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differential operator A", " > 0. The coefficients of the operator A" are periodic and depend

on x=". We study the asymptotic behavior of the operator A�1=2
" sin.�A1=2
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correction term taken into account is also established. The error estimates are of the sharp

order O."/. The results are applied to homogenization for the solutions of the hyperbolic
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� u" D �A"u" CF. As examples, we consider the acoustics equation, the system

of elasticity, and the model equation of electrodynamics.
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Introduction

The paper is devoted to homogenization of periodic differential operators (DO’s).

A broad literature is devoted to homogenization theory, see, e.g., the books [7, 8,

39, 50]. We use the spectral approach to homogenization problems based on the

Floquet–Bloch theory and the analytic perturbation theory. The main results of

the paper are briefly announced in [36].

0.1. The class of operators. In L2.R
d ICn/, we consider a matrix elliptic sec-

ond order DO A" admitting a factorization A" D b.D/�g.x="/b.D/, " > 0.

Here b.D/ D
Pd

j D1 bjDj is an .m � n/-matrix-valued first order DO with con-

stant coefficients. Assume that m > n and that the symbol b.�/ has maximal

rank. A periodic .m � m/-matrix-valued function g.x/ is such that g.x/ > 0;

g; g�1 2 L1. The coefficients of the operator A" oscillate rapidly as " ! 0.

0.2. Operator error estimates for elliptic and parabolic problems. In a series

of papers [9, 10, 11, 12] by M. Sh. Birman and T. A. Suslina, an abstract operator-

theoretic (spectral) approach to homogenization problems in Rd was developed.
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This approach is based on the scaling transformation, the Floquet–Bloch theory,

and the analytic perturbation theory. Surely, the spectral approach was applied

to homogenization problems before papers by Birman and Suslina, see, e.g.,

[2, 3, 22, 41, 51]. But the reminder estimates in the operator norm were not

discussed in these papers. Moreover, in [2, 3, 22, 41, 51] only scalar problems

were considered, while Birman and Suslina deal with systems. (In the scalar case,

application of the analytic perturbation theory with respect to the quasimomentum

simplifies significantly.)

A typical homogenization problem is to study the behavior of the solution u"

of the equation A"u" Cu" D F, where F 2 L2.R
d ICn/, as " ! 0. It turns out that

the solutions u" converge in some sense to the solution u0 of the homogenized

equation A0u0 C u0 D F. Here A0 D b.D/�g0b.D/ is the effective operator

and g0 is the constant effective matrix. The way to construct g0 is well known in

homogenization theory.

In [9], it was shown that

ku" � u0kL2.Rd / 6 C"kFkL2.Rd /: (0.1)

This estimate is order-sharp. The constantC is controlled explicitly in terms of the

problem data. Inequality (0.1) means that the resolvent .A" C I /�1 converges to

the resolvent of the effective operator in the L2.R
d ICn/-operator norm, as " ! 0.

Moreover,

k.A" C I /�1 � .A0 C I /�1kL2.Rd /!L2.Rd / 6 C":

Results of this type are called operator error estimates in homogenization theory.

In [12], approximation of the resolvent .A" CI /�1 in the .L2 ! H 1/-operator

norm was found:

k.A" C I /�1 � .A0 C I /�1 � "K."/kL2.Rd /!H 1.Rd / 6 C":

Here the correction termK."/ is taken into account. It contains a rapidly oscillat-

ing factor and so depends on ". Herewith, k"K."/kL2!H 1 D O.1/. In contrast to

the traditional corrector of homogenization theory, the operator K."/ contains an

auxiliary smoothing operator …" (see (9.6) below).

To parabolic homogenization problems the spectral approach was applied

in [42, 43, 44]. The principal term of approximation was found in [42, 43]:

ke��A" � e��A0

kL2.Rd /!L2.Rd / 6 C"��1=2; � > 0:

Approximation with the corrector taken into account was obtained in [44]:

ke��A" � e��A0

� "K."; �/kL2.Rd /!H 1.Rd / 6 C".��1 C ��1=2/; 0 < " 6 �1=2:
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Another approach to deriving operator error estimates in Rd (the so-called

modified method of first order approximation or the shift method) was suggested

by V. V. Zhikov [52, 53] and developed by V. V. Zhikov and S. E. Pastukhova [54].

In these papers the elliptic problems for the operators of acoustics and elasticity

theory were studied. To parabolic problems the shift method was applied in [55].

Further results of V. V. Zhikov and S. E. Pastukhova are discussed in the recent

survey [56].

Operator error estimates were also studied for problems in a bounded domain.

The first results were obtained by G. Griso [28, 29] who studied the scalar elliptic

problems by using the unfolding method [19]. Close results were obtained in [52,

54]. The periodic elliptic systems were considered in [32] and [37, 46, 47].

Parabolic problems in a bounded domain were discussed in [27, 35].

Now, operator error estimates (and close results) are a hot topic in homogeniza-

tion. Recently, a progress in the high-contrast case was achieved by K. D. Chered-

nichenko and S. Cooper [18], in the locally periodic case—by S. E. Pastukhova

and R. N. Tikhomirov [38], D. I. Borisov [15], and N. N. Senik [40]. For almost

periodic case, some advances were obtained by S. N. Armstrong and Z. Shen [6].

For stochastic problems, some results were obtained in [4, 5]. Note, finally, that

the unfolding method was very recently transferred to the stochastic case, see [30].

Surely, this survey is incomplete.

0.3. Operator error estimates for homogenization of hyperbolic equations

and nonstationary Schrödinger-type equations. For elliptic and parabolic

problems operator error estimates are well studied. The situation with homoge-

nization of nonstationary Schrödinger-type and hyperbolic equations is different.

In [13], the operators e�iA" and cos.�A
1=2
" / were studied. It turned out that for

these operators it is impossible to find approximations in the .L2 ! L2/-norm.

Approximations in the .H s ! L2/-norms with suitable s were found in [13]:

ke�i�A" � e�i�A0

kH 3.Rd /!L2.Rd / 6 C".1C j� j/; (0.2)

k cos.�A1=2
" / � cos.�.A0/1=2/kH 2.Rd /!L2.Rd / 6 C".1C j� j/: (0.3)

Later T. A. Suslina [48], by using the analytic perturbation theory, proved that

estimate (0.2) in the general case cannot be refined with respect to the type

of the operator norm. Developing the method of [48], M. A. Dorodnyi and

T. A. Suslina [23, 24] showed that estimate (0.3) is sharp in the same sense. In

[23, 24, 48], under some additional assumptions on the operator, the results (0.2)

and (0.3) were improved with respect to the type of the operator norm. In [13, 24],

by virtue of the identity A
�1=2
" sin.�A

1=2
" / D

R �

0 cos. Q�A
1=2
" / d Q� and the similar
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identity for the effective operator, the estimate

kA�1=2
" sin.�A1=2

" / � .A0/�1=2 sin.�.A0/1=2/kH 2.Rd /!L2.Rd / 6 C".1C j� j/2

(0.4)

(with � 2 R) was deduced from (0.3) as a (rough) consequence. The sharpness

of estimate (0.4) with respect to the type of the operator norm was not discussed.

Estimates (0.3) and (0.4) were applied to homogenization for the solution of the

Cauchy problem

´

@2
� u".x; �/ D �A"u".x; �/C F.x; �/;

u".x; 0/ D '.x/; @�u".x; 0/ D  .x/:
(0.5)

0.4. Approximation for the solutions of hyperbolic systems with the correc-

tion term taken into account. Operator error estimates with the correction term

for nonstationary equations of Schrödinger type and hyperbolic type previously

have not been established. So, we discuss the known “classical” homogenization

results that cannot be written in the uniform operator topology. These results con-

cern the operators in a bounded domain O � Rd . Approximation for the solution

of the hyperbolic equation with the zero initial data and a non-zero right-hand

side was obtained in [8, Chapter 2, Subsection 3.6]. In [8], it was shown that the

difference of the solution and the first order approximation strongly converges to

zero in L2..0; T /IH
1.O//. The error estimate was not established. The case of

zero initial data and non-zero right-hand side was also considered in [7, Chap-

ter 4, Section 5]. In [7], the complete asymptotic expansion of the solution was

constructed and the estimate of order O."1=2/ for the difference of the solution

and the first order approximation in the H 1-norm on the cylinder O � .0; T / was

obtained. Herewith, the right-hand side was assumed to be C1-smooth.

It is natural to be interested in the approximation with the correction term for

the solutions of hyperbolic systems with non-zero initial data, i.e., in approxima-

tion of the operator cosine cos.�A
1=2
" / in some suitable sense. One could expect

the correction term in this case to be of similar structure as for elliptic and para-

bolic problems. However, in [14] it was observed that this is true only for very

special class of initial data. In the general case, approximation with the corrector

was found in [16, 17], but the correction term was non-local because of the disper-

sion of waves in inhomogeneous media. Dispersion effects for homogenization of

the wave equation were discussed in [1, 20, 21] via the Floquet–Bloch theory and

the analytic perturbation theory. Operator error estimates have not been obtained.
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0.5. Main results. Our goal is to refine estimate (0.4) with respect to the type

of the operator norm without any additional assumptions and to find an approxi-

mation for the operator A
�1=2
" sin.�A

1=2
" / in the .H 2 ! H 1/-norm. We wish to

apply the results to problem (0.5) with ' D 0 and non-zero F and  .

Our first main result is the estimate

kA�1=2
" sin.�A1=2

" / � .A0/�1=2 sin.�.A0/1=2/kH 1.Rd /!L2.Rd / 6 C".1C j� j/;

(0.6)

with " > 0, � 2 R. (Under additional assumptions on the operator, improvement of

estimate (0.6) with respect to the type of the norm was obtained by M. A. Dorodnyi

and T. A. Suslina in the paper [25] that is, actually, major revision of [24].) Our

second main result is the approximation

kA�1=2
" sin.�A1=2

" / � .A0/�1=2 sin.�.A0/1=2/ � "K."; �/kH 2.Rd /!H 1.Rd /

6 C".1C j� j/;
(0.7)

with " > 0, � 2 R. In the general case, the corrector contains the smoothing

operator. We distinguish the cases when the smoothing operator can be removed.

The results are applied to homogenization of the system (0.5) with ' D 0.

A more general equation Q.x="/@2
�u".x; �/ D �A"u".x; �/ C Q.x="/F.x; �/ is

also considered. Here Q.x/ is a �-periodic .n � n/-matrix-valued function such

that Q.x/ > 0 and Q;Q�1 2 L1. In Introduction, we discuss only the case

Q D 1n for simplicity.

0.6. Method. We apply the method of [13, 24] carrying out all the construc-

tions for the operator A
�1=2
" sin.�A

1=2
" /. To obtain the result with the correction

term, we borrow some technical tools from [44]. By the scaling transformation,

inequality (0.6) is equivalent to

k.A�1=2 sin."�1�A1=2/ � .A0/�1=2 sin."�1�.A0/1=2//

� ".��C "2I /�1=2kL2.Rd /!L2.Rd /

6 C.1C j� j/;

(0.8)

with � 2 R, " > 0. Here A D b.D/�g.x/b.D/. Because of the presence

of differentiation in the definition of H 1-norm, by the scaling transformation,

inequality (0.7) reduces to the estimate of order O."/:

kD.A�1=2 sin."�1�A1=2/ � .A0/�1=2 sin."�1�.A0/1=2/ � K.1; "�1�//

� "2.��C "2I /�1kL2.Rd /!L2.Rd /

6 C".1C j� j/;

(0.9)
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with � 2 R, " > 0. For this reason, in estimate (0.9), we use the “smoothing oper-

ator” "2.��C "2I /�1 instead of the operator ".��C "2I /�1=2 which was used

in estimate (0.8) of order O.1/. Thus, the principal term of approximation of the

operator A
�1=2
" sin.�A

1=2
" / is obtained in the .H 1 ! L2/-norm, but approxima-

tion in the energy class is given in the .H 2 ! H 1/-norm.

To obtain estimates (0.8) and (0.9), using the unitary Gelfand transformation

(see Section 4.2 below), we decompose the operator A into the direct integral of

operators A.k/ acting in the space L2 on the cell of periodicity and depending

on the parameter k 2 Rd called the quasimomentum. We study the family A.k/

by means of the analytic perturbation theory with respect to the onedimensional

parameter jkj. Then we should make our constructions and estimates uniform in

the additional parameter � WD k=jkj. Herewith, a good deal of considerations can

be done in the framework of an abstract operator-theoretic scheme.

0.7. Plan of the paper. The paper consists of three chapters. Chapter I (Sec-

tions 1–3) contains necessary operator-theoretic material.

Chapter II (Sections 4–8) is devoted to periodic DO’s. In Sections 4–6, the

class of operators under consideration is introduced, the direct integral decompo-

sition is described, and the effective characteristics are found. In Section 7 and 8,

the approximations for the operator-valued function A�1=2 sin."�1�A1=2/ are ob-

tained and estimates (0.8) and (0.9) are proven.

In Chapter III (Sections 9–11), homogenization for hyperbolic systems is con-

sidered. In Section 9, the main results of the paper in operator terms (esti-

mates (0.6) and (0.7)) are obtained. Afterwards, in Section 10, these results are

applied to homogenization for solutions of the hyperbolic systems. Section 11 is

devoted to applications of the general results to the acoustics equation, the opera-

tor of elasticity theory, and the model equation of electrodynamics.

0.8. Acknowledgement. The author is grateful to T. A. Suslina for attention to

work and numerous comments that helped to improve the quality of presentation.

0.9. Notation. Let H and H� be separable Hilbert spaces. The symbols .�; �/H
and k � kH mean the inner product and the norm in H, respectively; the symbol

k � kH!H� denotes the norm of a bounded linear operator acting from H to H�.

Sometimes we omit the indices if this does not lead to confusion. By I D IH we

denote the identity operator in H. If AWH ! H� is a linear operator, then DomA

denotes the domain of A. If N is a subspace of H, then

N
? WD H 	 N:
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The symbol h�; �i denotes the inner product in Cn, j � j means the norm of a

vector in Cn; 1n is the unit matrix of size n � n. If a is an .m � n/-matrix, then

jaj denotes its norm as a linear operator from Cn to Cm; a� means the Hermitian

conjugate .n �m/-matrix.

The classes Lp of Cn-valued functions on a domain O � Rd are denoted by

Lp.OICn/, 1 6 p 6 1. The Sobolev spaces of order s of Cn-valued functions

on a domain O � Rd are denoted by H s.OICn/. By S.Rd ICn/ we denote the

Schwartz class of Cn-valued functions in Rd . If n D 1, then we simply write

Lp.O/, H
s.O/ and so on, but sometimes we use such simplified notation also for

the spaces of vector-valued or matrix-valued functions. The symbolLp..0; T /IH/,

1 6 p 6 1, stands for Lp-space of H-valued functions on the interval .0; T /.

Next, x D .x1; : : : ; xd / 2 Rd , iDj D @j D @=@xj , j D 1; : : : ; d , D D �ir D

.D1; : : : ; Dd /. The Laplace operator is denoted by � D @2=@x2
1 C � � � C @2=@x2

d
.

ByC , C, C, c, c (probably, with indices and marks) we denote various constants

in estimates. The absolute constants are denoted by ˇ with various indices.

Chapter I

Abstract scheme

1. Preliminaries

1.1. Quadratic operator pencils. Let H and H� be separable complex Hilbert

spaces. Suppose that X0WH ! H� is a densely defined and closed operator, and

that X1WH ! H� is a bounded operator. On the domain DomX.t/ D DomX0,

consider the operator

X.t/ WD X0 C tX1; t 2 R:

Our main object is a family of operators

A.t/ WD X.t/�X.t/; t 2 R; (1.1)

that are selfadjoint in H and non-negative. The operator A.t/ acting in H is

generated by the closed quadratic form kX.t/uk2
H�

, u 2 DomX0. Denote

A.0/ D X�
0X0 DW A0:

Put

N WD KerA0 D KerX0; N� WD KerX�
0 :



Homogenization of hyperbolic systems 595

We assume that the point �0 D 0 is isolated in the spectrum of A0 and

0 < n WD dimN < 1; n 6 n� WD dimN� 6 1:

By d0 we denote the distance from the point zero to the rest of the spectrum of

A0 and by F.t; s/ we denote the spectral projection of the operator A.t/ for the

interval Œ0; s�. Fix ı > 0 such that 8ı < d0. Next, we choose a number t0 > 0 such

that

t0 6 ı1=2kX1k�1
H!H�

: (1.2)

Then (see [9, Chapter 1, (1.3)]) F.t; ı/ D F.t; 3ı/ and rankF.t; ı/ D n for

jt j 6 t0. We often write F.t/ instead of F.t; ı/. Let P and P� be the orthogonal

projections of H onto N and of H� onto N�, respectively.

1.2. Operators Z and R. Let

D WD DomX0 \ N?;

and let u 2 H�. Consider the following equation for the element  2 D (cf. [9,

Chapter 1, (1.7)]):

X�
0 .X0 � u/ D 0: (1.3)

The equation is understood in the weak sense. In other words,  2 D satisfies the

identity

.X0 ;X0�/H� D .u; X0�/H�; for all � 2 D:

Equation (1.3) has a unique solution  , and kX0 kH� 6 kukH� . Now, let ! 2 N

and u D �X1!. The corresponding solution of equation (1.3) is denoted by .!/.

