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1. Introduction

For a real-valued function q that is integrable on the line, we denote by Tq the self-

adjoint Schrödinger operator in the Hilbert space L2.R/ given by the differential

expression

tq.f / WD �f 00 C qf

on the maximal domain. It is well known (see e.g., [15, Chapter 15], [13]) that

for every such q the absolutely continuous spectrum of Tq coincides with the non-

negative half-line RC and there is no singular continuous spectrum. Moreover,

to every non-zero k2 2 RC there correspond the right and left Jost solutions of

the equation tq.f / D k2f that are asymptotic to e˙ikx at ˙1 respectively [1].

These Jost solutions allow one to introduce the right and left reflection coefficients

r˙.�I q/, which turn out to be continuous functions on R0 WD R n ¹0º (see the next

section).

Next, the discrete part of the spectrum of Tq consists of at most countably

many simple negative eigenvalues with the only possible accumulation point at

the origin. We denote these eigenvalues by

��2
1 < � � � < ��2

N < 0

with N D 0 when the discrete spectrum is empty and N D 1 when it is

countable. It will be convenient to assume that N D 1 by formally setting
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�N C1 D �N C2 D � � � D 0 otherwise. In this way every real-valued summable

potential q generates a sequence �.�I q/WN ! Œ0; 1/ with the following three

properties:

(1) �.j I q/ > 0 implies that �.j I q/ > �.j C 1I q/;

(2) if �.j I q/ D 0, then �.j C 1I q/ D 0;

(3) the set ¹��2.j I q/ j j 2 N; �.j I q/ > 0º coincides with the negative spec-

trum of the operator Tq.

The pioneering paper of Gardner, Green, Kruskal, and Miura [3] of 1967 on

solvability of the Korteweg–de Vries (KdV) equation by the method of inverse

scattering transform for the related family of the Schrödinger operators motivated

the increasing interest in spectral theory of the latter. Later, those authors dis-

covered [9] that the KdV equation possesses a series of conservation laws and

constants of motions, and then Faddeev and Zakharov in their famous paper [2]

of 1971 interpreted KdV as a Hamiltonian system and showed that the conserva-

tion laws are the first integrals of that system. Also, they expressed the conserved

quantities of the KdV equation via the spectral characteristics of the Schrödinger

operators in the form of so called trace formulae. The first of these trace formulae

reads

� 4

N
X

j D1

�.j I q/ C
1

�

Z

R

log.1 � jr˙.kI q/j2/�1 dk D

Z

R

q.x/ dx (1.1)

and thus relates the potential q of the Schrödinger operator Tq and its scatter-

ing characteristics—eigenvalues and the reflection coefficients. Although the ini-

tial proof was for real-valued q from the Schwartz class of infinitely smooth and

rapidly decaying functions, in their paper [4] Gesztesy and Holden showed, among

many other important results, that (1.1) holds also if q is a real-valued potential

belonging to the space L1.R; .1 C jxj/"dx/ for some positive ". Our main aim in

this note is to prove that the first trace formula takes place for all real-valued inte-

grable potentials; this result will be used in our further research of reflectionless

potentials and generalized soliton solutions of KdV.

In what follows, we shall denote by Q1 the set of all real-valued functions

in L1.R/ considered as a real Banach space with the L1-norm. Then, in virtue

of the Lieb–Thirring inequality [7] (with the case under consideration proved by

Weidl [14] and the exact constant established by Hundertmark at al. [5]), we have

1
X

j D1

�.j I q/ �
1

2
kqkL1

; q 2 Q1; (1.2)



Trace formula for Schrödinger operators 491

i.e., �.�I q/ 2 `1.N/ for every potential q 2 Q1. Observe also that jr˙.kI q/j < 1

on R0 for such q, whence the function

h.�I q/ WD log.1 � jr˙.kI q/j2/�1

is non-negative a.e. on R. Combining (1.2) and (1.1), we conclude that under

the additional assumptions of the paper [4], the function h.�I q/ belongs to the

space Q1 and, moreover,

kh.�I q/kL1
� 3�kqkL1

:

Our main results are given by the following theorem:

Theorem 1.1. The mappings

Q1 3 q 7�! �.�I q/ 2 `1.N/; Q1 3 q 7�! h.�I q/ 2 Q1 (1.3)

are continuous; moreover, the first trace formula (1.1) holds true for all q 2 Q1.

