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1. Introduction

1.1. Spectral problem. Denote by PC the complex plane without the points 0
and 1, by D. PC/ the space of smooth compactly supported functions on PC. Denote
by d NNz the standard Lebesgue measure on C.

Fix real a and b. Consider the following measure on PC

�a;b.z/ d NNz WD jzj2aC2b�2j1 � zj2a�2b d NNz (1.1)

and the corresponding space L2.C; �a;b/,

hf; gi D
Z

C

f .z/g.z/�a;b.z/ d NNz:

Consider the following pair of differential operators in the space L2.C; �a;b/:

D WDz.1 � z/ @
2

@z2
C .aC b � .2aC 1/z/

@

@z
� a2I (1.2)

xD WDNz.1 � Nz/ @
2

@ Nz2
C .aC b � .2aC 1/ Nz/ @

@ Nz � a2: (1.3)

These operators formally commute, i.e.,

DxDf D xDDf; where f 2 D. PC/.
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A straightforward calculation shows that they are formally adjoint,

hDf; gi D hf; xDgi; where f , g 2 D. PC/.

Therefore the operators 1
2
.DC xD/, 1

2i
.D� xD/ are symmetric on the domain D. PC/.

The purpose of this paper is to construct an explicit spectral decomposition of
this pair, i.e., a unitary operator U , which diagonalizes both operators D, xD.

As we know after the famous work of Edward Nelson [33], 1959, (see,
also [42], Section VIII.5) a question about commutativity of two unbounded self-
adjoint operators can be highly nontrivial.1 Recall that two self-adjoint operators
A, B commute if they can be simultaneously realized as operators of multipli-
cation by functions in some L2. Equivalently, the corresponding one-parametric
groups commute:

eisAeitB D eitBeisA; where s, t in R.

Equivalently, resolvents .A��/�1 and .B��/�1, commute. However these prop-
erties do not follow from the identity AB D BA and are difficult for a verification.
There are some useful sufficient conditions and necessary conditions for com-
mutativity (for necessity we use the result of Kostyuchenko and Mityagin [23]
and [24]), but quite often a question remains to be heavy.2

Define two domains … � …cont of the parameters .a; b/:

… W 0 < aC b < 2; �1 < a � b < 1I (1.4)

…cont W 0 6 a 6 1; 0 6 b 6 1; and .a; b/ ¤ .˙1;˙1/, .˙1;�1/. (1.5)

Theorem 1.1. The operators 1
2
.DC xD/, 1

2i
.D� xD/ admit extensions to a pair of

commuting self-adjoint operators if and only if .a; b/ 2 ….

Next, we define a natural domain for our operators. Consider the subspace
Ra;b. PC/ � L2. PC; �a;b/ consisting of smooth functions f on PC satisfying the
following conditions.3

1 The topic of the Nelson paper was finite-dimensional Lie algebras of unbounded operators
in Hilbert spaces. However, his results remain to be non-trivial for pairs of commuting operators
and even for one operator.

2 A famous example is a problem, see [12], which was raised by Irving Segal in 1958 and
which was discussed during almost 30 years: Let � be an open connected domain inRn. Assume
that the operators i@=@xk in D.�/ admit commuting self-adjoint extensions. Is it correct that �

is essentially a fundamental domain of Rn with respect to a certain discrete group? The answer
is affirmative.

3 If .a; b/ … …, then Ra;b. PC/ is not contained in L2.C; �a;b/.
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Figure 1. To Theorem 1.1. The domain … of commutativity, and the domain …cont � …,
where the spectrum is purely continuous.

1ı. In a neighborhood of z D 0 a function f has an expansion of the form4

f .z/ D
´

˛.z/C ˇ.z/jzj2�2a�2b if aC b ¤ 1,

˛.z/C ˇ.z/ ln jzj if aC b D 1,
(1.6)

where ˛.z/, ˇ.z/ are smooth functions.

2ı. In a neighborhood of z D 1 a function f has an expansion of the form

f .z/ D
´

.z/C ı.z/jz � 1j2b�2a if a � b ¤ 0,

.z/C ı.z/ ln jz � 1j if a � b D 0,
(1.7)

where .z/, ı.z/ are smooth.

3ı. For each p, q, N we have

@pCqf

@zp@ Nzq
D O.jzj�2a�p�q.ln jzj/�N / as z ! 1. (1.8)

Theorem 1.2. a) For .a; b/ 2 … the operators 1
2
.DC xD/, 1

2i
.D� xD/ are essentially

self-adjoint on Ra;b. PC/ and commute in the Nelson sense.

b) If .a; b/ 2 …cont, then the spectrum of the problem

Df D �f; xDf D N�f (1.9)

is multiplicity free and consists of � having the form

� D
�k C is

2

�2

; where k 2 Z, s 2 R. (1.10)

If .a; b/ 2 …n…cont, then the spectrum consists on the same set plus one eigenvalue

�0 > 0.

4 Boundary conditions in this spirit sometimes arise in spectral theory of ordinary differential
operators D for operators with deficiency indices .1; 1/ or .2; 2/, see, e.g., [36], Section 1.
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Let us explain the obstacle for commutativity. Consider a second order differ-
ential operatorD on an interval. For each � 2 R the differential equationDf D �f

has two solutions, and we can select generalized eigenfunctions ofD as solutions
that have L2- or almost L2-asymptotics at the ends of the interval. In our case
the system (1.9) locally has 4 solutions. Furthermore, PC is not simply connected,
solutions are ramified at 0, 1, 1. As a result there are few single valued solutions
and we have no freedom for selection of asymptotics. Such considerations (see
Section 4) allow to establish necessity of the conditions of Theorem 1.1.

Unfortunately, we do not know an a priori proof of sufficiency and obtain it
as a byproduct of the explicit joint spectral decomposition of the operators D, xD.
Such detour makes our work long and requires numerous explicit calculations and
estimates.

1.2. The index hypergeometric transform. Our work is a counterpart of the
following classical topic. Consider the hypergeometric differential operator

D WD x.x C 1/
d2

dx2
C ..aC b/C .2aC 1/x/

d

dx
C a2

on the half-line RC, i.e., x > 0 . Consider the integral operator

Ia;bf .s/ WD 1

�.aC b/

1
Z

0

f .x/2F1

�

aC is; a � is
aC b

I x
�

xaCb�1.1C x/a�b dx:

(1.11)
Then Ia;b is a unitary operator

L2.RC; x
aCbC1.1C x/a�b dx/ �! L2

�

RC; �
�1

ˇ

ˇ

ˇ

�.a C is/�.b C is/

�.2is/

ˇ

ˇ

ˇ

2

ds
�

:

(1.12)
The operator Ia;b sends D to the multiplication by s2, see [45], [43], [40], [22],
[21], [34], and [37]. This transform5 is known as generalized Mehler–Fock

transform, Olevskii transform, or Jacobi transform.

Such operators arise in a natural way in the analysis on rank one Riemannian
symmetric spaces, on the other hand they are special cases of multi-dimensional
Harish-Chandra spherical transforms and more general Heckman–Opdam [18]
integral transforms, which arise as spectral decompositions of certain families
of commuting partial differential operators.

5 A special case a D 1=2, b D 1 of this transform was discovered by Gustav Mehler in
1881, the general transform was obtained by Weyl [45] in 1910. The Ia;b is a representative of
a large family of index integral transforms, which involve indices of hypergeometric functions,
see numerous examples in [46], [16], and [38].
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Next, consider the following difference operator in the space of even functions
depending on the variable s:

Lg.s/ WD .a � is/.b � is/
.�2is/.�2is C 1/

.g.s C i/ � g.s//

C .aC is/.b C is/

.2is/.2is C 1/
.g.s � i/ � g.s//;

(1.13)

where i2 D �1. A domain of this operator is a space of even functions holo-
morphic in the strip j Im sj < 1 C " with some condition of decreasing at infin-
ity. It turns out that L is essentially self-adjoint in the space of even functions
L2

even

�

R;
ˇ

ˇ

�.aCis/�.bCis/
�.2is/

ˇ

ˇ

2
ds

�

and the operator I�1
a;b

sends it to the operator of
multiplication by x.

So we have a bispectrality in the spirit of Grünbaum [17], [8]. Notice that
simpler index integral transforms as the Kontorovich–Lebedev transform and the

1F1-Wimp transforms also are bispectral, see [38].
Cherednik showed [4] that inverse Heckman–Opdam transforms provide spec-

tral decompositions of families of commuting difference operators, see also van
Diejen, Emsiz [6].

1.3. Radial parts of Laplace operators. Recall one more classical topic. Con-
sider the usual sphere S2

R
:

x2 C y2 C z2 D 1;

the orthogonal group SO.3/ acts in L2.S2
R
/ by rotations. Recall one of possible

ways to decompose this unitary representation into irreducible components. Con-
sider the Beltrami–Laplace operator� on the sphere and restrict it to the space of
functions depending on the height z. We get a differential operator

Lz WD .1� z2/
@2

@z2
� 2z @

@z

in L2Œ�1; 1�. Eigenfunctions of Lz are the Legendre polynomials. Simple ar-
guments show that the spectral decomposition of � is a priori equivalent to the
spectral decomposition of Lz (the reason of this equivalence is compactness of
the group SO.2/ of rotations of S2

R
about the vertical axis).

Now consider the complex manifold S2
C

� C
3 defined by the same equation

x2 C y2 C z2 D 1. The complex orthogonal group SO.3;C/ (the Lorentz group)
acts on the quadric S2

C
, the action admits an SO.3;C/-invariant measure, and again

we come to a problem6 of decomposition of the unitary representation of SO.3;C/

6 This problem was solved by Naimark in [30] in a completely different way.
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in L2 on S2
C
. Now we have two Beltrami-Laplace operators, a holomorphic

operator � and an antiholomorphic operator x�. They commute in the Nelson
sense. Restricting them to functions depending on the coordinate z 2 C we get
two operators7

Lz WD .1� z2/
@2

@z2
� 2z @

@z
; L Nz WD .1� Nz2/

@2

@ Nz2
� 2 Nz @

@ Nz :

However, now the stabilizer of the point .x; y; z/ D .0; 0; 1/ is a noncompact

subgroup SO.2;C/, and this breaks the a priori argumentation. A joint spectral
decomposition of �, x� can be reformulated as a certain problem8 for Lz , xLz , but
this is not precisely a problem of a joint spectral decomposition of Lz , xLz .

Notice that a similar separation of variables can be done for L2 on an arbitrary
rank one complex symmetric spaceGC=HC (and, more generally, for spaces ofL2-
sections of line bundles onGC=HC). In all the cases we get pairs of hypergeometric
operators of our type. We hope that our spectral decomposition allows to write
the explicit Plancherel formula for such spaces and to give another proof of old
Naimarks’s results [30]–[32] on tensor products of representations of the Lorentz
group. However, the present paper does not have such purposes.

1.4. Homographic transformations of the operators D and xD. Our next
purpose is to present the explicit joint spectral decomposition of the pair D, xD.
We need some preparations.

Consider the following 8 transformations of functions on PC:

f .z/ 7�! j .z/f .z/; f .z/ 7�! j .z/f .1� z/;

where

j .z/ D 1; j1 � zj2.b�a/; jzj2.1�a�b/; jzj2.1�a�b/j1 � zj2.b�a/;

cf. Erdélyi etc., [9], Subsect. 2.6.1. It can be readily checked that these transfor-
mations send the operators D, xD to operators of the same type with other values
of the parameters .a; b/, as

.a; b/ 7�! .b; a/; .a; b/ 7�! .1� a; b/; etc.

7 This pair corresponds to a D b D 1=2 in our parameters.

8 Such reductions for families of Laplace operators were widely used by Harish-Chandra
(in his famous works on the Plancherel formula for real semisimple Lie groups) and by his
successors. The problem for Lz , xLz is more similar to decompositions of L2 on real rank one
pseudo-Riemannian symmetric spaces, which was solved by one of the authors of the present
paper [27]–[29].
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Thus we get all isometries of the square …. In particular, such transformations
send spectral problems to equivalent spectral problems.

1.5. Notation. Generalized powers. Denote by C
� the multiplicative group

of C. We need a notation for characters of C�. Let z 2 C
� and a, a0 2 C satisfy

a � a0 2 Z. We define a generalized power of z by

za D zaja0 WD za Nza0 D ea ln zCa0ln z D jzj2a Nza0�a;

Denote by ƒC the set of all pairs a j a0 such that a � a0 2 Z. Denote by ƒ � ƒC

the set of all pairs

a j a0 D 1

2
.k C is/

ˇ

ˇ

ˇ

1

2
.�k C is/; where k 2 Z, s 2 R: (1.14)

Equivalently, a j a0 2 ƒ if a � a0 2 Z, aC a0 2 iR. We also will use the notation

Œa� D Œa j a0� WD 1

2
Re.aC a0/: (1.15)

We have
jzaja0 j D jzj2Œaja0�;

in particular, for a 2 ƒ we have jzaja0 j D 1.
We fix the standard Lebesgue measure Qd� on the set ƒ:

Z

ƒ

'.�/ Qd� WD
X

k

Z

R

'
�k C is

2

�

ds:

1.6. Hypergeometric function of the complex field. Following Gelfand, Graev,
and Retakh [13], we define the gamma function �C, the beta function BC, and
the hypergeometric function 2F

C
1 of the complex field (see, also, Gelfand, Graev,

Vilenkin [14], Subsect. II.3.7, and Mimachi [26]). The gamma function �C is

�C.a/ D �C.a j a0/ WD 1

�

Z

C

za�1e2i Re z d NNz

WD 1

�

Z

C

za�1ja0�1e2i Re z d NNz

D ia�a0 �.a/

�.1� a0/

D ia
0�a �.a0/

�.1� a/

D ia
0�a

�
�.a/�.a0/ sin�a0:

(1.16)
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The beta function BC is9

BC.a; b/ WD 1

�

Z

C

ta�1.1� t /b�1 d NNt

D �C.a/�C.b/

�C.a C b/

D �.a/�.b/�.1 � a0 � b0/

�.aC b/�.a0/�.b0/
:

(1.17)

The hypergeometric function of the complex field is defined by

2F
C

1 Œa; bI cI z� D 2F
C

1

haI b

c
I z

i

D 2F
C

1

ha j a0; b j b0

c j c0 I z
i

WD 1

�BC.b; c � b/

Z

C

tb�1.1� t /c�b�1.1 � zt/�a d NNt:

(1.18)

Recall that the Gauss hypergeometric functions are defined by

2F1Œa; bI cI z� WD 1

B.b; c � b/

1
Z

0

tb�1.1 � t /c�b�1.1� zt/�adt

D
1

X

pD0

.a/p.b/p

pŠ.c/p
zp;

where

.c/p WD c.c C 1/ : : : .c C p � 1/

is the Pochhammer symbol. The functions 2F
C
1 Œa; bI cI z� admit expressions in the

terms of 2F1, see Theorem 3.9.

1.7. Spectral decomposition. For .a; b/ 2 … we define the kernel Ka;b.z; �/

on C �ƒ by

Ka;b.z; �/ D 1

�C.aC b j aC b/2F
C

1

�

aC � j a � N�; a � � j aC N�
a C b j a C b

I z
�

: (1.19)

9 This integral has a multi-dimensional counterpart of the Selberg type, see [7].
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Theorem 1.3. Let .a; b/ 2 …cont. Then the operator

Ja;bf .�/ WD
Z

C

Ka;b.z; �/f .z/�a;b.z/ d NNz

is a unitary operator from L2.C; �a;b/ to L2
even.ƒ; ~a;b/ of even functions on ƒ

with respect to the Plancherel measure

dKa;b.�/ D ~a;b.�/ Qd� D 1

4�2
j��C.a � �jaC N�/�C.b C �jb � N�/j2 Qd�: (1.20)

Next, we modify the definition of the measure for .a; b/ 2 … n…cont. Due to
the homographic transformations10 it is sufficient to consider the case a < 0. We
define the Plancherel measure dKa;b.�/ on ƒC that is the sum of ~a;b

Qd� and two
ı-measures located at the points ˙a j ˙a 2 ƒC,

�C.a C b j a C b/�C.b � a j b � a/�C.2a j 2a/ � .ıaja C ı�aj�a/: (1.21)

Define a constant function v.z/ on PC by

v.z/ D �C.a C b j a C b/�1:

For f 2 D. PC/ we define an even function Ja;b.�/ on the support of dKa;b.�/

given by the same formula (1.20) on ƒ, its value at .˙a j ˙a/ is

Ja;bf .˙a j ˙a/ WD hf; viL2.C;�a;b/:

Theorem 1.4. If .a; b/ 2 … and a < 0, then the operator Ja;b is unitary as an

operator L2.C; �a;b/ to L2
even.ƒC; dKa;b/.

Our operator really determines the spectral decomposition:

Theorem 1.5. For each .a; b/ 2 … for any f 2 Deven. PC/ we have

Ja;bDf .�/ D �2Ja;bf .�/; Ja;b
xDf .�/ D N�2Ja;bf .�/:

This means that

DK.z; �/ D �2K.z; �/; xDK.z; �/ D N�2K.z; �/:

Next, we consider the space Deven. Pƒ/, which consists of even smooth com-
pactly supported functions on ƒ that are zero on a neighborhood of the point
0 j 0. The following statement explains the appearance of the space Ra;b and also
is one of the arguments for the proofs of our main statements.

10 Changing of kernels Ka;b by the homographic transformation can be observed from
Proposition 3.5.
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Theorem 1.6. If F 2 Deven. Pƒ/, then J �
a;b
F 2 Ra;b.

The images of ı-functions also are contained in Ra;b .

1.8. The transformation Ja;b in the complex domain. Let us extend our kernel
K to the complex domain. For

¹� j �0º D
°k C �

2

ˇ

ˇ

ˇ

�k C �

2

±

2 ƒC

we set

Ka;b.zI� j �0/

D Ka;b.zI k; �/

WD 1

�C.a C b j aC b/

� 2F
C

1

2

4

aC k C �

2

ˇ

ˇ

ˇ aC �k C �

2
; a C �k � �

2

ˇ

ˇ

ˇ a C k � �
2

aC b j aC b

I z

3

5 ;

(1.22)

where k ranges in Z, � ranges in C. The previous expression (1.19) corresponds
to a pure imaginary � .

For f 2 D. PC/ we define a meromorphic function on ƒC by

Ja;bf .k; �/ WD
Z

PC

f .z/K.zI k; �/ d�a;b d NNz:

Theorem 1.7. For f 2 D. PC/ the function Ja;bf is contained in the space Wa;b

defined as follows.

