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Abstract. We consider the standard hypergeometric differential operator © regarded as an
operator on the complex plane C and the complex conjugate operator ®. These operators
formally commute and are formally adjoint one to another with respect to an appropriate
weight. We find conditions when they commute in the Nelson sense and write explicitly
their joint spectral decomposition. It is determined by a two-dimensional counterpart of
the Jacobi transform (synonyms: generalized Mehler—Fock transform, Olevskii transform).
We also show that the inverse transform is an operator of spectral decomposition for a pair
of commuting difference operators defined in terms of shifts in imaginary direction.
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1. Introduction

1.1. Spectral problem. Denote by C the complex plane without the points 0
and 1, by D(C) the space of smooth compactly supported functions on €. Denote
by d?Z the standard Lebesgue measure on C.

Fix real @ and b. Consider the following measure on C

Hap(z)dZ = |z|20F2072|] — z|2a72b 43 (1.1)

and the corresponding space L2(C, 4.5),

(fig) = / F()gDtan(z) dE.
C

Consider the following pair of differential operators in the space L2(C, j14.p):

2

D ::z(l—z)a— +(a+b—(2a+1)z)i—a2; (1.2)
0z2 0z

.y 2,

D=Z(1-2)—=+@+b—-Q2a+1)z2)=—a". (1.3)
0z2 0z

These operators formally commute, i.e.,

DD f =DDf where f € D).
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A straightforward calculation shows that they are formally adjoint,

(Df.g) = (/. Dg), where [, g e DO).

Therefore the operators %(@ +9), ll (© — D) are symmetric on the domain D(C).

The purpose of this paper is to construct an explicit spectral decomposition of
this pair, i.e., a unitary operator U, which diagonalizes both operators D, D.

As we know after the famous work of Edward Nelson [33], 1959, (see,
also [42], Section VIIL.5) a question about commutativity of two unbounded self-
adjoint operators can be highly nontrivial.! Recall that two self-adjoint operators
A, B commute if they can be simultaneously realized as operators of multipli-
cation by functions in some L2. Equivalently, the corresponding one-parametric
groups commute:

eisAeitB — pi1BoisA  where s, ¢ in R.

Equivalently, resolvents (A —A)~! and (B —u) ™!, commute. However these prop-
erties do not follow from the identity AB = BA and are difficult for a verification.
There are some useful sufficient conditions and necessary conditions for com-
mutativity (for necessity we use the result of Kostyuchenko and Mityagin [23]
and [24]), but quite often a question remains to be heavy.2

Define two domains IT D Iy of the parameters (a, b):

II: 0<a+b<2, —-l<a-—-b<l; (1.4)
Heont: 0<a <1, 0<b<1, and(a,b)# (L1, £1),(£1,F1). (1.5

Theorem 1.1. The operators %(’D + D), %(@ — D) admit extensions to a pair of
commuting self-adjoint operators if and only if (a, b) € II.

Next, we define a natural domain for our operators. Consider the subspace
Rab (©) c L2(C, Ma.p) consisting of smooth functions f on C satisfying the
following conditions.3

1 The topic of the Nelson paper was finite-dimensional Lie algebras of unbounded operators
in Hilbert spaces. However, his results remain to be non-trivial for pairs of commuting operators
and even for one operator.

2 A famous example is a problem, see [12], which was raised by Irving Segal in 1958 and
which was discussed during almost 30 years: Let €2 be an open connected domain in R”. Assume
that the operators i d/dxx in D(£2) admit commuting self-adjoint extensions. Is it correct that €2
is essentially a fundamental domain of R” with respect to a certain discrete group? The answer
is affirmative.

31f (a,b) ¢ I, then R, p (©) is not contained in L2(C, Wa.b)-
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Figure 1. To Theorem 1.1. The domain IT of commutativity, and the domain ITcon C I,
where the spectrum is purely continuous.

1°. In a neighborhood of z = 0 a function f has an expansion of the form*

2—2a—2b :
@) = {a(z) + B(2)lz| %fa +b#1, (1.6)
a(z) + B(z) In|z| ifa+b=1,

where a(z), B(z) are smooth functions.
2°. In a neighborhood of z = 1 a function f has an expansion of the form

y(z) +8(2)|z — 122722 ifa—b #0,
= 1.7
s {V(Z)+5(Z)IH|Z—1| ifa—b=0, 47

where y(z), §(z) are smooth.
3°. For each p, ¢, N we have

oy _ O(|z|2¢ P4 (In|z|)~N 1.8
5,795 (Iz] (In|z)™) asz — oo. (1.8)

Theorem 1.2. a) For (a, b) € II the operators %(’D +9), z—ll (D—D) are essentially
self-adjoint on R, p (C) and commute in the Nelson sense.

b) If (a, b) € cont, then the spectrum of the problem
Df =if Df =S (1.9)

is multiplicity free and consists of ¢ having the form

TN
= (k —;ls) ., wherek €7, s € R. (1.10)

If (a, b) € I\ ¢ong, then the spectrum consists on the same set plus one eigenvalue
é‘o > 0.

4 Boundary conditions in this spirit sometimes arise in spectral theory of ordinary differential
operators D for operators with deficiency indices (1, 1) or (2, 2), see, e.g., [36], Section 1.
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Let us explain the obstacle for commutativity. Consider a second order differ-
ential operator D on aninterval. For each { € R the differential equation Df = {f
has two solutions, and we can select generalized eigenfunctions of D as solutions
that have L2- or almost L2-asymptotics at the ends of the interval. In our case
the system (1.9) locally has 4 solutions. Furthermore, C is not simply connected,
solutions are ramified at 0, 1, co. As a result there are few single valued solutions
and we have no freedom for selection of asymptotics. Such considerations (see
Section 4) allow to establish necessity of the conditions of Theorem 1.1.

Unfortunately, we do not know an a priori proof of sufficiency and obtain it
as a byproduct of the explicit joint spectral decomposition of the operators D, D.
Such detour makes our work long and requires numerous explicit calculations and
estimates.

1.2. The index hypergeometric transform. Our work is a counterpart of the
following classical topic. Consider the hypergeometric differential operator

d? d
D= x(x + ) + (@ +b) + Qa + Dx)o— +a?

on the half-line R+, i.e., x > 0. Consider the integral operator

a+is,a—1is

Ia,bf(s) = F( +b) / f(x)2F1|: a -’|‘ b ;x]x“+b—1(1 + x)a—b dx.

(1.11)
Then I, 5 is a unitary operator

1‘ IF'a+is)I'(b+is)2 ds).

2 a+b+1 a—b 2 -
LR, x* (1 4+ 1) dx) — L?(Ry 7 i)

(1.12)
The operator 1, sends D to the multiplication by 52, see [45], [43], [40], [22],
[21], [34], and [37]. This transform? is known as generalized Mehler—Fock
transform, Olevskii transform, or Jacobi transform.

Such operators arise in a natural way in the analysis on rank one Riemannian
symmetric spaces, on the other hand they are special cases of multi-dimensional
Harish-Chandra spherical transforms and more general Heckman—Opdam [18]
integral transforms, which arise as spectral decompositions of certain families
of commuting partial differential operators.

5 A special case a = 1/2, b = 1 of this transform was discovered by Gustav Mehler in
1881, the general transform was obtained by Weyl [45] in 1910. The I, j is a representative of
a large family of index integral transforms, which involve indices of hypergeometric functions,
see numerous examples in [46], [16], and [38].
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Next, consider the following difference operator in the space of even functions
depending on the variable s:
(a—is)(b—1is)

Le() = Do oy 1y 806 +1) — 86)

(a+is)b +is)( 5 —1) ) (1.13)
s—1i)—g(s)),
Qis)Q2is + 1) ¢ &
where i2 = —1. A domain of this operator is a space of even functions holo-

morphic in the strip |Ims| < 1 4 ¢ with some condition of decreasing at infin-
ity. It turns out that L is essentially self-adjoint in the space of even functions
L2 (R, W ? ds) and the operator 1, sends it to the operator of
multiplication by x.

So we have a bispectrality in the spirit of Griinbaum [17], [8]. Notice that
simpler index integral transforms as the Kontorovich—Lebedev transform and the
1 F1-Wimp transforms also are bispectral, see [38].