We define the bounded operator ZWH ! H by the identities

Z! D  .!/; ! 2 NI Zx D 0; x 2 N?:

Note that

ZP D Z; PZ D 0: (1.4)

Now, we introduce an operator

RWN �! N�

(see [9, Chapter 1, Subsection 1.2]) as follows:

R! D X0 .!/CX1! 2 N�:

Another description of R is given by the formula

R D P�X1jN:
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1.3. The spectral germ. The selfadjoint operator

S WD R�RWN �! N

is called the spectral germ of the operator family (1.1) at t D 0 (see [9, Chapter 1,

Subsection 1.3]). This operator also can be written as

S D PX�
1P�X1jN:

So,

kSk 6 kX1k2: (1.5)

The spectral germ S is called nondegenerate, if KerS D ¹0º or, equivalently,

rankR D n.

In accordance with the analytic perturbation theory (see [31]), for jt j 6 t0 there

exist real-analytic functions �l.t / and real-analytic H-valued functions �l.t / such

that

A.t/�l.t / D �l .t /�l.t /; l D 1; : : : ; n; jt j 6 t0;

and �l .t /, l D 1; : : : ; n, form an orthonormal basis in the eigenspace F.t/H. For

sufficiently small t� (6 t0) and jt j 6 t�, we have the following convergent power

series expansions:

�l .t /D l t
2 C �l t

3 C � � � ; l > 0; �l 2 R; l D 1; : : : ; nI (1.6)

�l .t /D !l C t�
.1/

l
C t2�

.2/

l
C � � � ; l D 1; : : : ; n:

The elements !l D �l.0/, l D 1; : : : ; n, form an orthonormal basis in N.

In [9, Chapter 1, Subsection 1.6] it was shown that the numbers l and the

elements !l , l D 1; : : : ; n, are eigenvalues and eigenvectors of the operator S :

S!l D l!l ; l D 1; : : : ; n: (1.7)

The numbers l and the vectors !l , l D 1; : : : ; n, are called threshold character-

istics at the bottom of the spectrum of the operator family A.t/.

1.4. Threshold approximations. We assume that

A.t/ > c�t
2I; jt j 6 t0; (1.8)

for some c� > 0. This is equivalent to the following estimates for the eigenvalues

�l .t / of the operator A.t/: �l .t / > c�t
2, jt j 6 t0, l D 1; : : : ; n. Taking (1.6)

into account, we see that l > c�, l D 1; : : : ; n. So, by (1.7), the germ S is

nondegenerate:

S > c�IN: (1.9)
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As was shown in [9, Chapter 1, Theorem 4.1],

kF.t/ � P k 6 C1jt j; jt j 6 t0; (1.10)

with

C1 WD ˇ1ı
�1=2kX1k:

Besides (1.10), we need a more accurate approximation of the spectral projection

obtained in [10, (2.10) and (2.15)]:

F.t/ D P C tF1 C F2.t /; kF2.t /k 6 C2t
2; jt j 6 t0; (1.11)

where

C2 WD ˇ2ı
�1kX1k2

and

F1 D ZP C PZ�: (1.12)

From (1.4) and (1.12) it follows that

F1P D ZP: (1.13)

In [9, Chapter 1, Theorem 5.2], it was proven that

k.A.t/C �I /�1F.t/ � .t2SP C �I /�1P k 6 C3jt j.c�t
2 C �/�1; (1.14)

with � > 0; jt j 6 t0 and

C3 WD ˇ3ı
�1=2kX1k.1C c�1

� kX1k2/: (1.15)

According to [13, Theorem 2.4], we have

kA.t/1=2F.t/ � .t2S/1=2P k 6 C4t
2; jt j 6 t0I (1.16)

with

C4 WD ˇ4ı
�1=2kX1k2.1C c�1=2

� kX1k/: (1.17)

Combining this with (1.5), we see that

kA.t/1=2F.t/k 6 jt jkSk1=2 C C4t
2

6 .kX1k C C4t0/jt j; jt j 6 t0: (1.18)

We also need the following estimate for the operator A.t/1=2F2.t / obtained

in [12, (2.23)]:

kA.t/1=2F2.t /kH!H 6 C5t
2; jt j 6 t0; (1.19)

where

C5 WD ˇ5ı
�1=2kX1k2:
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1.5. Approximation of the operator A.t/�1=2F.t/ for t ¤ 0

Lemma 1.1. For jt j 6 t0 and t ¤ 0 we have

kA.t/�1=2F.t/ � .t2S/�1=2P k 6 C6: (1.20)

The constant C6 is defined below in (1.23) and depends only on ı, kX1k, and c�.

Proof. We have

A.t/�1=2F.t/ D
1

�

1
Z

0

��1=2.A.t/C �I /�1F.t/ d�; t ¤ 0: (1.21)

(See, e.g., [49, Chapter III, Section 3, Subsection 4]). Similarly,

.t2S/�1=2P D
1

�

1
Z

0

��1=2.t2S C �IN/
�1P d�

D
1

�

1
Z

0

��1=2.t2SP C �I /�1P d�:

(1.22)

Subtracting (1.22) from (1.21), using (1.14), and changing the variable

Q� WD .c�t
2/�1�;

we obtain

kA.t/�1=2F.t/ � .t2S/�1=2P k 6
C3

�

1
Z

0

��1=2jt j.c�t
2 C �/�1 d�

D
C3

�
c�1=2

�

1
Z

0

Q��1=2.1C Q�/�1 d Q�

6
C3

�
c�1=2

�

�

1
Z

0

Q��1=2 d Q� C

1
Z

1

Q��3=2 d Q�

�

D 4��1c�1=2
� C3:

We arrive at estimate (1.20) with the constant

C6 WD 4��1c�1=2
� C3: (1.23)

�
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2. Approximation of the operatorA.t/�1=2 sin.�A.t/1=2/

2.1. The principal term of approximation

Proposition 2.1. For jt j 6 t0 and � 2 R we have

k.A.t/�1=2 sin.�A.t/1=2/ � .t2S/�1=2 sin.�.t2S/1=2P //P k 6 C7.1C j� jjt j/:

(2.1)

The constant C7 depends only on ı, kX1k, and c�.

Proof. For t D 0 the operator under the norm sign in (2.1) is understood as a limit

for t ! 0. Using the Taylor series expansion for the sine function, we see that this

limit is equal to zero.

Now, let t ¤ 0. We put

E.�/ WD e�i�A.t/1=2

A.t/�1=2F.t/ � e�i�.t2S/1=2P .t2S/�1=2P I (2.2)

†.�/ WD ei�.t2S/1=2PE.�/

D ei�.t2S/1=2P e�i�A.t/1=2

A.t/�1=2F.t/ � .t2S/�1=2P:
(2.3)

Then

†.0/ D A.t/�1=2F.t/ � .t2S/�1=2P (2.4)

and

d†.�/

d�
D iei�.t2S/1=2P ..t2S/1=2P � A.t/1=2F.t//e�i�A.t/1=2

A.t/�1=2F.t/:

(2.5)

By (1.8) and (1.16), the operator-valued function (2.5) satisfies the following

estimate:






d†.�/

d�






6 C4t

2kA.t/�1=2k 6 C4c
�1=2
� jt j; jt j 6 t0; t ¤ 0: (2.6)

Then, taking (1.20), (2.3), (2.4), and (2.6) into account, we see that

kE.�/k D k†.�/k 6 C4c
�1=2
� jt jj� j C k†.0/k 6 C8.1C j� jjt j/; (2.7)

with jt j 6 t0, t ¤ 0, and

C8 WD max¹C4c
�1=2
� IC6º: (2.8)

(Cf. the proof of Theorem 2.5 from [13].) So,

kA.t/�1=2 sin.�A.t/1=2/F.t/ � .t2S/�1=2 sin.�.t2S/1=2P /P k 6 C8.1C j� jjt j/:

(2.9)
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By virtue of (1.8) and (1.10), from (2.9) we derive the inequality

k.A.t/�1=2 sin.�A.t/1=2/ � .t2S/�1=2 sin.�.t2S/1=2P //P k

6 C8.1C j� jjt j/C kA.t/�1=2 sin.�A.t/1=2/.F.t/ � P /k

6 C7.1C j� jjt j/;

(2.10)

with jt j 6 t0 and

C7 WD C8 C c�1=2
� C1: �

2.2. Approximation in the “energy” norm. Now, we obtain another approxi-

mation for the operator A.t/�1=2 sin.�A.t/1=2/ (in the “energy” norm).

Proposition 2.2. For � 2 R and jt j 6 t0,

kA.t/1=2.A.t/�1=2 sin.�A.t/1=2/ � .I C tZ/.t2S/�1=2 sin.�.t2S/1=2P //P k

6 C9.jt j C j� jt2/:

(2.11)

The constant C9 depends only on ı, kX1k, and c�.

Proof. Note that

A.t/1=2e�i�A.t/1=2

A.t/�1=2P

D A.t/1=2e�i�A.t/1=2

A.t/�1=2F.t/P C e�i�A.t/1=2

.P � F.t//P:
(2.12)

By (1.10),

ke�i�A.t/1=2

.P � F.t//P k 6 C1jt j; � 2 R; jt j 6 t0: (2.13)

Next,

A.t/1=2e�i�A.t/1=2

A.t/�1=2F.t/P

D A.t/1=2F.t/e�i�.t2S/1=2P .t2S/�1=2P C A.t/1=2F.t/E.�/P;
(2.14)

where E.�/ is given by (2.2). By (1.18) and (2.7), for t ¤ 0

kA.t/1=2F.t/E.�/P k 6 C8.kX1k C C4t0/.jt j C j� jt2/; � 2 R; (2.15)

with jt j 6 t0, t ¤ 0. For t D 0 the operator under the norm sign in (2.15) is

understood as a limit for t ! 0. We have e�i�A.t/1=2
F.t/ ! P , as t ! 0. Next,

by (1.9) and (1.16),

kA.t/1=2F.t/e�i�.t2S/1=2P .t2S/�1=2P � e�i�.t2S/1=2PP k

D kA.t/1=2F.t/.t2S/�1=2P � P k 6 c�1=2
� C4jt j; � 2 R;
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with jt j 6 t0. Using these arguments, we see that the limit of the left-hand side

of (2.15) as t ! 0 is equal to zero.

According to (1.11) and (1.13),

A.t/1=2F.t/e�i�.t2S/1=2P .t2S/�1=2P �A.t/1=2.I C tZ/e�i�.t2S/1=2P .t2S/�1=2P

D A.t/1=2F2.t /e
�i�.t2S/1=2P .t2S/�1=2P:

(2.16)

By (1.9) and (1.19),

kA.t/1=2F2.t /e
�i�.t2S/1=2P .t2S/�1=2P k 6 c�1=2

� C5jt j; (2.17)

with � 2 R, jt j 6 t0. Combining (2.12)–(2.17), we arrive at

kA.t/1=2.e�i�A.t/1=2

A.t/�1=2 � .I C tZ/e�i�.t2S/1=2P .t2S/�1=2P /P k

6 C9.jt j C j� jt2/;
(2.18)

with � 2 R, jt j 6 t0, and

C9 WD C1 C c�1=2
� C5 C C8.kX1k C C4t0/:

(Cf. the proof of Theorem 3.1 from [44].) �

2.3. Approximation of the operator A.t/�1=2 sin."�1�A.t/1=2/P . Now, we

introduce a parameter " > 0. We need to study the behavior of the operator

A.t/�1=2 sin."�1�A.t/1=2/P for small ". Replace � by "�1� in (2.1):

k.A.t/�1=2 sin."�1�A.t/1=2/ � .t2S/�1=2 sin."�1�.t2S/1=2P //P k

6 C7.1C "�1j� jjt j/;

with jt j 6 t0, " > 0, � 2 R. Multiplying this inequality by the “smoothing” factor

".t2 C "2/�1=2 and taking into account the inequalities ".t2 C "2/�1=2 6 1 and

j� jjt j.t2 C "2/�1=2 6 j� j, we obtain the following result.

Theorem 2.3. For � 2 R, " > 0, and jt j 6 t0 we have

k.A.t/�1=2 sin."�1�A.t/1=2/ � .t2S/�1=2 sin."�1�.t2S/1=2P //".t2 C "2/�1=2P k

6 C7.1C j� j/:

Replacing � by "�1� in (2.11) and multiplying the operator by "2.t2 C "2/�1,

we arrive at the following statement.
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Theorem 2.4. For � 2 R, " > 0, and jt j 6 t0,

kA.t/1=2.A.t/�1=2 sin."�1�A.t/1=2/ � .I C tZ/.t2S/�1=2 sin."�1�.t2S/1=2P //

� "2.t2 C "2/�1P k

6 C9".1C j� j/:

3. Approximation of the sandwiched operator sine

3.1. The operator family A.t/ D M� yA.t/M . Now, we consider an opera-

tor family of the form A.t/ D M� yA.t/M (see [9, Chapter 1, Subsections 1.5

and 5.3]).

Let yH be yet another separable Hilbert space. Let yX.t/ D yX0 C t yX1W yH ! H�

be a family of operators of the same form as X.t/, and suppose that yX.t/ satisfies

the assumptions of Subsection 1.1.

Let M WH ! yH be an isomorphism. Suppose that M DomX0 D Dom yX0;

X0 D yX0M ; X1 D yX1M . ThenX.t/ D yX.t/M . Consider the family of operators

yA.t/ D yX.t/� yX.t/W yH �! yH: (3.1)

Obviously,

A.t/ D M� yA.t/M: (3.2)

In what follows, all the objects corresponding to the family (3.1) are supplied

with the upper mark “ O”. Note that yN D MN, On D n, yN� D N�, On� D n�, and
yP� D P�.

We denote

Q WD .MM�/�1 D .M�/�1M�1W yH �! yH: (3.3)

Let Q yN be the block of Q in the subspace yN: Q yN D yPQj yNW yN ! yN. Obviously,

Q yN is an isomorphism in yN. Let

M0 WD .Q yN/
�1=2W yN �! yN:

As was shown in [43, Proposition 1.2], the orthogonal projection P of the spaceH

ontoN and the orthogonal projection yP of the space yH onto yN satisfy the following

relation: P D M�1.Q yN/
�1 yP .M�/�1. Hence,

PM� D M�1.Q yN/
�1 yP D M�1M 2

0
yP : (3.4)

According to [9, Chapter 1, Subsection 1.5], the spectral germs S and yS satisfy

S D PM� ySM jN:



Homogenization of hyperbolic systems 603

For the operator family (3.1) we introduce the operator yZQ acting in yH and

taking an element Ou 2 yH to the solution O'Q of the problem

yX�
0 .

yX0 O'Q C yX1 O!/ D 0; Q O'Q ? yN; (3.5)

where O! WD yP Ou. Equation (3.5) is understood in the weak sense. As was shown

in [10, Lemma 6.1], the operator Z for A.t/ and the operator yZQ satisfy

yZQ D MZM�1 yP : (3.6)

3.2. The principal term of approximation for the sandwiched operator

A.t/�1=2 sin.�A.t/1=2/. In this subsection, we find an approximation for the

operator A.t/�1=2 sin.�A.t/1=2/, where A.t/ is given by (3.2), in terms of the

germ yS of yA.t/ and the isomorphism M . It is convenient to border the opera-

tor A.t/�1=2 sin.�A.t/1=2/ by appropriate factors.

Proposition 3.1. Suppose that the assumptions of Subsection 3.1 are satisfied.

Then for � 2 R and jt j 6 t0 we have

kMA.t/�1=2 sin.�A.t/1=2/M�1 yP

�M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP kyH!yH

6 C7kMkkM�1k.1C j� jjt j/:

(3.7)

Here t0 is defined according to (1.2), andC7 is the constant from (2.10) depending

only on ı, kX1k, and c�.

Proof. Estimate (3.7) follows from Proposition 2.1 by recalculation. In [13,

Proposition 3.3], it was shown that

M cos.�.t2S/1=2P /PM� D M0 cos.�.t2M0
ySM0/

1=2/M0
yP : (3.8)

Obviously,

.t2S/�1=2 sin.�.t2S/1=2P /P D

�
Z

0

cos. Q�.t2S/1=2P /P d Q�: (3.9)

Similarly,

.t2M0
ySM0/

�1=2 sin.�.t2M0
ySM0/

1=2/M0
yP D

�
Z

0

cos. Q�.t2M0
ySM0/

1=2/M0
yP d Q�:

(3.10)
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Integrating (3.8) over � and taking (3.9) and (3.10) into account, we conclude that

M.t2S/�1=2 sin.�.t2S/1=2P /PM�

D M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M0

yP :
(3.11)

Next, since M0 D .Q yN/
�1=2, using (3.4), we obtain PM�M�2

0
yP D M�1 yP . So,

by (3.11),

M.t2S/�1=2 sin.�.t2S/1=2P /M�1 yP

D M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP :

(3.12)

Thus,

MA.t/�1=2 sin.�A.t/1=2/M�1 yP

�M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP

D M.A.t/�1=2 sin.�A.t/1=2/P � .t2S/�1=2 sin.�.t2S/1=2P /P /M�1 yP :

(3.13)

Using Proposition 2.1 and (3.13), we arrive at inequality (3.7). �

3.3. Approximation with the corrector

Proposition 3.2. Under the assumptions of Subsection 3.1, for � 2 R and jt j 6 t0

we have

k yA.t/1=2.MA.t/�1=2 sin.�A.t/1=2/M�1 yP

� .I C t yZQ/M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP/kyH!yH

6 C9kM�1k.jt j C j� jt2/:

(3.14)

The constant C9 is the same as in (2.18) and depends only on ı, kX1k, and c�.