The paper is organized as follows. In Section 2, we study properties of the Jost

solutions of the equation �y00 C qy D z2y for complex z and establish behaviour

of the scattering coefficient a near the origin. In Section 3 some special properties

of the Blaschke products and Cauchy integrals are established and, finally, in

Section 4 we give the proof of Theorem 1.1.

Notations. Throughout the paper, we denote by CC the open upper-half complex

plane and by xCC its closure. The symbols ˙ appearing in a statement are meant to

denote two separate statements, one with the sign C and the other with the sign �.

As usual, k � k1 is the norm of L1.R/; recall that Q1 will denote the subset of all

real-valued functions in L1.R/ considered as a real Banach space with norm k�k1.

Finally, to simplify the notations, we shall denote by r D r.�I q/ the right reflection

coefficient rC.�I q/ corresponding to q 2 L1.R/.

2. Jost solutions

Existence of the Jost solutions for the Schrödinger operator Tq along with some

useful estimates was established e.g. in [1]; note that although the authors imposed

therein more restrictive assumptions on the potentials, only integrability of q was

used to derive some of the results. We collect them here since we need slightly

more general formulations to study continuous dependence on the potential q, in

order to set up the notations needed throughout the paper, and for the convenience

of the reader.
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Definition 2.1. Assume that q 2 L1.R/ and � 2 xCC. Solutions eC.�; �/ D

eC.�; �I q/ and e�.�; �/ D e�.�; �I q/ of the equation

� f 00 C qf D �2f (2.1)

are called respectively its right and left Jost solutions if they satisfy the asymptotic

relations

e�i�xe˙.x; �/ D 1 C o.1/; x ! ˙1:

Remark 2.2. Assume that q 2 L1.R/ and that q] satisfies the relation q].x/ D

q.�x/ for x 2 R. It then follows from definition that e�.x; �I q/ D eC.�x; �I q]/.

For this reason, it only suffices to study the right Jost solutions. To simplify the

notations, we shall write e.x; �/ instead of eC.x; �I q/ whenever no confusion can

arise.

As in [1], one shows that the function m.x; �/ WD e�i�xe.x; �/ satisfies the

differential equation

m00 C 2i�m0 D q.x/m

as well as the integral equation

m.x; �/ D 1 C

1
Z

x

D.t � x; �/q.t/m.t; �/ dt (2.2)

with

D.y; �/ WD
1

2i�
.e2i�y � 1/

for y > 0 and D.y; �/ D 0 otherwise. Thus to construct the Jost solution e.�; �/,

it is sufficient to solve the above integral equation for m.

Denote by X the Banach space L1.R/ with the standard supremum norm

k � k1 and by B.X / the Banach algebra of all linear continuous operators acting

in X . Next, set

�" WD ¹z 2 xCC j jzj > "º; " � 0;

and introduce for q 2 L1.R/ and � 2 �" an integral operator Dq;� in X via

.Dq;�f /.x/ D

1
Z

x

D.t � x; �/q.t/f .t/ dt; x 2 R:
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Lemma 2.3. For every q 2 L1.R/ and � 2 �0, the operator Dq;� is quasi-

nilpotent in B.X / and

kDn
q;�k �

1

nŠ

�kqk1

j�j

�n

; n 2 N: (2.3)

Moreover, for a fixed q 2 L1.R/ the function �0 3 � 7! Dq;� 2 B.X / is analytic

in CC and continuous in �0.

Proof. Since

jD.y; �/j � j�j�1; y � 0; � 2 �0;

for every f 2 X , q 2 L1.R/, and � 2 �0 we get

jDq;�f .x/j �
kf k1

j�j

1
Z

x

jq.t/j dt; (2.4)

so that

kDn
q;�k �

Z

tn�����t1

j�j�njq.t1/j : : : jq.tn/j dt1 : : : dtn D
1

nŠ

�kqk1

j�j

�n

: (2.5)

Therefore, Dq;� is quasi-nilpotent.

