilat-

eral antitrees and then we shall extend it to a much wider setting (see Theorem 9.6

below).

Corollary 9.3 (equilateral antitrees). Let A be an infinite radially symmetric

antitree with `n D ` > 0 for all n � 0. If

X

n�0

�snC2

sn

� 1
�2

< 1; (9.4)

then �ac.H/ D R�0.

Proof. Setting In D .`n; `.n C 2//, n � 0, straightforward calculations show that

Z

In

�.x/dx

Z

In

dx

�.x/
� jInj2

D .snsnC1 C snC1snC2/
� 1

snsnC1

C 1

snC1snC2

�
`2 � 4`2

D .snC2 C sn/2

snsnC2

`2 � 4`2 D `2 .snC2 � sn/2

snsnC2

D `2 sn

snC2

�snC2

sn

� 1
�2

:

Theorem 9.1 and Remark 9.2 complete the proof. �
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Remark 9.4. First of all, Corollary 9.3 demonstrates that (8.1) is essential for the

results of Section 8. Let us also mention that it is possible to show by using the

results of [31, §4.2] that the stronger condition

X

n�0

ˇ̌
ˇsnC2

sn

� 1
ˇ̌
ˇ < 1 (9.5)

holds exactly when the operator Qh considered in Section 8 is a trace class pertur-

bation (in the resolvent sense) of the free Hamiltonian � d2

dx2 acting in L2.RC/

and hence in this case the Birman–Krein theorem implies �ac.H/ D R�0. How-

ever, equation (9.5) does not hold already for polynomially growing equilateral

antitrees, e.g., take sn D n C 1 (see also Section 10.2). Moreover, (9.4) is equiv-

alent to the fact that Qh is a Hilbert–Schmidt class perturbation (in the resolvent

sense) of the free Hamiltonian.

The rather strong assumption that A is equilateral can indeed be replaced by

`�.A/ > 0. In order to do this, it will turn out useful to rewrite (9.2). Let

M WD ran.�/ D ¹snsnC1W n 2 Z�0º (9.6)

be the image of the function � defined in (3.4). For every s 2 M, we set

Is WD ��1.¹sº/ D ¹x 2 Œ0; 1/W �.x/ D sº; (9.7)

that is, Is is the preimage of ¹sº 2 M with respect to �.

Lemma 9.5. Let A be an infinite radially symmetric antitree with L D 1. Then

X

n�0

� nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4

�
D 1

2

X

n�0

X

s2M

X

�¤s

jIn
s jjIn

� j.s � �/2

s�
; (9.8)

where jIn
s j is the Lebesgue measure of In

s WD Is \ .n; n C 2/.

Proof. For every fixed n 2 Z�0, we clearly have

nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
D

� X

s2M
sjIn

s j
�� X

�2M

1

�
jIn

� j
�

D
X

s2M

X

�¤s

jIn
s jjIn

� j s

�
C

X

s2M
jIn

s j2

D 1

2

X

s2M

X

�¤s

jIn
s jjIn

� j
��

s
C s

�

�
C

X

s2M
jIn

s j2:
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Moreover, by construction X

s2M
jIn

s j D 2; (9.9)

and hence

X

s2M
jIn

s j2 � 4 D
X

s2M
jIn

s j.jIn
s j � 2/ D �

X

s2M

X

�¤s

jIn
s jjIn

� j:

Combining the last two equalities, we get

nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4 D 1

2

X

s2M

X

�¤s

jIn
s jjIn

� j
��

s
C s

�
� 2

�

D 1

2

X

s2M

X

�¤s

jIn
s jjIn

� j.s � �/2

s�
;

which completes the proof. �

Theorem 9.6. Let A be an infinite radially symmetric antitree with sphere num-

bers satisfying (9.4). If

`�.A/ D inf
n�0

`n > 0;

then �ac.H/ D R�0.