Cherednik showed [4] that inverse Heckman—Opdam transforms provide spec-
tral decompositions of families of commuting difference operators, see also van

Diejen, Emsiz [6].

1.3. Radial parts of Laplace operators. Recall one more classical topic. Con-
sider the usual sphere S3:
gy g2,

the orthogonal group SO(3) acts in L?(Sg) by rotations. Recall one of possible
ways to decompose this unitary representation into irreducible components. Con-
sider the Beltrami—Laplace operator A on the sphere and restrict it to the space of
functions depending on the height z. We get a differential operator

92 0
— 2
LZ _(1_2)82—2_225

in L?[—1,1]. Eigenfunctions of L, are the Legendre polynomials. Simple ar-
guments show that the spectral decomposition of A is a priori equivalent to the
spectral decomposition of L, (the reason of this equivalence is compactness of
the group SO(2) of rotations of S3 about the vertical axis).

Now consider the complex manifold SZ C C* defined by the same equation
x2 + y2 + z? = 1. The complex orthogonal group SO(3, C) (the Lorentz group)
acts on the quadric Sé, the action admits an SO(3, C)-invariant measure, and again
we come to a problem® of decomposition of the unitary representation of SO(3, C)

6 This problem was solved by Naimark in [30] in a completely different way.
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in L? on S3. Now we have two Beltrami-Laplace operators, a holomorphic
operator A and an antiholomorphic operator A. They commute in the Nelson
sense. Restricting them to functions depending on the coordinate z € C we get
two operators”’

a2 d a2 d

— —2z—, L;:=(1-7%)— —27—.

92 Hy LEm (- Tgn 2

However, now the stabilizer of the point (x,y,z) = (0,0, 1) is a noncompact
subgroup SO(2, €), and this breaks the a priori argumentation. A joint spectral
decomposition of A, A can be reformulated as a certain problems for L, L, but
this is not precisely a problem of a joint spectral decomposition of L, L.

L,:=(1-z2?%

Notice that a similar separation of variables can be done for L2 on an arbitrary
rank one complex symmetric space G¢/Hc (and, more generally, for spaces of L2-
sections of line bundles on G¢/Hc). In all the cases we get pairs of hypergeometric
operators of our type. We hope that our spectral decomposition allows to write
the explicit Plancherel formula for such spaces and to give another proof of old
Naimarks’s results [30]-[32] on tensor products of representations of the Lorentz
group. However, the present paper does not have such purposes.

1.4. Homographic transformations of the operators ® and ©. Our next
purpose is to present the explicit joint spectral decomposition of the pair ©, D.
We need some preparations.

Consider the following 8 transformations of functions on C:

f@)—yi (@) f(2), [f(2)r—yi(2)f(—-2),
where
V](Z) — 1’ |1 —Z|2(b_a), |Z|2(1_a_b), |Z|2(1—a—b)|1 —Z|2(b_a),
cf. Erdélyi etc., [9], Subsect. 2.6.1. It can be readily checked that these transfor-

mations send the operators D, D to operators of the same type with other values
of the parameters (a, b), as

(a,b) — (b,a), (a,b)+— (1—a,b), etc.

7'This pair corresponds to a = b = 1/2 in our parameters.

8 Such reductions for families of Laplace operators were widely used by Harish-Chandra
(in his famous works on the Plancherel formula for real semisimple Lie groups) and by his
successors. The problem for L, L. is more similar to decompositions of L? on real rank one
pseudo-Riemannian symmetric spaces, which was solved by one of the authors of the present
paper [27]-[29].
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Thus we get all isometries of the square I1. In particular, such transformations
send spectral problems to equivalent spectral problems.

1.5. Notation. Generalized powers. Denote by C* the multiplicative group
of C. We need a notation for characters of C*. Let z € C* and a, a’ € C satisfy
a —a’ € 7. We define a generalized power of z by

7

— M~ ol
a ala = azd ealnz—l—a Inz _ |Z|2aza a

’

Denote by A€ the set of all pairs a | @’ such that a — a’ € Z. Denote by A C A¢
the set of all pairs

a |a/=%(k+is) %(—k—i—is), where k € Z, s € R. (1.14)
Equivalently,a | a’ € Aifa —a’ € Z,a + a’ € iR. We also will use the notation
[a] =[a | d]:= %Re(a +ad). (1.15)
We have
12919’ = |z 2lale],

in particular, for a € A we have |z9/¢'| = 1.
We fix the standard Lebesgue measure d A on the set A:

/go(x)ch = Z/(p(k J;”) ds.
A kR

1.6. Hypergeometric function of the complex field. Following Gelfand, Graev,
and Retakh [13], we define the gamma function I'C, the beta function B®, and
the hypergeometric function , F 1@ of the complex field (see, also, Gelfand, Graev,
Vilenkin [14], Subsect. 11.3.7, and Mimachi [26]). The gamma function rCis

1 o
Fc(a) = Fc(a | a/) = —/Za_leZIRez d:
T
C

1 — ’_ 7 =
= _ Z4 1la leZtRez dz
g

C

, T(a) (1.16)
ra—a)
wea T@)

I'ad—a)

_! I'(a)l(a’)sinma’.
T

~a—a
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The beta function B® is®

C - l a—l.1 _ n\b-1 ;77
B (a’b)'_n/t (1—-0)"""dt
C
_I@rtm (1.17)
I'C(a+b)
_T@r®ra—ad-»b)
 T(a+b)I(@)r®)

The hypergeometric function of the complex field is defined by

a;b
,Ffla,b;c;z] = 2FICD[ c ;z]

cfala.,b|b
=2h [ cle’ ,Z] (1.18)

1 b-1 —b—1 —-a g7
= ———— |1 1—1)¢ 1 —zt)™dt.
JTBC(b,C—b)/ ( ) ( z )
(5

Recall that the Gauss hypergeometric functions are defined by

2Fila,b;c;z]:

1
1 b—1 c—b—1 —a
- 1— 1—
B(b,c—b)/t (1 —1)°b=1(1 = zr)=9ds
0

@by,

1;, ple)p o

where
@pi=clc+D...(c+p—-1)

is the Pochhammer symbol. The functions , F [a, b; ¢; z] admit expressions in the
terms of , Fy, see Theorem 3.9.

1.7. Spectral decomposition. For (a,b) € II we define the kernel X, 5(z, 1)
on C x A by

:Ka,b (Za A') =

1 cla+ri|la=X a—A]la+2
2| (11
r@(a+b|a+b)21[ a+bla+b ’Z} (119

9 This integral has a multi-dimensional counterpart of the Selberg type, see [7].
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Theorem 1.3. Let (a, b) € Mcont. Then the operator
Jap Q) i= [ Kap(2. ) f Oaanlc) d2
C

2

is a unitary operator from L?*(C, L) 1o L2,

with respect to the Plancherel measure

(A, xqp) of even functions on A

- 1 _ o~
dKap(A) = x4 p(A)dA = FMFC(a —Ala +M)TCbB + A — V)|2dA. (1.20)
T

Next, we modify the definition of the measure for (a,b) € IT \ I¢one. Due to
the homographic transformations© it is sufficient to consider the case a < 0. We
define the Plancherel measure dK, 5 (A) on A that is the sum of », dA and two
s-measures located at the points +a | +a € Ag,

I’a+ba+b)TC0b—a|b-a)TC2a|2a)- Gag + 8—aj—a).  (1.21)
Define a constant function v(z) on C by
v(iz)=T%a+b|a+b".

For f € D(C) we define an even function Ja.p(1) on the support of dK, (1)
given by the same formula (1.20) on A, its value at (+a | £a) is

Ja,bf(:l:a | :l:a) = (f’ v)LZ(C,ua,b)'

Theorem 1.4. If (a,b) € Il and a < O, then the operator J, j is unitary as an
operator L*(C, uap) to L2 (Ac, dKgp).

even

Our operator really determines the spectral decomposition:
Theorem 1.5. For each (a,b) € I for any f € Deven(C) we have
JapDfRA) = A Jap fA), JapD () = A Jap ).
This means that
DK(z,A) = A2K(z, 1), DK(z,A) = A2K(z, L).

Next, we consider the space Deven(/\), which consists of even smooth com-
pactly supported functions on A that are zero on a neighborhood of the point
0 | 0. The following statement explains the appearance of the space R, and also
is one of the arguments for the proofs of our main statements.