Taking into account that for every " > 0 there exists C" > 0 such that

ˇ

ˇ

ˇ

d

d�
D.y; �/

ˇ

ˇ

ˇ
� C"

for all y � 0 and all � 2 �", we conclude that the function � 7! Dq;� is analytic

in CC. Finally, continuity of the mapping � 7! D.�; �/ from �0 onto X implies

that the function � 7! Dq;� is continuous on �0 by virtue of the estimate similar

to (2.4). �

Denote by I the identity operator in B.X /; the above lemma implies that the

operator I � Dq;� is boundedly invertible in B.X / for suitable q and �. Set

mq.�; �/ WD .I � Dq;�/�1m0; q 2 L1.R/; � 2 �0; (2.6)

with m0 � 1 2 X ; then the function mq satisfies equation (2.2) and thus is related

to the right Jost solution e. � ; �/. We start by establishing some bounds on mq .
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Lemma 2.4. Assume that q 2 L1.R/. Then the function �0 3 � 7! mq.�; �/ 2 X

is analytic in the half-plane CC and continuous on �0. In particular, for every

� 2 �0

kmq.�; �/k1 � exp¹kqk1=j�jº; (2.7a)

kmq.�; �/ � 1k1 �
kqk1

j�j
exp¹kqk1=j�jº: (2.7b)

Moreover, if q; Qq 2 L1.R/ and kqk1; k Qqk1 � ˛ .˛ > 0/, then

kmq.�; �/ � mQq.�; �/k1 � exp¹.2˛=j�j/º
kq � Qqk1

j�j
; � 2 �0: (2.8)

Proof. The fact that the function � 7! mq.�; �/ is analytic in CC and continuous

in �0 follows from Lemma 2.3. Next, on account of (2.3) and the equality

.I � Dq;�/�1 D
P1

nD0 D
n
q;�

, one gets

k.I � Dq;�/�1k �

1
X

nD0

1

nŠ

�kqk1

j�j

�n

D exp¹kqk1=j�jº; (2.9)

which in view of (2.6) produces the bounds (2.7) in a straightforward manner.

Now the second resolvent identity

.I � Dq;�/�1 � .I � D Qq;�/�1 D .I � Dq;�/�1.Dq;� � D Qq;�/.I � D Qq;�/�1

on account of (2.6), (2.5), and (2.9) results in the estimate

kmq.�; �/ � mQq.�; �/k1 � k.I � Dq;�/�1k k.I � D Qq;�/�1k kDq�Qq;�k

� exp¹.2˛=j�j/ºkDq�Qq;�k

� exp¹.2˛=j�j/º
kq � Qqk1

j�j
:

The proof is complete. �

Corollary 2.5. For every q 2 L1.R/ and � 2 �0, the function ei�xmq.x; �/ is

the right Jost solution e.x; �I q/ of equation (2.1). Moreover, as x ! C1,

e0.x; �I q/ D i�ei�x C o.1/:

Proof. In view of (2.2), the function ei�xmq.x; �/ DW h.x/ for � 2 �0 satisfies

the equality

h.x/ D ei�x C

1
Z

x

sin �.t � x/

�
q.t/h.t/ dt; x 2 R: (2.10)
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Direct verification shows that h solves (2.1) and obeys the required asymptotics

and thus is the right Jost solution e.x; �I q/ of (2.1). Differentiating (2.2) in x, we

find that

m0
q.x; �/ D �

1
Z

x

e2i�.t�x/q.t/mq.t; �/ dt D o.1/

as x ! C1. Therefore,

e0.x; �I q/ � i�e.x; �I q/ D ei�xm0
q.x; �/ D o.1/

as x ! C1, which completes the proof. �

Denote by A the set of all functions that are analytic in CC and continuous

and bounded in �" for every " > 0. Further, let C denote the set of all continuous

complex-valued functions on R0 WD Rn¹0º that are bounded on R" WD Rn .�"; "/

for every " > 0. The sets A and C are endowed with the topology of uniform

convergence on compact sets of �0 and R0 respectively.