We define a space Wa;b as the space of all meromorphic functions11 F.k; �/
on ƒC satisfying the conditions a)–d).

a) F is even, i.e., F.�k;��/ D F.k; �/.

b) Possible poles of F.k; �/ are located at the points

� D ˙.�2aC jkjC2j /; ˙.�2bC jkjC2j /; where j D 1, 2, 3, . . . . (1.23)

A maximal possible order of a pole at a point .l; c/ is a multiplicity of .l; c/ in the
collection12 (1.23).

11 We say that a function F .k; �/ is meromorphic if it is meromorphic as a function in � for
any fixed k.

12 For .a; b/ 2 … orders of poles 6 2. Poles of order 2 arise only if a D b, a D 1, b D 1.
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c) For each A > 0 for each N > 0 in the union of strips j Re � j < A we have
an estimate

F.k; �/ D O.k2 C .Im �/2/�N as k2 C .Im �/2 ! 1: (1.24)

d) For each p, q 2 Z

F.p; q/ D F.q; p/: (1.25)

Next, we extend the spectral density ~a;b to the complex domain.

~a;b.� j �0/

D ~a;b.k; �/

WD 1

4�2
.k C �/.k � �/�C

�

aC k C �

2

ˇ

ˇ

ˇ aC �k C �

2

�

� �C

�

a C �k � �

2

ˇ

ˇ

ˇ a C �k � �

2

�

� �C

�

b C k C �

2

ˇ

ˇ

ˇ b C �k C �

2

�

� �C

�

b C �k � �
2

ˇ

ˇ

ˇ b C �k � �
2

�

:

(1.26)

In the case a < 0 discussed above, ~a;b has a pole at k D 0, � D a and the
inner product in L2

even.ƒ; dKa;b/ can be written as

hF;Gi D 1

i

X

k

i1
Z

�i1

F.k; �/G.k;�N�/~a;b.k; �/ d�

C 2 res
sDa

.F.k; �/G.k;�N�/~a;b.0; �//:

If a > 1, then the spectral density has a zero at k D 0, � D a�1 but both functions
F.k; �/,G.k;�N�/ admit simple poles at this point, and we have a similar formula.

1.9. Difference spectral problem. It turns out that our problem is bispectral,
and the bispectrality is a crucial argument of our proof. We define analogs of the
difference operator (1.13). Consider meromorphic functions ˆ depending on

� j �0 D 1

2
.k C is/

ˇ

ˇ

ˇ

1

2
.�k C is/ 2 ƒC

and the operators in the space of meromorphic functions defined by

Tˆ.k; s/ D ˆ.k C 1; s � i/; zTˆ.k; s/ D ˆ.k C 1; s C i/;
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or, equivalently,

Tˆ.� j �0/ D ˆ.�C 1 j �0/; zTˆ.� j �0/ D ˆ.� j �0 C 1/: (1.27)

We define the following difference operators

L WD .aC �/.b C �/

2�.1C 2�/
.T � 1/C .a � �/.b � �/

�2�.1� 2�/
.T �1 � 1/; (1.28)

xL WD .aC �0/.b C �0/

2�0.1C 2�0/
. zT �1 � 1/C .a � �0/.b � �0/

�2�.1� 2�0/
. zT � 1/: (1.29)

Formally,
LxL D xLL:

Theorem 1.8. a) The operators 1
2
.L C xL/, 1

2i
.L � xL/ defined on the space Wa;b

are essentially self-adjoint and commute in the Nelson sense.

b) For ˆ 2 Ja;bD. PC/ we have

J�1
a;bLˆ.z/ D zJ�1

a;bˆ.z/; J�1
a;b

xLˆ.z/ D NzJ�1
a;bˆ.z/: (1.30)

Thus the operator J�1
a;b

determines a joint spectral decomposition of 1
2
.LC xL/

and 1
2i
.L � xL/.

1.10. The structure of the proofs. We derive asymptotics of the kernel K.z; �/
as z ! 0, 1, 1 for fixed � (Theorem 3.9) and as j�j ! 1 for fixed z (Theo-
rem 7.1). Next, we prove inclusions

J �
a;bDeven. Pƒ/ � Ra;b; Ja;bD.

PC/ � Wa;b

(Proposition 5.2 and Corollary 8.2) and symmetries

hDf; giL2.C;�a;b/ D hf; xDgiL2.C;�a;b/; where f , g 2 Ra;b I (1.31)

hLF;Gi
L2. Pƒ;dKa;b/

D hF; xLGiL2.ƒ;dKa;b/; where F , G 2 Wa;b ; (1.32)

see Proposition 5.5 and Theorem 8.4. This implies a generalized orthogonality,
i.e.,

hJ �
a;bF; J

�
a;bGiL2.C;�a;b/ D 0 if supports of F , G 2 Deven. Pƒ/ are disjoint,

and a similar statement for Ja;b, see Lemmas 9.2, 6.4. Next, we show that for any
F , G 2 Deven. Pƒ/ the inner products of their preimages can be written as

hJ �
a;bF; J

�
a;bGiL2.C;�a;b/

D hF;GiL2.ƒ;dKa;b/ C
Z

ƒ

Z

ƒ

H.�1; �2/F.�1/G.�2/ Qd�1
Qd�2;
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where H is a locally integrable function, see Lemma 6.4. We also prove a
similar statement for Ja;b , see Lemma 9.4. Then generalized orthogonality implies
H.�; �/ D 0. Thus we get

J �
a;bJa;b D 1; Ja;bJ

�
a;b D 1; (1.33)

and this is our main statement.
Some steps of this double way are straightforward, some points require long

calculations and estimates, and we meet some points of good luck (the proofs
of Theorem 8.4 and Lemma 9.4). We also need a lot of information about func-
tions 2F

C
1 (in particular, to cover the cases a C b 2 Z and a � b 2 Z we need a

tedious examination of possible degenerations of functions 2F
C
1 ).

The bispectrality allows to avoid a direct proof of completeness of the system
of generalized eigenfunctions of D, xD.

To prove the necessary conditions of self-adjointness in Theorem 1.1 we ana-
lyze common generalized eigenfunctions ofD, xD for .a; b/ … … and after a natural
selection we reduce a set of possible candidates to a finite family. This is done in
Section 4.

This text is focused to a proof of unitarity of Ja;b . An introduction to func-
tions 2F

C
1 in Section 3 can be a point of an independent interest. Also, we get two

relatively pleasant statements about asymptotic behavior of integrals

M."/ D
Z

C

t˛�1j˛0�1." � t /ˇ�1jˇ 0�1 .t/ d NNt as " ! 0

and

I.�/ D
Z

C

jf .t/j2ei Re.�'.t// d NNt as j�j ! 1,

where f , ' are holomorphic and � 2 C (Theorems 2.3 and 7.2).

1.11. Final remarks. The index hypergeometric transform (1.11) can be applied
as a heavy tool of theory of special functions, see [22], [35], [37]. In [39] we use
our operators Ja;b to obtain a beta integral over ƒ, which is a counterpart of the
Dougall 5H5-summation formula and of the de Branges–Wilson integral.

Also, we notice that functions, which can be regarded as higher hypergeo-
metric functions 4F

C
3 of the complex field, arise in a natural way in the work of

Ismagilov [20] as analogs of the Racah coefficients for unitary representations of
the Lorentz group SL.2;C/ (see, also a continuation in [5]).

It seems that our problem can be a representative of some family of spectral
problems, but now it is too early to claim something certainly.
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2. Preliminaries.

Gamma function, the Mellin transform, weak singularities

This section is a union of 3 disjoint topics:

— some properties of the function �C, which are intensively used below:

— some properties of the Mellin transform on C, they are used in a proof of
Proposition 3.1 and in Sections 7–9:

— a lemma from asymptotic analysis, which is used only in a proof of Theo-
rem 3.9 (the last statement can be independently established by a straightforward
tiresome way).

2.1. Some properties of the gamma function. The usual functional equations
for the �-function can be easily rewritten for �C (recall that a � a0 2 Z!):

�C.a j a0/ D �C.a0 j a/I (2.1)

�C.aC 1 j a0/ D ia�C.a j a0/I (2.2)

�C.a j a0/�C.1 � a j 1� a0/ D .�1/a�a0 I (2.3)

�C.a j a0/ D .�1/a�a0

�C. Na j Na0/: (2.4)

Also,

m�1
Y

pD0

�C

�

aC p � 1

m

ˇ

ˇ

ˇ a
0 C p � 1

m

�

D m1�m.aCa0/�C.ma j ma0/:

The identity (2.4) implies

BCŒa j a0; b j b0� D BCŒ Na j Na0; Nb j Nb0�: (2.5)

Let k1, k2 2 Z. Then

�C.k1 j k2/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1; if k1, k2 2 Z�;

0; if k1, k2 2 N,

ik1�k2
.k1 � 1/Š

.�k2/Š
; if k1 2 N, k2 2 Z�;

ik2�k1
.k2 � 1/Š

.�k1/Š
; if k2 2 N, k1 2 Z�;

(2.6)

where Z� denotes the set of integers 6 0.
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The following lemma gives us the asymptotics of the Plancherel density (1.20).

Lemma 2.1. We have the following asymptotics in � 2 ƒ:

�C.a � � j a C N�/�C.b C � j b � N�/ � �aCb�1jaCb�1 as j�j ! 1: (2.7)

The asymptotics is uniform in a, b if they range in a bounded domain.

Proof. Denote Re� D k=2. Let j arg�j < � � ". Then we write our expression as

ik�.aC N�/
�.1 � a C �/

� i
�k�.b C �/

�.1 � b C N�/

and apply the standard asymptotic formula �.zC˛/=�.zCˇ/ � z˛�ˇ in the sector
j arg zj < � � ", see Erdélyi etc., [9], formula (1.18.4). If j arg.��/j < � � ", we
write

i�k�.a � �/
�.1 � a � N�/

� i
k�.b � N�/

�.1 � b � �/
and come to the same asymptotics. �

2.2. The Mellin transform. Denote by C
� WD C n 0 the multiplicative group of

C. The Mellin transform (see, e.g., [13]) on C
� is defined by

g.�/ D Mf .�/ D 1

2�

Z

C

f .z/z��1 d NNz; (2.8)

where � D ¹� j �0º D
®

kCis
2

ˇ

ˇ

�kCis
2

¯

2 ƒC (here we allow complex s). This
operator is the Fourier transform on the groupC

� ' .R=2�Z/�R, so it is reduced
to the Fourier transforms on .R=2�Z/ and on R. Indeed, changing variables

z D e�ei'

we come to

g.k; s/ D 1

2�

2�
Z

0

1
Z

�1

f .e�ei'/eik'Cis� d� d':

The inversion formula is given by

f .z/ D M�1g.z/ D 1

2�

Z

ƒ

g.� j � N�/z��j N� Qd�:

Equivalently, M is a unitary operator L2.C�; jzj�2/ ! L2.ƒ/.
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2.3. The Mellin transform of even functions. We say that a function f onC
� is

�-even if f .z�1/ D f .z/. Denote byL2
C.C

�; jzj�2/ the subspace ofL2.C�; jzj�2/

consisting of �-even functions. Obviously, the Mellin transform sends �-even
functions in z to even functions in �. Also, for a �-even function f we have

Mf .�/ D 1

2

Z

C

f .z/.z��1 C z���1/ d NNz; where f is �-even. (2.9)

2.4. The Mellin transform of smooth compactly supported functions

Theorem 2.2. a) Let f be a compactly supported smooth function on C. Then

Mf .� j �0/ extends to a meromorphic function in the variable � with possible

poles located at the points � j �0 2 Z� � Z�. Moreover, for any p, p0 2 ZC for

Re.�C �0/ > �p � p0 we have

I.� j �0/ D .�1/pCp0

2�.��/p.��0/p0

Z

C

z��p�1j�0�p0�1 @pCp0

@zp@ Nzp0 f .z/ d NNz: (2.10)

The residues at the poles are

res�j�0D�pj�p0 I.� j �0/ D 1

.p � 1/Š.p0 � 1/Š
@pCp0

f .0; 0/

@zp@ Nzp0 : (2.11)

b) For each N for each A for all pairs .k; s/ satisfying j Im sj < A we have

Mf
�k C is

2

ˇ

ˇ

ˇ

�k C is

2

�

D O.k2 C jsj2/�N as jk2j C js2j ! 1.

For a proof of statement a), see Gelfand, Shilov [15], Sect. B.1.3, or equiv-
alently Russian edition of Gelfand, Graev, Vilenkin [14], Addendum 1.3 (the
term ’Mellin transform’ in that place is absent, but the statement is proved). For-
mula (2.10) is obtained from (2.8) by integration by parts. The statements about
location of poles and about residues require more careful arguments.

Proof of the statement b. We pass to polar coordinates, z D ei� and get

Mf
�k C is

2

ˇ

ˇ

ˇ

�k C is

2

�

D 1

2�

1
Z

0

2�
Z

0

H.�; r/r�1Cisei�k d� dr;

whereH.�; r/ WD ˆ.rei�/ is a smooth function 2�-periodic in � , theH.�; 0/ does
not depend on � , also H.� C �;�r/ D H.�; r/. Integrating by parts in r , we get

Mf
�k C is

2

ˇ

ˇ

ˇ

�k C is

2

�

D .�1/l
2�.is/l

2�
Z

0

1
Z

0

@l

@r l
H.�; r/r�1CisCl drei�k d�:
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For l > A the integral absolutely converges. Integrating by parts in � , we get

.�1/kCl

2�.ik/m.is/l

2�
Z

0

1
Z

0

@lCm

@r l@�m
H.�; r/r�1CisCldrei�k d�;

and
ˇ

ˇ

ˇMf
�k C is

2

ˇ

ˇ

ˇ

�k C is

2

�ˇ

ˇ

ˇ 6
const

j.2�ik/m.is/l j
:

If jsj > jkj we take m D 0 and large l , if jkj > jsj, we take l > j Im sj and
large m. �

2.5. Weak singularities. Here we imitate one standard trick of asymptotic anal-
ysis, see, e.g., [10], Sect. I.4. Fix R and a smooth function  .t/ on C. Consider
the integrals of the following type

M."/ D M˛;ˇ."/ WD
Z

jt j6R

t˛�1j˛0�1." � t /ˇ�1jˇ 0�1 .t/ d NNt:

Clearly, M˛;ˇ."/ is holomorphic in ˛, ˇ in the domain of convergence and admits
a meromorphic continuation13 to .˛; ˇ/ 2 ƒ2.

Theorem 2.3. Let ˛, ˇ satisfy the condition

˛; ˇ; ˛ C ˇ � 1 … Z� � Z�: (2.12)

Then M."/ (defined in the sense of analytic continuation) admits the following

asymptotic expansion at 0:

M."/ �
X

i;i 0>0

BC.˛ C i j ˛0 C i 0; ˇ j ˇ0/ � 1

iŠi 0Š

@iCi 0

 .0; 0/

@t i@Nt i 0 � "˛CˇCi�1j˛0Cˇ 0Ci 0�1

C
X

j;j 0>0

rj jj 0"j jj 0

:

(2.13)

The coefficients of the expansion are meromorphic in ˛ j ˛0, ˇ j ˇ0.

If 14 Œ˛ j ˛0� > 0, Œˇ j ˇ0� > 0, Œ˛ j ˛0�C Œˇ j ˇ0� > 1, then

r00 D
Z

jt j<R

t˛Cˇ�2j˛0Cˇ 0�2 .t/ d NNt: (2.14)

13 For instance, see the proof of Proposition 3.1 below.

14 Recall notation (1.15).
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First, we prove the following lemma.

Lemma 2.4. Let ˛, ˛0, ˇ, ˇ0 satisfy the condition (2.12). Then the following

integral (defined in the sense of analytic continuation)

R."/ D
Z

jt j<R

t˛�1j˛0�1." � t /ˇ�1jˇ 0�1 d NNt (2.15)

admits an asymptotic expansion of the form

R."/ D BC.˛ j ˛0; ˇ j ˇ0/ � "˛Cˇ�1j˛0Cˇ 0�1 C
X

j;j 0>0

pj jj 0"j jj 0

: (2.16)

Moreover, the series
X

j;j 0>0

pj jj 0"j jj 0

(2.17)

converges in the circle j"j < 1=R, and the coefficients pj jj 0.a; b/ are holomorphic

in the domain (2.12).

Proof. Set

Q˛;ˇ."1; "2/ WD .�1/ˇ 0�ˇ

Z

jt j>R

t˛Cˇ�2j˛0Cˇ 0�2
�

1 � "1

t

�ˇ�1�

1 � "2

t

�ˇ 0�1

d NNt:

This function is meromorphic in ˛, ˇ, and in "1, "2 in the bidisk j"1j < 1=R,
j"2j < 1=R. Let

Œ˛ j ˛0� > 0; Œˇ j ˇ0� > 0; Œ˛ j ˛0�C Œˇ j ˇ0� < 1: (2.18)

Under these conditions the integral R."/ converges, and

R."/ D
Z

C

�
Z

jt j>R

D BC.˛ j ˛0; ˇ j ˇ0/ � "˛Cˇ�1j˛0Cˇ 0�1 �Q˛;ˇ."; N"/:

Expanding the integrand inQ˛;ˇ in a series in "1, "2 and integrating termwise we
come to

Q˛;ˇ."1; "2/ D
X

j >0;j 0
>0W ˛Cˇ�j D˛0Cˇ 0�j 0

.�ˇ C 1/j .�ˇ0 C 1/jR
˛C˛0CˇCˇ 0�j �j 0

.j C j 0 � ˛ � ˛0 � ˇ � ˇ0/j Šj 0Š
"

j
1"

j 0

2 :

(2.19)

Now we can omit restrictions (2.18). Indeed, under conditions (2.12) the se-
ries (2.19) converges in the bidisk j"1j < 1, j"2j < 1 and therefore its sum co-
incides with the meromorphic continuation. �
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Proof of Theorem 2.3. We expand the function  as a sum

 .t; Nt / D
X

j Cj 0
6N

1

j Šj 0Š

@j Cj 0

 .0/

@t j@t j
0 t j jj 0 CHN .t /;

where HN .t / is a smooth function and

HN .t / D O.jt jN C1/ as t ! 0:

Substituting this to the initial integral we get a sum of integrals of the form (2.15),
we apply Lemma 2.4 to each summand. Also we get a summand

I."/ D
Z

jt j6R

t˛�1j˛0�1."C t /ˇ�1jˇ 0�1HN .t / d
NNt:

We wish to show that T ."/ has partial derivatives at 0 up to order N � k, where k
is constant depending only on ˛ and ˇ. Consider a partition of unity, 1 D '1 C'2

such that '2 is zero at some smaller circle jt j < R0. According to this, we split
I D I1 C I2. Obviously, I2 has an expansion of the form

I2 �
X

j;j 0>0

cj jj 0"j jj 0

with coefficients meromorphic in ˛, ˇ. Next, we integrate I1 by parts several
times,

I1."/ D 1

.ˇ/m.ˇ0/m

Z

jt j6R

."C t /ˇ�1Cmjˇ 0Cm�1 @t2m

@m@Ntm .t
˛�1j˛0�1HN .t /'1.t // d

NNt:

Choosing m we can make ˇ C m � 1, ˇ0 C m � 1 as large, as we want, say
> q. Next, we choose a large N , such that @2m

@tm@Ntm .�/ is continuous at 0. Now
we can differentiate I1."/ with respect to ", N" q times at 0 and consider its Taylor
expansion. This finishes a derivation of the asymptotic expansion for R."/.