10 Changing of kernels X, , by the homographic transformation can be observed from
Proposition 3.5.
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Theorem 1.6. If F € Deyen(A), then J*, F € Ry .

The images of §-functions also are contained in R, 5.

1.8. The transformation J, 5 in the complex domain. Let us extend our kernel
X to the complex domain. For

013 = {557 e

we set
:Ka,b(Z;A | A/)

=:Ka,b(2;k’0)

L 1

" TCa+b|a+b)

k+o —k+o —k—o k—o
-2FIC a+ > a-+ 5 ,a—+ > a-+ 2 o
a+bla+b

(1.22)

where k ranges in Z, o ranges in C. The previous expression (1.19) corresponds
to a pure imaginary o.
For f € D(C) we define a meromorphic function on A¢ by

Jas Sy i= [ FEKC: ko) dpap dZ.
¢

Theorem 1.7. For f € D(C) the function Jap [ is contained in the space W, p,
defined as follows.

We define a space W, 5 as the space of all meromorphic functions™ F(k, o)
on A satisfying the conditions a)—d).
a) F iseven,i.e., F(—k,—0) = F(k,0).
b) Possible poles of F(k, o) are located at the points
o ==x(-2a+k|+2j), £(-2b+lk|+2j), wherej =1,2,3,.... (1.23)

A maximal possible order of a pole at a point (/, ¢) is a multiplicity of (/, ¢) in the
collection!? (1.23).

1'We say that a function F (k, o) is meromorphic if it is meromorphic as a function in o for
any fixed k.

12 For (a, b) € IT orders of poles < 2. Poles of order 2 arise only ifa = b,a =1,b = 1.
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c¢) For each A > 0 for each N > 0 in the union of strips |Reo| < A we have
an estimate

F(k,0) = O(k?> + Imo)*>)™" ask? + (Imo)? — oo. (1.24)

d) Foreach p,q € Z
F(p,q) = F(q. p). (1.25)

Next, we extend the spectral density x, 5 to the complex domain.

*ap(A | A)
=%a,b(kv0)
1 c k+o —kto
= 5+ )k =0 (a+ =2 |a+ =)
.FC(aJr_kz_O a+_k2_0) (120
.FC(b+k+U‘b+_k2+U)
-F@(b+_k2_0 b+_k2_0)'

In the case a < 0 discussed above, x, 5 has a pole at k = 0, 0 = a and the

inner product in L2, (A, dK, ) can be written as

(F,G) = ll > /F(k,o)G(k,—a)xa,b(k,a) do
k

—ioo

+ 2108 (F(k, 0)G (K, —5)%4,5(0, 0).

Ifa > 1, then the spectral density has a zero at k = 0, 0 = a—1 but both functions
F(k,o0), G(k,—0) admit simple poles at this point, and we have a similar formula.

1.9. Difference spectral problem. It turns out that our problem is bispectral,
and the bispectrality is a crucial argument of our proof. We define analogs of the
difference operator (1.13). Consider meromorphic functions ¢ depending on

1 1
A|A/=§(k+15) 5(—k+iS)€A@
and the operators in the space of meromorphic functions defined by

Tok,s)=®k+1,s—i), Tok,s)=dk+1,s+1i),
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or, equivalently,
TOA|A)=dA+1]|1), 7~"d>()L |A)=®A| A +1). (1.27)

We define the following difference operators

@O g @)
= v VT g T (1.28)
A (a+A)b+ 1) =1 W -~
L= 20 (1 + 217) (T D+ —2A(1 —2X) (T —1). (1.29)
Formally,
£ =¢g¢.

Theorem 1.8. a) The operators %(2 + £), %(2 — £) defined on the space W,
are essentially self-adjoint and commute in the Nelson sense.

b) For ® € Ja,bD(C) we have
T pL®(z) = zJ,,®(z), J,,20(z) = 2J,,®(2). (1.30)
Thus the operator J} determines a joint spectral decomposition of %(2 +£)
and (£ - £).

1.10. The structure of the proofs. We derive asymptotics of the kernel K(z, 1)
as z — 0, 1, oo for fixed A (Theorem 3.9) and as |A| — oo for fixed z (Theo-
rem 7.1). Next, we prove inclusions

Ja*,bDeven(A) C :Ra,ba Ja,bD(C) C Wa,b
(Proposition 5.2 and Corollary 8.2) and symmetries

(D &) 12 p) = (DO 12Cpug ) Where f, g € Rap:  (1.31)
(CF. G124 ax, ) = (F-L£G)12(rdk, ) Where F, G € Wap, (1.32)

see Proposition 5.5 and Theorem 8.4. This implies a generalized orthogonality,
i.e.,

(JapFs I 4G 2y ) =0  if supports of F, G € Deven(A) are disjoint,

and a similar statement for J, 5, see Lemmas 9.2, 6.4. Next, we show that for any
F, G € Deven(A) the inner products of their preimages can be written as

<Ja*,b F, Ja*,b G >L2(C=Mu.b)

= (F,G)Lz(A,dKa_h)+//H(Al,Ag)F()Ll)G(Az)cZklc?Ag,
A A
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where H is a locally integrable function, see Lemma 6.4. We also prove a
similar statement for J, 5, see Lemma 9.4. Then generalized orthogonality implies
H(-,-) = 0. Thus we get

J;,b‘]a,b == 1, Ja,b‘]a*,b - 1, (1.33)

and this is our main statement.

Some steps of this double way are straightforward, some points require long
calculations and estimates, and we meet some points of good luck (the proofs
of Theorem 8.4 and Lemma 9.4). We also need a lot of information about func-
tions , F\¥ (in particular, to cover the cases @ + b € Z anda — b € Z we need a
tedious examination of possible degenerations of functions , F).

The bispectrality allows to avoid a direct proof of completeness of the system
of generalized eigenfunctions of D, D.

To prove the necessary conditions of self-adjointness in Theorem 1.1 we ana-
lyze common generalized eigenfunctions of ©, D for (a, b) ¢ I1 and after a natural
selection we reduce a set of possible candidates to a finite family. This is done in
Section 4.

This text is focused to a proof of unitarity of J, ;. An introduction to func-
tions , FU in Section 3 can be a point of an independent interest. Also, we get two
relatively pleasant statements about asymptotic behavior of integrals

M(e) :/r"“”‘""l(e—z)ﬁ—llﬁ’—lw(z)d? as & — 0
C

and
I(\) = / | (1)|?e! ReGAe@) gf a5 |A| — oo,
C

where f', ¢ are holomorphic and A € C (Theorems 2.3 and 7.2).

1.11. Final remarks. The index hypergeometric transform (1.11) can be applied
as a heavy tool of theory of special functions, see [22], [35], [37]. In [39] we use
our operators J, 5 to obtain a beta integral over A, which is a counterpart of the
Dougall 5 Hs-summation formula and of the de Branges—Wilson integral.

Also, we notice that functions, which can be regarded as higher hypergeo-
metric functions , F of the complex field, arise in a natural way in the work of
Ismagilov [20] as analogs of the Racah coefficients for unitary representations of
the Lorentz group SL(2, C) (see, also a continuation in [5]).

It seems that our problem can be a representative of some family of spectral
problems, but now it is too early to claim something certainly.
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2. Preliminaries.
Gamma function, the Mellin transform, weak singularities

This section is a union of 3 disjoint topics:
— some properties of the function I'C, which are intensively used below:

— some properties of the Mellin transform on C, they are used in a proof of
Proposition 3.1 and in Sections 7-9:

— a lemma from asymptotic analysis, which is used only in a proof of Theo-
rem 3.9 (the last statement can be independently established by a straightforward
tiresome way).