Lemma 2.6. For every q 2 L1.R/ and � 2 R0,

e.x; �I q/ D a.�; q/ei�x C b.�; q/e�i�x C o.1/; x ! �1; (2.11)

where

a.�; q/ WD 1 �
1

2i�

1
Z

�1

q.t/mq.t; �/ dt; � 2 �0; (2.12)

and

b.�; q/ WD
1

2i�

1
Z

�1

e2i�t q.t/mq.t; �/ dt; � 2 R0: (2.13)

Moreover, formulae (2.12) and (2.13) define continuous mappings

L1.R/ 3 q 7�! a.�; q/ 2 A; L1.R/ 3 q 7�! b.�; q/ 2 C: (2.14)

Proof. Rewriting the equality (2.10) in the form

e.x; �I q/ D ei�x �
ei�x

2i�

1
Z

x

q.t/mq.t; �/ dt C
e�i�x

2i�

1
Z

x

e2i�t q.t/mq.t; �/ dt;

we arrive at (2.11).

Continuity of the mappings of (2.14) is a direct corollary of Lemma 2.4. �
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Remark 2.7. As is known from the classical scattering theory [8, Chapter 3.5],

for potentials q from the Faddeev–Marchenko class

Q1;1 WD

²

q 2 Q1

ˇ

ˇ

ˇ

ˇ

Z

R

.1 C jxj/jq.x/j dx < 1

³

we have the identity

ja.�; q/j2 � jb.�; q/j2 D 1; � 2 R0: (2.15)

Since the set Q1;1 is everywhere dense in Q1, continuity of the mappings (2.14)

yields the identity (2.15) for all q 2 Q1. This also implies that the mappings

Q1 3 q 7�! r�.�; q/ WD
b.k; q/

a.�; q/
2 C;

Q1 3 q 7�! h.�; q/ WD log.1 � jr�.�; q/j2// 2 C

are continuous.

As usual, we denote by logC the positive part of log, i.e., for positive x we set

logC.x/ D log x if log x > 0 and logC.x/ D 0 otherwise. The main result of this

section is the following theorem.

Theorem 2.8. Assume that q 2 Q1; then

logC ja.�I q/j D o.��1/; CC 3 � ! 0: (2.16)

Proof. In view of (2.12), it suffices to prove that

logC¹kmq.�; �/k1º D o.��1/; CC 3 � ! 0I

according to (2.6), it is enough to show that

logC k.I � Dq;�/�1k D o.��1/; CC 3 � ! 0:

We fix q 2 L1.R/ and � 2 CC and introduce potentials qj WD �j q, j D 1; 2; 3,

where �j is the characteristic function of the following set Aj :

A1 WD .j�j�1; C1/; A2 WD Œ�j�j�1; j�j�1�; A3 WD .�1; �j�j�1/:

Observe that q D q1 C q2 C q3, so that

Dq;� D Dq1;� C Dq2;� C Dq3;�:
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In addition, it follows that

Dq1;� Dq2;� D Dq1;� Dq3;� D Dq2;� Dq3;� D 0;

yielding the relations

.I � Dq;�/ D .I � Dq1;�/.I � Dq2;�/.I � Dq3;�/;

and

k.I � Dq;�/�1k � k.I � Dq1;�/�1k k.I � Dq2;�/�1k k.I � Dq3;�/�1k: (2.17)

Estimate (2.9) gives the bounds

k.I � Dq1;�/�1k � exp¹kq1k1=j�jº; (2.18a)

k.I � Dq3;�/�1k � exp¹kq3k1=j�jºI (2.18b)

but we shall bound the norm k.I � D�1
q2;�

/k in a different way.

Namely, for every � 2 �0 and u � 0 we have

ˇ

ˇ

ˇ

e2i�u � 1

2i�

ˇ

ˇ

ˇ D

ˇ

ˇ

ˇ

ˇ

u
Z

0

e2i�� d�

ˇ

ˇ

ˇ

ˇ

� u;

which yields the inequality

jD.t � x; �/j � t � x; x � t; � 2 �0:

As a result, for every n 2 N it holds that

kDn
q2;�k � Cn.�/

Z

…n;�

jq.t1/j � � � jq.tn/j dt1 : : : dtn � Cn.�/
kqkn

1

nŠ
;

where

…n;� WD ¹.t1; : : : ; tn/ 2 R
n j j�j�1 � t1 � � � � � tn � �j�j�1jº

and

Cn.�/ WD max
…n;�

j�j�1

n�1
Y

j D1

.tj � tj C1/:

Since the geometric mean is less than or equal to the arithmetic one, we conclude

that

Cn.�/ �
�3j�j�1

n

�n

;
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whence

k.I � Dq2;�/�1k �

1
X

nD0

kDn
q2;�k � 1 C

1
X

nD1

.3j�j�1kqk1/n

nnnŠ
:

Since

.2n/nnŠ � .2n/Š; n 2 N;

we find that

k.I � Dq2;�/�1k �

1
X

nD0

.3
p

kqk1=j�j/2n

.2n/Š
� exp¹3

p

kqk1=j�jº: (2.19)

Taking into account (2.17), (2.18), and (2.19), we conclude that

log k.I � Dq;�/�1k �
kq1k1 C kq3k1

j�j
C 3

p

kqk1=j�j

D
1

j�j

Z

jt j�j�j�1

jq.t/j dt C 3
p

kqk1=j�j D o.j�j�1/; CC 3 � ! 0:

The theorem is proved. �

3. Some auxiliary results

In this section, we shall establish several results on Blaschke products and Cauchy

integrals that will be used in the proof of the main theorem.

Denote by ƒ the set of all sequences � D .�n/n2N 2 `1.N/ such that

�n 2 CC [ ¹0º for every n 2 N. Every � 2 ƒ generates a Blaschke product

B.z; �/ WD

1
Y

nD1

z � �n

z � N�n

; z 2 CC:

The above product converges absolutely in CC in view of the inequality

ˇ

ˇ

ˇ

z � �n

z � N�n

� 1
ˇ

ˇ

ˇ �
2j�nj

j Im zj

and defines there a holomorphic function. Observe also that jB.z; �/j � 1 on CC

due to the inequality jz � �nj � jz � �nj holding for all n 2 N and all z 2 CC.

Lemma 3.1. Assume that � D .�n/n2N 2 ƒ and B WD B.�; �/. Then

lim
�!C0

�
Z

0

� log jB.�eit/j�1 dt D 0: (3.1)
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Proof. Standard arguments show that the quantity

ˇ WD sup
�2CC

�
Z

0

log
ˇ

ˇ

ˇ

eit � N�

eit � �

ˇ

ˇ

ˇ dt

is positive and finite. Therefore, for every � > 0 and j 2 N we have

�
Z

0

log
ˇ

ˇ

ˇ

�eit � N�j

�eit � �j

ˇ

ˇ

ˇ
dt � ˇ: (3.2)

When j�j j � �=2, we get the estimate

ˇ

ˇ

ˇ

�eit � N�j

�eit � �j

ˇ

ˇ

ˇ � 1 C
ˇ

ˇ

ˇ

�j � N�j

�eit � �j

ˇ

ˇ

ˇ � 1 C
4j�j j

�
;

so that
�

Z

0

� log
ˇ

ˇ

ˇ

�eit � N�j

�eit � �j

ˇ

ˇ

ˇ dt �

�
Z

0

4j�j j dt D 4�j�j j: (3.3)

Combining (3.2) and (3.3), we conclude that

�
Z

0

� log jB.�eit/j�1 dt D

1
X

j D1

�
Z

0

� log
ˇ

ˇ

ˇ

�eit � N�j

�eit � �j

ˇ

ˇ

ˇ
dt

� �ˇ
X

j W 2j�j j>�

1 C 4�
X

j W 2j�j j��

j�j j

D .ˇ C 2�/

1
X

j D1

min¹�; 2j�j jº D o.1/

as � ! C0 by the Lebesgue dominated convergence theorem. �

Lemma 3.2. Assume that �; � 2 ƒ; then the following inequality holds:

jB.z; �/ � B.z; �/j �
2k� � �k1

j Im zj
; z 2 CC: (3.4)

Proof. We introduce sequences �.n/ D .�
.n/
j /j 2N, n 2 N, via

�
.n/
j WD

´

�j if j < n;

�j if j � nI
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then

jB.z; �/ � B.z; �/j �

1
X

nD1

jB.z; �.n// � B.z; �.nC1//j; z 2 CC: (3.5)