Proof. Suppose `�.A/ � 2. Then, by Lemma 9.5, for every n 2 Z�0, we get

nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4 D 1

2

X

s2M

X

�¤s

jIn
s jjIn

� j.s � �/2

s�

�
X

s2Mn

X

�¤s

jIn
� j.s � �/2

s�
;

where Mn WD �..n; n C 2// D ¹skskC1W .n; n C 2/ \ Ik ¤ ¿º. Since `k � 2 for

all k � 0 by assumption, � is either constant on .n; n C 2/ or attains precisely

two different values. In the first case, the right-hand side is equal to zero. In the

second, we obviously get the estimate

nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4 � 2

X

tk2.n;nC2/

.skC1 � sk�1/2

sk�1skC1

:
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Thus we end up with the following bound

X

n�0

� nC2Z

n

�.x/dx

nC2Z

n

dx

�.x/
� 4

�
� 2

X

n�0

X

tk2.n;nC2/

.skC1 � sk�1/2

sk�1skC1

� 4
X

n�0

.snC2 � sn/2

snsnC2

< 1;

which proves the claim by applying Theorem 9.1.

It remains to note that the general case `�.A/ > 0 can be reduced to the one

with `�.A/ � 2 by using the standard scaling argument (see also Remark 9.2). �

In fact, one can extend the above result to the case when lengths do not admit

a strictly positive lower bound. However, in this case one has to modify (9.4) in

an appropriate way.

Lemma 9.7. Let A be an infinite radially symmetric antitree with L D 1. Also,

let `n � 1 for all n � 0 and `n D o.1/ as n ! 1. If ¹snºn�0 is a nondecreasing

sequence such that
X

n�0

�sm.nC2/

sm.n/

� 1
�2

< 1; (9.10)

then �ac.H/ D R�0.

Here for each n 2 Z�0 the natural number m.n/ is defined by

tm.n/ � n < tm.n/C1; tn D
n�1X

kD0

`k : (9.11)

Proof. Set

In WD .tm.n/; tm.nC2/C1/; n � 0:

By construction .n; n C 2/ � In for all n � 0 and jIn n .n; n C 2/j D o.1/ as

n ! 1. Thus, by Theorem 9.1 and Remark 9.2, it suffices to show that

X

n�0

�tm.nC2/C1Z

tm.n/

�.x/dx

tm.nC2/C1Z

tm.n/

dx

�.x/
� .tm.nC2/C1 � tm.n//

2

�

„ ƒ‚ …
DWRn

< 1: (9.12)
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Since � is given by (3.4), we get

Rn D
m.nC2/X

kDm.n/

skskC1`k

m.nC2/X

kDm.n/

`k

skskC1

�
�m.nC2/X

kDm.n/

`k

�2

D
m.nC2/X

k;j Dm.n/

`k j̀

� sj sj C1

skskC1

� 1
�

D
X

m.n/�k<j �m.nC2/

`k j̀

.sj sj C1 � skskC1/2

skskC1sj sj C1

�
X

m.n/�k<j �m.nC2/

`k j̀

.s2
m.nC2/C1

� s2
m.n/

/2

s4
m.n/

. sup
k�0

jIk j2
�s2

m.nC2/

s2
m.n/

� 1
�2

.
�sm.nC2/

sm.n/

� 1
�2

for all n � 0 if
sm.nC2/

sm.n/
D 1 C o.1/. �

Remark 9.8. In fact, the assumptions on lengths that `n � 1 for all n � 0 and

`n D o.1/ as n ! 1 as well as monotonicity of sphere numbers are superfluous

and we need them for simplicity only. Of course, one can considerably weaken

them, however, the analysis becomes more involved and cumbersome.

We finish this section with another result based on [14], which also allows to

construct antitrees with absolutely continuous spectrum supported on R�0.

Theorem 9.9. Let A be an infinite radially symmetric antitree such that both

vol.A/ D 1 and L� D 1. If there are constants a 2 R and b 2 R>0 such

that
LZ

0

1

�.x/

ˇ̌
ˇ̌

xZ

0

�
�.s/ � b

�.s/

�
ds � a

ˇ̌
ˇ̌
2

dx < 1; (9.13)

where � is given by (3.4), then �ac.H/ D R�0.

Proof. As in the proof of Theorem 9.1, we know that the operator H is unitarily

equivalent to the operator zH. By Theorem 3.1 from [14], �ac.zH/ D Œ0; 1/ if there

are constants a 2 R and b 2 R>0 such that

1Z

0

jM.x/ � a � bxj2 dx < 1;

where M is defined by (6.6). Straightforward calculations finish the proof. �
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Remark 9.10. For a string operator defined by (5.12), Theorem 9.1 and Theo-

rem 9.9 also imply that the entropy, respectively, some sort of relative entropy

of the corresponding spectral measure is finite (see [4] for details). However, the

meaning of this fact for the corresponding quantum graph operator H is unclear

to us.