Proof. Estimate (3.14) follows from Proposition 2.2 by recalculation. According

to (3.6) and (3.12),

t yZQM0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP

D tMZM�1M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP

D tMZ.t2S/�1=2 sin.�.t2S/1=2/PM�1 yP :

(3.15)
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Combining (3.15) with (3.2) and (3.13), we obtain

k yA.t/1=2.MA.t/�1=2 sin.�A.t/1=2/M�1 yP

� .I C t yZQ/M0.t
2M0

ySM0/
�1=2 sin.�.t2M0

ySM0/
1=2/M�1

0
yP /kyH!yH

D kA.t/1=2.A.t/�1=2 sin.�A.t/1=2/P

� .I C tZ/.t2S/�1=2 sin.�.t2S/1=2/P /M�1 yP kyH!H
:

Together with Proposition 2.2, this implies (3.14). �

3.4. Approximation of the sandwiched operator A.t/�1=2 sin."�1�A.t/1=2/.

Writing down (3.7) and (3.14) with � replaced by "�1� and multiplying the

corresponding inequalities by the “smoothing factors,” we arrive at the following

result.

Theorem 3.3. Under the assumptions of Subsection 3.1, for � 2 R, " > 0, and

jt j 6 t0

k.MA.t/�1=2 sin."�1�A.t/1=2/M�1 yP

�M0.t
2M0

ySM0/
�1=2 sin."�1�.t2M0

ySM0/
1=2/M�1

0
yP /

� ".t2 C "2/�1=2 yP kyH!yH

6 C7kMkkM�1k.1C j� j/;

(3.16)

and

k yA.t/1=2.MA.t/�1=2 sin."�1�A.t/1=2/M�1 yP

� .I C t yZQ/M0.t
2M0

ySM0/
�1=2

� sin."�1�.t2M0
ySM0/

1=2/M�1
0

yP/

� "2.t2 C "2/�1 yP kyH!yH

6 C9kM�1k".1C j� j/:

(3.17)

The number t0 is subject to (1.2), the constantsC7 andC9 are the same as in (2.10)

and (2.18).

Chapter II

Periodic differential operators in L2.R
d ICn/

In the present chapter, we describe the class of matrix second order differential

operators admitting a factorization of the form A D X�X, where X is a homoge-

neous first order DO. This class was introduced and studied in [9, Chapter 2].
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4. Factorized second order operators

4.1. Lattices� and z� . Let� be a lattice inRd generated by the basis a1; : : : ; ad :

� WD
°

a 2 R
d W a D

d
X

j D1

�j aj ; �j 2 Z

±

;

and let � be the elementary cell of the lattice �:

� WD
°

x 2 R
d W x D

d
X

j D1

�j aj ; �
1

2
< �j <

1

2

±

:

The basis b1; : : : ; bd dual to a1; : : : ; ad is defined by the relations

hbl ; aj i D 2�ılj :

This basis generates the lattice z� dual to �:

z� WD
°

b 2 R
d W b D

d
X

j D1

�j bj ; �j 2 Z

±

:

Let z� be the first Brillouin zone of the lattice z�:

z� WD ¹k 2 R
d W jkj < jk � bj; 0 ¤ b 2 z�º: (4.1)

Let j�j be the Lebesgue measure of the cell �:

j�j D meas�;

and let

j z�j D meas z�:

We put

2r1 WD diam�:

The maximal radius of the ball containing in clos z� is denoted by r0. Note that

2r0 D min
0¤b2z�

jbj: (4.2)

With the lattice �, we associate the discrete Fourier transformation

v.x/ D j�j�1=2
X

b2z�

Ovbe
ihb;xi; x 2 �; (4.3)
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which is a unitary mapping of l2.z�/ onto L2.�/:
Z

�

jv.x/j2 dx D
X

b2z�

j Ovbj2: (4.4)

Below by zH 1.�ICn/ we denote the subspace of functions from H 1.�ICn/

whose �-periodic extension to Rd belongs to H 1
loc.R

d ICn/. We have

k.D C k/uk2
L2.�/ D

X

b2z�

jb C kj2j Oubj2; u 2 zH 1.�ICn/; k 2 R
d ; (4.5)

and convergence of the series in the right-hand side of (4.5) is equivalent to the

relation u 2 zH 1.�ICn/. From (4.1), (4.4), and (4.5) it follows that

k.D C k/uk2
L2.�/ >

X

b2z�

jkj2j Oubj2 D jkj2kuk2
L2.�/; u 2 zH 1.�ICn/; k 2 z�:

(4.6)

If  .x/ is a �-periodic measurable matrix-valued function in Rd , we put

N WD j�j�1

Z

�

 .x/ dx

and

N
 WD

�

j�j�1

Z

�

 .x/�1 dx

��1

:

Here, in the definition of N it is assumed that 2 L1;loc.R
d /, and in the definition

of
N
 it is assumed that the matrix  .x/ is square and nondegenerate, and  �1 2

L1;loc.R
d /.

4.2. The Gelfand transformation. Initially, the Gelfand transformation U is

defined on the functions of the Schwartz class by the formula

Qv.k; x/ D .Uv/.k; x/ D j z�j�1=2
X

a2�

e�ihk;xCaiv.x C a/;

with v 2 S.Rd ICn/, x 2 �, k 2 z�. Since
Z

z�

Z

�

j Qv.k; x/j2 dx dk D

Z

Rd

jv.x/j2 dx;

the transformation U extends by continuity up to a unitary mapping

UWL2.R
d ICn/ �!

Z

z�

˚L2.�ICn/ dk:
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The relation v 2 H 1.Rd ICn/ is equivalent to Qv.k; �/ 2 zH 1.�ICn/ for a.e. k 2 z�

and
Z

z�

Z

�

.j.D C k/ Qv.k; x/j2 C jQv.k; x/j2/ dx dk < 1:

Under the Gelfand transformation, the operator of multiplication by a bounded

periodic function in L2.R
d ICn/ turns into multiplication by the same function on

the fibers of the direct integral. The operator D applied to v 2 H 1.Rd ICn/ turns

into the operator D C k applied to Qv.k; �/ 2 zH 1.�ICn/.

4.3. Factorized second order operators. Let b.D/ be a matrix first order DO of

the form
Pd

j D1 bjDj , where bj , j D 1; : : : ; d , are constant matrices of sizem�n

(in general, with complex entries). We always assume that m > n. Suppose that

the symbol b.�/ D
Pd

j D1 bj �j , � 2 Rd , of the operator b.D/ has maximal rank:

rank b.�/ D n for 0 ¤ � 2 Rd . This condition is equivalent to the existence of

constants ˛0, ˛1 > 0 such that

˛01n 6 b.�/�b.�/ 6 ˛11n; � 2 S
d�1; 0 < ˛0 6 ˛1 < 1: (4.7)

From (4.7) it follows that

jbj j 6 ˛
1=2
1 ; j D 1; : : : ; d: (4.8)

Let �-periodic Hermitian .m � m/-matrix-valued function g.x/ be positive

definite and bounded together with the inverse matrix:

g.x/ > 0I g; g�1 2 L1.R
d /: (4.9)

Suppose that f .x/ is a �-periodic .n � n/-matrix-valued function such that

f; f �1 2 L1.R
d /. In L2.R

d ICn/, consider DO A formally given by the dif-

ferential expression

A D f .x/�b.D/�g.x/b.D/f .x/: (4.10)

The precise definition of the operator A is given in terms of the quadratic form

aŒu; u� WD .gb.D/.f u/; b.D/.f u//L2.Rd /;

with

u 2 Dom a WD ¹u 2 L2.R
d ICn/W f u 2 H 1.Rd ICn/º:

Using the Fourier transformation and assumptions (4.7) and (4.9), it is easily seen

that

˛0kg�1k�1
L1

kD.f u/k2
L2.Rd /

6 aŒu; u� 6 ˛1kgkL1kD.f u/k2
L2.Rd /

; (4.11)

with u 2 Dom a. Thus, the form aŒ�; �� is closed and non-negative.
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The operator A admits a factorization of the form A D X�X, where

X WD g.x/1=2b.D/f .x/WL2.R
d ICn/ �! L2.R

d ICm/; DomX D Dom a:

5. Direct integral decomposition for the operator A

5.1. The forms a.k/ and the operators A.k/. We put

H WD L2.�ICn/; H� WD L2.�ICm/; (5.1)

and consider the closed operator

X.k/WH �! H�; k 2 R
d ;

defined on the domain

DomX.k/ D ¹u 2 HW f u 2 zH 1.�ICn/º DW d

by the expression

X.k/ D g.x/1=2b.D C k/f .x/:

The selfadjoint operator

A.k/ WD X.k/�X.k/

in L2.�ICn/ is formally given by the differential expression

A.k/ D f .x/�b.D C k/�g.x/b.D C k/f .x/ (5.2)

with the periodic boundary conditions. The precise definition of the operatorA.k/

is given in terms of the closed quadratic form

a.k/Œu; u� WD kX.k/uk2
H�
; u 2 d:

Using the discrete Fourier transformation (4.3) and assumptions (4.7) and (4.9),

it is easily seen that

˛0kg�1k�1
L1

k.D C k/.f u/k2
L2.�/ 6 a.k/Œu; u�

6 ˛1kgkL1k.D C k/.f u/k2
L2.�/;

(5.3)

with u 2 d. So, by the compactness of the embedding zH 1.�ICn/ ,! L2.�ICn/,

the spectrum of A.k/ is discrete and the resolvent is compact.
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By (4.6) and the lower estimate (5.3),

A.k/ > c�jkj2I; k 2 clos z�; (5.4)

where

c� WD ˛0kg�1k�1
L1

kf �1k�2
L1
:

We put

N WD KerA.0/ D KerX.0/: (5.5)

Then

N D ¹u 2 L2.�ICn/W f u D c 2 C
nº: (5.6)

From (4.2) and (4.5) with k D 0 it follows that

kDvk2
L2.�/ > 4r2

0 kvk2
L2.�/; v D f u 2 zH 1.�ICn/;

Z

�

v.x/ dx D 0:

Combining this with the lower estimate (5.3) for k D 0, we see that the distance

d0 from the point zero to the rest of the spectrum of A.0/ satisfies

d0 > 4c�r
2
0 : (5.7)

5.2. Direct integral decomposition for A. Using the Gelfand transformation,

we decompose the operator A into the direct integral of the operators A.k/:

UAU
�1 D

Z

z�

˚A.k/ dk: (5.8)

This means the following. If v 2 Dom a, then

Qv.k; �/ D .Uv/.k; �/ 2 d for a.e. k 2 z�; (5.9)

aŒv; v� D

Z

z�

a.k/Œ Qv.k; �/; Qv.k; �/� dk: (5.10)

Conversely, if Qv 2
R

z� ˚L2.�ICn/ dk satisfies (5.9) and the integral in (5.10) is

finite, then v 2 Dom a and (5.10) holds.

5.3. Incorporation of the operatorsA.k/ into the abstract scheme. For d > 1

the operators A.k/ depend on the multidimensional parameter k. According to [9,

Chapter 2], we consider the onedimensional parameter

t WD jkj:
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We will apply the scheme of Chapter I. Herewith, all our considerations will

depend on the additional parameter

� D k=jkj 2 S
d�1;

and we need to make our estimates uniform with respect to �.

The spaces H and H� are defined by (5.1). Let

X.t/ D X.t; �/ WD X.t�/:

Then X.t; �/ D X0 C tX1.�/, where X0 D g.x/1=2b.D/f .x/, DomX0 D d,

and X1.�/ is a bounded operator of multiplication by the matrix-valued function

g.x/1=2b.�/f .x/. We put

A.t/ D A.t; �/ WD A.t�/:

Then A.t; �/ D X.t; �/�X.t; �/. According to (5.5) and (5.6), N D KerX0 D

KerA.0/, dimN D n. The distance d0 from the point zero to the rest of the spec-

trum of A.0/ satisfied estimate (5.7). As was shown in [9, Chapter 2, Section 3],

the condition n 6 n� D dim KerX�
0 is also fulfilled. Thus, all the assumptions of

Section 1 are valid.

In Subsection 1.1, it was required to choose the number ı < d0=8. Taking (5.4)

and (5.7) into account, we put

ı WD c�r
2
0=4 D .r0=2/

2˛0kg�1k�1
L1

kf �1k�2
L1
: (5.11)

Next, by (4.7), the operator X1.�/ D g.x/1=2b.�/f .x/ satisfies

kX1.�/k 6 ˛
1=2
1 kgk

1=2
L1

kf kL1 : (5.12)

This allows us to take the number

t0 WD ı1=2˛
�1=2
1 kgk

�1=2
L1

kf k�1
L1

D .r0=2/˛
1=2
0 ˛

�1=2
1 kgk

�1=2
L1

kg�1k
�1=2
L1

kf k�1
L1

kf �1k�1
L1

(5.13)

in the role of t0 (see (1.2)). Obviously, t0 6 r0=2, and the ball jkj 6 t0 lies in z�.

It is important that c�, ı, and t0 (see (5.4), (5.11), and (5.13)) do not depend on

the parameter �.

From (5.4) it follows that the spectral germ S.�/ (which now depends on �) is

nondegenerate:

S.�/ > c�IN: (5.14)

It is important that the spectral germ is nondegenerate uniformly in �.
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6. The operator yA. The effective matrix. The effective operator

6.1. The operator yA. In the case where f D 1n, we agree to mark all the objects

by the upper hat “y”. We have yH D H D L2.�ICn/. For the operator

yA D b.D/�g.x/b.D/; (6.1)

the family
yA.k/ D b.D C k/�g.x/b.D C k/ (6.2)

is denoted by yA.t I �/. If f D 1n, the kernel (5.6) takes the form

yN D ¹u 2 L2.�ICn/W u D c 2 C
nº: (6.3)

Let yP be the orthogonal projection of H onto the subspace yN. Then yP is the

operator of averaging over the cell:

yPu D j�j�1

Z

�

u.x/ dx; u 2 L2.�ICn/: (6.4)

From (5.4) with f D 1n it follows that

yA.k/ D yA.t; �/ > Oc�t
2I; k D t� 2 clos z�; (6.5)

where

Oc� WD ˛0kg�1k�1
L1
:

6.2. The effective matrix. In accordance with [9, Chapter 3, Section 1], the

spectral germ yS.�/ of the operator family yA.t; �/ acting in yN can be represented

as

yS.�/ D b.�/�g0b.�/; � 2 S
d�1; (6.6)

where b.�/ is the symbol of the operator b.D/ and g0 is the so-called effective

matrix. The constant positive .m � m/-matrix g0 is defined as follows. Assume

that a �-periodic .n�m/-matrix-valued functionƒ 2 zH 1.�/ is the weak solution

of the problem

b.D/�g.x/.b.D/ƒ.x/C 1m/ D 0;

Z

�

ƒ.x/ dx D 0: (6.7)

Denote

Qg.x/ WD g.x/.b.D/ƒ.x/C 1m/: (6.8)
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Then the effective matrix g0 is given by

g0 D j�j�1

Z

�

Qg.x/ dx: (6.9)

It turns out that the matrix g0 is positive definite. In the case where f D 1n,

estimate (5.14) takes the form

yS.�/ > Oc�I ON: (6.10)

From (6.7) it is easy to derive that

kb.D/ƒkL2.�/ 6 j�j1=2m1=2kgk
1=2
L1

kg�1k
1=2
L1
: (6.11)

We also need the following inequalities obtained in [11, (6.28) and Subsec-

tion 7.3]:

kƒkL2.�/ 6 j�j1=2M1; M1 WD m1=2.2r0/
�1˛

�1=2
0 kgk

1=2
L1

kg�1k
1=2
L1

I (6.12)

kDƒkL2.�/ 6 j�j1=2M2; M2 WD m1=2˛
�1=2
0 kgk

1=2
L1

kg�1k
1=2
L1
: (6.13)

6.3. The effective operator yA0. By (6.6) and the homogeneity of the symbol

b.k/, we have

yS.k/ WD t2 yS.�/ D b.k/�g0b.k/; k 2 R
d ; t D jkj; � D k=jkj: (6.14)

The matrix yS.k/ is the symbol of the differential operator

yA0 D b.D/�g0b.D/ (6.15)

acting in L2.R
d ICn/ on the domainH 2.Rd ICn/ and called the effective operator

for the operator yA.

Let yA0.k/ be the operator family in L2.�ICn/ corresponding to the effective

operator yA0. Then yA0.k/ D b.D C k/�g0b.D C k/ with periodic boundary

conditions: Dom yA0.k/ D zH 2.�ICn/. So, by (6.4) and (6.14),

yS.k/ yP D yA0.k/ yP : (6.16)

From estimate (6.10) for the symbol of the operator yA0.k/ it follows that

yA0.k/ > Oc�jkj2I; k 2 z�: (6.17)
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6.4. Properties of the effective matrix. The effective matrix g0 satisfies the

estimates known in homogenization theory as the Voigt–Reuss bracketing (see,

e.g., [9, Chapter 3, Theorem 1.5]).

Proposition 6.1. Let g0 be the effective matrix (6.9). Then

N
g 6 g0

6 Ng: (6.18)

If m D n, then g0 D
N
g.

From inequalities (6.18) it follows that

jg0j 6 kgkL1 ; j.g0/�1j 6 kg�1kL1 : (6.19)

Now, we distinguish the cases where one of the inequalities in (6.18) becomes

an identity. See [9, Chapter 3, Propositions 1.6 and 1.7].