The identity

z � �1

z � N�1

�
z � �2

z � N�2

D
�2 � �1

z � N�1

�
N�2 � N�1

z � N�1

z � �2

z � N�2

implies the following inequality for arbitrary z; �1; �2 2 CC:

ˇ

ˇ

ˇ

z � �1

z � N�1

�
z � �2

z � N�2

ˇ

ˇ

ˇ �
2j�1 � �2j

j Im zj
:

Therefore, for every n 2 N and every z 2 CC,

jB.z; �.n// � B.z; �.nC1//j �
2j�n � �nj

j Im zj
;

which on account of (3.5) results in (3.4). �

Lemma 3.3. Assume that .fn/n2N is a sequence of non-negative functions in

L1.R/ converging to f 2 L1.R/ almost everywhere. Assume also that there

exists a finite limit lim
n!1

kfnkL1
and that, for every " > 0, the sequence .fn/n2N

converges to f in the space L1.R"/. Then

lim
n!1

1
Z

�1

fn.x/

z � x
dx D



z
C

1
Z

�1

f .x/

z � x
dx; z 2 CC;

where  WD lim
n!1

kfnkL1
� kf kL1

is non-negative.

Proof. The fact that the number  is non-negative follows from Fatou’s lemma.

Next, for every k 2 N there exists an Nk 2 N with the property that

Z

jxj�1=k

jfn.x/ � f .x/j dx � 1
k

as soon as n � Nk . Taking Nk strictly increasing and setting "n WD 1
k

for

n 2 ŒNk ; NkC1/, we see that "n ! 0 as n ! 1 and that

lim
n!1

Z

jxj�"n

jfn.x/ � f .x/j dx D 0:
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Set �n WD .�"n; "n/ and �0
n WD R n �n. Then for every z 2 CC we get

Z

�n

fn.x/

z � x
dx D

1

z

Z

�n

fn.x/ dx C o.1/ D


z
C o.1/; n ! 1;

and

lim
n!1

Z

�0
n

fn.x/

z � x
dx D

1
Z

�1

f .x/

z � x
dx

yielding the statement of the lemma. �

4. Proof of the main result

We recall first some standard facts about the relations between the coefficient a

and the negative spectrum of the operator Tq (see e.g., [8, Chapter 3.5]). For

a potential q 2 Q1 and any nonzero k 2 R, the Jost solutions e�.�; kI q/ and

e�.�; �kI q/ form a fundamental system of solutions of the equation �f 00 C qf D

k2f . Comparing the asymptotics of both parts of (2.11) at �1 shows that

eC.x; kI q/ D a.kI q/e�.x; �kI q/ C b.kI q/e�.x; kI q/

and, therefore, the Wronskian

W.eC.x; kI q/; e�.x; kI q// WD e0
C.x; kI q/e�.x; kI q/ � eC.x; kI q/e0

�.x; kI q/

of eC. � ; kI q/ and e�. � ; kI q/ is equal to

a.kI q/W.e�.x; �kI q/; e�.x; kI q//:

As the Wronskian does not depend on x, letting x to �1 and using the asymptotics

of the Jost solution e� and its derivative (see Corollary 2.5) we find that

W.eC.x; kI q/; e�.x; kI q// D 2ika.kI q/:

Observe now that both parts of the above equality admit continuation to func-

tions that are analytic and bounded in CC and continuous in CC; therefore, the

above equality continues to hold in CC. It follows that if z is a zero of a.�I q/ in

CC, then the Jost solutions eC.�; zI q/ and e�.�; zI q/ are linearly dependent and

thus they exponentially decay as jxj ! 1. As a result, z2 is an eigenvalue of

the Schrödinger operator Tq with eigenfunction e˙.�I zI q/ and thus z2 is one of

��2.j I q/.
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Conversely, to each eigenvalue ��2.j I q/ < 0 of Tq there corresponds an

eigenfunction, i.e., a solution of (2.1) with �2 D ��2.j I q/ that is square inte-

grable on the whole real line. As the Schrödinger operator Tq with integrable

potential q is in the limit point case at ˙1, the only (up to a constant factor) solu-

tion of the equation �y00 C qy D ��2
j y that is square integrable at ˙1 is the Jost

solution e˙.�; i�.j I q/I q/. Therefore, the right Jost solution eC.�; i�j I q/ and the

left Jost solution e�.�; i�.j I q/I q/ must be collinear and thus a.i�.j I q/I q/ D 0.