10. Examples

10.1. Exponentially growing antitrees. Fix ˇ 2 Z�2 and let Aˇ be the antitree

with sphere numbers sn D ˇn, n � 0 (cf. [32, Example 8.6]). Suppose that

¹`nºn�0 are the lengths. Notice that

vol.Aˇ / D
X

n�0

ˇ2nC1`n: (10.1)

Then the basic spectral properties of the corresponding quantum graph operator

are contained in the following proposition.

Proposition 10.1. Let Hˇ be the quantum graph operator associated with the

antitree Aˇ .

(i) The operator Hˇ is self-adjoint if and only if the series in (10.1) diverges.

(ii) If vol.Aˇ / < 1, then deficiency indices of Hˇ are equal to 1. Moreover, the

spectra of self-adjoint extensions of Hˇ are purely discrete and eigenvalues

admit the standard Weyl asymptotic (5.1).

Assume in addition that vol.Aˇ / D 1.

(iii) The spectrum of Hˇ is purely discrete if and only if `n D o.1/ as n ! 1.

(iv) The resolvent of Hˇ belongs to the trace class if and only if

X

n�0

ˇ2n`2
n < 1: (10.2)

(v) Hˇ is positive definite if and only if supn�0 `n < 1. Moreover, in this case

1

4C
� �0.Hˇ / � 1

C
;

1

4Cess
� �ess

0 .Hˇ / � 1

Cess
; (10.3)

where

sup
n�0

nX

kD0

ˇ2k`k

X

k�nC1

`k

ˇ2k
� C � sup

n�0

nX

kD0

ˇ2k`k

X

k�n

`k

ˇ2k
; (10.4)
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and

lim
m!1

sup
n�m

nX

kDm

ˇ2k`k

X

k�nC1

`k

ˇ2k
� Cess � lim

m!1
sup
n�m

nX

kDm

ˇ2k`k

X

k�n

`k

ˇ2k
:

(10.5)

Proof. Items (i) and (ii) follow from Theorem 4.1 and Corollary 5.1.

(iii) Applying Theorem 5.4 (see also Remark 5.5), we only need to show that

`n D o.1/ as n ! 1 is sufficient for the discreteness. Indeed, we can estimate

nX

kD0

ˇ2k`k

X

k�n

`k

ˇ2k

� `�.Aˇ / sup
k�n

`k

nX

kD0

ˇ2k
X

k�n

1

ˇ2k

D `�.Aˇ / sup
k�n

`k

ˇ2nC2 � 1

ˇ2nC2

� ˇ2

ˇ2 � 1

�2

<
`�.Aˇ /

.1 � ˇ�2/2
sup
k�n

`k;

(10.6)

where `�.Aˇ / D supn�0 `n. Hence (5.9) is satisfied if `n D o.1/.

(iv) Clearly, (10.2) coincides with condition (i) of Theorem 5.6 and hence

it is necessary. Applying the Cauchy–Schwarz inequality, we get the following

estimate:

X

n�0

`n

snsnC1

n�1X

kD0

skskC1`k D
X

n�0

`n

ˇ2n

n�1X

kD0

ˇ2k`k

�
X

n�0

`n

ˇ2n

� n�1X

kD0

ˇ2k`2
k

n�1X

kD0

ˇ2k
�1=2

D
X

n�0

`n

ˇ2n

�ˇ2n � 1

ˇ2 � 1

n�1X

kD0

ˇ2k`2
k

�1=2

<
X

n�0

`n

ˇn

� n�1X

kD0

ˇ2k`2
k

�1=2

<
`�.Aˇ /

1 � ˇ�1

� X

k�0

ˇ2k`2
k

�1=2

:

Therefore, (10.2) implies condition (ii) of Theorem 5.6, which proves the claim.

(v) immediately follows from (10.6), Theorem 6.1, Theorem 6.3 and Re-

mark 6.2. �
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Remark 10.2. (i) Both the discreteness and uniform positivity criteria for Hˇ

were obtained in [32, Example 8.6]. Notice that these results are a consequence

of the positivity of the combinatorial isoperimetric constant in this case (see [32]).

Moreover, using the rough estimate (10.6), one would be able to recover the lower

bounds (8.9) and (8.10) from [32].

(ii) It is impossible to apply Theorem 9.1 and Theorem 9.9 to Aˇ (this either

can be seen from Proposition 10.1(v) or one can prove that both conditions (9.2)

and (9.13) are always violated if sphere numbers grow exponentially).