If the integral R.0/ converges, we substitute " D 0 to the expansion and get
the expression for r00. �

3. The hypergeometric function of the complex field

Here we discuss basic properties of the functions 2F
C
1 Œ��.
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3.1. Domain of convergence and analytic continuation. The hypergeometric
function 2F

C
1 Œa; bI cI z� of the complex field is defined by the Euler type inte-

gral (1.18):

2F
C

1 Œa; bI cI z�D 1

�BC.b; c � b/

Z

C

tb�1.1� t /c�b�1.1 � zt/�a d NNt: (3.1)

For z ¤ 0, 1, the integral absolutely converges (see notation (1.15) if a, b, c is
contained in the following tube y„,

y„W Œb� > 0; Œc�� Œb� > 0; Œa� < 1; Œc�� Œa� < 2: (3.2)

In other words, the integral absolutely converges if and only if the point .Œa�; Œb�; Œc�/
is contained in the simplex „ in R

3 with vertices

.1; 0; 0/; .�1; 0; 0/; .1; 0; 1/; .1; 2; 2/: (3.3)

We haveƒC ' C�Z; therefore triples (a, b, c) depend on 3 integers and 3 complex
parameters. Clearly, each component of the set Z3 � C

3 has an open intersection
with the domain of convergence.15

Proposition 3.1. For z 2 PC, the expression 2F
C
1 Œa; bI cI z� as a function of a, b,

c admits a meromorphic extension to arbitrary values of a, b, c with poles at a

countable union of surfaces

a 2 N � N; b 2 N � N; c � a 2 N � N; c � b 2 N � N; (3.4)

c 2 Z� � Z�; (3.5)

and vanishes for all z 2 PC at

c 2 N � N: (3.6)

Proof. Consider a partition of unity 1 D '0.t /C'1.t /C'1=z.t /C'1.t /C'¿.z/,
where all summands are smooth and nonnegative, '0, '1, '1=z , '1 are zero
outside small neighborhoods of of 0, 1, 1=z, 1 respectively, and '¿ D 0 in
small neighborhoods of these points. Denote P.t; Nt / the integrand in the integral
representation of 2F

C
1 Œa; bI cI z�. Then

�BC.b; c � b/2F
C

1 Œa; bI cI z�

D
Z

'0P d NNt C
Z

'1P d NNt C
Z

'1=zP d NNt C
Z

'1P d NNt C
Z

'¿P d NNt:

15 The map .a; b; c/ ! .Œa�; Œb�; Œc�/ from ƒ3 ! R3 is surjective on all components.
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The last summand is an entire function in a; b, c. By Theorem 2.2 other summands
are meromorphic and can have poles at

b 2 Z� � Z�; c � b 2 Z� � Z�; a 2 N � N; c � a 2 N � N:

However, BC-factor in the front of the integral (3.1) kills the first and the second
families of poles and produces new poles and also zeros. This gives us (3.4)–(3.6),
in particular the factor �C.c/ produces poles (3.5) and zeros (3.6).

All these possible poles really are poles, the simplest way to observe this is
to look at formulas (3.26)–(3.34) derived below. Formulas (3.26)–(3.28) show
that (3.4) are poles. To check a presence of poles (3.5) we apply (3.32)–(3.34). �

3.2. Kummer symmetries. This section contains a collection of elementary
formulas, they partially depend on Theorem 3.9 proved below. However, our proof
of this theorem is based on differential equations and asymptotic analysis and is
independent of our formulas.

First we notice two trivial identities

2F
C

1

�

a j a0; b j b0

c j c0 I Nz
�

D 2F
C

1

�

a0 j a; b0 j b
c0 j c I z

�

I (3.7)

2F
C
1

�

a0 j a; b0 j b
c0 j c I z

�

D 2F
C

1

�

Na0 j Na; Nb0 j Nb
Nc0 j Nc I z

�

: (3.8)

To verify (3.7) we substitute t 7! Nt to the integral (3.1).

Proposition 3.2. a) (Gauss identity) Let Œc�� Œa�� Œb� > 0. Then

2F
C

1

�

a; b

c
I 1

�

WD lim
z!1

2F
C

1

�

a; b

c
I z

�

D �C.c/�C.c � a � b/

�C.c � a/�C.c � b/
: (3.9)

b) Let16 Œc� < 1: Then

2F
C

1 Œa; bI cI 0� WD lim
z!0

2F
C

1 Œa; bI cI z� D 1:

Proof. a) We substitute z D 1 to (3.1) and come to a beta function,

�BCŒb; c � a�=�BCŒb; c � c�:

However, this argument is valid only if the beta integral BCŒb; c � a� converges.
The general statement follows from Theorem 3.9.b proved below.

b) also is reduced to a beta-function with the same problem with the domain
of convergence. The general statement follows from Theorem 3.9.a. �

16 If Œc� > 1, then limz!0 j2F C

1 Œa; bI cI z�j D 1.
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Proposition 3.3. We have

2F
C

1 Œa; bI cI z�D 2F
C

1 Œb; aI cI z�: (3.10)

This will become obvious after Theorem 3.9. We use this symmetry in the next
two proofs.

Proposition 3.4 (Euler and Pfaff transformations). We have

2F
C

1

�

a; b

c
I z

�

D .1� z/�a

2F
C

1

�

a; c � b

c
I z

z � 1

�

(3.11)

D .1� z/�b

2F
C

1

�

c � a; b

c
I z

z � 1

�

(3.12)

D .1� z/c�a�b

2F
C

1

�

c � a; c � b

c
I z

�

: (3.13)

Proof. We substitute t D 1 � s to (3.1) and get (3.11). Applying (3.10) we
get (3.12). Applying (3.11) and (3.12), we get (3.13). �

Proposition 3.5 (Kummer symmetries). The following six functions uCj .z/ are

equal:17

uC1 .z/ D 2F
C

1

�

a; b

c
I z

�

(3.14)

(compare with[9], (2.2.9.1));

uC5 .z/ D .�1/c�a�b�C.c/�C.c � 1/

�C.a/�C.b/�C.c � a/�C.c � b/
z1�c

2F
C

1

�

b � c C 1I a � c C 1

2 � c
I z

�

(3.15)

(see [9], (2.2.9.17) and ratio of coefficients at u1, u5 in (2.2.10.35));

uC3 .z/ D �C.c/�C.b � a/

�C.b/�C.c � a/
.�z/�a

2F
C

1

�

a; a � c C 1

a � b C 1
I z�1

�

(3.16)

(see [9], (2.2.9.9) and B1 in (2.2.10.5));

uC4 .z/ D �C.c/�C.a � b/

�C.a/�C.c � b/
.�z/�b

2F
C

1

�

b; b � c C 1

b � a C 1
I z�1

�

(3.17)

(see [9], (2.2.9.10) and B2 in (2.2.10.5));

17 The meaning of subscripts j in uC

j
, references, and comments are explained in a remark

after the proof.
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uC2 .z/ D �C.c/�C.c � a � b/

�C.c � a/�C.c � b/2F
C

1

�

a; b

a C b C 1 � c
I 1� z

�

(3.18)

(see [9], (2.2.9.5) and A1 in (2.2.10.5));

uC6 .z/ D �C.c/�C.a C b � c/

�C.a/�C.b/
.1� z/c�a�b

2F
C

1

�

c � a; c � b

c � a � b C 1
I 1� z

�

(3.19)

(see [9], (2.2.9.5) and A1 in (2.2.10.5)).

Remark. For each expression (3.14)–(3.19) we can apply one of the transforma-
tions (3.11)–(3.13). In this way we get 24 expressions of this type.

Proof. The formula for u3. Changing a variable t D 1=s in (3.1) we come to

.�1/c�a�b�1z�a

�BC.b; c � b/

Z

C

sa�c.1� s/c�b�1.1 � s=z/�a d NNs

D .�1/c�b�1�BC.a � c C 1; c � b/

�BC.b; c � b/
.�z/�a

2F
C

1

�

a; a � c C 1

a � b C 1
I z�1

�

:

We cancel �C.c � b/ and apply (2.3) two times.

The formula for u4. We transpose a and b in the formula for u3.

The formula for u5. We combine the transformations (3.16) and (3.17).

The formula for u2. We combine the transformations (3.16), (3.11), and
again (3.16).

We combine transformations (3.16), (3.12), and again (3.16). �

Remark. Proposition 3.5 is a self-closed collection of identities. However, they
are reflections of the Kummer table of solutions of the hypergeometric equation

�

z.1 � z/ @
2

@z2
C .c � .a C b C 1//

@

@z
� ab

�

u.z/ D 0;

see Erdélyi, et al., [9], Section 2.2.9, formulas (1)–(24). The Kummer table
contains 6 solutions, each of them is defined in a neighborhood of one of the
singular points 0, 1, 1:

u1.z/D ˛1.z/; u5.z/D z1�c˛5.z/;

u3.z/D .�z/�a˛3.z
�1/; u4.z/D .�z/�b˛4.z

�1/;

u2.z/D ˛2.1� z/; u6.z/D .1 � z/c�a�b˛6.1 � z/;
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where j̨ .x/ are power series, j̨ .0/ D 1. Generally, these solutions are rami-
fied at the points 0, 1, 1. Each solution is represented in 4 forms, which can be
obtained one from another by the Pfaff transformations, see Erdélyi, et al., [9],
Section 2.1, (22)–(23). In the table above we present the corresponding expres-
sions for 2F

C
1 Œa; bI cI z�, they correspond to Kummer’s expressions with change

.a; b; c/ 7! .a; b; c/. The resulting functions uCj are non-ramified (by definition)
and differ by factors independent of z, we normalize them to make them equal
one to another. Counterparts of these factors (except one formula) are present in
the Kummer formulas as coefficients of transfer-matrices .u1; u5/ to .u3; u4/ and
.u2; u6/, with the same replacement .a; b; c/ 7! .a; b; c/, see Erdélyi, et al., [9],
display (2.2.10.5) and the coefficients A1, A2, B1, B2. So, in each line of Propo-
sition 3.5 we give a reference to the corresponding formula in Erdélyi, et al., [9],
(2.2.9.1)–(2.2.9.24) and to the corresponding coefficient in [9], display (2.2.10.5).

3.3. Differential equations

Lemma 3.6. We have

@

@z 2F
C

1

�

a j a0I b j b0

c j c0 I z
�

D ab

c 2F
C

1

�

aC 1 j a0I b C 1 j b0

c C 1 j c0 I z
�

I

@

@ Nz 2F
C

1

�

a j a0I b j b0

c j c0 I z
�

D a0b0

c0 2F
C

1

�

a j a0 C 1I b j b0 C 1

c j c0 C 1
I z

�

:

Proof. We differentiate the integral with respect to the parameter z, and get an
integral of the same form. The calculation is valid if „ \

�

„ C .1
2
; 1

2
; 1

2
/
�

¤ ¿,
where „ is the simplex defined by (3.2)–(3.3). This intersection is open and
nonempty. It remains to refer to the meromorphic continuation. �

Denote

D D DŒa; b; c� WD z.1� z/ @
2

@z2
C .c � .aC b C 1/z/

@

@z
� abI (3.20)

D0 D D0Œa0; b0; c0� WD Nz.1� Nz/ @
2

@ Nz2
C .c0 � .a0 C b0 C 1/ Nz/ @

@ Nz � a0b0: (3.21)

Proposition 3.7. The complex hypergeometric function F.z/ D 2F
C
1 Œa; bI cI z�

satisfies the following system of partial differential equations

DŒa; b; c�F D 0; D0Œa0; b0; c0�F D 0: (3.22)

We call these equation by complex hypergeometric system.
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Proof. This follows from the identity

DŒa; b; c�.tb�1.1� t /c�b�1.1� tz/�a/ D �a @
@t
.tb.1� t /c�b.1� tz/�a�1/ (3.23)

(cf. [9], (2.1.3.11)). Consider sufficiently small positive ", ı, ~ and take a, b, c

such that

Œb j b0� D "; Œc j c0� D "C ı; Œa j a0� D �1
2

C "C ı C ~:

We multiply both parts of (3.23) by Ntb0�1.1 � Nt /c0�b0�1.1 � Nt Nz/�a0

and integrate
over C. In the left hand side for such values of the parameter we can permute
integration and differentiation in z. In the right hand side the integrand is an
integrable derivative of an integrable function. Therefore the right hand side is
zero. �

Proposition 3.8. a) Any solution of system (3.20)–(3.21) is real analytic in z.

b) Let z0 ¤ 0, 1, 1. Denote by '1.z/, '2.z/ a pair of independent holo-

morphic solutions of the ordinary differential equation DŒa; b; c�f .z/ D 0 at a

neighborhood of z0. Denote by  1. Nz/,  2. Nz/ a pair of antiholomorphic solutions

of the ordinary differential equation D0Œa0; b0; c0�f . Nz/ D 0. Then any solution of

the system (3.20)–(3.21) can be represented as
X

i;j D1;2

�ij .a; b; c/'i.z/ j . Nz/: (3.24)

c) If we choose 'i ,  j meromorphic in the parameters a, b, c in some domain

in ƒ3
C
, then the coefficients �ij also are meromorphic in the parameters a, b, c.

Proof. a) Indeed, DŒa; b; c� is an elliptic differential operator, therefore solutions
of the equation DF D 0 are analytic functions, see, e.g., [19],Theorem 9.5.1.

b) Consider a solution

2F
C

1 Œa; bI cI z�D h00 C h10.z � z0/C h01. Nz � Nz0/C h11.z � z0/. Nz � Nz0/C � � �

of the system of partial differential equations (3.22). These equations determine
recurrence relations for the Taylor coefficients hij of 2F

C
1 Œ: : : � at z0. It can be

easily checked that all the coefficients hij admit linear expressions in terms of
h00, h01, h10, h11. On the other hand, for given h00, h01, h10, h11, we can
find a local solution of the complex hypergeometric system (3.22) in the form
P

Cij'i .z/ j . Nz/.
c) By Lemma 3.6, the coefficients h00, h10, h01, h11 depend on a, b, c mero-

morphically. If 'i .z0/, '0
i .z0/,  j .z0/,  0

j .z0/ are meromorphic in the parameters,
then the coefficients Cij also are meromorphic. �
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3.4. Expressions for
2
F C

1
. Let us write expansions of 2F

C
1 Œ: : : I z� near the

singular points z D 0, 1, 1. Explicit formulas for fundamental systems of
solutions of the hypergeometric differential equation are well known, see Erdélyi,
et al., [9], 2.9 (the Kummer series). For definiteness, consider z0 D 0. If
c … Z, then for generic values of the parameters the hypergeometric equation
DŒa; b; c�f .z/ D 0 has two holomorphic (ramified) solutions on a punctured
neighborhood of 0,

'1.z/ D 2F1Œa; bI cI z�;
'2.z/ D z1�cF Œa C 1� c; b C 1� cI 2� cI z�:

The equation D0Œa0; b0; c0�f . Nz/ D 0 has two antiholomorphic solutions

 1.z/ D 2F1Œa
0; b0I c0I Nz�;

 2.z/ D Nz1�c0

F Œa0 C 1� c0; b0 C 1� c0I 2� c0I Nz�:

Therefore near z D 0 we have solutions of system (3.20)–(3.21) of the same
form (3.24) with new ', . We get a family of functions depending of 4 parameters
�ij , therefore for generic a, b, c this formula gives all multivalued solutions near
z D 0.