Proposition 6.2. The equality g0 D Ng is equivalent to the relations

b.D/�gk.x/ D 0; k D 1; : : : ; m; (6.20)

where gk.x/, k D 1; : : : ; m; are the columns of the matrix-valued function g.x/.

Proposition 6.3. The identity g0 D
N
g is equivalent to the relations

lk.x/ D l0k C b.D/wk ; l0k 2 C
m; wk 2 zH 1.�ICm/; k D 1; : : : ; m; (6.21)

where lk.x/, k D 1; : : : ; m; are the columns of the matrix-valued function g.x/�1.

7. Approximation of the sandwiched operator A.k/�1=2 sin."�1�A.k/1=2/

Now, we consider the operator A.k/�1=2 sin."�1�A.k/1=2/ in the general case

where f ¤ 1n. Recall that A.k/ is the operator (5.2). Then

A.k/ D f .x/� yA.k/f .x/: (7.1)

7.1. Incorporation of A.k/ in the framework of Section 3. As was shown in

Subsection 5.3, the operator A.k/ satisfies the assumptions of Section 1. Now the

assumptions of Subsection 3.1 are valid with H D yH D L2.�ICn/ and H� D

L2.�ICm/. The role of yA.t/ is played by yA.t; �/ D yA.t�/, and the role of A.t/ is

played by A.t; �/ D A.t�/. An isomorphism M is the operator of multiplication

by the function f .x/. Relation (3.2) corresponds to the identity (7.1).
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Next, the operatorQ (see (3.3)) is the operator of multiplication by the matrix-

valued function

Q.x/ WD .f .x/f .x/�/�1: (7.2)

The blockQ yN ofQ in the subspace yN (see (6.3)) is the operator of multiplication

by the constant matrix

xQ D .ff �/�1 D j�j�1

Z

�

.f .x/f .x/�/�1 dx:

The operator

M0 WD .Q yN/
�1=2

acts in yN as multiplication by the matrix

f0 WD . xQ/�1=2 D .ff �/1=2:

Obviously,

jf0j 6 kf kL1 ; jf �1
0 j 6 kf �1kL1 : (7.3)

Now, we specify the operators from (3.16) and (3.17). By (6.14),

t2M0
yS.�/M0 D f0b.k/

�g0b.k/f0; t D jkj; � D k=jkj: (7.4)

Let A0 be the following operator in L2.R
d ICn/:

A
0 D f0b.D/

�g0b.D/f0; DomA
0 D H 2.Rd ICn/: (7.5)

Let A0.k/ be the corresponding operator family inL2.�ICn/ given by the expres-

sion

A
0.k/ D f0b.D C k/�g0b.D C k/f0 (7.6)

with the periodic boundary conditions. By (6.16), (6.17), (7.3), and the identity

c� D Oc�kf �1k�2
L1

, the symbol of the operator A0 satisfies the estimate

f0b.k/
�g0b.k/f0 > c�jkj21n; k 2 R

d : (7.7)

Hence, using the Fourier series representation for the operator A0.k/ and (4.5),

we deduce that

A
0.k/ > c�jkj2I; k 2 clos z�: (7.8)

By (6.4), (7.4), and (7.6), we obtain t2M0
yS.�/M0

yP D A0.k/ yP , whence

M0.t
2M0

yS.�/M0/
�1=2 sin."�1�.t2M0

yS.�/M0/
1=2/M�1

0
yP

D f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0
yP :

(7.9)
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In accordance with [11, Section 5], the role of yZQ is played by the operator

yZQ.�/ D ƒQb.�/ yP : (7.10)

HereƒQ is the operator of multiplication by the �-periodic .n�m/-matrix-valued

solution ƒQ.x/ of the problem

b.D/�g.x/.b.D/ƒQ.x/C 1m/ D 0;

Z

�

Q.x/ƒQ.x/ dx D 0:

Note that

ƒQ.x/ D ƒ.x/Cƒ0
Q; ƒ0

Q WD �. xQ/�1.Qƒ/; (7.11)

where ƒ is the �-periodic solution of problem (6.7). From (7.10) it follows that

t yZQ.�/ yP D ƒQb.k/ yP D ƒQb.D C k/ yP :

7.2. Estimates in the case where jkj 6 t0. Consider the operator

H0 D ��

acting in L2.R
d ICn/. Under the Gelfand transformation, this operator is decom-

posed into the direct integral of the operatorsH0.k/ acting inL2.�ICn/ and given

by the differential expression jDCkj2 with the periodic boundary conditions. De-

note

R.k; "/ WD "2.H0.k/C "2I /�1: (7.12)

Obviously,

R.k; "/ yP D "2.t2 C "2/�1 yP ; jkj D t: (7.13)

In order to approximate the operator f A.k/�1=2 sin."�1�A.k/1=2/f �1, we ap-

ply Theorem 3.3. We only need to specify the constants in estimates. The con-

stants c�, ı, and t0 are defined by (5.4), (5.11), and (5.13). Using estimate (5.12),

we choose the following values of constants from (1.10), (1.11), and (1.15):

C1 WD ˇ1ı
�1=2˛

1=2
1 kgk

1=2
L1

kf kL1 ;

C2 WD ˇ2ı
�1˛1kgkL1kf k2

L1
;

C3 WD ˇ3ı
�1=2˛

1=2
1 kgk

1=2
L1

kf kL1.1C c�1
� ˛1kgkL1kf k2

L1
/:

Similarly, we choose the constants from (1.17) and (1.19)

C4 WD ˇ4ı
�1=2˛1kgkL1kf k2

L1
.1C c�1=2

� ˛
1=2
1 kgk

1=2
L1

kf kL1/;

C5 WD ˇ5ı
�1=2˛1kgkL1kf k2

L1
:
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Using these C1, C3, C4, and C5, we fix the constants from (1.23), (2.8), (2.10),

and (2.18):

C6 WD 4��1c�1=2
� C3;

C7 WD C8 C c�1=2
� C1;

C8 WD max¹C4c
�1=2
� IC6º;

C9 WD C1 C c�1=2
� C5 C C8.˛

1=2
1 kgk

1=2
L1

kf kL1 C C4t0/:

By Theorem 3.3, taking (7.9), (7.10), and (7.13) into account, we have

k.f A.k/�1=2 sin."�1�A.k/1=2/f �1 � f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/1=2 yP kL2.�/!L2.�/

6 C7kf kL1kf �1kL1.1C j� j/;

(7.14)

for � 2 R, " > 0, jkj 6 t0, and

k yA.k/1=2.f A.k/�1=2 sin."�1�A.k/1=2/f �1

� .I CƒQb.D C k//f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/ yPkL2.�/!L2.�/

6 C9kf �1kL1".1C j� j/;

(7.15)

for � 2 R, " > 0, jkj 6 t0.

Using (7.11), we show that ƒQ can be replaced by ƒ in (7.15). Only the

constant in the estimate will change under such replacement. Indeed, due to

the presence of the projection yP , taking (4.7), (6.2), (7.3), and (7.13), and the

inequality j sinxj=jxj 6 1 into account, we have

k yA.k/1=2ƒ0
Qb.D C k/f0A

0.k/�1=2

� sin."�1�A0.k/1=2/f �1
0 R.k; "/ yPkL2.�/!L2.�/

6 kgk
1=2
L1

kb.k/ƒ0
Qb.k/f0A

0.k/�1=2

� sin."�1�A0.k/1=2/f �1
0 R.k; "/ yPkL2.�/!L2.�/

6 ˛1kgk
1=2
L1

jƒ0
Qjjkj2kf kL1kf �1kL1j� j".jkj2 C "2/�1; " > 0;

(7.16)

with � 2 R, k 2 clos z�. Next, according to [11, Section 7],

jƒ0
Qj 6 m1=2.2r0/

�1˛
�1=2
0 kgk

1=2
L1

kg�1k
1=2
L1

kf k2
L1

kf �1k2
L1
: (7.17)
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Combining (7.11) and (7.15)–(7.17), we arrive at the estimate

k yA.k/1=2.f A.k/�1=2 sin."�1�A.k/1=2/f �1

� .I Cƒb.D C k//f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/ yPkL2.�/!L2.�/

6 C10".1C j� j/;

(7.18)

with " > 0, � 2 R, k 2 clos z�, jkj 6 t0, and

C10 WD C9kf �1kL1 Cm1=2.2r0/
�1˛

�1=2
0 ˛1kgkL1kg�1k

1=2
L1

kf k3
L1

kf �1k3
L1
:

7.3. Approximations for jkj > t0. By (5.4) and (7.8),

kA.k/�1=2kL2.�/!L2.�/ 6 c�1=2
� t�1

0 ; kA0.k/�1=2kL2.�/!L2.�/ 6 c�1=2
� t�1

0 ;

(7.19)

for k 2 clos z�, jkj > t0. By (7.13),

kR.k; "/ yPkL2.�/!L2.�/ 6 1; k 2 clos z�: (7.20)

Combining (7.3) and (7.19) and (7.20), we obtain

k.fA.k/�1=2 sin."�1�A.k/1=2/f �1

� f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/1=2 yP kL2.�/!L2.�/

6 2c�1=2
� t�1

0 kf kL1kf �1kL1 ;

(7.21)

with " > 0, � 2 R, k 2 clos z�, jkj > t0. Bringing together (7.14) and (7.21), we

conclude that

k.f A.k/�1=2 sin."�1�A.k/1=2/f �1 � f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/1=2 yP kL2.�/!L2.�/

6 max¹C7I 2c�1=2
� t�1

0 ºkf kL1kf �1kL1.1C j� j/;

(7.22)

for " > 0, � 2 R, k 2 clos z�.

Now, we proceed to estimation of the operator under the norm sign in (7.18)

for jkj > t0. By (7.13) and the elementary inequality t2 C "2 > 2"t0, t > t0, we

have

kR.k; "/ yPkL2.�/!L2.�/ 6 .2t0/
�1"; " > 0; k 2 clos z�; jkj > t0: (7.23)
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By (7.1) and (7.23),

k yA.k/1=2f A.k/�1=2 sin."�1�A.k/1=2/f �1
R.k; "/ yP kL2.�/!L2.�/

D k sin."�1�A.k/1=2/f �1
R.k; "/ yPkL2.�/!L2.�/

6 ".2t0/
�1kf �1kL1 ;

(7.24)

with " > 0, � 2 R, k 2 clos z�, jkj > t0.

From (6.19), (7.3), (7.6), and (7.23) it follows that

k yA.k/1=2f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 R.k; "/ yPkL2.�/!L2.�/

6".2t0/
�1kg1=2b.D C k/f0 sin."�1�A0.k/1=2/A0.k/�1=2f �1

0
yP kL2.�/!L2.�/

6".2t0/
�1kgk

1=2
L1

kg�1k
1=2
L1

� kA0.k/1=2 sin."�1�A0.k/1=2/A0.k/�1=2f �1
0

yP kL2.�/!L2.�/

6".2t0/
�1kgk

1=2
L1

kg�1k
1=2
L1

kf �1kL1 ;

(7.25)

for " > 0, � 2 R, k 2 clos z�, jkj > t0.

Next,

yA.k/1=2ƒb.D C k/f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 R.k; "/ yP

D . yA.k/1=2ƒ yPm/b.D C k/f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 R.k; "/ yP;

where yPm is the orthogonal projection of the space H� D L2.�ICm/ onto the

subspace of constants. According to [12, (6.22)],

k yA.k/1=2ƒ yPmkL2.�/!L2.�/ 6 Cƒ; k 2 z�; (7.26)

where the constant Cƒ depends only on m, ˛0, ˛1, kgkL1 , kg�1kL1 , and the

parameters of the lattice �.

By (6.19), (7.3), (7.6), (7.23), and (7.26),

k yA.k/1=2ƒb.D C k/f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 R.k; "/ yPkL2.�/!L2.�/

6 Cƒkg�1k
1=2
L1

kf �1kL1.2t0/
�1";

(7.27)

for " > 0, � 2 R, k 2 clos z�, and jkj > t0.
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Combining (7.18), (7.24), (7.25), and (7.27), we conclude that

k yA.k/1=2.f A.k/�1=2 sin."�1�A.k/1=2/f �1

� .I Cƒb.D C k//f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/ yPkL2.�/!L2.�/

6 C11".1C j� j/;

(7.28)

with " > 0, � 2 R, k 2 clos z�. Here

C11 WD max¹C10I .2t0/
�1kf �1kL1.1C kgk

1=2
L1

kg�1k
1=2
L1

C Cƒkg�1k
1=2
L1
/º:

7.4. Removal of the operator yP . Now, we show that, in the operator under the

norm sign in (7.22) the projection yP can be replaced by the identity operator.

After such replacement, only the constant in the estimate will be different. To

show this, we estimate the norm of the operator R.k; "/1=2.I � yP/ by using the

discrete Fourier transform:

kR.k; "/1=2.I � yP /kL2.�/!L2.�/ D max
0¤b2z�

".jb C kj2 C "2/�1=2
6 "r�1

0 ; (7.29)

with " > 0, k 2 clos z�. Next, applying the spectral theorem and the elementary

inequality j sinxj=jxj 6 1, x 2 R, we conclude that

kA.k/�1=2 sin."�1�A.k/1=2/kL2.�/!L2.�/ 6 "�1j� j: (7.30)

Similarly,

kA0.k/�1=2 sin."�1�A0.k/1=2/kL2.�/!L2.�/ 6 "�1j� j: (7.31)

Bringing together (7.3) and (7.29)–(7.31), we arrive at the estimate

k.f A.k/�1=2 sin."�1�A.k/1=2/f �1 � f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/1=2.I � yP /kL2.�/!L2.�/

6 2r�1
0 kf kL1kf �1kL1 j� j:

Combining this with (7.22), we see that

k.f A.k/�1=2 sin."�1�A.k/1=2/f �1 � f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/1=2kL2.�/!L2.�/

6 C12.1C j� j/;

(7.32)
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with " > 0, � 2 R, k 2 clos z�, and

C12 WD .2r�1
0 C max¹C7I 2c�1=2

� t�1
0 º/kf kL1kf �1kL1 :

Now, we show that the operator yP in the principal terms of approxima-

tion (7.28) can be removed. Let us estimate the operator R.k; "/.I � yP / using

the discrete Fourier transform:

kR.k; "/.I � yP /kL2.�/!L2.�/ D max
0¤b2z�

"2.jb C kj2 C "2/�1
6 "r�1

0 ; (7.33)

for " > 0, k 2 clos z�. By (7.1) and (7.33),

k yA.k/1=2f A.k/�1=2 sin."�1�A.k/1=2/f �1
R.k; "/.I � yP/kL2.�/!L2.�/

D k sin."�1�A.k/1=2/f �1
R.k; "/.I � yP/kL2.�/!L2.�/

6 kf �1kL1"r
�1
0 ;

(7.34)

with " > 0, � 2 R, k 2 clos z�. Next, by (6.2), (6.19), (7.3), (7.6), and (7.33),

k yA.k/1=2f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 R.k; "/.I � yP /kL2.�/!L2.�/

6 kgk
1=2
L1

kg�1k
1=2
L1

kf �1kL1"r
�1
0 ;

(7.35)

with " > 0, � 2 R, k 2 clos z�. Combining (7.28), (7.34), and (7.35), we get

k yA.k/1=2.f A.k/�1=2 sin."�1�A.k/1=2/f �1

� .I Cƒb.D C k/ yP /f0A
0.k/�1=2 sin."�1�A0.k/1=2/f �1

0 /

� R.k; "/kL2.�/!L2.�/

6 C13".1C j� j/;

(7.36)

with " > 0, � 2 R, k 2 clos z�, and

C13 WD C11 C r�1
0 kf �1kL1.1C kgk

1=2
L1

kg�1k
1=2
L1
/:

8. Approximation of the sandwiched operator A�1=2 sin."�1�A1=2/

8.1. Let A and A0 be the operators (4.10) and (7.5), respectively, acting in

L2.R
d ICn/. Recall the notation H0 D �� and put

R."/ WD "2.H0 C "2I /�1:
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Using the Gelfand transformation, we decompose this operator into the direct

integral of the operators (7.12):

R."/ D U
�1

� Z

z�

˚R.k; "/ dk

�

U: (8.1)

In L2.R
d ICn/, we introduce the operator

… WD U
�1Œ yP �U:

Here Œ yP � is the projection in
R

z� ˚L2.�ICn/ dk acting on fibers as the operator
yP (see (6.4)). As was shown in [11, (6.8)], … is the pseudodifferential operator

in L2.R
d ICn/ with the symbol � z�.�/, where � z� is the characteristic function of

the set z�. That is

.…u/.x/ D .2�/�d=2

Z

z�

eihx;�i Ou.�/ d�:

Here Ou.�/ is the Fourier image of the function u 2 L2.R
d ICn/.

Theorem 8.1. Under the assumptions of Subsection 8.1, for " > 0 and � 2 R we

have

k.fA�1=2 sin."�1�A1=2/f �1

� f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 /

� R."/1=2kL2.Rd /!L2.Rd /

6 C12.1C j� j/;

(8.2)

and

k yA1=2.f A�1=2 sin."�1�A1=2/f �1

� .I Cƒb.D/…/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 /

� R."/kL2.Rd /!L2.Rd /

6 C13".1C j� j/:

(8.3)

The constants C12 and C13 depend only on m, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. By (5.8), the similar identity for A0, and (8.1), from (7.32) we deduce

estimate (8.2).