(iii) Since the sphere numbers of Aˇ satisfy

snC2

sn

D ˇ2

for all n � 0, we can apply the results of Section 8. Namely, under the additional

assumption `�.Aˇ / > 0, we conclude that the absolutely continuous spectrum

of H is in general empty. In particular, it is always the case if `�.Aˇ / D 1
(Theorem 8.2). Moreover, assuming that ¹`nºn�0 is a finite set, by Theorem 8.4,

�ac.H/ ¤ ; would imply that the sequence ¹`nºn�0 is eventually periodic.

(iv) Notice that the isoperimetric constant is given by (see (7.3))

1

˛.Aˇ /
D sup

n�0

1

ˇ2n

nX

kD0

ˇ2k`k :

10.2. Polynomially growing antitrees. Fix q 2 Z�1 and let Aq be the antitree

with sphere numbers sn D .nC1/q, n � 0 (the case q D 1 is depicted in Figure 1).

Suppose that ¹`nºn�0 are the lengths. Notice that

vol.Aq/ D
X

n�0

.n C 1/q.n C 2/q`n: (10.7)

Then the basic spectral properties of the corresponding quantum graph operator

are contained in the following proposition.

Proposition 10.3. Let Hq be the quantum graph operator associated with the

antitree Aq .

(i) The operator Hq is self-adjoint if and only if
X

n�0

n2q`n D 1: (10.8)

(ii) If the series in (10.8) converges, then deficiency indices of Hq are equal to 1.

Moreover, the spectra of self-adjoint extensions of Hq are purely discrete and

eigenvalues admit the standard Weyl asymptotic (5.1).
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Assume in addition that (10.8) is satisfied, that is, Hq is self-adjoint.

(iii) The spectrum of Hq is purely discrete if and only if

lim
n!1

nX

kD0

k2q`k

X

k�n

`k

k2q
D 0: (10.9)

In particular, the spectrum is purely discrete if `n D o.n�1/ as n ! 1.

(iv) The resolvent of Hq belongs to the trace class if and only if

X

n�0

n2q`2
n < 1: (10.10)

(v) Hq is positive definite if and only if

sup
n�1

nX

kD0

k2q`k

X

k�n

`k

k2q
< 1: (10.11)

In particular, �0.Hq/ > 0 if `n D O.n�1/ as n ! 1.

(vi) If `�.Aq/ > 0, then �ac.H
q/ D R�0.

Proof. (i) and (ii) follow immediately from Theorem 4.1 and Corollary 5.1 since

vol.Aq/ D 1 exactly when (10.8) is satisfied.

(iii) Applying Theorem 5.4 (see also Remark 5.5), we conclude that in the

case (10.8), the operator H has purely discrete spectrum if and only if

lim
n!1

nX

kD0

.k2 C 3k C 2/q`k

X

k�n

`k

.k2 C 3k C 2/q
D 0:

It is not difficult to show that the latter is equivalent to (10.9). Moreover, (10.9)

holds true whenever `n D o.n�1/ as n ! 1 since

nX

kD0

k2q�1 D n2q

2q
.1 C o.1//;

X

k�n

1

k2qC1
D n�2q

2q
.1 C o.1//:
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(iv) First observe that (5.18) is equivalent to (10.10). Moreover, (10.10) implies

also (5.19). Indeed, we get

X

n�0

`n

.n2 C 3n C 2/q

n�1X

kD0

.k2 C 3k C 2/q`k

<
X

n�0

`n

.n C 1/2q

n�1X

kD0

.k C 2/2q`k

�
X

n�0

`n

.n C 1/2q

� n�1X

kD0

.k C 2/2q`2
k

n�1X

kD0

.k C 2/2q
�1=2

.
X

n�0

`n

.n C 1/2q

�
.n C 1/2qC1

n�1X

kD0

.k C 2/2q`2
k

�1=2

<
� X

k�0

.k C 2/2q`2
k

�1=2 X

n�0

`n

.n C 1/q�1=2

<
X

k�0

.k C 2/2q`2
k

� X

n�1

1

n4q�1

�1=2

;

where the second and the last inequalities we obtained by applying the Cauchy–

Schwarz inequality. It remains to use Theorem 5.6.

(v) follows by applying Theorem 6.1 (see also Remark 6.2).