Solutions (3.24) that are single valued in a neighborhood of 0 have the form

A1'1.z/ 1. Nz/C A2'2.z/ 2. Nz/: (3.25)

Theorem 3.9. a) In the disk jzj < 1 we have the following expansion:

2F
C

1

�

aI b

c
I z

�

D A0 � 2F1

�

a; b

c
I z

�

2F1

�

a0; b0

c0 I Nz
�

C A1 � z1�cj1�c0

2F1

�

a C 1� c; b C 1 � c
2� c

I z
�

� 2F1

�

a0 C 1 � c0; b0 C 1 � c0

2 � c0 I Nz
�

;

(3.26)

where

A0 D 1; (3.27)

A1 D .�1/c�a�b
�C.c/�C.c � 1/

�C.a/�C.b/�C.c � a/�C.c � b/
: (3.28)
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b) In the disk jz � 1j < 1 the following expansion holds:

2F
C

1

�

aI b

c
I z

�

D B0 � 2F1

�

a; b

aC b C 1 � cI 1� z
�

2F1

�

a0; b0

a0 C b0 C 1� c0I 1� Nz
�

C B1 � .1 � z/c�a�bjc0�a0�b0

2F1

�

c � a; c � b

c C 1� a � bI 1� z

�

� 2F1

�

c0 � a0; c0 � b0

c0 C 1 � a0 � b0I 1� Nz
�

;

(3.29)

where

B0 D �C.c/�C.c � a � b/

�C.c � a/�C.c � b/
; (3.30)

B1 D �C.c/�C.a C b � c/

�C.a/�C.b/
: (3.31)

c) In the disk jzj > 1 the following expansion holds:

2F
C

1

�

aI b

c
I z

�

D C0 � .�z/�aj�a0

2F1

�

a; aC 1� c

aC 1� b I z�1

�

2F1

�

a0; a0 C 1 � c0

a0 C 1� b0 I Nz�1

�

C C1 � .�z/�bj�b0

2F1

�

b; b C 1 � c
b C 1� a I z�1

�

� 2F1

�

b0; b0 C 1 � c0

b0 C 1 � a0 I Nz�1

�

;

(3.32)

where

C0 WD �C.c/�C.b � a/

�C.c � a/�C.b/
; (3.33)

C1 WD �C.c/�C.a � b/

�C.c � b/�C.a/
: (3.34)

3.5. Proof of Theorem 3.9. Forms (3.26), (3.29), and (3.32) for the desired
expressions follow from the preceding considerations. Also we know that the
coefficients A0, A1, B0, B1, C0, C1 are meromorphic in a, b, c. Now we apply
asymptotic expansions from Theorem 2.3.
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1. Asymptotic of 2F
C
1 Œa; bI cI z� as z ! 1. Assume that the defining integral

for 2F
C
1 Œa; bI cI z� converges, and also

Œb�� Œa� > 0 (3.35)

Then,

1

�BC.b; c � b/

Z

C

tb�1.1� t /c�b�1.1 � zt/�a d NNt

D z�a

�BC.b; c � b/

Z

C

tb�1.1� t /c�b�1.z�1 � t /�a d NNt

� BC.b � a; c � b/

BC.b; c � b/
� .�z/�a �

�

1C
X

.i;i 0/¤.0;0/

pi i 0z�i j�i 0
�

C BC.b; 1 � a/

BC.b; c � b/
� z�b �

�

1C
X

.i;i 0/¤.0;0/

qi i 0z�i j�i 0
�

:

Precisely, denote z�1 by ", and denote the integrand in the last integral byH.�/.
Let '.t/ > 0,  .t/ > 0 be smooth functions such that '.t/C  .t/ D 1, '.t/ D 1

near 0, and  .t/ D 1 near 1. A straightforward differentiation with respect to the
parameter " shows that

Z

H.t I "/ .t/ d NNt

is smooth near " D 0. For
Z

C

H.t I z/'.t I "/ d NNt

we apply Theorem 2.13, due to the restriction (3.35) we can also apply (2.14).
Thus we get explicit coefficients C0, C1 in the expansion (3.32). To remove
restrictions for the parameters, we refer to the analytic continuation.

Finally, we transform BC.b; 1 � a/ with formula (2.3),

BC.b; 1 � a/ D �C.b/�C.1 � a/

�C.1 C b � a/
D .�1/b�

C.b/�C.a � b/

�C.a/
:

2. Asymptotic of 2F
C
1 Œa; bI cI z� as z ! 0. Substituting t D 1=s to the

definition (1.18) of 2F
C
1 , we get

2F
C

1 Œa; bI cI z� D .�1/c�a�b

�BC.b; c � b/

Z

C

s�cCa.z � s/�a.1 � s/c�b�1 d NNs



538 V. F. Molchanov and Yu. A. Neretin

� .�1/c�a�bBC.a � c C 1; 1 � a/

BC.b; c � b/
� z1�c �

�

1C
X

.i;i 0/¤.0;0/

pi i 0zi ji 0
�

C .�1/c�bBC.1 � c; c � b/

BC.b; c � b/
�
�

1C
X

.i;i 0/¤.0;0/

qi i 0zi ji 0
�

:

3. Asymptotic of 2F
C
1 Œa; bI cI z� as z ! 1. We substitute t D 1

1�s
to (1.18) and

get

2F
C

1 Œa; bI cI z�

D .�1/c�b

�BC.b; c � b/

Z

C

sc�b�1.1� s/a�c.1 � z � s/�a d NNs

� .�1/c�bBC.c � b; 1 � a/

BC.b; c � b/
� .1� z/c�b�a �

�

1C
X

.i;i 0/¤.0;0/

pi i 0.1 � z/i ji 0
�

C .�1/c�b�aBC.c � b � a; 1 C a � c/

BC.b; c � b/
�
�

1C
X

.j;j 0/¤.0;0/

qi i 0zj jj 0
�

:

Remark (Another way of a proof of Theorem 3.9). Applying the Kummer formu-
las, Erdélyi, et al., [9], Section 2.9, we can write the analytic continuation of (3.25)
to a neighborhood of this point. The resulting expression for 2F

C
1 must be non-

ramified at z D 1. This gives us the coefficients in (3.25) up to a common factor.
In fact this calculation is done below in the proof of Proposition 3.11. The scalar
factor can be evaluated using (3.9). It remains to apply the Kummer formulas ([9],
Section 2.9) for the analytic continuation again and to get an expansion at 1.

3.6. Additional symmetry

Proposition 3.10. Let a � b 2 Z. Then

2F
C

1

�

a j a0; b j b0

c j c0 I z
�

D 2F
C

1

�

a j b0; b j a0

c j c0 I z
�

: (3.36)

Proof. The expansions (3.26)–(3.28) at 0 for both functions are identical. We only
must verify the equality of the denominators in (3.28):

�C.a j a0/�C.b j b0/�C.c � a j c0 � a0/�C.c � b j c0 � b0/

D �C.a j b0/�C.b j a0/�C.c � a j c0 � b0/�C.c � b j c0 � a0/:
(3.37)

The both sides are equal to

.�1/c0�c�4�.a/�.a0/�.b/�.b0/�.c � a/�.c � a0/�.c � b/�.c � b0/

sin�a0 sin�b0 sin�.c0 � a0/ sin�.c0 � b0/
: �
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3.7. Degenerations and logarithmic expressions

a) Residues and zeros. Notice that poles and zeros of 2F
C
1 Œa; bI cI z� as func-

tion of a, b, c depend on a choice of a normalizing factor in the front of the inte-
gral (3.1).

It is easy to see that residues at poles also are solutions of the complex
hypergeometric system (3.22). The expressions for the residues can be obtained
from our expansions.

For obtaining the residues at ¹a j a0º 2 N � N we can use the expansion of

2F
C
1 at z D 0, see (3.26)–(3.28). We get

z1�cj1�c0

2F1

�

a C 1� c; b C 1 � c
2� c I z

�

2F1

�

a0 C 1 � c0; b0 C 1 � c0

2 � c0 I Nz
�

with an obvious �C-factor. Applying the Pfaff transformations of 2F1, we observe
that these expressions are elementary functions. Formulas (3.26)–(3.28) allow to
calculate residues at the poles of all the types (3.4).

Next, consider another normalization18 of the functions 2F
C
1 :

2
zF C

1 Œa; bI cI z� WD 1

�C.c/2F
C

1 Œa; bI cI z�: (3.38)

This operation cancels the factor �C.c/ in expansion of 2F
C
1 Œz� at 1, see equa-

tions (3.32)–(3.34). So we get a finite expression at the poles (3.5) and non-zero
function at the zeros (3.6).

Thus, at all exceptional planes (3.4)–(3.6) we get explicit nonzero expressions.
Such expressions also depend on normalization of 2F

C
1 Œ: : : ; z�, but for a point

.a0; b0; c0/ being in a general position on an exceptional plane such nonzero
expression is canonically defined up to a constant factor.

b) Further degenerations. Classical hypergeometric differential equation has
a sophisticated list of degenerations, see [9], Sect. 2.2. In our case new difficulties
arise if at least two of the parameters a, b, c � a, c � b are contained in Z � Z.
We stop here further analysis and only notice that for exceptional values of the

parameters a solution of the complex hypergeometric system (3.22) can be non-

unique.
For instance, if a 2 Z� � Z�, c � b 2 N � N, then both summands in (3.25)

are single-valued (since all hypergeometric series are terminating).

18 In fact, in the main part of our work we use this normalization of the kernel, see (1.19).
Due to this we do not lose the case of L2 on the complex quadric discussed in Subsect. 1.3.
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c) Logarithmic expressions. For definiteness we discuss the case

c 2 N � N

(which is interesting for our further purposes). Consider the function 2
zF C
1 defined

by (3.38). It has a removable singularity at our c. Recall that for c D n 2 N

the usual hypergeometric differential equationDŒa; b; n�f D 0 has two solutions.
The first is 2F1Œa; bI cI z� and the second has the form

‰Œa; bI nI z� D
1

X

j D�nC1

pj z
j C ln z � 2F1Œa; bI nI z�; (3.39)

where pj are explicit coefficients, p�nC1 ¤ 0, and this form does not depend on
further degenerations, see [1], Section 2.3. Passing around 0 we get

‰Œa; bI nI ei'z�j'D2� � ‰Œa; bI nI z� D 2F1Œa; bI nI z�:

Thus the system
DŒa; bI n�F D 0; DŒa0; b0I n0�F D 0

has two solutions that are single-valued near zero, the first is obvious

2F1Œa; b; nI z�2F1Œa
0; b0I n0I Nz�;

and the second is

2F1Œa; bI nI z�‰Œa0; b0I n0I Nz�C‰Œa; bI nI z�2F1Œa
0; b0I n0I Nz�: (3.40)

Our function 2
zF C
1 Œa; bI nI z� is certain linear combination of these solutions.

d) On uniqueness of a solution of the hypergeometric system

Proposition 3.11. Let

a, b, c, c � a � b, c � a, c � b … Z;

a0, b0, c0, c0 � a0 � b0, c0 � a0, c0 � b0 … Z:

Let the system DŒa; b; c�F D 0, D0Œa0; b0; c0�F D 0 have a non-ramified non-zero

solution. Then c � c0 2 Z and

a � a0, b � b0 2 Z or a � b0, b � a0 2 Z (3.41)

Such solution is unique up to a scalar factor and therefore is

2F
C

1 Œa j a0; b j b0I c j c0I z� or 2F
C

1 Œa j b0; b j a0I c j c0I z�:
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Proof. First, we examine the behavior of a solution near z D 0. Let

'.z/ WD 2F1

"

a; b

c
I z

#

;  .z/ WD 2F1

"

a C 1� c; b C 1� c

2� c I z
#

;

i.e., ', z1�c are the Kummer solutions of the hypergeometric equation

DŒa; b; c�f D 0

at 0, see [9], (2.9.1), (2.9.17). Denote by K'. Nz/, K . Nz/ the similar functions obtained
be the change a 7! a0, b 7! b0, c 7! c0, z 7! Nz. A solution of our system near 0
has the form

G.z/ D �'.z/ K'. Nz/C � Nz1� Nc0

'.z/ K . Nz/C �z1�c .z/ K'. Nz/C �z1�cj1� Nc0

 .z/ K . Nz/:

Passing m times around 0 we come to

G.z/ D �'.z/ K'. Nz/C �e2�mc0i Nz1� Nc0

'.z/ K . Nz/
C �e�2�mciz1�c .z/ K'. Nz/C �e2�m.c0�c/iz1�cj1� Nc0

 .z/ K . Nz/:

Since c, c0 … Z, we have e2�mc0i , e�2�mci ¤ 1, on the other hand they are
¤ e2�m.c0�c/i . If G.z/ is single-valued, then � D � D 0. Also, we need � D 0 or
c � c0 2 Z.

To examine the behavior of G near z D 1 we apply a formula for analytic
continuation, see [9], Subsect. 2.10. Near z D 1 we have

F

"

a; b

c
I z

#

D A1.a; b; c/2F1

"

a; b

aC b � c C 1
I 1� z

#

C A2.a; b; c/.1� z/c�a�b
2F1

"

c � a; c � b
c � a � b C 1

I 1� z
#

;

(3.42)

where

A1.a; b; c/ WD �.c/�.c � a � b/
�.c � a/�.c � b/ ; A2.a; b; c/ WD �.c/�.aC b � c/

�.a/�.b/
: (3.43)

Since c � a� b, c0 � a0 � b0 … Z, the expression '.z/ K'. Nz/ is not single valued.
Thus � ¤ 0, c � c0 2 Z, and

G.z/ D �'.z/ K'. Nz/C �z1�cj1� Nc0

 .z/ K . Nz/:

Applying for ', K',  , K formula (3.42) and the identity

2F1.˛; ˇI  I z/ D .1� z/�˛�ˇ
2F1. � ˛;  � ˇI  I z/;
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we come to

G.z/ D �A.a; b; c/A.a0; b0; c0/2F1

�

a; b

c
I 1� z

�

2F1

�

a0; b0

c0 I 1� Nz
�

C ¹�A1.a; b; c/A2.a
0; b0; c0/

C �A1.a C 1� c; b C 1� c; 2� c/
� A2.a

0 C 1� c0; b0 C 1 � c0; 2� c0/º

� .1 � Nz/c0�a0�b0

2F1

�

a; b

c
I 1� z

�

2F1

�

c0 � a0; c0 � b0

c0 � a0 � b0 C 1
I 1� Nz

�

C ¹�A2.a; b; c/A1.a
0; b0; c0/

C �A2.a C 1� c; b C 1� c; 2� c/
� A1.a

0 C 1� c0; b0 C 1 � c0; 2� c0/º

� .1 � z/c�a�b
2F1

�

c � a; c � b
c � a � b C 1

I 1� z
�

2F1

�

a0; b0

c0 I 1� Nz
�

C A2.aC 1 � c; b C 1 � c; 2� c/
� A2.a

0 C 1� c0; b0 C 1 � c0; 2� c0/

� .1 � z/c�a�bjc0�a0�b0

2F1

�

c � a; c � b
c � a � b C 1

I 1� z
�

� 2F1

�

c0 � a0; c0 � b0

c0 � a0 � b0 C 1
I 1� Nz

�

:

The coefficients A1.�/, A2.�/ have no zeros and no poles under our restrictions.
The expression is single-valued if and if two curly brackets are zero and

.c � a � b/ � .c0 � a0 � b0/ 2 Z:

This implies
.a C b/ � .a0 C b0/ 2 Z:

Two curly brackets give a system of linear equations for � , � . It has a nonzero
solution if and only if its determinant� is zero. Straightforward calculations give

� D ��4�.c/�.c0/�.2 � c/
� �.2� c0/�.c � a � b/�.c0 � a0 � b0/�.a C b � c/�.a0 C b0 � c0/ �„;

where

„ D sin�.c � a/ sin�.c � b/ sin�a0 sin�b0

� sin�.c0 � a0/ sin�.c0 � b0/ sin�a sin�b:
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Clearly, the set „.a; b; c; a0; b0; c0/ D 0 is invariant with respect to the shifts
a 7! a C 1, b 7! b C 1, c 7! c C 1. Therefore to examine the set of zeros
we can assume c0 D c, b0 D aC b � a0. Under these conditions„ can be reduced
to the following form:

„.a; b; c; a0; b0; c0/ D sin�.a � a0/ sin�.a0 � b/ sin�c sin�.c � a � b/

(this non-obvious identity can be verified by decompositions of both sides into
sums if exponentials). This implies (3.41).

If � D 0 then � , � are defined up to a common scalar factor, this proves the
uniqueness (and gives an expression for �=�). �

e) Non-interesting solutions. However, we have seen that the complex hyperge-
ometric system for some values of the parameters has two single-valued solutions.
Also, there are solutions that do not seem reasonable. For instance, we have

DŒ0; b1; c1� � 1 D 0; D0Œ0; b2; c2� � 1 D 0

for arbitrary b1, c1, b2, c2 2 C.

3.8. Differential-difference equations for
2
F C

1
. We can regard 2F1Œa; bI cI z� as

a family of functions of a complex variable z depending on 3 parameters a, b, c.
But we also can regard 2F1Œa; bI cI z� as one function of the four complex variables
a, b, c, z. Then 2F1Œa; bI cI z� satisfy a non-obvious system of linear differential-
difference equations, some examples of such equations are in Erdélyi, et al., [9],
(2.8.20-45). Below we show that such equations can be automatically transformed
to differential-difference equations for the function 2F

C
1 Œa j a0; b j b0I c j c0I z� of 7

complex variables.
Consider a space of functions in the variables a, b, c, z. Define operators

Taf .a; b; c; z/ D f .a C 1; b; c; z/;

Tbf .a; b; c; z/ D f .a; b C 1; c; z/;

Tcf .a; b; c; z/ D f .a; b; c C 1; z/:

Consider finite sums of the form

L D
X

j >0

X

k;l;m2Z

Uj;k;l;m.a; b; c; z/T
k
a T

l
bT

m
c

@j

@zj
; (3.44)

where Uj;k;l;m.a; b; c; z/ are polynomial expressions in z with coefficients ratio-
nally depending on a, b, c.



544 V. F. Molchanov and Yu. A. Neretin

Assume that
L2F1Œa; bI cI z� D 0:

We can regard an operator (3.44) as an operator on functions

f .a j a0; b j b0; c j c0; z/

on ƒ3 � PC. We also define operators

Ta0f .a j a0; b j b0; c j c0; z/ D f .a j a0 C 1; b j b0; c j c0; z/;

Tb0f .a j a0; b j b0; c j c0; z/ D f .a j a0; b j b0 C 1; c j c0; z/;

Tc0f .a j a0; b j b0; c j c0; z/ D f .a j a0; b j b0; c j c0 C 1; z/:

For such an operator L we define the operator L
0 by

L
0 D

X

j >0

X

k;l;m2Z

Uj;k;l;m.a
0; b0; c0; Nz/T k

a0T
l
b0T

m
c0

@j

@ Nzj
:

From the definition it follows that

LL
0 D L

0
L:

Proposition 3.12. Let the function Q.a; b; c; z/ D 2F1Œa; bI cI z� satisfy an equa-

tion LQ D 0. Then the function

R.a j a0; b j b0; c j c0; z/ WD 2F
C

1 Œa j a0; b j b0; c j c0; z�

satisfies the system of equations

LR.a j a0; b j b0; c j c0; z/ D 0; L
0R.a j a0; b j b0; c j c0; z/ D 0: (3.45)

Lemma 3.13. LetQ D 2F1Œa; bI cI z� satisfy an equation LQ D 0. Then

e�i.c�a�b/�.c/�.c � 1/
�.a/�.b/�.c � a/�.c � b/

z1�c
2F1ŒaC 1 � c; b C 1 � cI 2� c; z� (3.46)

satisfies the same equation.

Remark. The same statement holds for the functions

u1 D �.c � a/�.c � a � b/
�.c/�.c � b/ 2F1

"

a; b

a C b � c C 1
I 1� z

#

; (3.47)

u2 D �.c/�.a C b � c/
�.a/�.b/

.1� z/c�a�b
2F1

"

c � a; c � b
c � a � b C 1

I 1� z
#

; (3.48)
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u3 D �.c/�.b � a/

�.b/�.c � b/z
�a

2F1

"

a; 1� c C a

1� b C a
I z�1

#

;

and also for other summands in the right-hand sides of formulas Erdélyi, et al. [9],
(2.10.1)–(2.10.4).