2.1. Some properties of the gamma function. The usual functional equations
for the T'-function can be easily rewritten for I'C (recall that a — a’ € Z!):

I |a) =T%d | a); 2.1)
Ia+11d)=ial%a|d); (2.2)
ICa|ad)TC0—a|l-d) = (-)*7; (2.3)
ICala’) = (-)*“T%a| ). 2.4)

Also,
m—1 1 1
H Fc(a + 2= ‘ a + p_) = m' 7T C g | ma').
=0 m m

The identity (2.4) implies
BCla|a',b| b= B a|a. b|b). (2.5)

Letkq, ko € Z. Then

o0, ifkl,kz e”Z_,
0. it ky, ks € NN,
— |
Ok, | ky) = ikl—kz%, ifky €N, ks € Z, (2.6)
)
~ 1y
l'kz—kl —(lzzk )') s lsz S ]N, kl € Z—,
mY

where Z_ denotes the set of integers < 0.
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The following lemma gives us the asymptotics of the Plancherel density (1.20).
Lemma 2.1. We have the following asymptotics in A € A:
FCa—A]a+MDTCB+A|b—1) ~A9Tolatb=1 45 14| > 00.  (2.7)
The asymptotics is uniform in a, b if they range in a bounded domain.

Proof. Denote Re A = k/2. Let |arg A| < = —¢. Then we write our expression as

i*Ta+d) i*Te+2)
Frl—a+X) TA-b+1)

and apply the standard asymptotic formula I'(z+a)/ T'(z+8) ~ z%# in the sector
|argz| < m — ¢, see Erdélyi etc., [9], formula (1.18.4). If |arg(—A)| < & — ¢, we

write _
i*T@—-1) kI -21)

Fl—a—2) TA—b—2)

and come to the same asymptotics. |

2.2. The Mellin transform. Denote by C* := C \ 0 the multiplicative group of
C. The Mellin transform (see, e.g., [13]) on C* is defined by

§w) = M) = - / F(2)#1 . 2.8)
C

where p = {u | '} = {&5 | ZHsY € A (here we allow complex s). This
operator is the Fourier transform on the group C* ~ (R/27Z) xR, so it is reduced

to the Fourier transforms on (R/27Z) and on R. Indeed, changing variables

z = ePe'®
we come to
1 2w o0
glk,s) = E/ / f(epeztp)ezktp+zsp dp do.
0 —oo

The inversion formula is given by

1 .
&) =Mge) = 5 / g | —@)z M.
A

Equivalently, M is a unitary operator L?(C*, |z|~2) — L2(A).
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2.3. The Mellin transform of even functions. We say that a function f on C* is
x-evenif f(z7') = f(z). Denote by L7 (C*,|z|~?) the subspace of L>(C*, |z|~?)
consisting of x-even functions. Obviously, the Mellin transform sends x-even
functions in z to even functions in u. Also, for a x-even function f we have

Mf(p) = % [ f@)* 1+ 2771 dZ,  where f is x-even. (2.9)

2.4. The Mellin transform of smooth compactly supported functions

Theorem 2.2. a) Let f be a compactly supported smooth function on C. Then
Mf(u | 1) extends to a meromorphic function in the variable . with possible
poles located at the points i | @' € Z— x Z._. Moreover, for any p, p' € Z4 for
Re(u + 1') > —p — p’ we have

(=n7+” u—p—1lu'—p'—1 oy dz 2.10
I B Z. .
R riw / e GV E 210)
The residues at the poles are
1 3PtP £(0,0)

1S,y =—pl—p L | 1) = (2.11)

(p—DUp' =1 0zPazr
b) For each N for each A for all pairs (k, s) satisfying | Ims| < A we have
k+is|—k+is
(5
For a proof of statement a), see Gelfand, Shilov [15], Sect. B.1.3, or equiv-
alently Russian edition of Gelfand, Graev, Vilenkin [14], Addendum 1.3 (the
term 'Mellin transform’ in that place is absent, but the statement is proved). For-

mula (2.10) is obtained from (2.8) by integration by parts. The statements about
location of poles and about residues require more careful arguments.

) = 0k>+ |sH)™N  as k2| + |s?] — .

Proof of the statement b. We pass to polar coordinates, z = ¢'? and get

oo 2w

k+is| —k+1i 1 o
Mf( -;ls ‘ ;-lS) _ Z//H(e’r)r—l-‘rzsezek 4o dr.

0 0

where H (0, r) := ®(re'?) is a smooth function 27 -periodic in @, the H(#, 0) does
not depend on 6, also H(6 + &, —r) = H (6, r). Integrating by parts in r, we get

k+is | —k+ lS (1) —itis+l g i0k
_ —H i
M f( ‘ : = i) / / 0, r)r dre'®* 4o
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For [ > A the integral absolutely converges. Integrating by parts in 6, we get

(_1)k+l 2m oo al+m ) )
//a H(O.r)r~ 5t aret® dp,
0 0

27 (k)™ (is), rlgom

and

k+4is|—k+is const
P (5= 1) < i@

2 2 |2rik)™(is);]
If |s| > |k| we take m = 0 and large [, if |k| > |s|, we take [ > |Ims| and
large m. O

2.5. Weak singularities. Here we imitate one standard trick of asymptotic anal-
ysis, see, e.g., [10], Sect. 1.4. Fix R and a smooth function ¥ (¢) on C. Consider
the integrals of the following type

M(g) = My p(e) := /t“‘”"‘/‘l(s—z)ﬂ‘”ﬂ/‘lxp(z) di.
[t|<R

Clearly, My g(¢) is holomorphic in e, 8 in the domain of convergence and admits
a meromorphic continuation? to (., B) € A2.

Theorem 2.3. Let «, B satisfy the condition
o, B,a+B—-1¢7Z_x17_. (2.12)

Then M(e) (defined in the sense of analytic continuation) admits the following
asymptotic expansion at 0:

1 9ty (0,0 o
M(e) ~ ZBC((X +ild +i',B1B)- 9 ¥(0.0) gt Bi—1lo/ +B+i'—1

v i’ ortort’
1,i'=
+ erlj/ejl./'/_
JsJ'=0
(2.13)
The coefficients of the expansion are meromorphicina | o', 8 | B
Iflaa]>0,[B1B]>0[a|aT+[B|B]>1, then
Foo = / (OB =20, (1) 4 (2.14)

[t|<R

13 For instance, see the proof of Proposition 3.1 below.
14 Recall notation (1.15).
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First, we prove the following lemma.

Lemma 2.4. Let o, o/, B, B’ satisfy the condition (2.12). Then the following
integral (defined in the sense of analytic continuation)

R(e) = f S CE) L (2.15)
[t|<R
admits an asymptotic expansion of the form
R(e) =B | o/ B | B)- et L N el (2.16)
J.j'=0

Moreover, the series

> piyel (2.17)
7,20
converges in the circle |e| < 1/R, and the coefficients p;|j(a, b) are holomorphic
in the domain (2.12).

Proof. Set

’ / / ﬂ_l .B/_l =
Qupler, e2) 1= ()PP / @tB=2le’+p _2(1 - EZ—1> (1 - EZ—2> dr.
|t|>R

This function is meromorphic in «, 8, and in &y, &, in the bidisk |¢;]| < 1/R,
lea] < 1/R. Let

[]a]>0, [BIB]>0, [x]a]+[B]B]<TL (2.18)
Under these conditions the integral R(e) converges, and
R :/ - / = B | B | ) e TP — 00 p(e, 8.
C |t|>R

Expanding the integrand in Q4 g in a series in &1, &, and integrating termwise we
come to

Qa.pler,2) = Z

Jj=0,j'20:a+B—j=a’+B'—j’

(B + V) (p + VRIS
G+J —a—a'=p=pHjijn 12
(2.19)

Now we can omit restrictions (2.18). Indeed, under conditions (2.12) the se-
ries (2.19) converges in the bidisk |e1] < 1, |e2] < 1 and therefore its sum co-
incides with the meromorphic continuation. O
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Proof of Theorem 2.3. We expand the function y as a sum

(e, 7) = Z ! wtjlj/ + Hy (1),

17N Jott’
ey N at’ ot
where Hy (¢) is a smooth function and
Hy(t) = 0(t|N ") ast — 0.

Substituting this to the initial integral we get a sum of integrals of the form (2.15),
we apply Lemma 2.4 to each summand. Also we get a summand

I(e) = /z“—lla’—l(s + )BT gy (1) di.

[t|<R

We wish to show that T'(¢) has partial derivatives at O up to order N — k, where k
is constant depending only on & and . Consider a partition of unity, 1 = ¢; + ¢»
such that ¢, is zero at some smaller circle || < R’. According to this, we split
I = I + I,. Obviously, /, has an expansion of the form

~ E : i
12 CJ|]/8

J,J'=0

with coefficients meromorphic in «, 8. Next, we integrate /; by parts several
times,

; B—14+m|B’+m—1 8t2m a—1la/—1 -
(,B)m(ﬂ/)ml |</R(8 e ggim ! Hy (t)e1(1)) dt.