The above reasoning identifies the numbers i�.j I q/ for which �.j I q/ > 0 as

zeros of the coefficient a.�I q/. Assume now that q0 2 Q1 and that j 2 N is such

that �.j I q0/ > 0. Then continuity of the mapping L1.R/ 3 q 7! a.�I q/ 2 A

(cf. Lemma 2.6) along with Rouche’s theorem imply that the mapping Q1 3 q 7!

�.j I q/ 2 A is continuous in some small neighbourhood of the point q0. We

next prove that the whole sequence �.�I q/ depends continuously on q in suitable

topology.

Lemma 4.1. The mapping Q1 3 q 7! �.�I q/ 2 `1.N/ is continuous.

Proof. Consider an arbitrary sequence .qn/n2N of potentials from Q1 that con-

verges to some q 2 Q1 in the L1-norm; we then prove that �.�I qn/ ! �.�I q/ as

n ! 1 in the `1-norm. Without loss of generality, we can assume that

kq � qnkL1
� 2�n; n 2 N; (4.1)

and introduce auxiliary sequences

q�
n WD q �

1
X

kDn

jq � qkj; qC
n WD q C

1
X

kDn

jq � qkj; n 2 N:

In virtue of (4.1), they both converge to q in the topology of Q1 and, moreover,

q�
n � q�

nC1 � q � qC
nC1 � qC

n ; q�
n � qn � qC

n ; n 2 N:

By the minimax principle [10, Chapter XIII.1], for every j 2 N and n 2 N we get

�.j; qC
n / � �.j; qC

nC1/ � �.j; q/ � �.j; q�
nC1/ � �.j; q�

n /

and

�.j; qC
n / � �.j; qn/ � �.j; q�

n /I (4.2)

moreover, the continuity of each separate �.j I q/ implies

lim
n!1

j�.j; q/ � �.j; q˙
n /j D 0:
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The Lebesgue dominated convergence theorem now yields

lim
n!1

k�.�; q/ � �.�; q˙
n /k1 D 0

which, in view of the estimates (cf. (4.2))

j�.j; q/ � �.j; qn/j � max¹j�.j; q/ � �.j; qC
n /j; j�.j; q/ � �.j; q�

n /jº

� j�.j; q/ � �.j; qC
n /j C j�.j; q/ � �.j; q�

n /j

finishes the proof. �

For q 2 Q1, we denote by

B.zI q/ WD

1
Y

j D1

z � i�.j I q/

z C i�.j I q/

the Blaschke product corresponding to the sequence .i�.j I q// (where, as usual,

�.j I q/ D 0 for j larger than the number of negative eigenvalues of the op-

erator Tq). It is known [8, Chapter 3.5] that if q 2 Q1;1 is a potential from

the Faddeev–Marchenko class, then the values in CC of the scattering coeffi-

cient a.�I q/ can be uniquely determined from its values on the real line via the

Poisson–Schwarz formula

a.zI q/ D B.zI q/ exp

²

1

�i

Z

R

log ja.kI q/j

k � z
dk

³

: (4.3)

It also follows from the results of Gesztesy and Holden [4] that for all q 2 Q1;1

the first trace formula (1.1) holds true. Since (see Remark 2.7)

.1 � jr.kI q/j2/�1 D ja.kI q/j2; k 2 R n ¹0º; q 2 Q1; (4.4)

that trace formula can be written in the form

� 4

1
X

j D1

�.j I q/ C
2

�

Z

R

log ja.kI q/j dk D

Z

R

q.x/ dx; q 2 Q1;1: (4.5)

Formula (4.5) is our starting point in proving the main result of the paper.