From (7.36) via the Gelfand transform we derive inequality (8.3). �
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8.2. Removal of the operator … in the corrector for d 6 4. Now, we show

that the operator … in estimate (8.3) can be removed for d 6 4.

Theorem 8.2. Under the assumptions of Subsection 8.1, let d 6 4. Then, for

0 < " 6 1 and � 2 R,

k yA1=2.f A�1=2 sin."�1�A1=2/f �1

� .I Cƒb.D//f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 /

� R."/kL2.Rd /!L2.Rd /

6 C14".1C j� j/:

(8.4)

The constant C14 depends only on m, n, d , ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

To prove Theorem 8.2, we need the following result, see [44, Proposition 9.3].

Proposition 8.3. Let l D 1 for d D 1, l > 1 for d D 2, and l D d=2 for

d > 3. Then the operator yA1=2Œƒ� is a continuous mapping of H l.Rd ICm/ to

L2.R
d ICn/, and

k yA1=2Œƒ�kH l.Rd /!L2.Rd / 6 Cd : (8.5)

Here the constant Cd depends only on m, n, d , ˛0, ˛1, kgkL1 , kg�1kL1 , and the

parameters of the lattice �; for d D 2 it depends also on l .

Proof of Theorem 8.2. Taking into account that the matrix-valued function (7.4)

is the symbol of the operator A0 and the function � z�.�/ is the symbol of …,

using (4.7), (7.3), and (7.7) we have

kb.D/.I �…/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!H 2.Rd /

6 sup
�2Rd

.1C j�j2/jb.�/j.1 � � z�.�//jf0j

� j.f0b.�/
�g0b.�/f0/

�1=2jjf �1
0 j"2.j�j2 C "2/�1

6 sup
j�j>r0

.1C j�j2/˛
1=2
1 j�jkf kL1c

�1=2
� j�j�1kf �1kL1"

2.j�j2 C "2/�1

6 ˛
1=2
1 c�1=2

� kf kL1kf �1kL1"
2 sup

j�j>r0

.1C j�j2/j�j�2

6 ˛
1=2
1 c�1=2

� kf kL1kf �1kL1.r
�2
0 C 1/"2:

(8.6)

For d 6 4, we can take l 6 2 in Proposition 8.3. So, combining (8.5) and (8.6),

we have

k yA1=2Œƒ�b.D/.I �…/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!L2.Rd /

6 "2C 0
14;
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where

C 0
14 WD ˛

1=2
1 c�1=2

� .r�2
0 C 1/Cd kf kL1kf �1kL1 :

Combining this with (8.3), we arrive at estimate (8.4) with

C14 WD C13 C C 0
14: �

8.3. On the possibility of removal of the operator … from the corrector.

Sufficient conditions on ƒ. It is possible to eliminate the operator … for d > 5

by imposing the following assumption on the matrix-valued function ƒ.

Condition 8.4. The operator Œƒ� is continuous fromH 2.Rd ICm/ toH 1.Rd ICn/.

Actually, it is sufficient to impose the following condition to remove … for

d > 5.

Condition 8.5. Assume that the periodic solution ƒ of problem (6.7) belongs to

Ld .�/.

Proposition 8.6. For d > 3, Condition 8.5 implies Condition 8.4.

To prove Proposition 8.6 we need the following statement.

Lemma 8.7. Let d > 3. Assume that Condition 8.5 is satisfied. Then the operator

g1=2b.D/Œƒ� is a continuous mapping of H 2.Rd ICm/ to L2.R
d ICm/ and

kg1=2b.D/Œƒ�kH 2.Rd /!L2.Rd / 6 Cƒ: (8.7)

The constant Cƒ depends only on d , ˛0, ˛1, kgkL1 , kg�1kL1 , kƒkLd .�/, and the

parameters of the lattice �.

Proof. The proof is quite similar to the proof of Proposition 8.8 from [45].

Let vj .x/, j D 1; : : : ; m, be the columns of the matrix ƒ.x/. In other words,

vj is the �-periodic solution of the problem

b.D/�g.x/.b.D/vj .x/C ej / D 0;

Z

�

vj .x/ dx D 0: (8.8)

Here ¹ej ºm
j D1 is the standard orthonormal basis in Cm. Let u 2 H 2.Rd /. Then

g1=2b.D/.vju/ D g1=2.b.D/vj /uC

d
X

lD1

g1=2bl .Dlu/vj : (8.9)
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We estimate the second term on the right-hand side of (8.9):







d
X

lD1

g1=2bl .Dlu/vj







L2.Rd /
6 kgk

1=2
L1
˛

1=2
1 d1=2

� Z

Rd

jDuj2jvj j2 dx

�1=2

: (8.10)

Next,
Z

Rd

jDuj2jvj j2 dx D
X

a2�

Z

�Ca

jDuj2jvj j2 dx: (8.11)

By the Hölder inequality with indices s D d=2 and s0 D d=.d � 2/,

Z

�Ca

jDuj2jvj j2 dx 6

� Z

�

jvj jd dx

�2=d � Z

�Ca

jDuj2d=.d�2/ dx

�.d�2/=d

: (8.12)

By the continuous embedding H 1.�/ ,! L2d=.d�2/.�/,

� Z

�Ca

jDuj2d=.d�2/ dx

�.d�2/=2d

6 C�kDukH 1.�Ca/: (8.13)

The embedding constant C� depends only on d and � (i.e., on the lattice �).

From (8.11)–(8.13) it follows that

Z

Rd

jDuj2jvj j2 dx 6 C 2
�kvj k2

Ld .�/kuk2
H 2.Rd /

: (8.14)

Using (8.10), from (8.14) we derive the estimate







d
X

lD1

g1=2bl .Dlu/vj







L2.Rd /
6 kgk

1=2
L1
˛

1=2
1 d1=2C�kvj kLd .�/kukH 2.Rd /: (8.15)

Next, equation (8.8) implies that

Z

Rd

�

hg.x/b.D/vj ; b.D/wi C

d
X

lD1

hb�
l g.x/ej ; Dlwi

�

dx D 0 (8.16)

for any w 2 H 1.Rd ICn/ such that w.x/ D 0 for jxj > R (with some R > 0).

Let u 2 C1
0 .Rd /. We put w.x/ D ju.x/j2vj .x/. Then

b.D/w D juj2b.D/vj C

d
X

lD1

bl .Dl juj2/vj :
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Substituting this expression into (8.16), we obtain

Z

Rd

�D

g.x/b.D/vj ; juj2b.D/vj C

d
X

lD1

bl .Dl juj2/vj

E

C

d
X

lD1

hb�
l g.x/ej ; Dl.juj2vj /i

�

dx D 0:

Hence,

J0 WD

Z

Rd

jg1=2b.D/vj j2juj2 dx D J1 C J2; (8.17)

where

J1 D �

Z

Rd

D

g1=2b.D/vj ;

d
X

lD1

g1=2bl .Dl juj2/vj

E

dx;

J2 D �

Z

Rd

d
X

lD1

hb�
l g.x/ej ; Dl.juj2vj /i dx

D �

Z

Rd

d
X

lD1

hb�
l g.x/ej ; Dl.vju/u

� C vju.Dlu
�/i dx:

By (4.8),

jJ1j 6 kgk
1=2
L1
˛

1=2
1 d1=2

Z

Rd

2jg1=2b.D/vj jjujjDujjvj j dx

6
1

2

Z

Rd

jg1=2b.D/vj j2juj2 dx C 2kgkL1˛1d

Z

Rd

jDuj2jvj j2 dx:

Combining this with (8.14), we see that

jJ1j 6
1

2
J0 C 2kgkL1˛1dC

2
�kvj k2

Ld .�/kuk2
H 2.Rd /

: (8.18)

Now we proceed to estimating the term J2. By (4.8),

Z

Rd

jb�
l g.x/ej j2juj2 dx 6 ˛1kgk2

L1
kuk2

L2.Rd /
:
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Then

jJ2j 6

d
X

lD1

kub�
l gej kL2.Rd /.kDl.vju/kL2.Rd / C kvj .Dlu

�/kL2.Rd //

6 �kD.vju/k
2
L2.Rd /

C .4�1 C .4�/�1/d˛1kgk2
L1

kuk2
L2.Rd /

C

Z

Rd

jvj j2jDu�j2 dx

for any � > 0. By (8.14),

jJ2j 6 �kD.vju/k
2
L2.Rd /

C ..4�1 C .4�/�1/d˛1kgk2
L1

C C 2
�kvj k2

Ld .�//kuk2
H 2.Rd /

:
(8.19)

Now, relations (8.17), (8.18), and (8.19) imply that

1

2
J0 6 �kD.vju/k

2
L2.Rd /

C
�

.2kgkL1˛1d C 1/C 2
�kvj k2

Ld .�/

C
�1

4
C

1

4�

�

d˛1kgk2
L1

�

kuk2
H 2.Rd /

:

(8.20)

Comparing (8.9), (8.15), (8.17), and (8.20), we obtain

kg1=2b.D/.vju/k
2
L2.Rd /

6 2J0 C 2kgkL1˛1dC
2
�kvj k2

Ld .�/kuk2
H 2.Rd /

6 4�kD.vju/k
2
L2.Rd /

C ..10kgkL1˛1d C 4/C 2
�kvj k2

Ld .�/ C .1C ��1/d˛1kgk2
L1
/kuk2

H 2.Rd /
:

(8.21)

By (4.11) (with f D 1n),

4�kD.vju/k
2
L2.Rd /

6 4�˛�1
0 kg�1kL1kg1=2b.D/.vju/k

2
L2.Rd /

D
1

2
kg1=2b.D/.vju/k

2
L2.Rd /

;

for � D 1
8
˛0kg�1k�1

L1
. Together with (8.21) this implies

kg1=2b.D/.vju/k
2
L2.Rd /

6 C
2
j kuk2

H 2.Rd /
;

where

C
2
j WD .20kgkL1˛1d C 8/C 2

�kvj k2
Ld .�/ C .2C 16˛�1

0 kg�1kL1/d˛1kgk2
L1
:
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Thus,

kg1=2b.D/Œvj �kH 2.Rd /!L2.Rd / 6 Cj ; j D 1; : : : ; m;

whence

kg1=2b.D/Œƒ�kH 2.Rd /!L2.Rd / 6

�

m
X

j D1

C
2
j

�1=2

DW CƒI

i.e., (8.7) is true. �

Proof of Proposition 8.6. Let u 2 H 2.Rd /. Similarly to (8.11)–(8.14),

kvjuk2
L2.Rd /

6 C 2
�kvj k2

Ld .�/kuk2
H 1.Rd /

:

Here vj .x/, j D 1; : : : ; m, are the columns of the matrix ƒ.x/. Thus,

kŒƒ�uk2
L2.Rd /

6 C 2
�

m
X

j D1

kvj k2
Ld .�/kuk2

H 1.Rd /
: (8.22)

By (4.11) with f D 1n, and Lemma 8.7,

kDŒƒ�uk2
L2.Rd /

6 ˛�1
0 kg�1kL1kg1=2b.D/Œƒ�uk2

L2.Rd /

6 ˛�1
0 kg�1kL1C2

ƒkuk2
H 2.Rd /

:
(8.23)

Combining (8.22) and (8.23), we obtain

kŒƒ�uk2
H 1.Rd /

6

�

C 2
�

m
X

j D1

kvj k2
Ld .�/ C ˛�1

0 kg�1kL1C2
ƒ

�

kuk2
H 2.Rd /

;

for u 2 H 2.Rd /. �

Theorem 8.8. Let d > 5. Under Condition 8.4, for 0 < " 6 1 and � 2 R,

k yA1=2.f A�1=2 sin."�1�A1=2/f �1

� .I Cƒb.D//f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 /

� R."/kL2.Rd /!L2.Rd /

6 C15".1C j� j/;

(8.24)

where the constant C15 depends only on m, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , the parameters of the lattice �, and the norm kŒƒ�kH 2.Rd /!H 1.Rd /.
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Proof. Under Condition 8.4, by (4.7), (6.1), and (8.6), we have

k yA1=2Œƒ�b.D/.I �…/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!L2.Rd /

6 kgk
1=2
L1
˛

1=2
1 kDŒƒ�kH 2.Rd /!L2.Rd /˛

1=2
1 c�1=2

� kf kL1kf �1kL1.r
�2
0 C 1/"2

6 C 0
15"

2;

where

C 0
15 WD ˛1c

�1=2
� kgk

1=2
L1

kf kL1kf �1kL1kŒƒ�kH 2.Rd /!H 1.Rd /.r
�2
0 C 1/:

Combining this with (8.3), we arrive at estimate (8.24) with the constant

C15 WD C13 C C 0
15: �

For d > 5, removal of the operator… in the corrector also can be achieved by

increasing the degree of the operatorR."/. In the application to homogenization of

the hyperbolic Cauchy problem, this corresponds to more restrictive assumptions

on the regularity of the initial data.

The proof of the following result is quite similar to that of Theorem 8.2.

Proposition 8.9. Let d > 5. Then for � 2 R, 0 < " 6 1, we have

k yA1=2.f A�1=2 sin."�1�A1=2/f �1

� .I Cƒb.D//f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 /

� R."/d=4kL2.Rd /!L2.Rd /

6 C16".1C j� j/:

The constant C16 depends only on m, n, d , ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Chapter III

Homogenization problem for hyperbolic systems

9. Approximation of the sandwiched operator A
�1=2
" sin.�A

1=2
" /

For a �-periodic measurable function  .x/ in Rd we denote

 ".x/ WD  ."�1x/; " > 0:
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Let Œ "� be the operator of multiplication by the function  ".x/. Our main

object is the operator A", " > 0, acting in L2.R
d ICn/ and formally given by

the differential expression

A" D f ".x/�b.D/�g".x/b.D/f ".x/: (9.1)

Denote
yA" D b.D/�g".x/b.D/: (9.2)

The precise definitions of these operators are given in terms of the corresponding

quadratic forms. The coefficients of the operators (9.1) and (9.2) oscillate rapidly

as " ! 0.

Our goal is to approximate the sandwiched operator A
�1=2
" sin.�A

1=2
" /. The

results are applied to homogenization of the solutions of the Cauchy problem for

hyperbolic systems.

9.1. The principal term of approximation. Let T" be the unitary scaling trans-

formation in L2.R
d ICn/:

.T"u/.x/ WD "d=2u."x/; " > 0:

Then A" D "�2T �
" AT". Thus,

A
�1=2
" sin.�A1=2

" / D "T �
" A

�1=2 sin."�1�A1=2/T":

The operator A0 satisfies a similar identity. Next,

.H0 C I /�1=2 D "T �
" .H0 C "2I /�1=2T" D T �

" R."/
1=2T":

Note that for any s the operator .H0 C I /s=2 is an isometric isomorphism of the

Sobolev spaceH s.Rd ICn/ onto L2.R
d ICn/. Indeed, for u 2 H s.Rd ICn/

k.H0 C I /s=2uk2
L2.Rd /

D

Z

Rd

.j�j2 C 1/sj Ou.�/j2 d� D kuk2
H s.Rd /

: (9.3)

Using these arguments, from (8.2) we deduce the following result.

Theorem 9.1. Let A" be the operator (9.1) and let A0 be the operator (7.5). Then,

for " > 0 and � 2 R,

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1�f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /

6 C12".1C j� j/:

(9.4)

The constant C12 is controlled in terms of r0, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

and kf �1kL1 .
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By (7.3) and the elementary inequality j sinxj=jxj 6 1, x 2 R,

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1�f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kL2.Rd /!L2.Rd /

6 2kf kL1kf �1kL1 j� j:

(9.5)

Interpolating between (9.5) and (9.4), we obtain the following result.

Theorem 9.2. Under the assumptions of Theorem 9.1, for 0 6 s 6 1, � 2 R, and

" > 0,

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1 � f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH s.Rd /!L2.Rd /

6 C1.s/.1C j� j/"s;

where

C1.s/ WD .2kf kL1kf �1kL1/
1�sC s

12:

9.2. Approximation with corrector. Now, we obtain an approximation with the

correction term taken into account. We put

…" WD T �
" …T":

Then…" is the pseudodifferential operator inL2.R
d ICn/with the symbol� z�=".�/,

i.e.,

.…"u/.x/ D .2�/�d=2

Z

z�="

eihx;�i Ou.�/ d�: (9.6)

Obviously,…"D
�u D D�…"u for u 2 H �.Rd ICn/ and any multiindex � of length

j� j 6 �. Note that

k…"kH �.Rd /!H �.Rd / 6 1; � 2 ZC:

The following results were obtained in [37, Proposition 1.4] and [12, Subsec-

tion 10.2].

Proposition 9.3. For any function u 2 H 1.Rd ICn/ we have

k…"u � ukL2.Rd / 6 "r�1
0 kDukL2.Rd /; " > 0:

Proposition 9.4. Let ˆ.x/ be a �-periodic function in Rd such that ˆ 2 L2.�/.