I1(e) =
Choosing m we can make 8 + m — 1, B/ + m — 1 as large, as we want, say
> ¢. Next, we choose a large N, such that %(') is continuous at 0. Now
we can differentiate /; (¢) with respect to ¢, &€ ¢ times at 0 and consider its Taylor
expansion. This finishes a derivation of the asymptotic expansion for R(e).

If the integral R(0) converges, we substitute ¢ = 0 to the expansion and get
the expression for rgg. O

3. The hypergeometric function of the complex field

Here we discuss basic properties of the functions , FC[].
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3.1. Domain of convergence and analytic continuation. The hypergeometric
function , F'[a, b; ¢; z] of the complex field is defined by the Euler type inte-
gral (1.18):

1 _ o _ =
2Flc[a,b;c;2] = m/[b 1(1 _[)C b 1(1 —Z[) adl. (31)
C

For z # 0, 1, the integral absolutely converges (see notation (1.15) if a, b, ¢ is
contained in the following tube @,

€3]/

[b] >0, [c]—[b]>0, [a]<1, [c]—]a]<?2. (3.2)

In other words, the integral absolutely converges if and only if the point ([a], [b], [c])
is contained in the simplex E in R> with vertices

(1,0,0), (=1,0,0), (1,0,1), (1.2,2). (3.3)

We have A® ~ CxZ, therefore triples (a, b, ¢) depend on 3 integers and 3 complex
parameters. Clearly, each component of the set Z> x C has an open intersection
with the domain of convergence.!s

Proposition 3.1. For z € C, the expression , F. 1@ [a,b; c; z] as a function of a, b,
¢ admits a meromorphic extension to arbitrary values of a, b, ¢ with poles at a
countable union of surfaces

aclNxIN,beNxN, c—aelNxN,c—beNxN, (3.4)
ceZ_x7_, (3.5)

and vanishes for all z € C at
ceINxNN. (3.6)

Proof. Consider a partition of unity 1 = ¢o(¢) +¢1(t) +¢1/2(t) + @oo(t) + 0z (2),
where all summands are smooth and nonnegative, @o, ¢1, ¢1/z, Yoo are zero
outside small neighborhoods of of 0, 1, 1/z, oo respectively, and ¢ = 0 in
small neighborhoods of these points. Denote P(z, ) the integrand in the integral
representation of , F'[a, b; ¢; z]. Then

7B b, c—b),FL[a,b;c; 2]

=/gooPdt:—l—/golPdt:—i—/(pl/ZPdt:+/goooPdt:+/g0gPdt:.

15 The map (a, b, ¢) — ([a], [b], [c]) from A3 — R3 is surjective on all components.



530 V. F. Molchanov and Yu. A. Neretin

The last summand is an entire function in a, b, ¢. By Theorem 2.2 other summands
are meromorphic and can have poles at

beZ_x7_, c—beZ_x7_, aeclNxN, c—aelNxN.

However, BC-factor in the front of the integral (3.1) kills the first and the second
families of poles and produces new poles and also zeros. This gives us (3.4)—(3.6),
in particular the factor I'“(c) produces poles (3.5) and zeros (3.6).

All these possible poles really are poles, the simplest way to observe this is
to look at formulas (3.26)—(3.34) derived below. Formulas (3.26)-(3.28) show
that (3.4) are poles. To check a presence of poles (3.5) we apply (3.32)—(3.34). O

3.2. Kummer symmetries. This section contains a collection of elementary
formulas, they partially depend on Theorem 3.9 proved below. However, our proof
of this theorem is based on differential equations and asymptotic analysis and is
independent of our formulas.

First we notice two trivial identities

al|d,b|b _ alab |b

ZFIC[ cle ;Z:|:2FIC|: e iz 3.7
a'lab |b alab|b

2FI‘D|: ¢ e ;z}:zFlc[ har: iz | (3.8)

To verify (3.7) we substitute 7 > ¢ to the integral (3.1).

Proposition 3.2. a) (Gauss identity) Let [c] — [a] — [b] > 0. Then

cfab T, . cfab 1 T 0T  c—a—b)
[ i 0] < O eca ) g,

b) Let'® [c] < 1. Then

,FFa,b;¢; 0] := Zli_r)r})zFF[a,b; ¢zl = 1.

Proof. a) We substitute z = 1 to (3.1) and come to a beta function,
7BCb,c—a]/xB b, c— .
However, this argument is valid only if the beta integral BC[b, ¢ — a] converges.

The general statement follows from Theorem 3.9.b proved below.

b) also is reduced to a beta-function with the same problem with the domain
of convergence. The general statement follows from Theorem 3.9.a. O

161f [¢] = 1, then lim; ¢ |, FC[a, b; ¢; z]| = oo.
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Proposition 3.3. We have
,Ffla,b;c;z] = ,FL[b,a;c; z]. (3.10)

This will become obvious after Theorem 3.9. We use this symmetry in the next
two proofs.

Proposition 3.4 (Euler and Pfaff transformations). We have

a,b _ a,c—b z
ZFF[ . ;z] =(1-2) azFl‘U[ . ;Z_l] (3.11)
_ c—ab z
=(1-2) szF[ . ;Z_l] (3.12)
= (1—z)c %P FC [c - a’cc_ b;z]. (3.13)

Proof. We substitute t = 1 — s to (3.1) and get (3.11). Applying (3.10) we
get (3.12). Applying (3.11) and (3.12), we get (3.13). O

Proposition 3.5 (Kummer symmetries). The following six functions u}j (z) are
equal:V

uf(z) =, FY [a’cb: z] (3.14)

(compare with[9], (2.2.9.1));

cn (=D Preerfe—-1 ., ¢[b-—c+la-c+1
45 () = Fe@remroe _aree b~ 2 [ 2-c ’Z}
(3.15)
(see [9], (2.2.9.17) and ratio of coefficients at uy, us in (2.2.10.35));
I'’c)rm—a) _ [a,a—c+1 _
C _ _ \w a C . 1
30 = fepyree—a 2 2 aspa1F } (3.16)
(see [9], (2.2.9.9) and By in (2.2.10.5));
I'Cc)rfa—b) B b,b—c+1 _
C _ ) e b C . 1
() = remroe—n " 2 poagr i’ } G17)

(see [9], (2.2.9.10) and B, in (2.2.10.5));

7 The meaning of subscripts j in u}j, references, and comments are explained in a remark
after the proof.
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I'’e)rfc—a-b) a,b
Coy — C 1
2 = Fec—a)Ce—b)2 ! [a+b+1—c’1 Z] (3-18)
(see [9], (2.2.9.5) and Ay in (2.2.10.5));
Ir®era+b-c Ll c—ac—b
C _ __ \¢c—a—b C 1
ug(z) = ()" (b) (1-2) 5 F |:c—a—b—|— 1,1 Z] (3.19)

(see [9], (2.2.9.5) and A, in (2.2.10.5)).

Remark. For each expression (3.14)—(3.19) we can apply one of the transforma-
tions (3.11)—(3.13). In this way we get 24 expressions of this type.

Proof. The formula for u3. Changing a variable r = 1/s in (3.1) we come to

(_ l)c—a—b—lz—a
7BC(b,c—b)
C

sAC(1 — )P (1 —5/2)72 d5

()" 15BCa—c+1,c—b)
- 7BC(b,c—b)

(—2)~, FC [a, a—c+1 _1}

a—b+1 'z

We cancel I'C(c — b) and apply (2.3) two times.

The formula for u4. We transpose a and b in the formula for u3.

The formula for us. We combine the transformations (3.16) and (3.17).

The formula for u,. We combine the transformations (3.16), (3.11), and
again (3.16).