Proof of Theorem 1.1. Continuity of the first mapping in (1.3) is established in

Lemma 4.1. We next prove that the trace formula (4.5) holds for all potentials

in Q1. The idea is to extend that formula by continuity starting from potentials in

the Faddeev–Marchenko class Q1;1, which are dense in Q1 in the L1-norm.
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To this end, we fix any q 2 Q1 and choose a sequence of potentials qn 2 Q1;1,

n � 1, converging to q in the topology of L1.R/. Next we rewrite formula (4.5)

for qn in the form

Z

R

log ja.kI qn/j dk D
�

2

Z

R

qn.x/ dx C 2�

1
X

j D1

�.j I qn/;

and observe that, by Lemma 4.1, the right-hand side above possesses a finite limit

as n ! 1 and thus

lim
n!1

Z

R

log ja.kI qn/j dk D
�

2

Z

R

q.x/ dx C 2�

1
X

j D1

�.j I q/:

Since the functions log ja. � I qn/j are non-negative on R n ¹0º and converge point-

wise therein to the non-negative function log ja. � I q/j as n ! 1, Fatou’s lemma

yields the inequality

 WD lim
n!1

Z

R

log ja.kI qn/j dk �

Z

R

log ja.kI q/j dk � 0: (4.6)

In particular, the function log ja. � I q/j is integrable on the line, and it remains to

show that  D 0.

By Lemma 4.1, the sequences �.�I qn/ converge to �.�I q/ in `1-norm as n!1,

and then Lemma 3.2 guarantees convergence of the corresponding Blaschke prod-

ucts, i.e., that B.zI qn/ ! B.zI q/ for every z 2 CC. Next, Lemma 3.3 implies

that, for every z 2 CC,

lim
n!1

exp

²

1

�i

Z

R

log ja.kI qn/j

k � z
dk

³

D ei=�z exp

²

1

�i

Z

R

log ja.kI q/j

k � z
dk

³

with  defined in (4.6). Finally, for every z 2 CC we have a.zI qn/ ! a.zI q/ as

n ! 1 by virtue of Lemma 2.6. Combining these facts and letting n ! 1 in

equation (4.3) for q D qn, we arrive at the equality

a.zI q/ D ei=�zB.zI q/ exp

²

1

�i

Z

R

log ja.k; q/j

k � z
dk

³

; z 2 CC: (4.7)

Since log ja.kI q/j � 0 for k 2 R n ¹0º, we conclude that

ˇ

ˇ

ˇ

ˇ

exp

²

1

�i

Z

R

log ja.kI q/j

k � z
dk

³
ˇ

ˇ

ˇ

ˇ

� 1; z 2 CC;
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so that (4.7) results in the relation

logC ja.zI q/j � log jei=�zj C log jB.zI q/j; z 2 CC:

Setting z D �eit with � > 0 and t 2 .0; �/, we arrive at the inequality



�
sin t � � logC ja.�eit I q/j C � log jB.�eit I q/j�1;

which upon integration in t produces

2

�
�

�
Z

0

� logC ja.�eit I q/j dt C

�
Z

0

� log jB.�eit I q/j�1 dt:

Letting � ! C0 in the above relation, on account of (2.16) and (3.1) one concludes

that  � 0, so that  D 0 and thus the trace formula (1.1) holds for all q 2 Q1.

It remains to prove continuity of the mapping Q1 3 q 7! h.�I q/ 2 Q1. Assume

that a sequence qn 2 Q1 converges to a q 2 Q1 in the L1-norm; we have to prove

that h.�I qn/ ! h.�I q/ in L1.R/ as n ! 1. Recall that, in view of (4.4), we have

h.kI q/ D 2 log ja.kI q/j; h.kI qn/ D 2 log ja.kI qn/j; k 2 R0; n 2 N:

Passing to the limit in the trace formula (4.5) for qn, we conclude that

lim
n!1

Z

R

h.kI qn/ dk D

Z

R

h.kI q/ dk:

As h. � I qn/ and h. � I q/are non-negative, this means that kh. � I qn/k1 ! kh. � I q/k1

as n ! 1. Since also h.kI qn/ ! h.kI q/ as n ! 1 for all k 2 R0 by Remark 2.7,

the statement proved by F. Riesz [11] (widely known as Scheffé’s lemma [12, 6])

establishes L1-convergence of h.�I qn/ to h.�I q/ and thus completes the proof of

the theorem. �
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