Proof of Lemma 3.13. First, let a, b, c be in a general position. By Erdélyi, et
al. [9], (2.10.1), and (2.10.5),

F.a; bI cI z/ D u1 C u2; (3.49)

where u1, u2 are given by (3.47)–(3.48). The function u2 is ramified at z D 1.
Passing around this point we get a function

zF WD u1 C e2�i.c�a�b/u2:

By analytic continuation, L zF D 0. The factor e2�i.c�a�b/ does not change under
the shifts Ta, Tb, Tc. Therefore the summands u1, u2 satisfy the same equation,
Lu1 D 0, Lu2 D 0. We apply the same transformation (3.49) to the summand u1

and repeat the same reasoning. We observe that

��.c/�.c � 1/
�.a/�.b/�.c � a/�.c � b/ sin�.aC b � c/

z1�c
2F1ŒaC1�c; bC1�cI 2�c; z�

satisfies the same equation. This expression differs from (3.49) by the factor
ei�.aCb�c/ sin�.aC b � c/, which is invariant under the shifts Ta, Tb, Tc.

Passing to a limit we omit restrictions to a, b, c. �

Proof of Proposition 3.12. We use the expression (3.26) for 2F
C
1 Œa; bI cI z�. Ob-

viously, the first summand satisfies the system (3.45). By Lemma 3.13, the ex-
pression

e�i.c�a�b/�.c/�.c � 1/
�.a/�.b/�.c � a/�.c � b/z

1�c
2F1

"

aC 1 � c; b C 1� c
2 � c I z

#

� e�i.c0�a0�b0/�.c0/�.c0 � 1/
�.a0/�.b0/�.c0 � a0/�.c0 � b0/

Nz1�c0

2F1

"

a0 C 1 � c0; b0 C 10 � c

2 � c0 I Nz
#

:

satisfies the system (3.45). It differs from the second summand in (3.26) by a
factor

i0 sin�a0 sin�b0 sin�.c0 � a0/ sin�.c0 � b0/

sin�c0 sin�.c0 � 1/
:

This expression is invariant with respect to shifts Ta, Ta0 , . . . . Therefore the second
summand in (3.26) also satisfies the system. �
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3.9. One difference operator. By [34], formula (2.3), the Gauss hypergeomet-
ric function 2F1Œp; qI r I z� satisfies the following difference equation

� z � 2F1.p; qI r I z/

D q.r � p/
.q � p/.1C q � p/

2F1.p � 1; q C 1I r I z/

�
h q.r � p/
.q � p/.1C q � p/

C p.r � q/

.p � q/.1C p � q/
i

2F1.p; qI r I z/

C p.r � q/
.p � q/.1C p � q/2F1.p C 1; q � 1I r I z/:

(3.50)

Define the difference operators L, L0 acting on functions of the variables a, b,
c, z by

L D b.c � a/
.b � a/.1C b � a/.T

�1
a Tb � 1/� a.c � b/

.a � b/.1C a � b/
.TaT

�1
b � 1/; (3.51)

L0 D b0.c0 � a0/

.b0 � a0/.1C b0 � a0/
.T �1

a0 Tb0 � 1/ � a0.c0 � b0/

.a0 � b0/.1C a0 � b0/
.Ta0T �1

b0 � 1/:

(3.52)

Corollary 3.14. The complex hypergeometric function 2F
C
1 Œa; bI cI z� satisfies the

following system of difference equations

L2F
C

1 Œa; bI cI z� D z2F
C

1 Œa; bI cI z�; (3.53)

L0
2F

C

1 Œa; bI cI z� D Nz2F
C

1 Œa; bI cI z�: (3.54)

3.10. Some properties of the kernel K. We have the following corollaries from
our previous considerations.

1) By (3.10) Ka;b is even,

Ka;b.zI �k;��/ D Ka;b.zI k; �/: (3.55)

2) By (3.8),
Ka;b.zI k;�N�/ D Ka;b.zI k; �/: (3.56)

In particular, Ka;b.zI k; �/ is real on ƒ.

3) By Proposition 3.7, Ka;b.zI k; �/ satisfies the following differential equa-

tions:

DKa;b.zI k; �/ D 1

4
.k C �/2Ka;b.zI k; �/; (3.57)

xDKa;b.zI k; �/ D 1

4
.k � �/2Ka;b.zI k; �/: (3.58)
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4) By Corollary 3.14, Ka;b.zI k; �/ satisfies the following difference equations:

LKa;b.zI k; �/ D zKa;b.zI k; �/; (3.59)

xLKa;b.zI k; �/ D NzKa;b.zI k; �/: (3.60)

4. Nonexistence of commuting self-adjoint extensions

Here we prove that for .a; b/ … … the operators 1
2
.D C xD/, 1

2i
.D � xD/ defined

on D. PC/ do not admit commuting self-adjoint extensions. We analyze the set of
possible generalized eigenfunctions and show that this set is too small.

4.1. Generalized eigenfunctions. Denote by D0. PC/ the space of distributions
on PC. We have a nuclear rigging (see [2], Section 14.2)

D. PC/ � L2.C; �a;b/ � D0. PC/;

and apply the usual formalism of generalized eigenfunctions, see [2], Chapter 15.
Recall that we have formally symmetric and formally commuting operators

DC WD 1

2
.D C xD/; D� WD 1

2i
.D � xD/

in L2.C; �/ (defined on the domain D. PC/) and the spectral problem

Dˆ D �ˆ; xDˆ D N�ˆ: (4.1)

Suppose that the operatorsDC, D� admit commuting self-adjoint extensions.

Then the operator U of spectral decomposition can be written in terms of gener-
alized eigenfunctions. Precisely, there exist a space R equipped with a measure �
and an injective measurable map r 7! 'r from R to D0. PC/ such that

DC'r D a.r/'r ; D�'r D b.r/'r ;

where a.r/, b.r/ are real-valued functions, and the pairing

Uf .r/ D ¹f; 'rº

of f 2 D. PC/ and 'r determines a unitary operator L2.C; �/ ! L2.R; �/, see
textbook [2], Subsection 15.2.3.19

19 Basically, this is a result of Kostyuchenko and Mityagin [23]–[24] with weaker conditions
for a rigging.
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Since the operator D is elliptic, generalized eigenfunctions are smooth on PC,
see e.g., [2], Theorem 16.2.1. Therefore in our case generalized eigenfunctions 'r

are usual smooth solutions of the system of differential equations.
We also can identify the measure space R with its image, and so we can think

that the measure � is sitting on the space� of smooth solutions of the systems (4.1),
where � ranges in C. We intend to show that for any measure � on � the operator

J WL2.�; �/ �! L2.C; �a;b/

defined by

Uh.z/ D
Z

�

h.r/'r.z/ d�.r/

is not unitary. Precisely:

Lemma 4.1. Let .a; b/ … …. Let � be a measure on �, and let the corresponding

operator U be bounded. Then � is an atomic measure supported by a finite set.

The idea of a proof is simple, it is explained in the next subsection, a formal
proof is completed in Subsect. 4.3.

Lemma 4.1 implies that for .a; b/ … … the operators DC, D� have no com-

muting self-adjoint extensions.

4.2. Almost proof of Lemma 4.1. For � being in a general position, the sys-
tem (4.1) has a unique solution, and it has the form 2F

C
1 Œ�I z�. Denote by�hyp the

subset of � consisting of the functions 2F
C
1 Œ�I z�. We wish to prove the following

statement:

Lemma 4.2. Let .a; b/ … … and aC b, a� b, a, b … Z. Let � be a measure on�,

and let the corresponding operator U be bounded. Then � is atomic on �hyp.

Proof. Set � D �2. Then a hypergeometric solution of the system (4.1) has one
of the two forms

2F
C

1

"

aC � j a � N�; a � � j a C N�
aC b j aC b

; z

#

;

2F
C

1

"

aC � j a C N�; a � � j a � N�
aC b j aC b

; z

#

:

In the first case we have .a C �/ � .a � N�/ D 2Re� 2 Z, hence � D 1
2
.k C is/,

where k 2 Z, s 2 R. We come to the functions Ka;b.zI k; is/.
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In the second case we have � � N� 2 Z, i.e., � D � 2 R. We come to the
functions

K.zI 0; �/ D 2F
C

1

"

a C � j aC �; a � � j a � �
aC b j aC b

; z

#

: (4.2)

Next, we will show that

the measure � is zero on the set of all � D 1

2
.k C is/ with s ¤ 0. (4.3)

Our kernel has the following asymptotics at z D 0 and z D 1:

K.zI k; is/ D .1CO.z//C B.k; is/jzj2�2a�2b.1CO.z// as z ! 0; (4.4)

K.zI k; is/ D C.k; is/.1CO.1� z//
CD.k; is/j1� zj2b�2a.1CO.1 � z// as z ! 1;

(4.5)

where the coefficients B , C , D are continuous non-vanishing functions on ƒ and
all O.�/ are uniform on compact subsets of ƒ (see formulas (3.26)–(3.31)).

For definiteness, assume that aCb > 2. Consider a point .k0; is0/ 2 ƒ, s0 ¤ 0

and a neighborhood N of .k0; is0/. Assume that �.N/ > 0. Denote by IN the
indicator function of the set N. The function UIN has the following asymptotics
at z D 0:

UIN.z/ D ˛.1CO.z//C ˇjzj2�2a�2b.1CO.z// as z ! 0:

Due to uniformity O.�/, for a sufficiently small neighborhood N we have ˛ ¤ 0,
ˇ ¤ 0. Since a C b > 2, the actual asymptotics is

UIN.z/ D ˇjzj2�2a�2b.1CO.z//:

Therefore
UIN … L2.C; jzj2aC2b�2j1 � zj2a�2b d NNz/:

This contradicts to boundedness of U . Thus any point has a neighborhood of zero
measure, and this implies claim (4.3) in the case a C b > 1.

In domains a C b < 0, a � b < �1, a � b > 1 we get the same effect.

Next, examine the complementary seriesK.zI 0; �/of eigenfunctions, see (4.2).
We have the same asymptotics (4.4)–(4.5), we only must write the coefficients of
the form A.0; �/, B.0; �/, C.0; �/, D.0; �/ in (4.4)–(4.5). These functions have
zeros and poles on the axis � 2 R. The same argument as above shows that if �0

is not a zero and not a pole of all our coefficients, then the measure � is zero on
a sufficiently small neighborhood of �0. The set of zeros and poles is countable.
This completes the proof of the lemma. �
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4.3. Proof of non-self-adjointness. However, our system of differential equa-
tions (4.1) has solutions that have not the form 2F

C
1 , and enumeration of all pos-

sible degenerations is tedious. So we continue the proof of Lemma 4.1 without
constrains of Lemma 4.2. Due to the homographic transformations, without loss
of generality we can set

aC b > 2: (4.6)

First, we examine asymptotics in a neighborhood of z D 0.

Asymptotics at z D 0. Non-logarithmic case. If a C b ¤ 2, 3, . . . , then the
equation Dˆ D �2ˆ has two holomorphic solutions,

‰1.z/ WD 2F1

"

aC �; a � �
aC b

I z
#

;

‰2.z/ WD z1�a�b
2F1

"

1� b C �; 1 � b � �
2� a � b I z

#

:

The equation xDˆ D N�2ˆ has two antiholomorphic solutions

z‰1. Nz/ WD 2F1

"

aC N�; a � N�
aC b

I Nz
#

;

z‰2. Nz/ WD Nz1�a�b
2F1

"

1� b C N�; 1 � b � N�
2� a � b I Nz

#

:

Therefore a single-valued solution of the system must have the form

A‰1.z/z‰1. Nz/C B‰2.z/z‰2. Nz/:

The first term has L2.C; �a;b/-asymptotics at z D 0, by (4.6) the second term
has non-L2-asymptotics. Thus the spectral measure � is supported by the set of
functions of the form ‰1.z/z‰1. Nz/.

Asymptotics at z D 0. Logarithmic case. Now let aC b D n D 2, 3, . . . . Then
the equation Dˆ D �2ˆ has two holomorphic solutions,

‰1.z/ D 2F1ŒaC �; a � �I n; z�; ‰2.z/;

where ‰2.z/ is a logarithmic solution, which has the form (3.39). The equation
Dˆ D N�2ˆ has two antiholomorphic solutions,

z‰1. Nz/ D 2F1ŒaC N�; a � N�I n; Nz�; z‰2. Nz/:
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A single valued solution must have the form

A‰1.z/z‰1. Nz/C B.‰1.z/z‰2. Nz/C‰2.z/z‰1. Nz//:

The asymptotics of the second summand is .z�nC1C Nz�nC1/CO.z�nC2/ if n > 3.
If n D 2 we have .z�1 C Nz�1/CO.z�"/. We get a non-L2 asymptotics.

Thus, for a C b > 2 the spectral measure is supported by set of functions of

the form ‰1.z/z‰1. Nz/.

Single-valuedness near z D 1. Non-logarithmic case. Assume that a�b …Z.
We apply formulas Erdélyi, et al., [9], (2.10.1), (2.10.5) and write explicit expan-
sions of ‰1, x‰1 at z D 1.

‰1.z/ D A1G1.1 � z/C A2.1� z/b�aG2.1 � z/;
z‰1. Nz/ D zA1

zG1.1 � Nz/C zA2.1� Nz/b�a zG2.1 � Nz/;

where G1, G2 are certain series 2F1 and the coefficients A1, A2 are products
of gamma functions, see the explicit formulas (3.42)–(3.43) above. Clearly, the
product ‰1.z/z‰1. Nz/ can be single-valued only if A2 D zA2 D 0, or A1 D zA1 D 0.
Looking to the explicit expressions for the gamma-coefficients, we observe that
the first case happens if both hypergeometric series G1.z/, G2.z/ are terminating
(i.e., a� � D 0, �1, . . . or aC � D 0, �1, . . . , in particular, � is real). The second
variant holds if and only if both series G2.1� z/, zG2.1� Nz/ are terminating (i.e.,
b � � D 0, �1, . . . or b C � D 0, �1, . . . ).

Single-valuedness near z D 1. Logarithmic case. Now let b � a 2 Z. The
transposition a $ b corresponds to a homographic transformation of differential
operators, it preserves the condition a C b > 2. Therefore we can assume
m WD b � a > 0. Represent ‰1.z/, z‰1. Nz/ as combinations of basic solutions
of the hypergeometric equations at the point z D 1,

‰1.z/ D A2F1ŒaC �; a � �I b � aC 1I z�C B‚.1� z/;

z‰1. Nz/ D zA2F1ŒaC N�; a � N�I b � aC 1I Nz�C zB z‚.1� Nz/;

where ‚.1 � z/ is a logarithmic series of the type (3.39), see Erdélyi, et al., [9],
(2.10.12). A straightforward calculation shows that the product ‰1.z/z‰1. Nz/ can
be single valued near z D 1 only if B D zB D 0. Therefore ‰1.z/ is single
valued near z D 1, and therefore it is a single valued solution of a hypergeometric
equation on the whole plane PC. Hence (see Erdélyi, et al., [9], Subsection 2.2.1)
‰1.z/ is a polynomial.
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Behavior at infinity. Thus the spectral measure � is supported by generalized
eigenfunctions of the following types

p1.z/p2. Nz/; .1� z/b�ajb�aq1.z/q2. Nz/;

where pj , qj are polynomials. However, our density �a;b.z/ has a behavior
� jzj4a�2 at infinity and therefore the space L2 can contain only a finite number
orthogonal functions of such a type. �

5. Symmetry of differential operators

Here we show that J �
a;b

sendsDeven. Pƒ/ to Ra;b and verify that D and xD are adjoint
one to another on Ra;b .

In this section we denote by Dr.u/ � C (resp. xDr.u/) the open (resp. closed)
disc in C of radius r with center at u. By Sr.u/ we denote the circle jz � uj D r .

5.1. The map J �

a;b
on the space Deven. Pƒ/. Introduce a natural topology in the

space Ra;b. PC/ defined in Subsect. 1.1. Consider the space R.0/ of functions in
xD1=3.0/ having the form ˛.z/C ˇ.z/jzj2aC2b�2 , where ˛.z/, ˇ.z/ are smooth in
xD1=3.0/ up to the boundary. Let C1

flat.
xD1=3.0// � C1. xD1=3.0// be the subspace

consisting of all functions that are flat at 0. The space R.0/ is a quotient space

R.0/ ' ŒC1. xD1=3.0//˚ jzj2aC2b�2C1. xD1=3.0//�=C
1
flat.

xD1=3.0//:

We equip R.0/ with the topology of a quotient space. In the same way we define
a topology in the space R.1/ of smooth functions in xD1=3.1/ having the form
.z/C ı.z/j1� zj2a�2b .

We define a topology in Ra;b as a weakest topology satisfying the following
conditions.

a) The restriction operators

Ra;b �! R.0/; Ra;b �! R.1/; Ra;b �! C1. xD2.0/ n .D1=3.0/ \D1=3.1///

are continuous.

b) For all ˛, ˇ, N the following seminorms are continuous

p˛;ˇ;N .f / D sup
CnD2.0/

jzj2C˛Cˇ .ln jzj/N
ˇ

ˇ

ˇ

ˇ

@˛Cˇf .z/

@z˛@ Nzˇ

ˇ

ˇ

ˇ

ˇ

: (5.1)

Recall that Pƒ WD ƒ n ¹.0; 0/º.
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Lemma 5.1. For jzj > 2, .k; s/ 2 Pƒ we have the following expansion

K.zI k; is/ D z�a� kCis
2 j �a� �kCis

2 B.k; sI z�1/

C z�aC kCis
2

j �aC �kCis
2 B.�k;�sI z�1/;

(5.2)

where the expression B.k; sIu/ for fixed k is smooth s except the point .k; s/ D
.0; 0/.

Proof. We refer to expansion (3.32)–(3.34). Notice that for k D 0, s D 0 we have
a singularity in this expansion (but the kernel itself is analytic at this point). �

Proposition 5.2. a) Let ˆ 2 Deven. Pƒ/. Then J �
a;b
ˆ 2 Ra;b.

b) Moreover, the operator J �
a;b

is a continuous operator from Deven. Pƒ/ to Ra;b.

Proof. Forms of asymptotics of J �
a;b
ˆ at 0 and 1 follow from (3.26) and (3.29).