Then the operator Œˆ"�…" is bounded in L2.R
d ICn/, and

kŒˆ"�…"kL2.Rd /!L2.Rd / 6 j�j�1=2kˆkL2.�/; " > 0:
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Theorem 9.5. Let ƒ.x/ be the �-periodic solution of problem (6.7). Let …" be

the operator (9.6). Then, under the assumptions of Theorem 9.1, for " > 0 and

� 2 R

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D/…"/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 2.Rd /!H 1.Rd /

6 C17".1C j� j/;

(9.7)

where the constant C17 depends only on m, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. By the scaling transformation, (8.3) implies that

k yA1=2
" .f "

A
�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D/…"/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�1kL2.Rd /!L2.Rd /

6 C13".1C j� j/:

(9.8)

Note that, by (4.7), (4.9), and (9.2),

Oc�kDuk2
L2.Rd /

6 k yA1=2
" uk2

L2.Rd /
; u 2 H 1.Rd ICn/; (9.9)

where the constant Oc� is defined by (6.5). From (9.8) and (9.9) it follows that

kD.f "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D/…"/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�1kL2.Rd /!L2.Rd /

6 Oc�1=2
� C13".1C j� j/:

(9.10)

Now, we estimate the .L2 ! L2/-norm of the correction term. Let …
.m/
"

be the pseudodifferential operator in L2.R
d ICm/ with the symbol � z�=".�/. By

Proposition 9.4 and (6.12),

kƒ"….m/
" kL2.Rd /!L2.Rd / 6 M1: (9.11)

Using (6.19), (7.3), (7.5), and (9.11),

k"ƒ"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 .H0 C I /�1kL2.Rd /!L2.Rd /

6 "kƒ"….m/
" kL2.Rd /!L2.Rd /

� kb.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 .H0 C I /�1kL2.Rd /!L2.Rd /

6 "M1kg�1k
1=2
L1

k sin.�.A0/1=2/f �1
0 .H0 C I /�1kL2.Rd /!L2.Rd /

6 "M1kg�1k
1=2
L1

kf �1kL1 :

(9.12)
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Combining (9.3), (9.4), (9.10), and (9.12), we arrive at estimate (9.7) with the

constant C17 WD Oc
�1=2
� C13 C C12 CM1kg�1k

1=2
L1

kf �1kL1 . �

By interpolation, from Theorem 9.5 we derive the following result.

Theorem 9.6. Under the assumptions of Theorem 9.5, for 0 6 s 6 1, � 2 R, and

0 < " 6 1

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D/…"/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH sC1.Rd /!H 1.Rd /

6 C2.s/.1C j� j/"s:

(9.13)

Here the constant C2.s/ depends only on s, m, ˛0, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. Let us estimate the left-hand side of (9.13) for s D 0. By (4.7), (9.1), and

the elementary inequality j sinxj=jxj 6 1, x 2 R,

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1kH 1.Rd /!H 1.Rd /

6 kf kL1kf �1kL1j� j C kDf "
A

�1=2
" sin.�A1=2

" /.f "/�1kH 1.Rd /!L2.Rd /

6 kf kL1kf �1kL1j� j C ˛
�1=2
0 kg�1k

1=2
L1

kf �1kL1 :

(9.14)

Similarly, by (4.7), (7.3), and (7.5),

kf0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 kf kL1kf �1kL1 j� j C ˛
�1=2
0 kg�1k

1=2
L1

kf �1kL1 :
(9.15)

From (6.19), (7.3), and (9.11) it follows that

k"ƒ"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 "M1kg�1k
1=2
L1

kf �1kL1

C "kDƒ"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /

6 "M1kg�1k
1=2
L1

kf �1kL1

C k.Dƒ/"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /

C "kƒ"Db.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /:

(9.16)

By Proposition 9.4, (6.13), (6.19), (7.3), and (7.5),

k.Dƒ/"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /

6 M2kg�1k
1=2
L1

kf �1kL1 :
(9.17)
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Next, according to (6.19), (7.5), and (9.11),

"kƒ"Db.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!L2.Rd /

6 "M1kg�1k
1=2
L1

kD sin.�.A0/1=2/f �1
0 kH 1.Rd /!L2.Rd /:

(9.18)

Since the operator A0 with constant coefficients commutes with the differentia-

tion D, we have

kD sin.�.A0/1=2/kH 1.Rd /!L2.Rd / 6 1:

Together with (7.3) and (9.16)–(9.18) this yields

k"ƒ"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 .2"M1 CM2/kg
�1k

1=2
L1

kf �1kL1 :
(9.19)

Relations (9.14), (9.15), and (9.19) imply that

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D/…"/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 C18.1C j� j/;

(9.20)

with � 2 R, 0 < " 6 1, and

C18 WD max¹2kf kL1kf �1kL1 I .2˛
�1=2
0 C 2M1 CM2/kg

�1k
1=2
L1

kf �1kL1º:

Interpolating between (9.20) and (9.7), we deduce estimate (9.13) with

C2.s/ WD C 1�s
18 C s

17: �

9.3. The case where d 6 4. Now we apply Theorem 8.2. By the scaling

transformation, (8.4) implies that

k yA1=2
" .f "

A
�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�1kL2.Rd /!L2.Rd /

6 C14".1C j� j/;

(9.21)

for 0 < " 6 1, � 2 R. Combining this with (9.9), we obtain

kD.f "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�1kL2.Rd /!L2.Rd /

6 Oc�1=2
� C14".1C j� j/;

(9.22)

for 0 < " 6 1, � 2 R.
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Let us estimate the .L2 ! L2/-norm of the corrector. By the scaling transfor-

mation,

"kƒ"b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 .H0 C I /�1kL2.Rd /!L2.Rd /

D "kƒb.D/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!L2.Rd /:
(9.23)

The .H s ! L2/-norm of the operator Œƒ� was estimated in [44, Proposi-

tion 11.3].

Proposition 9.7. Let s D 0 for d D 1, s > 0 for d D 2, s D d=2 � 1 for d > 3.

Then the operator Œƒ� is a continuous mapping of H s.Rd ICm/ to L2.R
d ICm/,

and

kŒƒ�kH s.Rd /!L2.Rd / 6 Cd ;

there the constant Cd depends only on d , m, n, ˛0, kgkL1 , kg�1kL1 , and the

parameters of the lattice �; in the case d D 2 it depends also on s.

Now we consider only the case d 6 4. So, by Proposition 9.7,

kŒƒ�kH 1.Rd /!L2.Rd / 6 Cd ; d 6 4: (9.24)

Thus, we need to estimate the operator b.D/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/

in the .L2 ! H 1/-norm. By (6.19), (7.3), and (7.5), for any d we have

kb.D/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!H 1.Rd /

6 kb.D/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!L2.Rd /

C kDb.D/f0.A
0/�1=2 sin."�1�.A0/1=2/f �1

0 R."/kL2.Rd /!L2.Rd /

6 2kg�1k
1=2
L1

kf �1kL1 ; � 2 R; 0 < " 6 1:

(9.25)

The following result is a direct consequence of (9.4) and (9.22)–(9.25).

Theorem 9.8. Let d 6 4. Under the assumptions of Theorem 9.5,

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 2.Rd /!H 1.Rd /

6 C19".1C j� j/;

(9.26)

with 0 < " 6 1, � 2 R. The constant

C19 WD Oc�1=2
� C14 C C12 C 2Cd kg�1k

1=2
L1

kf �1kL1

depends only on d , m, n, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 , kf �1kL1 , and the

parameters of the lattice �.
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9.4. Removal of…" from the corrector for d > 5. The following result can be

deduced from Theorem 8.8.

Theorem 9.9. Let d > 5. Let Condition 8.4 be satisfied. Then, under the

assumptions of Theorem 9.5, for 0 < " 6 1 and � 2 R we have

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 2.Rd /!H 1.Rd /

6 C20".1C j� j/;

(9.27)

where the constant C20 depends only on m, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , the parameters of the lattice �, and the norm kŒƒ�kH 2.Rd /!H 1.Rd /.

Proof. The proof is similar to that of Theorem 9.5. Combining (6.19), (7.3), (7.5),

(8.24), (9.4), and (9.9), we arrive at the estimate (9.27) with

C20 WD Oc�1=2
� C15 C C12 C kŒƒ�kH 2.Rd /!H 1.Rd /kg

�1k
1=2
L1

kf �1kL1 : �

Theorem 9.10. Let d > 5. Under the assumptions of Theorem 9.5, for 0 < " 6 1

and � 2 R we have

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH d=2.Rd /!H 1.Rd /

6 C21".1C j� j/:

(9.28)

The constant C21 depends only on d , m, n, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. By the scaling transformation, from Proposition 8.9 it follows that

k yA1=2
" .f "

A
�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�d=4kL2.Rd /!L2.Rd /

6 C16".1C j� j/;

with 0 < " 6 1, � 2 R. By (9.9),

kD.f "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 /

� .H0 C I /�d=4kL2.Rd /!L2.Rd /

6 Oc�1=2
� C16".1C j� j/;

(9.29)
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with 0 < " 6 1, � 2 R. By Proposition 9.7, and (6.19), (7.3), and (7.5),

kƒ"b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 .H0 C I /�d=4kL2.Rd /!L2.Rd /

6 Cd kb.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 .H0 C I /�d=4kL2.Rd /!H d=2�1.Rd /

6 Cd kg�1k
1=2
L1

kf �1kL1k.H0 C I /�d=4kL2.Rd /!H d=2�1.Rd /

6 Cd kg�1k
1=2
L1

kf �1kL1 :

(9.30)

Combining (9.4), (9.29), and (9.30), we arrive at estimate (9.28) with the constant

C21 WD Oc�1=2
� C16 C C12 C Cd kg�1k

1=2
L1

kf �1kL1 : �

9.5. Removal of …". Interpolational results. To obtain the analogue of Theo-

rem 9.6 with …" replaced by I we need the continuity of the operator

"Œƒ"�b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0

in H 1.Rd ICn/, i.e., we need the boundedness of kŒ.Dƒ/"�kH 1.Rd /!L2.Rd / and

kŒƒ"�kL2.Rd /!L2.Rd /. Due to Parseval’s theorem, kŒƒ"�kL2.Rd /!L2.Rd / < 1

holds if and only if the matrix-valued function ƒ is subject to the following

condition.

Condition 9.11. Assume that the �-periodic solution ƒ.x/ of problem (6.7) is

bounded, i.e., ƒ 2 L1.R
d /.

Under Condition 9.11, the operator Œ.Dƒ/"� is bounded from H 1 to L2 due to

the following result obtained in [37, Corollary 2.4].

Lemma 9.12. Under Condition 9.11, for any function u 2 H 1.Rd / and " > 0 we

have

Z

Rd

j.Dƒ/".x/j2ju.x/j2 dx 6 c1kuk2
L2.Rd /

C c2"
2kƒk2

L1
kDuk2

L2.Rd /
:

The constants c1 and c2 depend on m, d , ˛0, ˛1, kgkL1 , and kg�1kL1 .

Some cases where Condition 9.11 is fulfilled automatically were distinguished

in [12, Lemma 8.7].
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Proposition 9.13. Suppose that at least one of the following assumptions is

satisfied:

1ı/ d 6 2;

2ı/ the dimension d > 1 is arbitrary and the operator A" has the form A" D

D�g".x/D, where g.x/ is symmetric matrix with real entries;

3ı/ the dimension d is arbitrary and g0 D
N
g, i.e., relations (6.21) are true.

Then Condition 9.11 is fulfilled.

Surely, if ƒ 2 L1, then Condition 8.5 holds automatically. Then, by Proposi-

tion 8.6, for d > 5, the assumptions of Theorem 9.9 are satisfied.

We are going to check that under Condition 9.11 the analog of Theorem 9.6

is valid without any smoothing operator in the corrector. To do this, we estimate

the .H 1 ! H 1/-norm of the operators under the norm sign in (9.26) (or (9.27)).

By (6.19), (7.3), (7.5), and Lemma 9.12, we obtain

k"ƒ"b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 2"kƒkL1kg�1k
1=2
L1

kf �1kL1 C kg�1k
1=2
L1

kf �1kL1.c1 C c2kƒk2
L1
/1=2;

(9.31)

with 0 < " 6 1, � 2 R. Combining (9.14), (9.15), and (9.31), we deduce that

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH 1.Rd /!H 1.Rd /

6 C22.1C j� j/; 0 < " 6 1; � 2 R;

(9.32)

where

C22 WD kf �1kL1 max¹2kf kL1 I

kg�1k
1=2
L1
.2˛

�1=2
0 C 2kƒkL1 C .c1 C c2kƒk2

L1
/1=2/º:

Interpolating between (9.32) and (9.26) for d 6 4 and between (9.32)

and (9.27) for d > 5, we arrive at the following result.

Theorem 9.14. Suppose that the assumptions of Theorem 9.1 are satisfied and

Condition 9.11 holds. Then, for 0 6 s 6 1 and � 2 R, 0 < " 6 1

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1

� .I C "ƒ"b.D//f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH sC1.Rd /!H 1.Rd /

6 C3.s/.1C j� j/"s ;

where

C3.s/ WD

´

C 1�s
22 C s

19 for d 6 4;

C 1�s
22 C s

20 for d > 5:
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9.6. The case where the corrector is equal to zero. Assume that g0 D Ng, i.e.,

relations (6.20) are valid. Then the �-periodic solution of problem (6.7) is equal

to zero: ƒ.x/ D 0, and Theorem 9.6 implies the following result.

Proposition 9.15. Suppose that relations (6.20) hold. Then under the assumptions

of Theorem 9.1, for 0 6 s 6 1 and � 2 R, 0 < " 6 1 we have

kf "
A

�1=2
" sin.�A1=2

" /.f "/�1�f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH sC1.Rd /!H 1.Rd /

6 C2.s/.1C j� j/"s :

10. Homogenization of hyperbolic systems with periodic coefficients

10.1. The statement of the problem. Homogenization for the solutions of hy-

perbolic systems. Our goal is to apply the results of Section 9 to homogenization

for the solutions of the problem
8

ˆ

ˆ

<

ˆ

ˆ

:

Q".x/
@2u".x; �/

@�2
D �b.D/�g".x/b.D/u".x; �/CQ".x/F.x; �/;

u".x; 0/ D 0;
@u".x; 0/

@�
D  .x/;

(10.1)

where  2 L2.R
d ICn/, F 2 L1;loc.RIL2.R

d ICn//, and Q.x/ is a �-periodic

.n � n/-matrix-valued function (7.2). Substituting

z".�; �/ WD .f "/�1u".�; �/

into (10.1), we rewrite problem (10.1) as
8

ˆ

ˆ

<

ˆ

ˆ

:

@2z".x; �/

@�2
D �f ".x/�b.D/�g".x/b.D/f ".x/z".x; �/C f ".x/�1F.x; �/;

z".x; 0/ D 0;
@z".x; 0/

@�
D f ".x/�1 .x/:

Then

z".�; �/ D A
�1=2
" sin.�A1=2

" /.f "/�1 

C

�
Z

0

A
�1=2
" sin..� � Q�/A1=2

" /.f "/�1F.�; Q�/ d Q�
(10.2)

and

u".�; �/ D f "
A

�1=2
" sin.�A1=2

" /.f "/�1 

C

�
Z

0

f "
A

�1=2
" sin..� � Q�/A1=2

" /.f "/�1F.�; Q�/ d Q�:
(10.3)
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Let u0.x; �/ be the solution of the effective problem
8

ˆ

ˆ

<

ˆ

ˆ

:

xQ
@2u0.x; �/

@�2
D �b.D/�g0b.D/u0.x; �/C xQF.x; �/;

u0.x; 0/ D 0;
@u0.x; 0/

@�
D  .x/;

(10.4)

where

xQ D j�j�1

Z

�

Q.x/ dx:

Similarly to (10.2) and (10.3), we obtain

u0.�; �/ Df0.A
0/�1=2 sin.�.A0/1=2/f �1

0  

C

�
Z

0

f0.A
0/�1=2 sin..� � Q�/.A0/1=2/f �1

0 F.�; Q�/ d Q�:
(10.5)

Using Theorems 9.1, 9.5, and identities (10.3), (10.5), we arrive at the follow-

ing result.

Theorem 10.1. Let u" be the solution of problem (10.1) and let u0 be the solution

of the effective problem (10.4).

1ı. Let 2 H 1.Rd ICn/ and let F 2 L1;loc.RIH 1.Rd ICn//. Then for � 2 R and

" > 0 we have

ku".�; �/�u0.�; �/kL2.Rd / 6 C12".1Cj� j/.k kH 1.Rd / CkFkL1..0;�/IH 1.Rd ///:

2ı. Let  2 H 2.Rd ICn/ and let F 2 L1;loc.RIH 2.Rd ICn//. Let ƒ.x/ be the

�-periodic solution of problem (6.7). Let…" be the smoothing operator (9.6).

By v" we denote the first order approximation:

v".x; �/ WD u0.x; �/C "ƒ"b.D/…"u0.x; �/: (10.6)

Then for � 2 R and " > 0 we have

ku".�; �/�v".�; �/kH 1.Rd / 6 C17".1Cj� j/.k kH 2.Rd / CkFkL1..0;�/IH 2.Rd ///:

(10.7)

Remark 10.2. If d 6 4 (or d > 5 and Condition 8.4 is satisfied), then we can use

Theorem 9.8 (respectively, Theorem 9.9), i.e., the estimate of the form (10.7) is

valid with v" replaced by

v.0/
" .x; �/ WD u0.x; �/C "ƒ"b.D/u0.x; �/: (10.8)



Homogenization of hyperbolic systems 641

Theorem 9.10 implies the following statement.