We combine transformations (3.16), (3.12), and again (3.16). O

Remark. Proposition 3.5 is a self-closed collection of identities. However, they
are reflections of the Kummer table of solutions of the hypergeometric equation

82
922
see Erdélyi, et al., [9], Section 2.2.9, formulas (1)-(24). The Kummer table

contains 6 solutions, each of them is defined in a neighborhood of one of the
singular points 0, 1, co:

(z(l—z) —l—(c—(a—l—b—l-l))%—ab)u(z) =0,

u1(z) = a1(2), us(z) = z'as(2),
us(z) = (—2)Pas(z7h), ua(z) = (—2) Pau(z7h),

Uz (z) = an(1 = 2), u(z) = (1 — 2)*Pag(1 — 2),
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where o (x) are power series, «;(0) = 1. Generally, these solutions are rami-
fied at the points 0, 1, co. Each solution is represented in 4 forms, which can be
obtained one from another by the Pfaff transformations, see Erdélyi, et al., [9],
Section 2.1, (22)—(23). In the table above we present the corresponding expres-
sions for , F¥[a, b; ¢; z], they correspond to Kummer’s expressions with change
(a,b,c) — (a,b,c). The resulting functions u‘;@ are non-ramified (by definition)
and differ by factors independent of z, we normalize them to make them equal
one to another. Counterparts of these factors (except one formula) are present in
the Kummer formulas as coefficients of transfer-matrices (11, us) to (13, u4) and
(u2, ug), with the same replacement (a, b, c¢) — (a, b, ¢), see Erdélyi, et al., [9],
display (2.2.10.5) and the coefficients Ay, A», By, B2. So, in each line of Propo-
sition 3.5 we give a reference to the corresponding formula in Erdélyi, et al., [9],
(2.2.9.1)—(2.2.9.24) and to the corresponding coeflicient in [9], display (2.2.10.5).

3.3. Differential equations

Lemma 3.6. We have

0 alaib|b ab a+1|as5b+1|0
—,FF ’ 2| = —,FF ’ 7 |;
8221|: c|c z c ! c+1]c z

’ ’

9 ala:b|b ab  ofala +1:b]b +1
_FC ’ . — FC ’ .
8221|: clc ‘ ¢ 2! clc+1

Proof. We differentiate the integral with respect to the parameter z, and get an
integral of the same form. The calculation is valid if & N (E + (%, % %)) # @,

[l

where E is the simplex defined by (3.2)—(3.3). This intersection is open and

nonempty. It remains to refer to the meromorphic continuation. |
Denote
02 i
D =Dla,b,c]:=z1—-2)=—= 4+ (c—(a+ b+ 1)z)— —ab; (3.20)
dz2 0z
/ !/ !/ / / = = 82 / / / = 8 /1.7
D'=D'd, b, =2(1-2)—= + (=@ +b +1Hz)— —a'b’. (3.21)
972 0z

Proposition 3.7. The complex hypergeometric function F(z) = 2F1‘D [a,b;c; z]
satisfies the following system of partial differential equations

Dla,b,c]¥F =0, D'la',b,c'1F=0. (3.22)

We call these equation by complex hypergeometric system.
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Proof. This follows from the identity
0
Dla.b,c]t® 1 =0) 711 =12)™%) = —ag(tb(l—t)c_b(l—tz)_“_l) (3.23)

(cf. [9], (2.1.3.11)). Consider sufficiently small positive ¢, §, » and take a, b, ¢
such that

b|b]=¢€ J[c|c]=¢e+3, [a|a’]=—%+8+5+%.

We multiply both parts of (3.23) by 72 ~1(1 — 1)< ~'~1(1 — 72)~% and integrate
over C. In the left hand side for such values of the parameter we can permute
integration and differentiation in z. In the right hand side the integrand is an
integrable derivative of an integrable function. Therefore the right hand side is
Zero. O

Proposition 3.8. a) Any solution of system (3.20)—(3.21) is real analytic in z.

b) Let zg # 0, 1, co. Denote by ¢1(z), ¢2(z) a pair of independent holo-
morphic solutions of the ordinary differential equation D{a,b,c]f(z) = 0 at a
neighborhood of zy. Denote by ¥1(2), ¥2(Z) a pair of antiholomorphic solutions
of the ordinary differential equation D'[a’,b’, c'] f(Z) = 0. Then any solution of
the system (3.20)—(3.21) can be represented as

> (@b, )i (2) ¥ (). (3.24)
i,j=1,2
¢) If we choose ¢;, ; meromorphic in the parameters a, b, ¢ in some domain
in A%, then the coefficients t;; also are meromorphic in the parameters a, b, c.

Proof. a) Indeed, DJa, b, c] is an elliptic differential operator, therefore solutions
of the equation DJF = 0 are analytic functions, see, e.g., [19],Theorem 9.5.1.

b) Consider a solution
,FEla,b;¢;z] = hoo + hio(z — 20) + ho1(Z — Zo) + h11(z — 20)(Z — Z) + -~

of the system of partial differential equations (3.22). These equations determine
recurrence relations for the Taylor coefficients h;; of , F[...] at zo. It can be
easily checked that all the coeflicients /;; admit linear expressions in terms of
hoo, h()l, hlo, h11. On the other hand, for given h()(), h01, hlo, hll, we can
find a local solution of the complex hypergeometric system (3.22) in the form
> Ciji ()Y (2.

c) By Lemma 3.6, the coefficients ko, n10, h01, 11 depend on a, b, ¢ mero-
morphically. If ¢; (zo), ¢; (20), ¥ (20), ¥} (z0) are meromorphic in the parameters,
then the coefficients C;; also are meromorphic. O



Commuting hypergeometric operators and bispectrailty 535

3.4. Expressions for ,FC. Let us write expansions of ,F{[...;z] near the
singular points z = 0, 1, co. Explicit formulas for fundamental systems of
solutions of the hypergeometric differential equation are well known, see Erdélyi,
et al., [9], 2.9 (the Kummer series). For definiteness, consider zo = 0. If
¢ ¢ 7, then for generic values of the parameters the hypergeometric equation
Dla,b,c]f(z) = 0 has two holomorphic (ramified) solutions on a punctured
neighborhood of 0,

¢1(z) = 2F1[a, bic; 2],
02(2) =z Fla4+1—c,b+1—-c;2—c;2z].
The equation D'[a’,b’, ¢'] f(Z) = 0 has two antiholomorphic solutions
Y1(z) = 2F1[a’, b’ s 2],
Va(z) =V Fld + 1= b +1—¢;2— ;3]

Therefore near z = 0 we have solutions of system (3.20)-(3.21) of the same
form (3.24) with new ¢, . We get a family of functions depending of 4 parameters
7;j, therefore for generic a, b, ¢ this formula gives all multivalued solutions near
z=0.

Solutions (3.24) that are single valued in a neighborhood of 0 have the form

A191(2)Y1(2) + A202(2)Y2(2). (3.25)
Theorem 3.9. a) In the disk |z| < 1 we have the following expansion:
. / /
2Flc[a’b;2] =Ay-2F [a’b;z]zFl [a ’,b ;5]
c c c

A, ,Zl—CIl—C’2F1[a +1—c,b+1 —c_Zj|

2—c¢ ’
a+1=c,b+1-¢ _
'2F1[ ¢ :Z},
(3.26)
where
Ag =1, (3.27)

r’erfc-1
r¢@remrce—arcec—b)

Ay = (—1)c3P (3.28)
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b) In the disk |z — 1| < 1 the following expansion holds:

a:b a,b a.,b
FC|® 7.z =By -oF ’ 1—z|,F ’ 11—z
2 l[c Z} 02 1|:a+b+1—c 2}2 l[a/+b/+1—c/ Z}

Il — ,’—b
+Bl.(1_z)c—a—b|c—a—b2Fl|:c ac .1_Zj|

c+1—a—-"b
c—a,c-b
'2F1[0’+1—a/—b”1_z]’
(3.29)
where

Ie)rfc—-a-»n)
By = , 3.30
T TCc—a)'(c—b) (3-30)

I‘C FC _

B, = @er'*(a+b—-rc¢) (3.31)

TC(a)lC(b)

c) In the disk |z| > 1 the following expansion holds:

a:b i a,a+1—c _ a,a +1—-c¢ __
FC ’; =C,-(— al—a F ’ . 1 F ’ : 1
21[c Zi| 0-(=2) 21|:a—i-l—b ? ]2 1|:a/+1—b/ :

+Cy - (—2)P R |:b’b - C'Z_l}

b+1—a’
b +1—¢ __,
'2F1|: b +1—-a ' j|
(3.32)
where
rCe)rem-—
P G U (3.33)