Let us examine the asymptotics at z ! 1. Without loss of generality we can
assume that jkj is fixed. We write

J �
a;bˆ.z/ D z�a� k

2

ˇ

ˇ �aC k
2

Z

R

z� is
2

ˇ

ˇ � is
2 B.k; sI z�1/ˆ.k; s/ ds C

²

similar
term

³

:

Differentiating the first summand by @˛Cˇ

@z˛@ Nzˇ and keeping in mind (3.32) and
Lemma 3.6, we get an expression of the form

z�a� k
2 �˛j�aC k

2 �ˇ
X

06p6˛;06q6ˇ

Z

R

z� is
2 j� is

2 U ˛;ˇ
p;q .a; b; k; s/

� �C.�k � is j k C is/
�

aC k C is

2

�

p

�

aC �k C is

2

�

p

�
�

aC k � is
2

�

q

�

a C �k � is
2

�

q

� 1

�C

�

b � k C is

2

ˇ

ˇ

ˇ b � �k C is

2

�

�C

1
�

aC k C is

2

ˇ

ˇ

ˇ a C �k C is

2

�

.aC b/p.a C b/q

� 2F1

"

aC kCis
2

C p; aC �kCis
2

C p

a C b C p
I z�1

#

� 2F1

"

aC �k�is
2

C q; aC k�is
2

C q

a C b C q
I Nz�1

#

ˆ.k; s/ ds;
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where U ˛;ˇ
p;q .a; b; k; s/ are polynomials. It is easy to verify that the integrand is a

smooth compactly supported function on Pƒ. Next, we write

jzj�is D i

ln jzj
@

@s
jzj�is ;

integrate our expansion by parts N times and observe that p˛;ˇ;N .J
�
a;b
ˆ/ < 1.

The continuity follows from the same considerations. �

As a corollary, we obtain the following lemma.

Lemma 5.3. The operator J �
a;b

is continuous as an operator from Deven. Pƒ/ to the

space L2.C; �a;b/.

Proof. Indeed, for .a; b/ 2 … the identical embedding f 7! f of Ra;b to
L2.C; �a;b/ is continuous. �

Lemma 5.4. If f 2 Ra;b, then Df 2 Ra;b .

Proof. Let us check the behavior ofDf at 0, For definiteness assume that aCb¤1.
Then near zero we have

Df D D.˛.z/C ˇ.z/jzj1�a�b/

D
°�

z.1� z/ d
2

dz2
C .a C b/

d

dz

�

z1�a�b
±

� Nz1�a�bˇ.z/C ¹the restº:

Obviously, the rest has the form Q̨ .z/ C Q̌.z/jzj2�a�b with smooth Q̨ , Q̌. The
expression in the curly brackets20 is �.a C b/.aC b � 1/z1�a�b . �

5.2. Symmetry of differential operators

Proposition 5.5. For any f , g 2 Ra;b. PC/

hDf; gi D hf; xDgi:

Proof. Let f , g 2 Ra;b. We wish to show that

Z

PC

.Df .z/ � g.z/ � f .z/ � Dg.z//�a;b d NNz D 0:

20 Cf. [11], Section I.2.
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By Lemma 5.3, Df , Dg 2 L2.C; �a;b/. Therefore our improper integral abso-
lutely converges, we write it as

lim
"!0

Z

D1=".0/n.D".0/[D".1//

.�/dz ^ d Nz
2i

:

Next, we integrate two times by parts in z (with the Green formula) and after a
simple calculation come to

lim
"!0

² Z

S1=".0/

V.z/d Nz �
Z

S".0/

V.z/d Nz �
Z

S".1/

V.z/d Nz
³

; (5.3)

where

V.z/ D
�@f

@z
� g.z/ � f .z/ � @g.z/

@z

�

z.1� z/�a;b.z/:

We claim that all summands in (5.3) tend to 0. For the first summand this is clear.
For the second summand we represent f , Ng as

f .z/ D ˛.z/C ˇ.z/z1�a�bj1�a�b ;

Ng.z/ D .z/C ı.z/z1�a�bj1�a�b :

Then V.z/ transforms to an expression of the following type:

.A.z/C B.z/z�a�bj1�a�b C C.z/z2�2a�2b mod 2�2a�2b
�

� z.1 � z/ � zaCb�1jaCb�1.1� z/a�bja�b ;

where A.z/, B.z/, C.z/ are smooth near 0. We emphasize that the term with
z1�2a�2bj2�2a�2b in the bracket appears with the coefficient

.2� 2a � 2b/.ˇ.z/ı.z/� ˇ.z/ı.z// D 0:

Thus we get summands with the following behavior at 0:

� A.0/zaCbjaCb�1; � B.0/z0; � C.0/z2�a�bj1�a�b:

Since 0 < a C b < 2 all powers are > �1 and therefore21
R

jzjD"
.�/ d Nz tends

to 0. �

21 See a discussion of a parallel situation for ordinary differential operators in [36], Section
1. However, in the one-dimensional case we must impose boundary conditions in such points.
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6. The operator J �

a;b
is an isometry

Here we prove half of Theorem 1.3.

6.1. The statement. First, denote byƒC the subset ofƒ consisting of .kCis/=2
such that k > 0 or k D 0 and s > 0. We have an obvious identification
Deven. Pƒ/ ' D.ƒC/.

Lemma 6.1. Let u.�/, v.�/ be smooth compactly supported function onƒC. Then

hJ �
a;bu; J

�
a;bviL2. PC;�a;b/ D 2hu; viL2.ƒC;~a;b/:

Our proof is based on heuristic arguments outlined in Berezin, Shubin [3],
Section 2.6, for ordinary differential operators. However, this way is tiresome.

6.2. Preliminary remarks. Recall that

J �
a;bu.z/ D 2

Z

ƒC

u.�/K.z; �/~a;b.�/ Qd�:

By Lemma 5.3, this operator is continuous as an operator D. PƒC/ ! L2. PC; �a;b/.
Therefore the sesquilinear form

T .u; v/ WD hJ �
a;bu; J

�
a;bviL2. PC;�a;b/ (6.1)

is continuous as a form D.ƒC/ � D.ƒC/ ! C. By the kernel theorem (see, e.g.,
[19], Section 5.2) it is determined by a distribution. Formally, we transform (6.1)
as

Z

PC

� Z

ƒC

u.�/K.z; �/~a;b.�/ Qd�
�

�
� Z

ƒC

v.�/K.z; �/~a;b.�/ Qd�
�

�a;b.z/ d NNz

(6.2)

D
Z

ƒC

Z

ƒC

u.�/v.�/H.�; �/~a;b.�/~a;b.�/ Qd� Qd�; (6.3)

where

H.�; �/ D
Z

PC

K.z; �/K.z; �/�a;b.z/ d NNz: (6.4)

Notice that all integrals in line (6.2) converge absolutely. However, the triple
integral

R

ƒC

R

ƒC

R

PC is not absolutely convergent. The integrand in (6.4) decreases

as jzj�2 and the integral diverges.



Commuting hypergeometric operators and bispectrailty 557

However, we regard H.�; �/ as a distribution, then Lemma 6.1 can be refor-
mulated in the form:

Lemma 6.2. We have the following identity of distributions on D.ƒC/�D.ƒC/:

H.�; �/ D ı.� � �/: (6.5)

6.3. Orthogonality of packets

Lemma 6.3. Let u, v 2 D.ƒC/ and supports supp.u/, supp.v/ have empty

intersection. Then

hJ �
a;bu; J

�
a;bviL2. PC;�a;b/ D 0:

Proof. Denote DC WD 1
2
.D C xD/, D� D 1

2i
..D � xD/. By Proposition 5.2,

J �
a;b
u is contained in the space Ra;b. By Proposition 5.5, the operators DC,

D� are formally symmetric on Ra;b . Since they formally commute, for any real
polynomial p.DC; D�/ we have

hp.DC; D�/J
�
a;bu; J

�
a;bvi D hJ �

a;bu; p.DC; D�/J
�
a;bvi;

or

hJ �
a;bp.Re�; Im�/ � u; J �

a;bvi D hJ �
a;bu; J

�
a;bp.Re�; Im�/ � vi; (6.6)

where � denotes the operator of multiplication by a function. We choose a sequence
pN of polynomials such that pN uniformly converges to 1 on supp.u/ with all
derivatives and converges to 0 on supp.v/. By Lemma 5.3 the map J �

a;b
is

continuous as a map D.ƒC/ ! L2.C; �a;b/. Replacing p by pN in (6.6) and
passing to a limit, we come to the desired statement. �

6.4. Next reduction of our statement. Let S.u; v/ be an Hermitian form on
D.ƒC/. We say that S is C!-smooth if it has the form

S.u; v/ D
Z

ƒC

Z

ƒC

M.�; �/u.�/v.�/ Qd� Qd�;

where M is a real analytic function on ƒC �ƒC.

Lemma 6.4. We have

hJ �
a;bu; J

�
a;bviL2.C;�a;b/ D hu; viL2.ƒ;~a;b/ C S.u; v/; (6.7)

where S.u; v/ is C!-smooth.
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This lemma together with Lemma 6.3 imply the desired statement, i.e., the
identity (6.5). Indeed, for any u, v with disjoint support, we have

Z

ƒC

Z

ƒC

M.�; �/u.�/v.�/~a;b.�/~a;b.�/ Qd� Qd� D 0;

therefore M.�; �/ D 0.

The rest of this section is occupied by the proof of Lemma 6.4.

6.5. Beginning of the proof of Lemma 6.4. Cleaning of the problem

Step 1. Represent

u D
X

k

ukı.Re� � k=2/; v D
X

l

vlı.Re� � l=2/;

in fact the sums are finite and uk , vl depend on a real variable s. By Lemma 6.3,
we have

hJ �
a;buk ; J

�
a;bvli D 0 for k ¤ l :

Therefore it is sufficient to examine only inner products

hJ �
a;buk ; J

�
a;bvki D

Z

PC

R.z/ d NNz;

where

R.z/ WD
Z

ƒC

uk.is/K
�

z;
1

2
.k C is/

�

~a;b

�1

2
.k C is/

�

ds

�
Z

ƒC

vk.i t /K
�

z;
1

2
.k C i t /

�

~a;b

�1

2
.k C i t /

�

dt�a;b.z/:

Step 2. Represent the integral as
Z

jzj62

RC
Z

jzj>2

R:

Let us show that the first summand isC!-smooth. In this case the triple integral
absolutely converges and can be written as

Z

jzj62

R d NNz D
Z

R

Z

R

uk.is/vk.i t /L.s; t / ds dt;
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where

L.s; t / D
Z

jzj62

K

�

z;
1

2
.k C is/

�

K

�

z;
1

2
.k C i t /

�

�a;b.z/ d NNz:

Integrand makes sense for complex s, t that are sufficiently close to R and the
integral absolutely converges (singularities at z D 0 and 1 have the forms (4.4),
(4.5)). Therefore L.s; t / is a holomorphic function in s, t near R � R.

Therefore our question is reduced to an examination the integral
Z

jzj>2

R.z/ d NNz

Step 3. A decomposition of the kernel. Applying Theorem 3.9.c, we write
K.z; �/ in the domain jzj > 2 as

K.z; �/ D W1 CW2 CW3

D A.�/.�z/�a��j�aCN� C A.��/.�z/�aC�j�a�N� C‰.z; �/;
(6.8)

where

A.�/ D �C.2� j �2 N�/
�C.b � � j b C N�/�C.a � � j aC N�/

and
‰.z; �/ D O.jzj�2a�1/ as z ! 1.

Notice that
jA.�/j2 D A.�/A.��/ D ~�1

a;b.�/: (6.9)

Therefore the integral
R

jzj>2R.z/ d
NNz splits into a sum of 9 summands V˛ˇ ,

where ˛, ˇ D 1, 2, or 3,

V˛ˇ WD
Z

jzj>2

Z

R

W˛.zI k; s/uk.is/~a;b

�1

2
.k C is/

�

ds

�
Z

R

Wˇ .zI k; t/vk.i t /~a;b

�1

2
.k C i t /

�

dt � �a;b.z/ d NNz:

Step 4. For five summands V13, V23, V31, V32, V33 we immediately get absolute
convergence of triple integrals and C!-smoothness. For instance,

V13 D
Z

R

Z

R

uk.is/uk.i t /A
�1

2
.k � is/

��1

�
�

Z

jzj>2

�z

Nz
��k

jzj�2aCis‰
�

z;
1

2
.k C is/

�

�a;b.z/ d NNz
�

ds dt:

(we simplified the integrand using (6.9)). The expression in the square brackets is
real analytic (the integrand decreases as jzj�3).
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Step 5. Non-obvious summands are V11, V12, V21, V22. We start with V11,

V11 WD
Z

jzj>2

Z

R

uk.is/A
�1

2
.k C is/

��z

Nz
��k=2

jzj�2a�is~a;b

�1

2
.k C is/

�

ds

�
Z

R

A
�1

2
.k C i t /

�

vk.i t /
�z

z

�k=2

jzj�2aCit

� ~a;b

�1

2
.k C i t /

�

dt�a;b.z/ d NNz:

For k D 0 we must keep in mind that the integration
R

R
actually is taken over a

ray Œ";1/ for some " > 0. Applying (6.9), we come to

V11 WD
Z

jzj>2

Z

R

Z

R

uk.is/vk.i t /

� A
�1

2
.k � is/

��1

A
�1

2
.k C i t /

��1

jzj�4a�isCit ds dt�a;b.z/ d NNz:
(6.10)

Next, we notice that

�a;b.z/ D jzj2aC2b�2j1� zj2a�2b D jzj4a�2 CO.jzj4a�3/ as z ! 1.

We write

�a;b.z/ D jzj4a�2 C .�a;b.z/ � jzj4a�2/; (6.11)

substitute this to (6.10) and decompose (6.10) as a sum of two integrals. The
second summand immediately gives a C!-smooth term. The first summand is the
topic of our interest. It equals the following expression:

I.u; v/ WD
Z

jzj>2

Z

R

Z

R

uk.is/vk.i t /A
�1

2
.k � is/

��1

A
�1

2
.k C i t /

��1

� jzj�2�isCit ds dt d NNz:

(6.12)

6.6. Application of the Sokhotski formula and disappearance of a singular

term

Step 6. Extension to the complex domain. Now consider a function I.u; v; "/
obtained by replacing s 7! s � i" in the boxed term, " > 0. The new triple inte-
gral absolutely converges, we can change the order of integrations and explicitly
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integrate in z. We get

I.u; v; "/ D
Z

R

Z

R

uk.is/vk.i t /A
�1

2
.k�is/

��1

A
�1

2
.kCi t /

��1 2�is�"Cit

�is � "C i t
dsdt:

Next, we claim that
I.u; v/ D lim

"!C0
I.u; v; "/:

Indeed, we integrate I.u; v; "/ two times by parts in s and come to

I.u; v; "/ D
Z

jzj>2

Z

R

vk.i t /A
�1

2
.k C i t /

��1
Z

R

@2

@s2

h

uk.is/A
�1

2
.k � is/

��1i

� jzj�2�"�isCit

i2 ln2 jzj
ds dt d NNz

The new triple integral absolutely converges and is continuous at " D C0.
Thus we come to the so-called distribution 1

x�i"
, see, e.g., [15]. Recall the

Sokhotski formula

lim
"!C0

ˇ
Z

˛

f .y/ dy

x � y � i" D p.v.

ˇ
Z

˛

f .y/ dy

x � y
C �if .x/; (6.13)

where p.v. denotes the principal value of an integral.
Applying this formula and keeping in mind (6.9), we come to

I.u; v/ D p.v.
Z

R

Z

R

uk.is/vk.i t /A
�1

2
.k � is/

��1

A
�1

2
.k C i t /

��1 2�isCit

�is C i t
ds dt

C �

Z

R

uk.is/vk.is/~a;b

�1

2
.k C is/

�

ds:

(6.14)

Step 8. We deal with V22 in the same way and come to

V22 D p.v.
Z

R

Z

R

uk.is/vk.i t /A
�1

2
.k � i t /

��1

A
�1

2
.k C is/

��1 2�itCis

�i t C is
ds dt

C �

Z

R

uk.is/vk.is/~a;b

�1

2
.k C is/

�

ds C ¹a C!-smooth termº:

(6.15)
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Next, we take the sum V11 C V22 modulo C!-smooth terms. The expression

1

�i.s � t /
�

A
�1

2
.k � is/

��1

A
�1

2
.k C i t /

��1

2�isCit

� A
�1

2
.k � i t /

��1

A
�1

2
.k C is/

��1

2�itCis
�

has the form
L.t; s/ � L.s; t /

s � t
with analyticL.t; s/. It has a removable singularity on the line t D s. Thus the first
summands in (6.14) and (6.15) give us a C!-smooth term, the second summands
give us the first term in (6.7), i.e., the desired delta-function.

6.7. End of the proof of Lemma 6.4. Step 9. Next, we examine the term V12.
We write the integral and apply the transformation (6.11). We get a sum of a
C!-smooth term and the integral

J.u; v/ D
Z

jzj>2

Z

R

Z

R

uk.is/vk.i t /A
�

� 1

2
.k C is/

��1

A
�

� 1

2
.k C i t /

��1

�
�z

Nz
�k

jzj�2�is�it d NNz dt ds:

As above, we change s 7! s� i" in the box and get integrals J.u; v; "/with " > 0.
As above,

J.u; vI "/D
Z

R

Z

R

uk.is/vk.i t /A
�

� 1

2
.k C is/

��1

A
�

� 1

2
.k C i t /

��1

�
� Z

jzj>2

�z

Nz
��k

jzj�2�"�is�it d NNz
�

dt ds:

If k > 0, then the term in square brackets is zero (we pass to polar coordinates
and get 0 after the integration with respect to the angle coordinate). If k D 0, then
we get

2�"�is�it

"C i.s C t /
:

However, supp.u0/, supp.v0/ are contained in domains s > 0, t > 0, and actually
we have no singularity. Thus V12 is C!-smooth.

The same examination showsC!-smoothness of V21. This completes the proof
of Lemma 6.4. �
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7. Asymptotics of the kernel in the parameters

7.1. The statement. Let us modify a notation for the kernel K. Set

Kı.zI�I �/

WD 1

�C.a C b j aC b/

� 2F
C

1

"

a C �C �
2

ˇ

ˇ a � N�C �
2
; a � � � �

2

ˇ

ˇ a C N� � �
2

aC b j aC b
I z

#

D 1

�C.a C b j a C b/

� 2F
C

1

"

a C kC�Cis
2

ˇ

ˇ aC �kC�Cis
2

; aC �k���is
2

ˇ

ˇ a C k���is
2

aC b j aC b
I z

#

;

where � 2 ƒ, � 2 R. In fact,

Kı
�

zI k C is

2
I �

�

D K.zI k; � C is/:

However, in calculations of this section the variables � and is have different
meanings.