Proposition 10.3. Assume that d > 5. Let  2 Hd=2.Rd ICn/ and let F 2

L1;loc.RIHd=2.Rd ICn//. Let u" and u0 be the solutions of problems (10.1)

and (10.4) respectively. Let v
.0/
" be given by (10.8). Then for � 2 R and 0 < " 6 1

we have

ku".�; �/� v.0/
" .�; �/kH 1.Rd /

6 C21".1C j� j/.k kH d=2.Rd / C kFkL1..0;�/IH d=2.Rd ///:

Applying Theorems 9.2 and 9.6, we arrive at the following result.

Theorem 10.4. Let u" be the solution of problem (10.1) and let u0 be the solution

of the effective problem (10.4).

1ı. Let  2 H s.Rd ICn/ and F 2 L1;loc.RIH s.Rd ICn//, 0 6 s 6 1. Then, for

� 2 R and " > 0

ku".�; �/� u0.�; �/kL2.Rd /

6 C1.s/.1C j� j/"s.k kH s.Rd / C kFkL1..0;�/IH s.Rd ///:

Under the additional assumption that F 2 L1.R˙IH s.Rd ICn//, for 0<s61,

j� j D "�˛, 0 < " 6 1, 0 < ˛ < s

ku".�;˙"
�˛/ � u0.�;˙"

�˛/kL2.Rd /

6 2C1.s/"
s�˛.k kH s.Rd / C kFkL1.R˙IH s.Rd ///:

2ı. Let  2 H 1Cs.Rd ICn/ and F 2 L1;loc.RIH 1Cs.Rd ICn//, 0 6 s 6 1. Let v"

be given by (10.6). Then, for � 2 R and 0 < " 6 1

ku".�; �/ � v".�; �/kH 1.Rd /

6 C2.s/.1C j� j/"s.k kH 1Cs.Rd / C kFkL1..0;�/IH 1Cs.Rd ///:

Under the additional assumption that F 2 L1.R˙IH 1Cs.Rd ICn//, where

0 < s 6 1, for � D ˙"�˛, 0 < " 6 1, 0 < ˛ < s

ku".�;˙"
�˛/ � v".�;˙"

�˛/kH 1.Rd /

6 2C2.s/"
s�˛.k kH 1Cs.Rd / C kFkL1.R˙IH 1Cs.Rd ///:

By the Banach–Steinhaus theorem, this result implies the following theorem.
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Theorem 10.5. Let u" be the solution of problem (10.1), and let u0 be the solution

of the effective problem (10.4).

1ı. Let  2 L2.R
d ICn/ and F 2 L1;loc.RIL2.R

d ICn//. Then, for � 2 R

lim
"!0

ku".�; �/� u0.�; �/kL2.Rd / D 0:

2ı. Let  2 H 1.Rd ICn/ and F 2 L1;loc.RIH 1.Rd ICn//. Let v" be given

by (10.6). Then, for � 2 R

lim
"!0

ku".�; �/ � v".�; �/kH 1.Rd / D 0:

Applying Theorem 9.14, we make the following observation.

Remark 10.6. For 0 < " 6 1, under Condition 9.11, the analogs of Theorems

10.1, 10.4, and 10.5 are valid with the operator …" replaced by the identity

operator.

10.2. Approximation of the flux. Let p".x; �/ be the “flux”

p".x; �/ WD g".x/b.D/u".x; �/: (10.9)

Theorem 10.7. Suppose that the assumptions of Theorem 10.1(2ı) are satisfied.

Let p" be the “flux” (10.9), and let Qg.x/ be the matrix-valued function (6.8). Then

for � 2 R and " > 0 we have

kp".�; �/� Qg"b.D/…"u0.�; �/kL2.Rd /

6 C23".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:
(10.10)

The constant C23 depends only on m, d , ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. From (9.3), (9.8), (10.3), and (10.5), it follows that

k yA1=2
" .u".�; �/� .I C "ƒ"b.D/…"/u0.�; �//kL2.Rd /

6 C13".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:
(10.11)

By (9.2) and Proposition 9.3,

k yA1=2
" .…" � I /u0.�; �/kL2.Rd / 6 "˛

1=2
1 r�1

0 kgk
1=2
L1

kD2u0.�; �/kL2.Rd /: (10.12)
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Using (7.3), (10.5), and the inequality j sinxj=jxj 6 1, x 2 R, we obtain

kD2u0.�; �/kL2.Rd /

6 ku0.�; �/kH 2.Rd /

6 j� jkf kL1kf �1kL1.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:

(10.13)

Combining (10.9) and (10.11)–(10.13), we arrive at

kp".�; �/ � g"b.D/.I C "ƒ"b.D//…"u0.�; �/kL2.Rd /

6 C24".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///;
(10.14)

where

C24 WD C13kgk
1=2
L1

C ˛
1=2
1 r�1

0 kgkL1kf kL1kf �1kL1 :

We have

"g"b.D/ƒ"b.D/…"u0.�; �/

D g".b.D/ƒ/"b.D/…"u0.�; �/C "g"

d
X

lD1

blƒ
"….m/

" Dlb.D/u0.�; �/:
(10.15)

By (4.7), (4.8), (9.11), and (10.13),






"g"

d
X

lD1

blƒ
"….m/

" Dlb.D/u0.�; �/






L2.Rd /

6 "kgkL1˛1d
1=2M1kD2u0.�; �/kL2.Rd /

6 "j� j˛1d
1=2M1kgkL1kf kL1kf �1kL1.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:

(10.16)

Now, relations (6.8) and (10.14)–(10.16) imply estimate (10.10) with the constant

C23 WD C24 C ˛1d
1=2M1kgkL1kf kL1kf �1kL1 : �

Lemma 10.8. For " > 0 and � 2 R we have

kg"b.D/f "
A

�1=2
" sin.�A1=2

" /.f "/�1

� Qg"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kL2.Rd /!L2.Rd /

6 C25:

(10.17)

Here

C25 WD .kgk
1=2
L1

C kgkL1kg�1k
1=2
L1
.m1=2kgk

1=2
L1

kg�1k
1=2
L1

C 1//kf �1kL1 :
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Proof. By (9.1),

kg"b.D/f "
A

�1=2
" sin.�A1=2

" /.f "/�1kL2.Rd /!L2.Rd / 6 kgk
1=2
L1

kf �1kL1 :

(10.18)

Next, by (6.19), (7.3), and (7.5),

k Qg"….m/
" b.D/f0.A

0/�1=2 sin.�.A0/1=2/f �1
0 kL2.Rd /!L2.Rd /

6 k Qg"….m/
" kL2.Rd /!L2.Rd /kg

�1k
1=2
L1

kf �1kL1 :
(10.19)

Using Proposition 9.4 and (6.8) and (6.11), we obtain

k Qg"….m/
" kL2.Rd /!L2.Rd / 6 kgkL1.j�j�1=2kb.D/ƒkL2.�/ C 1/

6 kgkL1.m
1=2kgk

1=2
L1

kg�1k
1=2
L1

C 1/:
(10.20)

Combining (10.18)–(10.20), we arrive at estimate (10.17). �

Theorem 10.9. 1ı. Let u" and u0 be the solutions of problems (10.1) and (10.4),

respectively, for  2H s.Rd ICn/ and F2L1;loc.RIH s.Rd ICn//, where 06s62.

Let p" be given by (10.9) and let Qg.x/ be the matrix-valued function (6.8). Then

for � 2 R and " > 0 we have

kp".�; �/� Qg"b.D/…"u0.�; �/kL2.Rd /

6 C4.s/.1C j� j/s=2"s=2.k kH s.Rd / C kFkL1..0;�/IH s.Rd ///:
(10.21)

Here

C4.s/ WD C
1�s=2
25 C

s=2
23 :

Under the additional assumption that F 2L1.R˙IH s.Rd ICn//, where 06 s62,

for j� j D "�˛ , 0 < " 6 1, 0 < ˛ < 1, we have

kp".�;˙"
�˛/ � Qg"b.D/…"u0.�;˙"

�˛/kL2.Rd /

6 2s=2C4.s/"
s.1�˛/=2.k kH s.Rd / C kFkL1.R˙IH s.Rd ///:

(10.22)

2ı. If  2 L2.R
d ICn/ and F 2 L1;loc.RIL2.R

d ICn//, then

lim
"!0

kp".�; �/ � Qg"b.D/…"u0.�; �/kL2.Rd / D 0; � 2 R:

3ı. If  2 L2.R
d ICn/ and F 2 L1.R˙IL2.R

d ICn//, then

lim
"!0

kp".�;˙"
�˛/ � Qg"b.D/…"u0.�;˙"

�˛/kL2.Rd / D 0; 0 < " 6 1; 0 < ˛ < 1:
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Proof. 1ı. Rewriting estimate (10.10) with F D 0 in operator terms and interpo-

lating with estimate (10.17), we conclude that

kg"b.D/f "
A

�1=2
" sin.�A1=2

" /.f "/�1

� Qg"b.D/…"f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH s.Rd /!L2.Rd /

6 C
1�s=2
25 C

s=2
23 .1C j� j/s=2"s=2:

Thus, by (10.3) and (10.5), we derive estimate (10.21).

2ı. The assertion follows from (10.21) by the Banach–Steinhaus theorem.

3ı. The assertion is a consequence of (10.22) and the Banach–Steinhaus

theorem. �

10.3. On the possibility to remove…" from approximation of the flux

Theorem 10.10. Under the assumptions of Theorem 10.7, let d 6 4. Then for

� 2 R and 0 < " 6 1

kp".�; �/� Qg"b.D/u0.�; �/kL2.Rd /

6 C26".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:
(10.23)

The constant C26 depends only on m, n, d , ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

Proof. The proof repeats the proof of Theorem 10.7 with some simplifications.

By (9.21), (10.3), and (10.5),

k yA1=2
" .u".�; �/� .I C "ƒ"b.D//u0.�; �//kL2.Rd /

6 C14".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:
(10.24)

Then, according to (9.2) and (10.9),

kp".�; �/� g"b.D/.I C "ƒ"b.D//u0.�; �/kL2.Rd /

6 kgk
1=2
L1
C14".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:

(10.25)

Similarly to (10.15),

"g"b.D/ƒ"b.D/u0.�; �/

D g".b.D/ƒ/"b.D/u0.�; �/C "g"

d
X

lD1

blƒ
"Dlb.D/u0.�; �/:

(10.26)
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Let us estimate the second summand in the right-hand side. By (4.8),






"g"

d
X

lD1

blƒ
"Dlb.D/u0.�; �/







L2.Rd /

6 "kgkL1.d˛1/
1=2kƒ"Db.D/u0.�; �/kL2.Rd /

6 "kgkL1.d˛1/
1=2kŒƒ�kH 1.Rd /!L2.Rd /kDb.D/u0.�; �/kH 1.Rd /;

(10.27)

for 0 < " 6 1. By (6.19), (7.3), (7.5), and (10.5),

kDb.D/u0.�; �/kH 1.Rd / 6 kg�1k
1=2
L1

kf �1kL1.k kH 2.Rd /CkFkL1..0;�/IH 2.Rd ///:

(10.28)

Combining (9.24), (10.27), and (10.28), we have





"g"

d
X

lD1

blƒ
"Dlb.D/u0.�; �/







L2.Rd /

6 "kgkL1.d˛1/
1=2Cd kg�1k

1=2
L1

kf �1kL1.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///;

(10.29)

for d 6 4. Now relations (6.8), (10.25), (10.26), and (10.29) imply esti-

mate (10.23) with the constant

C26 WD C14kgk
1=2
L1

C .d˛1/
1=2Cd kgkL1kg�1k

1=2
L1

kf �1kL1 : �

Let d > 5 and let Condition 8.4 be satisfied. Then, by the scaling trans-

formation, the analog of (9.21) (with the constant C15 instead of C14) follows

from (8.24). We wish to remove …" from approximation for the flux similarly

to (10.24)–(10.29). According to [34, Subsection 1.6, Proposition 1], Condi-

tion 8.4 implies the boundedness of Œƒ� as an operator from H 1.Rd ICm/ to

L2.R
d ICn/ with the estimate kŒƒ�kH 1.Rd /!L2.Rd / 6 CkŒƒ�kH 2.Rd /!H 1.Rd /.

The following statement can be checked by analogy with the proof of Theo-

rem 10.10.

Theorem 10.11. Let d > 5. Let Condition 8.4 be satisfied. Then, under the

assumptions of Theorem 10.7, for 0 < " 6 1 and � 2 R

kp".�; �/� Qg"b.D/u0.�; �/kL2.Rd /

6 C27".1C j� j/.k kH 2.Rd / C kFkL1..0;�/IH 2.Rd ///:

The constant

C27 WD C15kgk
1=2
L1

C .d˛1/
1=2kgkL1kg�1k

1=2
L1

kf �1kL1kŒƒ�kH 1.Rd /!L2.Rd /

depends only on d , m, n, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 , kf �1kL1 , the

parameters of the lattice �, and the norm kŒƒ�kH 2.Rd /!H 1.Rd /.
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By analogy with (10.24)–(10.29), using Proposition 9.7, from Theorem 9.10

we derive the following result.

Theorem 10.12. Let d > 5. Let u" and u0 be the solutions of problems (10.1)

and (10.4), respectively, where we suppose 2 Hd=2.Rd ICn/ and F 2 L1..0; �/I

Hd=2.Rd ICn//. Let p" be defined by (10.9) and let Qg be the matrix-valued

function (6.8). Then, for 0 < " 6 1 and � 2 R

kp".�; �/� Qg"b.D/u0.�; �/kL2.Rd /

6 C28".1C j� j/.k kH d=2.Rd / C kFkL1..0;�/IH d=2.Rd ///:

The constant C28 depends only on d , m, n, ˛0, ˛1, kgkL1 , kg�1kL1 , kf kL1 ,

kf �1kL1 , and the parameters of the lattice �.

To obtain interpolational results without any smoothing operator, we need

to prove the analog of Lemma 10.8 without …". I.e., we want to prove the

.L2 ! L2/-boundedness of the operator

Qg"b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 : (10.30)

The following property of Qg was obtained in [44, Proposition 9.6]. (The one-

dimensional case will be considered in Subsection 10.4 below.)

Proposition 10.13. Let l > 1 for d D 2, and l D d=2 for d > 3. The operator

Œ Qg� is a continuous mapping of H l .Rd ICm/ to L2.R
d ICm/, and

kŒ Qg�kH l.Rd /!L2.Rd / 6 C0
d :

The constant C0
d

depends only d , m, n, ˛0, ˛1, kgkL1 , kg�1kL1 , and the param-

eters of the lattice �; for d D 2 it depends also on l .

So, for d > 2, we can not expect the .L2 ! L2/-boundedness of the opera-

tor (10.30). The .H 2 ! L2/-continuity of the operator (10.30) was used in Theo-

rem 10.10 and, under Condition 8.4, in Theorem 10.11. (The .H 2 ! L2/-bound-

edness of Œ Qg� follows from [34, Subsection 1.3.2, Lemma 1].) So, without any

additional conditions onƒ, using Proposition 10.13, we can obtain some interpo-

lational results only for d 6 3.

By (6.19), (7.3), (7.5), and Proposition 10.13,

k Qg"b.D/f0.A
0/�1=2 sin.�.A0/1=2/f �1

0 kH l.Rd /!L2.Rd / 6 C0
d kg�1k

1=2
L1

kf �1kL1 :

(10.31)

(Here l is as in Proposition 10.13.)

Combining (10.18) and (10.31) and interpolating with (10.23), we obtain the

following result.
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Theorem 10.14. Let 2 6 d 6 3, and let 1 < l < 2 for d D 2 and l D 3=2

for d D 3. Let 0 6 s 6 1. Assume that � D l C .2 � l/s for d D 2 and

� D 3=2 C s=2 for d D 3. Let u" and u0 be the solutions of problems (10.1)

and (10.4), respectively, where 2 H � .Rd ICn/ and F 2 L1..0; �/IH
�.Rd ICn//.

Let p" be the flux (10.9) and let Qg be the matrix-valued function (6.8). Then for

0 < " 6 1 and � 2 R we have

kp".�; �/� Qg"b.D/u0.�; �/kL2.Rd /

6 C5.s/"
s.1C j� j/s.k kH � .Rd / C kFkL1..0;�/IH � .Rd ///:

Here

C5.s/ WD C s
27.kgk

1=2
L1

C C0
d kg�1k

1=2
L1
/1�skf �1k1�s

L1
:

10.4. The special case. Suppose that g0 D
N
g, i.e., relations (6.21) hold. For

d D 1, identity g0 D
N
g is always true, see, e.g., [50, Chapter I, §2]. In accordance

with [11, Remark 3.5], in this case the matrix-valued function (6.8) is constant and

coincides with g0, i.e., Qg.x/ D g0 D
N
g. The following statement is a consequence

of Theorem 10.9(1ı.)

Proposition 10.15. Assume that relations (6.21) hold. Let u" and u0 be the

solutions of problems (10.1) and (10.4), respectively, for  2 H s.Rd ICn/ and

F 2 L1;loc.RIH s.Rd ICn//, where 0 6 s 6 2. Let p" be given by (10.9). Then for

� 2 R and " > 0,

kp".�; �/� g0b.D/u0.�; �/kL2.Rd /

6 C6.s/.1C j� j/s=2"s=2.k kH s.Rd / C kFkL1..0;�/IH s.Rd ///:
(10.32)

Here

C6.s/ WD C4.s/C 21�s=2r
�s=2
0 kgk

1=2
L1

kf �1kL1 :

Proof. We wish to remove the operator …" from the approximation (10.21).