(vi) Since

X

n�0

�snC2

sn

� 1
�2

D
X

n�1

�.n C 2/q

nq
� 1

�2

.
X

n�1

1

n2
D �2

6
;

the claim is immediate from Theorem 9.6. �

Remark 10.4. A few remarks are in order.

(i) The antitree Aq and the corresponding Kirchhoff Laplacian H have been

considered in [32, Example 8.7]. The analysis of spectral properties (in

particular, spectral estimates) is a rather delicate task in this case since

the combinatorial isoperimetric constant of Aq is equal to 0. We were

able to describe basic spectral properties of Hq only due to the presence

of radial symmetry. Spectral properties of Kirchhoff Laplacians without

radial symmetry seems to be a rather complicated problem – even the self-

adjointness problem (modulo some recent criteria obtained in [17]) is unclear

to us at the moment.
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(ii) It can be demonstrated by examples that the conditions `n D o.n�1/ (resp.,

`n D O.n�1/) as n ! 1 are not necessary for the discreteness (resp.,

positivity). However, they are in a certain sense sharp (see [32, Lemma 8.9]

and also Example 10.6 below).

(iii) Since snC2 D sn.1 C o.1//, we can’t apply the results of Section 8 (see

Hypothesis 8.1). Moreover, Proposition 10.3(vi) shows that in general Hq has

absolutely continuous spectrum supported on R�0. However, Theorem 9.1

is a consequence of [4, Theorem 2], which allows a presence of a rather rich

singular (continuous) spectrum.

We can also improve Proposition 10.3(vi) by allowing arbitrarily small lengths.

Corollary 10.5. Suppose `n � 1 for all n � 0 and `n D o.1/ as n ! 1. If

X

n�0

�m.n C 2/

m.n/
� 1

�2

< 1; (10.12)

then �ac.H
q/ D R�0. Here m.n/ is defined as in Lemma 9.7.

Proof. We need to apply Lemma 9.7 and notice that in this case

sm.nC2/

sm.n/

� 1 D
�m.n C 2/ C 1

m.n/ C 1

�q

� 1 � m.n C 2/

m.n/
� 1;

as n ! 1. �

Example 10.6. Fix s � 0. Let the lengths of the metric antitree Aq be given by

`n D 1

.n C 1/s
; n � 0: (10.13)

Denote the corresponding Kirchhoff Laplacian by Hq;s . Applying Proposi-

tion 10.3 and Corollary 10.5, we end up with the following description of the

spectral properties of Hq;s .

Corollary 10.7. (i) Hq;s is self-adjoint if and only if s 2 Œ0; 2q C1�. If s > 2q C1,

then then deficiency indices of Hq;s are equal to 1. Moreover, in this case the

spectra of self-adjoint extensions H
q;s

�
of Hq;s are purely discrete and eigenvalues

admit the standard Weyl asymptotic

lim
�!1

N.�I H
q;s

�
/

p
�

D 1

�

qX

kD0

�
q

k

�
�.s � 2q C k/; (10.14)

where � is the Riemann zeta function.
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Assume in addition that s 2 Œ0; 2q C 1�, that is, Hq is self-adjoint.

(ii) The spectrum of Hq;s is purely discrete if and only if s 2 .1; 2q C 1�.

Moreover, the resolvent of Hq;s belongs to the trace class if and only if s 2
.q C 1=2; 2q C 1�.

(iii) Hq;s is positive definite if and only if s 2 Œ1; 2q C 1�.

(iv) If s 2 Œ0; 1/, then �ac.H
q;s/ D R�0.

We leave its proof to the reader and finish this section with a few remarks.

Remark 10.8. Corollary 10.7 complements the results obtained in [32, Exam-

ple 8.7]. Moreover, items (ii) and (iii) demonstrate sharpness of sufficient condi-

tions obtained in Proposition 10.3(iii) and (v). Let us only mention that the ques-

tion on the structure of the essential spectrum of Hq;1 as well as on the structure

of the singular spectrum of Hq;s with s 2 Œ0; 1� remains open.

Remark 10.9. In conclusion let us mention that choosing slightly different lengths

`n D .n C 1/q�s

.n C 2/q
; n � 0;

and denoting the corresponding operator by �Hq;s, we obtain

lim
�!1

N.�I �Hq;s

�
/

p
�

D 1

�
�.s � 2q/; s > 2q C 1: (10.15)
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