TC(c—a)rC(b)’

_ I'%ora-bn)

3.5. Proof of Theorem 3.9. Forms (3.26), (3.29), and (3.32) for the desired
expressions follow from the preceding considerations. Also we know that the
coeflicients Ay, A1, By, B1, Co, Cq1 are meromorphic in a, b, ¢. Now we apply
asymptotic expansions from Theorem 2.3.
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1. Asymptotic of , F[a,b;¢; z] as z — oo. Assume that the defining integral
for , FC[a, b; ¢; z] converges, and also

[b] —[a] >0 (3.35)
Then,

N1 =)l — )2 dr

1
7BC(b,c—b) /
C

z® b—1 c—b—-1,_-1 —a g7
=— | "1 —¢ —1)7dt
7BC(b,c—b) / (=077 =)
C
B®Db—a,c—b) _ it
Y B 7 s (142 )
' (i,i)#(0,0)
BCMb.1-a) _, -
4+ — .z P14+ C]ii’Z_ll_l )
BE(b.c—b) ( (i i/go 0) )

Precisely, denote z~! by &, and denote the integrand in the last integral by H (-).
Let ¢(¢) = 0, ¥(¢) = 0 be smooth functions such that ¢(¢) + ¥ () = 1, ¢(t) = 1
near 0, and ¥ (¢) = 1 near co. A straightforward differentiation with respect to the
parameter ¢ shows that

/H(t;e)xp(z)dt:

is smooth near ¢ = 0. For

/H(t;z)(p(t;s) di
C

we apply Theorem 2.13, due to the restriction (3.35) we can also apply (2.14).
Thus we get explicit coefficients Cy, C; in the expansion (3.32). To remove
restrictions for the parameters, we refer to the analytic continuation.

Finally, we transform B®(b,1 — a) with formula (2.3),

rCmrea —a

. L, TCMICa—b)
r‘a+b-a )

C _
BC(b,1-a) = s

= (-

2. Asymptotic of ,F[a,b;¢;z] as z — 0. Substituting 1 = 1/s to the
definition (1.18) of , F¥, we get

(_ 1)c—a—b

—eta,  ytac] _ c=b—-1 ;3
ZBC(b.c—b) s (z=5)"1—-y%) ds
C

2Fl‘D[a,b;c; z] =
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—1)e2PBCa_c4+1,1—a o
o)) ( + ) e (1 + Zpii/z’l’

BC(b,c—b) -
(@,i")#(0,0)
(=) PBC1—c,c—b) "
Bobe—p (T2 @)

(1,i")#(0,0)

3. Asymptotic of ,F{[a, b; ¢;z] as z — 1. We substitute t = l—ls to (1.18) and
get

ZFIC[a, b;c; z]

= —(_l)c_b / sl @1 —z —5)"*d5
7BC(b, c—b)
C
(-1)*PBCc—b,1—-2a) e—b_a ) i
by (2 (1 £ pir(1-2) )
@,i")#(0,0)
(=) P2pCec—-b-al+a—c) 7
-1 ii’ T,
+ BO(b.c—b) T

(j,J")#(0,0)

Remark (Another way of a proof of Theorem 3.9). Applying the Kummer formu-
las, Erdélyi, et al., [9], Section 2.9, we can write the analytic continuation of (3.25)
to a neighborhood of this point. The resulting expression for , F¥ must be non-
ramified at z = 1. This gives us the coeflicients in (3.25) up to a common factor.
In fact this calculation is done below in the proof of Proposition 3.11. The scalar
factor can be evaluated using (3.9). It remains to apply the Kummer formulas ([9],
Section 2.9) for the analytic continuation again and to get an expansion at co.

3.6. Additional symmetry

Proposition 3.10. Leta — b € Z. Then
ala,b|b al|b',b|a
2FIC[ cle F =,FF cle (3.36)
Proof. The expansions (3.26)—(3.28) at O for both functions are identical. We only

must verify the equality of the denominators in (3.28):

ICa | a)TCB | YT —a | ' —a )T c—b | =D

= FC(CI | b/)FC(b | a/)rC(C —a | C/ _b/)rC(C —b | C/ _ a/)' (3.37)
The both sides are equal to
(—1) 24T (@)T (@) T (B)T (W) (c — a)T'(c —a’)T(c — b)[(c — b) .

sinwa’ sin b’ sin 7 (¢’ — a’) sinzw(c’ — b’)
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3.7. Degenerations and logarithmic expressions

a) Residues and zeros. Notice that poles and zeros of , F'[a, b; ¢; z] as func-
tion of a, b, ¢ depend on a choice of a normalizing factor in the front of the inte-
gral (3.1).

It is easy to see that residues at poles also are solutions of the complex
hypergeometric system (3.22). The expressions for the residues can be obtained
from our expansions.

For obtaining the residues at {a | a’} € IN x IN we can use the expansion of
,FUatz =0, see (3.26)—(3.28). We get

, 1— 1— / 1—c'. b 1—¢
Zl_Cll_C 2F1 |:a * 2C’_bc+ C;Zj|2F1 |:a * 2C_’bc/+ ¢ ,Zj|

with an obvious I"®-factor. Applying the Pfaff transformations of , F;, we observe
that these expressions are elementary functions. Formulas (3.26)—(3.28) allow to
calculate residues at the poles of all the types (3.4).

Next, consider another normalization'® of the functions , F':

,Flla,b;c;z] == FC;(C)ZFIC[a,b; ¢ z). (3.38)
This operation cancels the factor I'C(c) in expansion of ZFI‘D [z] at oo, see equa-
tions (3.32)—(3.34). So we get a finite expression at the poles (3.5) and non-zero
function at the zeros (3.6).

Thus, at all exceptional planes (3.4)—(3.6) we get explicit nonzero expressions.
Such expressions also depend on normalization of ,F[..., z], but for a point
(ap, bo, cp) being in a general position on an exceptional plane such nonzero
expression is canonically defined up to a constant factor.

b) Further degenerations. Classical hypergeometric differential equation has
a sophisticated list of degenerations, see [9], Sect. 2.2. In our case new difficulties
arise if at least two of the parameters a, b, ¢ — a, ¢ — b are contained in Z x Z.
We stop here further analysis and only notice that for exceptional values of the
parameters a solution of the complex hypergeometric system (3.22) can be non-
unique.

For instance, ifa € Z_ x Z_, ¢ — b € IN x IN, then both summands in (3.25)
are single-valued (since all hypergeometric series are terminating).

18 In fact, in the main part of our work we use this normalization of the kernel, see (1.19).
Due to this we do not lose the case of L? on the complex quadric discussed in Subsect. 1.3.
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¢) Logarithmic expressions. For definiteness we discuss the case
ce NxN

(which is interesting for our further purposes). Consider the function , F.C defined
by (3.38). It has a removable singularity at our ¢. Recall that forc = n € N
the usual hypergeometric differential equation DJ[a, b, n] f = 0 has two solutions.
The first is , Fi[a, b; c; z] and the second has the form

o0
Wla.bin:z] =Y pjz/ +Inz-yFia.bin:z), (3.39)
j=—-n+1

where p; are explicit coeflicients, p_,4+; 7# 0, and this form does not depend on
further degenerations, see [1], Section 2.3. Passing around 0 we get

Ula, b;n;ei‘pz]l(p:zﬂ —Vla,b;n;z] = 2 Fila,b;n;z].

Thus the system
Dla,b;n]F =0, Dd',b;n'1F=0

has two solutions that are single-valued near zero, the first is obvious
2 Fila,b,n;z]p Fila’,b';n'; 2],
and the second is
2 Fila,bin; z|V¥[a',b';n'; 2] + Ya,b;n; z]o F1[d’.b';n'; Z]. (3.40)

Our function , F'[a, b; n; z] is certain linear combination of these solutions.

d) On uniqueness of a solution of the hypergeometric system

Proposition 3.11. Let
a,b,c,c—a—b,c—a,c—b¢7,
a,b,c,c—a -b,c—a,—b ¢ 7.