Obviously, k…" � IkL2.Rd /!L2.Rd / 6 2. According to Proposition 9.3,

k…" � IkH 2.Rd /!L2.Rd / 6 k…" � IkH 1.Rd /!L2.Rd / 6 "r�1
0 :

Then, by interpolation, k…" � IkH s.Rd /!L2.Rd / 6 21�s=2r
�s=2
0 "s=2, 0 6 s 6 2.

Combining this with (6.19), (7.3), (7.5), (10.5), and taking into account that the

operator A0 with constant coefficients commutes with the smoothing operator…",

we obtain

kg0b.D/.…" � I /u0.�; �/kL2.Rd /

6 21�s=2r
�s=2
0 kgk

1=2
L1

kf �1kL1"
s=2.k kH s.Rd / C kFkL1..0;�/IH s.Rd ///:

(10.33)

Now, from identity g0 D Qg, (10.21), and (10.33) we derive estimate (10.32). �
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11. Applications of the general results

The following examples were previously considered in [9, 13, 25, 26].

11.1. The acoustics equation. In L2.R
d /, we consider the operator

yA D D�g.x/D D � divg.x/r; (11.1)

where g.x/ is a periodic symmetric matrix with real entries. Assume that g.x/>0,

g; g�1 2 L1. The operator yA describes a periodic acoustical medium. The

operator (11.1) is a particular case of the operator (6.1). Now we have n D 1,

m D d , b.D/ D D, ˛0 D ˛1 D 1. Consider the operator yA" D D�g".x/D, whose

coefficients oscillate rapidly for small ".

Let us write down the effective operator. In the case under consideration, the

�-periodic solution of problem (6.7) is a row:

ƒ.x/ D iˆ.x/; ˆ.x/ D .ˆ1.x/; : : : ; ˆd .x//;

where ĵ 2 zH 1.�/ is the solution of the problem

divg.x/.r ĵ .x/C ej / D 0;

Z

�

ĵ .x/ dx D 0:

Here ej , j D 1; : : : ; d , is the standard orthonormal basis in Rd . Clearly, the

functions ĵ .x/ are real-valued, and the entries of ƒ.x/ are purely imaginary.

By (6.8), the columns of the .d � d/-matrix-valued function Qg.x/ are the vector-

valued functions g.x/.r ĵ .x/Cej /, j D 1; : : : ; d . The effective matrix is defined

according to (6.9):

g0 D j�j�1

Z

�

Qg.x/ dx:

Clearly, Qg.x/ and g0 have real entries. If d D 1, thenm D n D 1, whence g0 D
N
g.

Let Q.x/ be a �-periodic function on Rd such that Q.x/ > 0, Q;Q�1 2 L1.

The function Q.x/ describes the density of the medium.

Consider the Cauchy problem for the acoustics equation in the medium with

rapidly oscillating characteristics:

8

ˆ

ˆ

<

ˆ

ˆ

:

Q".x/
@2u".x; �/

@�2
D � divg".x/ru".x; �/; x 2 R

d ; � 2 R;

u".x; 0/ D 0;
@u".x; 0/

@�
D  .x/;

(11.2)
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where  2 L2.R
d / is a given function. (For simplicity, we consider the homoge-

neous equation.) Then the homogenized problem takes the form
8

ˆ

ˆ

<

ˆ

ˆ

:

xQ
@2u0.x; �/

@�2
D � divg0ru0.x; �/; x 2 R

d ; � 2 R;

u0.x; 0/ D 0;
@u0.x; 0/

@�
D  .x/:

(11.3)

According to [33, Chapter III, Theorem 13.1], ƒ 2 L1 and the norm kƒkL1

does not exceed a constant depending on d , kgkL1 , kg�1kL1 , and �. Applying

Theorems 10.4 and 10.9(1ı) and taking into account Remark 10.6, we arrive at

the following result.

Proposition 11.1. Under the assumptions of Subsection 11.1, let u" be the solution

of problem (11.2) and let u0 be the solution of the effective problem (11.3).

1ı. Let  2 H s.Rd / for some 0 6 s 6 1. Then for � 2 R and " > 0 we have

ku".�; �/� u0.�; �/kL2.Rd / 6 C6.s/.1C j� j/"sk kH s.Rd /:

2ı. Let  2 H sC1.Rd / for some 0 6 s 6 1. Then for � 2 R and 0 < " 6 1 we

have

ku".�; �/� u0.�; �/� "ˆ"ru0.�; �/kH 1.Rd / 6 C7.s/.1C j� j/"sk kH 1Cs.Rd /:

3ı. Let  2 H s.Rd / for some 0 6 s 6 2. Let …" be defined by (9.6). Then for

� 2 R and " > 0 we have

kg"ru".�; �/ � Qg"…"ru0.�; �/kL2.Rd / 6 C8.s/.1C j� j/s=2"s=2k kH s.Rd /:

The constants C6.s/, C7.s/, and C8.s/ depend only on s, d , kgkL1 , kg�1kL1 ,

and parameters of the lattice �.

11.2. The operator of elasticity theory. Let d > 2. We represent the operator

of elasticity theory in the form used in [9, Chapter 5, §2]. Let � be an orthogonal

second rank tensor in Rd ; in the standard orthonormal basis in Rd , it can be

represented by a matrix � D ¹�jlº
d
j;lD1

. We shall consider symmetric tensors �,

which will be identified with vectors �� 2 Cm, 2m D d.d C 1/, by the following

rule. The vector �� is formed by all components �jl , j 6 l , and the pairs .j; l/

are put in order in some fixed way. Let � be an .m�m/-matrix, � D diag¹�.j;l/º,

where �.j;l/ D 1 for j D l and �.j;l/ D 2 for j < l . Then j�j2 D h���; ��iCm .

Let u 2 H 1.Rd ICd / be the displacement vector. Then the deformation tensor

is has the entries ejl .u/ D 1
2

� @uj

@xl
C @ul

@xj

�

. The corresponding vector is denoted by
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e�.u/. The relation b.D/u D �ie�.u/ determines an .m�d/-matrix homogeneous

DO b.D/ uniquely; the symbol of this DO is a matrix with real entries. For

instance, with an appropriate ordering, we have

b.�/D

0

B

B

@

�1 0
�2

2

�1

2
0 �2

1

C

C

A

; d D 2I

b.�/D

0

B

B

B

B

B

B

B

B

B

B

B

@

�1 0 0
�2

2

�1

2
0

0 �2 0

0
�3

2

�2

2
0 0 �3
�3

2
0

�1

2

1

C

C

C

C

C

C

C

C

C

C

C

A

; d D 3:

Let �.u/ be the stress tensor, and let ��.u/ be the corresponding vector. The

Hooke law can be represented by the relation ��.u/ D g.x/e�.u/, where g.x/ is

an .m � m/ matrix (which gives a “concise” description of the Hooke tensor).

This matrix characterizes the parameters of the elastic (in general, anisotropic)

medium. We assume that g.x/ is �-periodic and such that g.x/ > 0, and

g; g�1 2 L1.

The energy of elastic deformations is given by the quadratic form

wŒu; u� D
1

2

Z

Rd

h��.u/; e�.u/iCm dx

D
1

2

Z

Rd

hg.x/b.D/u; b.D/uiCm dx;

(11.4)

for u 2 H 1.Rd ICd /. The operator W generated by this form is the operator

of elasticity theory. Thus, the operator 2W D b.D/�g.x/b.D/ D yA is of the

form (6.1) with n D d and m D d.d C 1/=2.

In the case of an isotropic medium, the expression for the form (11.4) simplifies

significantly and depends only on two functional Lamé parameters �.x/, �.x/:

wŒu; u� D

Z

Rd

.�.x/je.u/j2 C
�.x/

2
j div uj2/ dx:

The parameter � is the shear modulus. The modulus �.x/may be negative. Often,

another parameter �.x/ D �.x/ C 2�.x/=d is introduced instead of �.x/; � is
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called the modulus of volume compression. In the isotropic case, the conditions

that ensure the positive definiteness of the matrix g.x/ are �.x/ > �0 > 0,

�.x/ > �0 > 0. We write down the “isotropic” matrices g for d D 2 and d D 3:

g D

0

@

� C � 0 � � �

0 4� 0

� � � 0 � C �

1

A ; d D 2I

g D
1

3

0

B

B

B

B

B

B

B

@

3� C 4� 0 3� � 2� 0 3� � 2� 0

0 12� 0 0 0 0

3� � 2� 0 3� C 4� 0 3� � 2� 0

0 0 0 12� 0 0

3� � 2� 0 3� � 2� 0 3� C 4� 0

0 0 0 0 0 12�

1

C

C

C

C

C

C

C

A

; d D 3:

Consider the operator W" D 1
2

yA" with rapidly oscillating coefficients. The

effective matrix g0 and the effective operatorW0 D 1
2

yA0 are defined by the general

rules (see (6.8), (6.9), and (6.15)).

LetQ.x/ be a �-periodic .d � d/-matrix-valued function such thatQ.x/ > 0,

Q;Q�1 2 L1. Usually, Q.x/ is a scalar-valued function describing the density

of the medium. We assume thatQ.x/ is a matrix-valued function in order to take

possible anisotropy into account.

Consider the following Cauchy problem for the system of elasticity theory:

8

ˆ

ˆ

<

ˆ

ˆ

:

Q".x/
@2u".x; �/

@�2
D �W"u".x; �/; x 2 R

d ; � 2 R;

u".x; 0/ D 0;
@u".x; 0/

@�
D  .x/;

(11.5)

where  2 L2.R
d ICd / is a given function. The homogenized problem takes the

form
8

ˆ

ˆ

<

ˆ

ˆ

:

xQ
@2u0.x; �/

@�2
D �W

0u0.x; �/; x 2 R
d ; � 2 R;

u0.x; 0/ D 0;
@u0.x; 0/

@�
D  .x/:

Theorems 10.4 and 10.9 can be applied to problem (11.5). If d D 2, then Condi-

tion 9.11 is satisfied according to Proposition 9.13. So, we can use Theorem 9.14.

If d D 3, then Theorem 9.8 is applicable.

11.3. The model equation of electrodynamics. We cannot include the general

Maxwell operator in the scheme developed above; we have to assume that the
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magnetic permeability is unit. In L2.R
3IC3/, we consider the model operator

L formally given by the expression L D curl �.x/�1 curl �r�.x/ div. Here the

dielectric permittivity �.x/ is �-periodic .3 � 3/-matrix-valued function in R3

with real entries such that �.x/ > 0; �; ��1 2 L1; �.x/ is real-valued �-periodic

function in R3 such that �.x/ > 0; �; ��1 2 L1. The precise definition of L is

given via the closed positive form
Z

R3

.h�.x/�1 curl u; curl ui C �.x/j div uj2/ dx; u 2 H 1.R3IC3/:

The operator L can be written as yA D b.D/�g.x/b.D/ with n D 3, m D 4, and

b.D/ D

�

�i curl

�i div

�

; g.x/ D

�

�.x/�1 0

0 �.x/

�

: (11.6)

The corresponding symbol of b.D/ is

b.�/ D

0

B

B

B

@

0 ��3 �2

�3 0 ��1
��2 �1 0

�1 �2 �3

1

C

C

C

A

:

According to [9, §7.2] the effective matrix has the form

g0 D

�

.�0/�1 0

0
N
�

�

;

where �0 is the effective matrix for the scalar elliptic operator � div �r D D��D.

The effective operator is given by

L
0 D curl.�0/�1 curl �r

N
� div :

Let vj 2 zH 1.�IC3/ be the �-periodic solution of the problem

b.D/�g.x/.b.D/vj .x/C ej / D 0;

Z

�

vj .x/ dx D 0;

j D 1; 2; 3; 4. Here ej , j D 1; 2; 3; 4, is the standard orthonormal basis in C4.

As was shown in [11, §14], the solutions vj , j D 1; 2; 3, can be determined as

follows. Let ẑ
j .x/ be the �-periodic solution of the problem

div �.x/.r ẑ
j .x/C cj / D 0;

Z

�

ẑ
j .x/ dx D 0;
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with j D 1; 2; 3, where cj D .�0/�1 Qej , and Qej , j D 1; 2; 3, is the standard

orthonormal basis in C3. Let qj be the �-periodic solution of the problem

�qj D �.r ẑ
j C cj / � Qej ;

Z

�

qj .x/ dx D 0:

Then vj D i curl qj , j D 1; 2; 3.

Next, we have v4 D ir�, where � is the �-periodic solution of the problem

�� D
N
�.�.x//�1 � 1;

Z

�

�.x/ dx D 0:

The matrixƒ.x/ is the .3�4/-matrix with the columns i curl q1, i curl q2, i curl q3,

ir�. By ‰.x/ we denote the .3 � 3/-matrix-valued function with the columns

curl q1, curl q2, curl q3 (then ‰.x/ has real entries). We put w D r�. Then

ƒ.x/b.D/ D ‰.x/ curl Cw.x/ div.

The application of Theorems 9.1 and 9.8 gives the following result.

Theorem 11.2. Under the assumptions of Subsection 11.3, denote

L" WD curl.�"/�1 curl �r�" div :

Then, for � 2 R

kL�1=2
" sin.�L1=2

" / � .L0/�1=2 sin.�.L0/1=2/kH 1.R3/!L2.R3/

6 C12".1C j� j/;
(11.7)

with " > 0, and

kL�1=2
" sin.�L1=2

" /

� .I C "‰" curl C"w" div/.L0/�1=2 sin.�.L0/1=2/kH 2.R3/!H 1.R3/

6 C19".1C j� j/;

(11.8)

with 0 < " 6 1. The constants C12 and C19 depend only on k�kL1 , k��1kL1 ,

k�kL1 , k��1kL1 , and the parameters of the lattice �.

Also, we can apply (interpolational) Theorems 9.2 and 9.6. But in this case

the correction term contains the smoothing operator …" (see (9.6)). We omit the

details.

It turns out that the operators L" and L0 split in the Weyl decomposition

L2.R
3IC3/ D J ˚G simultaneously. Here the “solenoidal” subspace J consists
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of vector functions u 2 L2.R
3IC3/ for which div u D 0 (in the sense of distri-

butions) and the “potential” subspace is G WD ¹u D r�W� 2 H 1
loc.R

3/;r� 2

L2.R
3IC3/º: The Weyl decomposition reduces the operators L" and L0, i.e.,

L" D L";J ˚ L";G and L0 D L0
J ˚ L0

G . The part L";J acting in the “solenoidal”

subspace J is formally defined by the differential expression curl �".x/�1 curl,

while the part L";G acting in the “potential” subspace G corresponds to the ex-

pression �r�".x/r. The parts L
0
J and L

0
G can be written in the same way. The

Weyl decomposition allows us to apply Theorem 11.2 to homogenization of the

Cauchy problem for the model hyperbolic equation appearing in electrodynamics:

´

@2
� u" D � curl �".x/�1 curl u"; div u" D 0;

u".x; 0/ D 0; @�u".x; 0/ D  .x/:
(11.9)

The effective problem takes the form

´

@2
� u0 D � curl.�0/�1 curl u0; div u0 D 0;

u0.x; 0/ D 0; @�u0.x; 0/ D  .x/:
(11.10)

Let P be the orthogonal projection of L2.R
3IC3/ onto J . Then (see [9,

Subsection 2.4 of Chapter 7]) the operator P (restricted toH s.R3IC3/) is also the

orthogonal projection of the spaceH s.R3IC3/ onto the subspace J \H s.R3IC3/

for all s > 0.

Restricting the operators under the norm sign in (11.7) and (11.8) to the

subspaces J \ H 1.R3IC3/ and J \ H 2.R3IC3/, respectively, and multiplying

by P from the left, we see that Theorem 11.2 implies the following result.

Theorem 11.3. Under the assumptions of Subsection 11.3, let u" and u0 be the

solutions of problems (11.9) and (11.10), respectively.

1ı. Let  2 J \H 1.R3IC3/. Then for " > 0 and � 2 R we have

ku".�; �/� u0.�; �/kL2.R3/ 6 C12".1C j� j/k kH 1.R3/:

2ı. Let  2 J \H 2.R3IC3/. Then for 0 < " 6 1 and � 2 R we have

ku".�; �/� u0.�; �/� "‰" curl u0.�; �/kH 1.R3/ 6 C19".1C j� j/k kH 2.R3/:

According to (11.6), the role of the flux for problem (11.9) is played by the

vector-valued function

p" D g"b.D/u" D �i

�

.�"/�1 curl u"

�" div u"

�

D �i

�

.�"/�1 curl u"

0

�

:
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To approximate the flux, we apply Theorem 10.10. The matrix Qg D g.1Cb.D/ƒ/

has a block-diagonal structure, see [11, Subsection 14.3]): the upper left .3 � 3/

block is represented by the matrix with the columns r ẑ
j .x/C cj , j D 1; 2; 3. We

denote this block by a.x/. The element at the right lower corner is equal to
N
�. The

other elements are zero. Then, by (11.6) and (11.10),

Qg"b.D/u0 D �i

�

a" curl u0

0

�

:

We arrive at the following statement.

Theorem 11.4. Under the assumptions of Theorem 11.3, let 2 J \H 2.R3IC3/.

Then for 0 < " 6 1 and � 2 R we have

k.�"/�1 curl u".�; �/� a" curl u0.�; �/kL2.R3/ 6 C26".1C j� j/k kH 2.R3/:

The constant C26 depends only on k�kL1 , k��1kL1 , k�kL1 , k��1kL1 , and the

parameters of the lattice �.
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