Denote
t˙.z/ D 1˙

p

1� 1=z:

Theorem 7.1. Then for a fixed z we have the following asymptotic expansion

Kı.zI�I �/

D 1

�C.a � � � �
2

j a C N� � �
2
/�C.b C �C �

2
j b � N�C �

2
/ � j�j

� j1� 1=zj�1=2 � j1 � zjb�a � jzj�a�b

�
h� t�.z/

tC.z/

�
�
2

C�j �
2

�N� X

k>0; l>0;

kCl<N

N��k��l

kŠlŠ
Ak.�;

p
1 � z/Al .�;

p
1 � Nz/

C
� tC.z/

t�.z/

�
�
2

C�j �
2

�N� X

k>0; l>0;

kCl<N

N��k��l

kŠlŠ
Ak.�;�

p
1 � z/Al .�;�

p
1 � Nz/

i

CRN .z; �; �/;

(7.1)

where Ak.�/ are rational expressions in � (depending on the parameters a and b)

having poles at � D 0, ˙1 and A0 D 1. The reminder RN .z/ satisfies

RN .z; �; �/ D O.j�j�N /; as � ! 1;

moreover O.�/ is uniform in z and � on compact subsets in PC � R.
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The proof occupies the rest of this section.

Remark. This formula is a counterpart of Watson’s [44] formula for asymptotics
of the Gauss hypergeometric functions 2F1Œa � �; b C �I cI z� in the parameter �
(see an exposition of Watson’s results in [25], Sect. 7.2, see also a remark in [41],
p.162, on typos in [44]). We do not see a way to reduce our statement to Watson’s
work.

Remark. Lemma 2.1 gives us an asymptotics of the gamma-factor in (7.1).

7.2. Stationary phase approximation. We transform Kı.z; �; �/ as

1

�C.a � � � �
2

j a C N� � �
2
/�C.b C �C �

2
j b � N�C �

2
/ � j�j

�
Z

C

R.t; z; �/ exp¹Q.t; z; �; �/º d NNt;
(7.2)

where

R.t; z/ WD ta� �
2 �1

ˇ

ˇ a� �
2 �1.1� t /bC �

2 �1

ˇ

ˇ bC �
2 �1.1� tz/�a� �

2 (7.3)

and

Q.t; z; �/ WD � ln
� t .1� zt/

1� t
�

� N�ln
� t .1� zt/

1 � t
�

D ik Im ln
� t .1� zt/

1 � t
�

C is ln
� t .1� zt/

1 � t
�

:

(7.4)

The function Im ln.�/ is ramified, however the exponent is well defined and formu-
las below contain only partial derivatives of ln.�/, which are independent of the
choice of a branch.

We apply the stationary phase approximation, see, e.g., Fedoryuk [10], Hör-
mander [19]. Singular points are 0, 1, 1. Stationary points are

t˙ D 1˙
p

1� 1=z;

they are the same for both summands in (7.4). This could be a fatal obstacle for
an evaluation of a uniform asymptotics, however this does not happen. Also the
domain of convergence of the integral (7.2) is smaller than it is necessary for our
purposes.

Consider a partition of unity

1 D �0 C �1 C �z�1 C �1 C �tC C �t� C �;
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where �˛ is zero outside a small neighborhood of ˛, and � is zero in neighborhoods
of 0, 1, z�1, 1, t˙. According to this partition we expand (7.2) into a sum of 7
integrals,

I D I0 C I1 C Iz�1 C I1 C ItC C It� C J:

Obviously (see [10], Lemma III.2.1), for each N we have

J D O.k2 C s2/�N as nC is ! 1:

7.3. Preparatory statement

Theorem 7.2. Let � be a domain in C, f .t/, '.t/ be holomorphic in �. Let t0

be a unique zero of '0.t / in � and '00.t0/ ¤ 0. Let �.t/ be a C1-smooth function

compactly supported by � such that � D 1 in a neighborhood of t0. Consider the

integral

I.�/ D
Z

�

�.t/f .t/f .t/ exp¹i Re.�'.t//º d NNt; (7.5)

where � 2 C is a parameter.

a) For j�j > 1 we have the following expansion

I.�/ D 1

jf 00.t0/jj�j exp¹i Re.�'.t0//º
�

X

k>0; j >0;

kCl<N

��k N��l

kŠlŠ
ak.f; '/al. Nf; N'/CRN .�/

�

;

(7.6)

where ak are rational expressions

ak D ak.'.t0/; '
0.t0/; : : : I f .t0/; f 0.t0/; : : : I '00.t0/

�1/

and a0 D 1. The reminder RN satisfies

RN .�/ D O.j�jN / as � ! 1. (7.7)

b) The asymptotic expansion

I.�/ � j�j�1
X

k>0; l>0

ckl

�k N�l
as � ! 1
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can be written as

I.�/ � 1

jf 00.t0/jj�j exp¹i Re.�'.t0//º

� exp
° i

2 N�'00.t0/

@2

@t2

±

.f .t/ exp¹ N�.'.t/� '0.t0/ � 1

2
'00.t0/.t � t0/

2/º/
ˇ

ˇ

ˇ

tDt0

� exp
° i

2�'00.t0/

@2

@Nt2
±

�
�

f .t/ exp
°

�
�

'.t/ � '0.t0/ � 1

2
'00.t0/.t � t0/2

�±�ˇ

ˇ

ˇ

tDt0
:

(7.8)

c) Let ' D '˛ , f D f˛ smoothly depend on a parameter ˛, where ˛ ranges in

a compact domain K � C and the conditions of the preamble of the theorem are

satisfied for all ˛. Then O.�/ in (7.7) is uniform in ˛ 2 K.

Proof. b) We use Fedoryuk [10], Proposition III.2.2 or Hörmander [19], Theorem
7.7.5. Let f be a smooth compactly supported function on R

n, let S be smooth.
Consider an n-dimensional integral

I.�/ WD
Z

Rn

f .x/ exp¹i�S.x/º dx; t > 1:

Let x0 be a unique critical point of S on the support of f , let it be nondegenerate.
Let H.x0/ be the Hessian of S at x0 (i.e., the matrix composed of second partial
derivatives), let sgnH.x0/ denote the signature of the Hessian (the number of
positive eigenvalues minus the number of negative eigenvalues). Consider the
second order differential operator

L WD i

2
hH.x0/

�1rx;rxi;

where rx denotes the vector column composed of @
@x1

, . . . , @
@xn

. Denote

S.x; x0/ WD S.x/ � S.x0/ � 1

2
hH.x0/.x � x0/; .x � x0/i; (7.9)

this expression is the part of the Taylor expansion of S.x/ at x0 starting cubic
terms. Then the following expansion take holds:

I.�/ D
�2�

�

�n=2

j detH.x0/j�1=2 exp
h i�

4
sgnH.x0/

i

�
�

N �1
X

kD0

��k

kŠ
Lk.f .x/ exp¹i�S.x; x0/º/

ˇ

ˇ

ˇ

xDx0

C ��N CŒ2N=3�V.�/
�

;

(7.10)

where V.�/ is bounded.
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Let us return to our integral (7.5). Without loss of generality, we can set t0 D 0,
'00.t0/ D 1, i.e.,

'.t/ D 1

2
t2 C r.t/; where r.0/ D r 0.0/ D r 00.0/ D 0.

Set � D sei� , s > 0. Set z D x C iy, then

'.x; y/ D 1

2
.x2 � y2 C 2ixy/C r.x; y/:

Thus we come to an oscillating integral in s with the parameter � ,

I.s; �/ D
Z

�.x; y/f .x; y/f .x; y/

� exp¹is.cos � Re'.x; y/C sin � Im'.x; y//º dx dy:
We wish to apply the general statement formulated above. The Hessian is given
by

H D 2

�

cos � sin �
sin � � cos �

�

; H�1 D 1

2

�

cos � sin �
sin � � cos �

�

:

The signature is 0. The differential operator L is

L D i

4

�

cos �
� @2

@x2
� @2

@y2

�

C 2 sin �
@2

@x@y

�

D i

2

�

ei� @
2

@t2
C e�i� @

2

@Nt2
�

:

Next, we rewrite our phase function S.�/ as

e�i�'.t/C ei�'.t/:

Therefore the expression (7.9) is

e�i�r.t/C ei�r.t/:

Applying (7.10), we get

I.s; �/ WD 2�

s
exp

° i

2s

�

ei� @
2

@t2
C e�i� @

2

@Nt2
�±

� .f .t/f .t/ exp¹is.e�i�r.t/C ei�r.t//º/jtD0

D 2�

s
exp

° i

2se�i�

@2

@t2

±

.f .t/ exp¹ise�i�r.t/º/
ˇ

ˇ

ˇ

tD0

� exp
° i

2sei�

@2

@Nt2
±

.f .t/ exp¹isei�r.t/º/
ˇ

ˇ

ˇ

tD0
:

We obtained asymptotics in s for fixed � . However, � ranges in a compact set,
by [10], Theorem III.2.2, we get that the term V.�/ in (7.10) is bounded uniformly
in � .

a) follows from b).

c) We again refer to the parametric version of the stationary phase approxima-
tion, see [10], Theorem III.2.2. �
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7.4. Contribution of the stationary points. Let us apply Theorem 7.2 to our
integral (7.2). We have

f .t/ D R.t; z/ D
� t

1� zt

�a

.1� t /b
� 1 � t
t .1� zt/

�
�
2

.t .t � 1//�1;

'.t/ D 2 ln
� 1 � t
t .1� zt/

�

:

Denote

� D
p

1� 1=z:

We substitute t D tC and transform the factors of R.t; z/ D f .t/f .t/:

� t

1 � zt
�ajaˇ

ˇ

ˇ

tDtC
D

�1� �2

��
�aja

D ..z � 1/z/�a=2j�a=2; (7.11)

.1� t /bjb
ˇ

ˇ

ˇ

tDtC
D

�1� z

z

�b=2jb=2

; (7.12)

� 1 � t
t .1� zt/

�
�
2

ˇ

ˇ

ˇ

tDtC
D

� 1� �

1C �

�
�
2

j �
2

; (7.13)

.t .t � 1//�1j�1
ˇ

ˇ

ˇ

tDtC
D

� �1
�.1C �/

�1j1

: (7.14)

Next,

'.tC/ D 2 ln
� 1� �

1C �

�

;

therefore

exp
°

i Re
�

'.tC/
1

2
.k C is/

�±

D
� 1� �
1C �

��j�N�

D
� t�

tC

��j�N�

:

Finally,

'00.t / D �2
.1� t /2

C 2

t2
C 2z2

.1� tz/2
;

and

'00.tC/ D �4
�.1C �/2

:

Uniting these data we get that the leading term at the point tC is

� j�jj1 � zjb�ajzj�a�b
� t�

tC

��j�N�

� 1

.k2 C s2/1=2
: (7.15)

The general form of the asymptotic expansion at t D tC follows from Theo-
rem 7.2.
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7.5. Contributions of the singular points

Lemma 7.3. Contributions at the singular points 0, 1, 1 areO.j�j�N / for anyN .

Proof. For definiteness examine the point 0. We have the integral

I0.�/ D
Z

C

�0.t /t
a�1ja�1.1� t /c�a�1.1� zt/�a

� t .1� zt/
1� t

��j�N�

d NNt;

defined as an analytic continuation. Keeping in mind that a support of �0 can be
chosen sufficiently small, we pass to a new variable in a neighborhood of 0,

u D t .1� zt/
1� t

;

and come to an integral of the form

I0.�/ D
Z

C

ua���1jaCN��1ˆ.u/ d NNu;

where ˆ is a smooth compactly supported function. It remains to apply Theo-
rem 2.2.

Argumentation for other singular points is the same. �

8. Symmetry of difference operators

Here we prove Theorem 1.7, i.e., show that if f 2 D. PC/, then Ja;bf is contained
in the space Wa;b of meromorphic functions on ƒC. Also we show that L and xL
are formally adjoint one to another on Wa;b , see Theorem 8.4.

8.1. Beginning of the proof of Theorem 1.7. We follow the list of properties in
the definition of Wa;b , see Subsect. 1.8,

a) is a corollary of the symmetry Ka;b.zI �k;��/ D Ka;b.zI k; �/.
b) We must examine poles of Ka;b.zI k; �/ as a function of the variable � for

a fixed z 2 PC, k 2 Z. Let a C b ¤ 1. We look to the expansion (3.26) of 2F
C
1 Œ��

at z D 0. The only source of poles of K are zeros of the denominators in (3.28),
i.e., zeros of the expression

R.k; �/ WD �C

�

a C k C �

2

ˇ

ˇ

ˇ a C �k C �

2

�

�C

�

aC �k � �
2

ˇ

ˇ

ˇ a C �k � �

2

�

� �C

�

b C k C �

2

ˇ

ˇ

ˇ
b C �k C �

2

�

�C

�

b C �k � �
2

ˇ

ˇ

ˇ
b C �k � �

2

�

:

(8.1)

This gives us the desired list of possible poles.
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Let us examine the case aC b D 1. The decomposition of the hypergeometric
functions (3.26) at z D 0 produces an expression of the type

Ka;b.zI k; �/ D ua;b.z; k; �/� vz;a;b.z; k; �/

aC b � 1 (8.2)

with ua;b , va;b having poles at zeros of R.k; �/. A decomposition at z D 1 gives

Ka;b.zI k; �/ D Ua;b.z; k; �/� Va;b.z; k; �/

a � b ;

therefore the singularity in (8.2) at a C b D 1 is removable.

d) Indeed, we have Ka;b.p; q/ D Ka;b.q; p/, i.e.,

2F
C

1

2

4

aC p C q

2

ˇ

ˇ

ˇ a C �p C q

2
; a C �p � q

2

ˇ

ˇ

ˇ a C p � q
2

aC b j a C b

I z

3

5

D 2F
C

1

2

4

aC p C q

2

ˇ

ˇ

ˇ a C p � q
2

; aC �p � q
2

ˇ

ˇ

ˇ aC �p C q

2

aC b j a C b

I z

3

5:

This is a special case of the symmetry (3.36).

We also mention the following similar identity for (8.1):

R.p; q/ D R.q; p/; (8.3)

it is a special case of (3.37).

The statement c) about the behavior at infinity is a corollary of the expan-
sion (7.1) and the following lemma

Lemma 8.1. Let t˙.z/ be as in Theorem 7.1. Let ˆ 2 D. PC/ be a function with

a simply connected support. Then for any A > 0 for any N > 0 in the strip

j Re � j < A we have

Z

PC

ˆ.z/
� t�.z/

tC.z/

�.kC�/=2j.�kC�/=2

d NNz D O.k2 C .Im �/2/�N

as .k2 C .Im �/2/ ! 1.

We need a simply connected support since the integrand is ramified at the
points z D 0, z D 1. A proof of the lemma requires some preparations.
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8.2. A change of variable. We define a new variable

p WD tC.z/

t�.z/
; (8.4)

The inverse map is done by

z D �.p/ WD .p C 1/2

4p
: (8.5)

The map �.p/ determines a two-sheet covering map from

RC WD C n ¹0; 1;�1º (8.6)

to PC. Notice that

1� z D � .p � 1/2
4p

;
p

1� 1=z D p � 1
p C 1

; �0.p/ D p2 � 1
4p2

; (8.7)

tC D 2p

p C 1
; t� D 2

p C 1
;

tC

t�
D p: (8.8)

Also,

�.p�1/ D �.p/; �0.p�1/p�1 D �.p/p: (8.9)

8.3. Proof of Theorem 1.7.c

Proof of Lemma 8.1. We substitute z D �.p/ to the integral and get

1

16

Z

RC

p.kC�/=2j.�kC�/=2.ˆ.�.p//jp2 � 1j2p�2/ d NNp:

This is a Mellin transform of a function compactly supported by RC. In virtue of
Theorem 2.2 the integral rapidly decreases in the union of strips j Re� j < A. �

Proof of the statement c) of Theorem 1.7. We represent '.z/ as a sum of func-
tions in D. PC/ with simply connected supports. Next, we decompose the kernel
according to Theorem 7.1 and apply the lemma to each summand. �

8.4. Continuity

Corollary 8.2. The map Ja;b is a continuous map from D. PC/ to L2
even.ƒ; ~a;b/.
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Proof. Define the following seminorms on the space of smooth functions on ƒ:

p˛;N .F / D sup
�2ƒ

ˇ

ˇ

ˇ

@NF

@�N
.1C j�j/˛

ˇ

ˇ

ˇ;

and the space Y defined by these seminorms. Clearly, our proof provides a
continuity of Ja;b as a map D. PC/ to Y . It remains to notice that the identical
embedding f 7! f of Y to L2 is continuous.

If k D 0 and a D 1 (or b D 1), then elements of Wa;b have a pole of order
two22 at k D 0, s D 0. In this case we write �2F instead of F in the definition of
the seminorms. �

8.5. Invariance of Wa;b. Consider the difference operators L, xL defined above,
see (1.28),

LF.k; �/ D

�

a C k C �

2

��

b C k C �

2

�

.k C �/.1C k C �/
.F.k C 1; � C 1/ � F.k; �//

C

�

a C �k � �
2

��

b C �k � �

2

�

.�k � �/.1� k � �/ .F.k � 1; � � 1/ � F.k; �//I

(8.10)

xLF.k; �/ D

�

a C �k C �

2

��

b C �k C �

2

�

.�k C �/.1� k C �/
.F.k � 1; � C 1/ � F.k; �//

C

�

a C k � �

2

��

b C k � �
2

�

.k � �/.1C k � �/ .F.k C 1; � � 1/ � F.k; �//:

(8.11)

Lemma 8.3. The space Wa;b is invariant with respect to the operators L, xL.

Proof. Since F.0;�1/ D F.1; 0/ D F.�1; 0/ D F.0; 1/, the expressions

F.k C 1; � C 1/ � F.k; �/
1C k C �

;
F.k � 1; � � 1/ � F.k; �/

1 � k � �
have no poles at k D �1, � D 0 and k D 1, � D 0 respectively.

Since a function F.k; �/ is even, it can not have a pole of order 1 at k D 0,
� D 0.

New poles of F.k C 1; � C 1/ that are not poles of F.k; �/ are annihilated by
the rational factor in (8.10).

22 At the same point the spectral density has a zero of order 4.
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The condition LF.p; q/ D LF.q; p/ follows from a straightforward calcula-
tion. �

8.6. Symmetry

Theorem 8.4. For .a; b/ 2 …, for F , G 2 Wa;b we have

hLF;GiL2.ƒC;dKa;b/ D hF; xLGiL2.ƒ;dKa;b/: (8.12)

Corollary 8.5. Operators 1
2
.L C xL/, 1

2i
.L � xL/ are symmetric on the Ja;b-image

of D. PC/.

Remark. In fact, the proof uses only properties of F 2 Wa;b in strips j Re � j <
1 C ". So we can define operators L, xL on a space of meromorphic functions in
the strip satisfying an obvious list of conditions.

8.7. Proof of Theorem 8.4 for the case .a; b/ 2 …cont. First, we notice that for
pure imaginary � we have G.k; �/ D G.k;�N�/, the last function is meromorphic
and also is contained in Wa;b. Let R.k; �/ be given by (8.1). Then

4�2ihLF;Gi

D
X

k

Z

iR

´

�

aC k C �

2

��

b C k C �

2

�

.k C �/.1C k C �/
.F.k C 1; � C 1/ � F.k; �//

C

�

a C �k � �

2

��

b C �k � �
2

�

.�k � �/.1� k � �/ .F.k � 1; � � 1/ � F.k; �//

µ

�G.k;�N�/.k � �/.k C �/R.k; �/d�:

(8.13)

Let us expand the expression in the curly brackets ¹: : : º as a sum of 4 sum-
mands that include F.kC 1; �C 1/, F.k; �/, F.k� 1; � � 1/, F.k; �/. The whole
expression ¹: : : º is holomorphic near the contour of integration. The summands
have simple poles on the contour, and we pass to an integration in the sense of
principal values.

Let us examine the summand corresponding F.k C 1; � C 1/. We get

X

k

v: p:
Z

iR

k � �
1C k C �

F.k C 1; � C 1/G.k;�N�/ zR.k; �/d�; (8.14)
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where

zR.k; �/ WD
�

aC 1C k C �

2

��

b C 1C k C �

2

�

R.k; �/

D �C

�

a C 1C k C �

2

ˇ

ˇ

ˇ aC �k C �

2

�

�C

�

aC �k � �
2

ˇ

ˇ

ˇ aC �k � �
2

�

� �C

�

b C 1C k C �

2

ˇ

ˇ

ˇ
b C �k C �

2

�

�C

�

b C �k � �
2

ˇ

ˇ

ˇ
b C �k � �

2

�

:

(8.15)

Lemma 8.6. For 0 < a < 1, 0 < b < 1 the integrand in (8.14) has no poles in

the strip �1 < Im � < 0.

Proof. We enumerate possible (simple) poles of the factors.

a) Factor G.k;�N�/. In this case we can have poles if k D 0. Since a < 1,
b < 1 the poles 2� 2a, 2� 2b are outside our strip. On other hand the pole 2a� 2
(resp. 2b � 2) is contained in the strip if 1=2 < a < 1 (resp. if 1=2 < b < 1).

b) Factor F.k C 1; � C 1/ has a pole in our strip for k D �1 at � D 2a � 1

(resp. � D 2b � 1) if 0 < a < 1=2, (resp. 0 < b < 1=2).

c) Since a > 0, b > 0 the expression zR.k; �/ has no poles in our strip.

However, the poles of G.k;�N�/ and of F.k C 1; � C 1/ are zeros of zR.k; �/.
Therefore the product is holomorphic. �

Lemma 8.7. In (8.14) we can change the integration contour to 1C iR.

Proof. The integrand has no poles between contours iR and 1C iR, but has poles
on contours, the integral is taken in the sense of principal values. We have only
two such poles, � D 0 on the contour iR for k D �1 and � D �1 for k D 0. Thus
the difference between the two integrals is 2� by half of the sum of residues, i.e.,

2�

2

´

.�1� �/F.0; � C 1/G.�1;�N�/

�
�

aC 1C �1C �

2

��

b C 1C �1C �

2

�

R.�1; �/
ˇ

ˇ

ˇ

�D0

C .0� �/F.1; � C 1/G.0;�N�/
�

a C 1C �

2

��

b C 1C �

2

�

R.0; �/
ˇ

ˇ

ˇ

�D�1

³

:

Let us show that the sum is zero. Since F , G are even and satisfy (1.25), we have

F.0; 1/ D F.1; 0/; G.�1; 0/ D G.0;�1/:
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By (8.3),

R.�1; 0/ D R.0;�1/:

The remaining factors give

�
�

aC 1

2

��

b C 1

2

�

and
�

aC 1

2

��

b C 1

2

�

;

i.e., the same expressions with different signs. �

End of the proof of Theorem 8.4 for the case .a; b/ 2 …cont. Thus we can replace
the integration in (8.14) by the integration over the contour �1C iR. We change
the variables l D k C 1, t D � C 1 and get

X

l

v: p:
Z

iR

l � t
�1C l C t

F.l; t /G.l � 1;�Nt C 1/ zR.l � 1; t � 1/ dt:

Next,

zR.l � 1; t � 1/ D R.l; t /
�

aC �l � t

2

��

b C �l � t

2

�

;

and we come to

X

l

v: p:
Z

iR

F.l; t /

�

�

a C �l � t
2

��

b C �l � t
2

�

.�l � t /.1� l � t / G.l � 1;�Nt C 1/

�

� .l � t /.l C t /R.l; t / dt:

We transform the expression in the big brackets to the form U.l;�Nt / , where

U.l; t / D

�

a C �l C t

2

��

b C �l C t

2

�

.�l C t /.1� l C t /
G.l � 1; t C 1/:

Thus we finished the transformation of the summand of the (8.13) corresponding
to F.k C 1; � C 1/. The transformation of the summand corresponding to F.k �
1; � � 1/ is similar. The case of the summands F.k; �/ is obvious. We come to
the desired expression. �

8.8. End of the proof of Theorem 8.4. Due to the homographic transforma-
tions, it is sufficient to examine the case a < 0. Let ˆ, ‰ 2 Wa;b . Denote

U.a; bI k; �/ WD ˆ.k; �/‰.k;��/~a;b.k; �/: (8.16)
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For .a; b/ 2 …cont we have

4�2ihˆ;‰iL2.ƒ;~a;b/ D
X

k

Z

iR

U.a; bI k; �/ d�: (8.17)

We wish to write the analytic continuation of this expression to the domain
.a; b/ 2 …, a 6 0.

Possible singularities of U as a function in � in the strip j Re � j < 1 are the
following:

— if b > 1=2, then both functions ˆ, ‰ have poles at .k; �/ D .0;˙.2� 2b/;
— ~a;b.k; �/ has poles at .k; �/ D .0;˙2a/.
Due to our restrictions 2b � 2 < 2a < �2a < 2 � 2b.
Thus all summands of (8.17) except 0-th are holomorphic in jaj < 1 � b.

Lemma 8.8. Fix b. Assume that ˆ, ‰ be even rapidly decreasing meromorphic

functions in the strip j Re � j < 1 satisfying the condition (1.25) and having poles

only at the points .0;˙.2� 2b/. Then the following expression is holomorphic in

the domain jaj < 1 � b:

b.a/ WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

Z

iR

U.a; bI 0; �/d�; if a > 0;

Z

iR

U.a; bI 0; �/d� C 4�i res�D2a U.a; bI 0; �/; if a 6 0:

(8.18)

Proof of Lemma 8.8. Denote

iR.a/ D
Z

iR

U.a; bI 0; �/d�; „˙.a/ WD 2�i res�D˙2a U.a; bI 0; �/:

Since U is even in � , we have„�.a/ D �„C.a/. Due to the factor .kC�/.k��/
in the Plancherel density, we have„˙.0/ D 0. Therefore„˙.a/ are holomorphic
in the disk jaj < 1 � b.

Consider a contourL on the plane � 2 C composed of the ray .�1; b�1C"�,
the upper half of the circle j� j D 1 � b � " and the ray Œ1 � b � ";C1�. The
function

L.a/ WD
Z

L

U.a; bI 0; �/d�

is holomorphic in a for jaj < 1�b. For Re a > 0we have L.a/ D iR.a/�„C.a/.
For Re a < 0 we have L.a/ D iR.a/ � „�.a/. This gives us the analytic
continuation. �
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Proof of Theorem 8.4 for a < 0. Thus the analytic continuation of the pairing
4�2ihˆ;‰iL2.ƒ;~a;b/ to the domain a < 0 is given by

b.a/C
X

k¤0

Z

iR

U.a; bI k; �/ d�;

i.e., for a < 0 we get 4�2ihˆ;‰iL2.ƒC;dKa;b/.

Now we see that both sides of (8.12) are real analytic in the parameter a and
coincide for a > 0. Therefore they coincide for a < 0. �

9. The operator Ja;b is an isometry

Here we prove the second part of Theorem 1.3.

9.1. Statement

Lemma 9.1. Let f , g be smooth compactly supported functions on PC. Then

hJa;bf; Ja;bgiL2.ƒ;dKa;b/ D hf; giL2. PC;�a;b/:

Here a way of a proof is simpler than in Section 6. We show that Ja;b is a
perturbation of a version of the Mellin transform.

9.2. Orthogonality of packets

Lemma 9.2. Let f , g 2 D. PC/. Let supp.f / \ supp.g/ D ¿. Then

hJa;bf; Ja;bgiL2
even.ƒC;dKa;b/ D 0:

Proof. By Corollary 8.2 the operator Ja;b is continuous as an operator

D. PC/ �! L2.ƒC; dKa;b/;

by Theorem 8.4 it is symmetric on the image of D. PC; �a;b/. We consider the
difference operators

1

2
.L C xL/; 1

2i
.L � xL/

and repeat the proof of Lemma 6.3. �
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9.3. Decomposition of the kernel. Starting from this place we examine the
restriction of Ja;bf to ƒ. Recall that the operator Ja;b is defined by the formula

Ja;bf .�/ D
Z

PC

f .z/K.z; �/�a;b.z/ d NNz: (9.1)

Decompose the kernel K.z; �/ according to (7.1) with N D 3. We consider
� 2 ƒ, and therefore we set � D 0. Denote by ! the factor depending on � in the
front of the expansion. We have

!.�/!.�/ D ~�1
a;b.�/: (9.2)

Notice also that the expression in brackets in (7.1) has a singularity at � D 0.
Denote by ‚.�/ a smooth function, which equals 0 for j�j 6 1=3 and 1 for
j�j > 1=2. Represent the kernel as

K.z; �/ D !.�/j1 � zjb�ajzj�a�b

�
°h� tC.z/

t�.z/

��j�N�

C
� t�.z/

tC.z/

��j�N�i

C‚.�/
h� tC.z/

t�.z/

��j�N� X

k>0; l>0;

16kCl62

N��k��l

kŠlŠ
Ak.

p
1 � z/Al.

p
1� Nz/

C
� t�.z/

tC.z/

��j�N� X

k>0; l>0;

16kCl62

N��k��l

kŠlŠ
Ak.�

p
1 � z/

Al.�
p
1 � Nz/

i

CR3.z; �/
±

;

where R3.z; �/ is a smooth function in z 2 PC and �,

R3.z; �/ D O.j�j�3/ as � ! 1.

uniformly on compact subsets of PC. The summands corresponding to k D 0, l D 0

are smooth at � D 0, so we do not multiply them by the patch function ‚.�/.

Next, we change the variable as in (8.4)–(8.9):

�.p/ WD .p C 1/2

4p
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and represent the operator Ja;b in the form

Ja;bf .�/ D !.�/

Z

RC

f .�.p//j1� �.p/ja�b�1=2j�.p/j�1=2j� 0.p/j2

�
°

Œp�j�N� C .p�1/�j�N��

C‚.�/
h

p�j�N�
X

k>0; l>0;

16kCl62

N��k��l

kŠlŠ
Ak

�p � 1
p C 1

�

Al

� Np � 1
Np C 1

�

C .p�1/�j�N�
X

k>0; l>0;

16kCl62

N��k��l

kŠlŠ
Ak

�

�p � 1

p C 1

�

Al

�

� Np � 1
Np C 1

�i

CR.�.p/; �/
±

d NNp;

where RC denotes RC WD C n ¹0; 1; �1º as above.

It is convenient to split the operator Ja;b into a sum of operators,

Ja;b D ŒV C
0;0 C V �

0;0�C
X

V C
k;l

C
X

V �
k;l C Vrem; (9.3)

where the summands correspond to the summands of the previous formula. We
also denote

.p/ WD j1 � �.p/ja�b�1=2j�.p/j�1=2j�0.p/j2:

9.4. The main term

Lemma 9.3. The operator 1
2�
.V C

0;0 CV �
0;0/ is a unitary operator fromL2.C; �a;b/

to L2
even.ƒ; ~a;b/.

Proof. We have

h.V C
0;0 C V �

0;0/f; .V
C

0;0 C V �
0;0/giL2.ƒ;~/

D
Z

ƒ

� Z

RC

f .�.p//.p/.p�j�N� C p��j N�
�

d NNp
�

�
� Z

RC

g.�.q//.q/.q��jCN� C q�j�N�/ d NNq
�

Qd�
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(we also applied (9.2). Transform this expression as

Z

ƒ

� Z

RC

f .�.p//.p/jpj2.p��1j�N��1 C p���1j N��1/ d NNp
�

�
� Z

RC

g.�.q//.q/jqj2.q���1jCN��1 C q��1j�N��1/ d NNq
�

Qd�:
(9.4)

Now we apply the remark about Mellin transforms of even functions from Sub-
section 2.3. Keeping in mind (8.9), we observe that functions f .�.p//.p/jpj2
are �-even. Therefore both integrals over RC in (9.4) are Mellin transforms of even
functions, and we can apply the Plancherel formula for the Mellin transform. We
come to

Z

RC

f .�.p//g.�.p//j.p/j2jpj4 d
NNp

jpj2

D
Z

RC

f .�.p//g.�.p//j1 � �.p/j2a�2b j�.p/j2aC2b�2j�0.p/j2

� .j1� �.p/j�1j�.p/�1jpj2j�0.p/j2/ d NNp:

By (8.7)–(8.8) the expression in the big brackets is 1. Now we return to the variable
z D �.p/ and get the desired expression

Z

PC

f .z/g.z/�a;b.z/ d NNz: �

9.5. Other terms

Lemma 9.4. The Hermitian form

¹f; gº WD hJa;bf; Ja;bgiL2.ƒ;~a;b/ � h.V C
0;0 C V �

0;0/f; .V
C

0;0 C V �
0;0/giL2.ƒ;~a;b/

(9.5)
on D. PC/ can be written as

¹f; gº D
Z

RC

Z

RC

K.p; q/f .�.p//g.�.q// d NNp d NNq; (9.6)

where K is a locally integrable function on RC � RC smooth outside the sets p D q,

p D q�1.
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Proof. Expanding Ja;b according to (9.3), we get many summands in (9.5). We
wish to show that each summand can be written as (9.6) with its own K. Let us
start the discussion with the summand

hV C
0;0f; V

�
0;1giL2.ƒ;~a;b/

D
Z

ƒ

1 �‚.�/
�

� Z

RC

f .�.p//.p/jpj2p��1j�N��1 d NNp
�

�
� Z

RC

g.�.q//.q/jqj2A1

�

� Nq � 1
Nq C 1

�

.q�1/��1j�N��1 d NNq
�

Qd�:

(9.7)

The integral in the first big bracket is the Mellin transform of the function

F.p/ WD f .�.p//.p/jpj2:

The integral in the second big bracket is a complex conjugate to the Mellin
transform of

G.q/ D g.�.q�1//.q�1/jqj�2A1

�

� Nq�1 � 1
Nq�1 C 1

�

:

Thus we get

hV C
0;0f; V

�
0;1giL2.ƒ;~a;b/ D

Z

ƒ

MF.�/MG.�/
1 �‚.�/

�
Qd�:

Denote by L.p/ the inverse Mellin transform of 1�‚.�/
�

. It is easy to see that L.p/
is an integrable function with a unique singularity of the type 1=.1� Np/ at p D 1.
We rewrite our integral as

Z

RC

Z

RC

L.pq/F.p/G.q/ d NNp d NNq;

and it has the desired form.

For other pairs V "
k;l

, V "0

k0;l 0 , where ", "0 D ˙1, we have similar calculations.
Instead of the boxed factor in (9.7), we get

1�‚.�/
N�kCl 0

�lCk0
: (9.8)
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For k C l C k0 C l 0 6 2 we repeat the same considerations, in these cases inverse
Mellin transforms of the functions (9.8) have (integrable) singularities23 at p D 1

of types
1

1 � p ;
1 � p
1 � Np ; ln j1 � pj; 1� Np

1� p :

If kC lC k0 C l 0 > 3, then this expression is integrable in �, the triple integral
is convergent, we can change the order of integrations and we immediately get an
expression of the form (9.6) with real analytic K.p; q/.

For the pairs including Vrem we get absolutely convergent triple integrals and
analytic kernels K.p; q/. �

9.6. Proof of Lemma 9.1. Now let f , g 2 D. PC/ have disjoint supports. Then
both terms in (9.5) are zero (see Lemma 9.2). Therefore the kernelK.p; q/ satisfy
the following property:

¹f; gº D
Z

RC

Z

RC

K.p; q/'.p/ .q/ dp dq D 0

if ',  are �-even elements D. RC/ with disjoint supports.
We claim that ¹f; gº D 0 for any �-even functions f , g 2 D. RC/. To observe

this, we take a �-even partition of unity �j with small supports, and decompose

¹f; gº D
X

k;l

¹�kf; �lgº:

Clearly, we can make this sum as close to zero as we want by refinement of a
partition of unity. We omit trivial details.

10. Domains of self-adjointness

Thus Ja;b is unitary. Clearly the multiplication operators

f .z/ 7�! 1

2
.z C Nz/f .z/; f .z/ 7�! 1

2i
.z � Nz/f .z/

defined on D. PC/ are essentially self-adjoint in L2.C; �a;b/ and commute. There-
fore the operators 1

2
.LC xL/, 1

2i
.L� xL/ are essentially self-adjoint and commute on

the subspace Ja;bD. PC/ � L2
even.ƒC; dKa;b/. But Wa;b contains this image. This

establishes Theorem 1.2.a.
Theorem 1.8.a follows from the same argumentation.

23 We can refer to corresponding formulas for the Fourier transform, see [14], Addendum,
Sect. 1.7 (Russian edition) or [15], Sect. B.1.3 (English translation).
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