Let the system Dla,b,c]F = 0, D'[a’, b, c'|F = 0 have a non-ramified non-zero
solution. Then ¢ — ¢’ € Z and

a—a,b—=be€Z or a-b,b—d €Z (3.41)
Such solution is unique up to a scalar factor and therefore is

LFlla|d' b |bic|ciz] or LFlla|b.b|d';ic|c:z].
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Proof. First, we examine the behavior of a solution near z = 0. Let
a,b a+1l—-c,b+1—c¢
¢(z) =2k [ ;Z:| . V() =2k [ ;Z} :
¢ 2—c
i.e., ¢, z17¢y are the Kummer solutions of the hypergeometric equation
Dla,b,c]f =0

at 0, see [9], (2.9.1), (2.9.17). Denote by ¢(z), V(Z) the similar functions obtained
be the change a + da/, b — b', ¢ + ¢/, z > Z. A solution of our system near O
has the form

G(2) = 0p()(2) + n2' " 9P (@) + vz Y (@)PE) + w2 TN Y ()Y ).
Passing m times around O we come to
G(2) = 09(2)¢(2) + e’z p(2)y (2)
 ve 2 1=C () G(5) 4 2RO 11— (i (3).
Since ¢, ¢/ ¢ 7, we have ¢27m¢'i g=2mmci £ 1 on the other hand they are
#£ e2m(c’=0i If G(z) is single-valued, then u = v = 0. Also, we need 7 = 0 or
c—c eZ.

To examine the behavior of G near z = 1 we apply a formula for analytic
continuation, see [9], Subsect. 2.10. Near z = 1 we have

a,b. _ i a,b )
F|:C ,Z:|—Al(a,b,c)2F1|:a+b_c+l,l Z:|

(3.42)
+ Aa(a, b, c)(1 —2) 45 Fy [Cc__a“fb:rb il- z} ,
where
Ai(a,b,¢) = ?EE)_FS);(‘CZ :[13’ As(a,b,¢) = F(C)FF(S‘):(Z)_ ) (343)

Sincec —a—b, ¢’ —a’ — b’ ¢ Z, the expression ¢(z)¢(Z) is not single valued.
Thust #0,¢c — ¢’ € Z, and

G(z) = 0p(2)$(Z) + tz' ==y (2)y (2).

Applying for ¢, ¢, ¥, ¥ formula (3.42) and the identity

2, Biyiz) = (1 —2) Py Fi(y —a,y - Biyi2),
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we come to
/ /

G(z) =0A(a,b,c)A(d’, b, )2 Fy |:a,cb; 1— zj|2F1 |:a ’/b i1 — Zj|
c

+{0Ai(a,b,c)Ax(d’. b, ")
+tdA1(a+1—c,b+1—c,2—c)
cAs(d + 1= b +1-c"2—-c"))
(R, [a’c” - z]zFl [c‘,’/__a‘f/’_c;,,_ V- z]
+ {0Asz(a,b,c)A(d'. b, ")
+tdy(a+1—c,b+1—c,2—c¢)
cAy(@ + 1= b +1-c"2-¢"))
(=) R [CC__aafb_erl; 1- z]zFl [“/C’,b - z}
+ Ay(a+1—c,b+1—c,2—0)
cAx(@ + 1= b +1—-c",2-¢")

. (1 _ Z)C—a—b|c/—a/—b/2F1 |: ¢c—a,c— b 1— Z:|

c—a—b+1;
c—a,c’—-b
-» F; ’ 11—z
2 1|:c/—a/—b/-|-1 Z]

The coefficients A1(-), A2(-) have no zeros and no poles under our restrictions.
The expression is single-valued if and if two curly brackets are zero and

(c—a—b)—('—d -b)eZ.
This implies
(@a+b)—(a +b)eZ.

Two curly brackets give a system of linear equations for o, t. It has a nonzero
solution if and only if its determinant A is zero. Straightforward calculations give

A =a"4T ()T Q2 —-c)
TQ—-cT'(c—a—-b)L'(c'—a —b)T(a+b—c)l'(a +b —c')-E,
where

E = sinm(c —a)sinn(c — b)sinmwa’ sinmwh’

—sinm (¢’ —a’)sinm (¢’ — b') sinma sinwh.
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Clearly, the set E(a,b,c,a’,b’,¢’) = 0 is invariant with respect to the shifts
a—a+1,b— b+ 1, ¢ ¢+ 1. Therefore to examine the set of zeros
we can assume ¢’ = ¢, b’ = a + b — a’. Under these conditions E can be reduced
to the following form:

E(a,b,c,a’,b',c") =sinm(a —a’)sinn(a’ —b)sinmcsinm(c —a —b)

(this non-obvious identity can be verified by decompositions of both sides into
sums if exponentials). This implies (3.41).

If A = 0then o, 7 are defined up to a common scalar factor, this proves the
uniqueness (and gives an expression for o/7). O

e) Non-interesting solutions. However, we have seen that the complex hyperge-
ometric system for some values of the parameters has two single-valued solutions.
Also, there are solutions that do not seem reasonable. For instance, we have

D[O,bl,cl] -1 = 0, D/[O,b2,02] -1=0

for arbitrary by, c1, b2, c2 € C.

3.8. Differential-difference equations for , F IC. We canregard ; Fi[a, b; c; z] as
a family of functions of a complex variable z depending on 3 parameters a, b, c.
But we also can regard , Fi [a, b; c; z] as one function of the four complex variables
a, b, c, z. Then , Fy[a, b; c; z] satisfy a non-obvious system of linear differential-
difference equations, some examples of such equations are in Erdélyi, et al., [9],
(2.8.20-45). Below we show that such equations can be automatically transformed
to differential-difference equations for the function , F'[a | @', b | b';c | ¢’;z] of 7
complex variables.
Consider a space of functions in the variables a, b, ¢, z. Define operators

T.f(a,b,c,z) = f(a+1,b,c,2z),
Ty f(a.b,c,z) = f(a,b+1,c,2),
T.f(a,b,c,z) = f(a,b,c +1,z).

Consider finite sums of the form
koplm aj
£ = Z > Upkim(@.b.c.2)TST,T, PR (3.44)
JZ0 k,lmez

where Uj x ;1.m(a, b, c, z) are polynomial expressions in z with coefficients ratio-
nally depending on a, b, c.
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Assume that
s Fila,b;c;z] = 0.

We can regard an operator (3.44) as an operator on functions
flalad,b|b,c|c,z2)
on A3 x €. We also define operators

Ty flala' ,b|b,c|c z)= fla|d +1,b|b,c|c,2),
Ty falad,b|b,c|c,z)= fla|d,b|b +1,c]|c,2),
Tof(a|ad',b|b,clc,z)y= fa|a ,b|b,c|c+1,z2).

For such an operator £ we define the operator £’ by

07
= Z ZUj,k,l,m(a/’b/,C ) Tb/ ¢’ 8 ]

Jj=0 k,l,meZ

From the definition it follows that
£ =<' L.

Proposition 3.12. Let the function Q(a, b, c,z) = > Fila, b; c; z] satisfy an equa-
tion £Q = 0. Then the function

R@|a . b|b,c|c z):=,FClald.b|b c|c, 2]
satisfies the system of equations
LR(@|ad,b|b,c|c,z)=0, LR@a|d.b|b,c|c,z)=0. (3.45)
Lemma 3.13. Let Q = , Fila, b; c; z] satisfy an equation £Q = 0. Then

eTi(c—a=b) I'e)l'(c—1)

1—c _ oy
F(a)F(b)F(c—a)F(c_b)Z 2Fila+1—c,b+1—c¢:2—c¢,z] (3.46)

satisfies the same equation.

Remark. The same statement holds for the functions

_Tle=a)l(c—a-D) a.b L
up = C(c)[(c —b) 2 F [a+b_c+1,1 z] (3.47)
I'(c)l h—c o
Uy = (C)F((;);‘(b) )(1 —z)¢am —b ! |:C - aa;cb +b1 1— Z:| , (3.48)
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Us

B I‘(c)I'(b—a)Z_a P a,l—c—i—a‘z_l
T Th)(c—-b) ' 1-b+a’ ’

and also for other summands in the right-hand sides of formulas Erdélyi, et al. [9],
(2.10.1)—(2.10.4).

Proof of Lemma 3.13. First, let a, b, ¢ be in a general position. By Erdélyi, et
al. [9], (2.10.1), and (2.10.5),

F(a,b;c;z) = uy + us, (3.49)

where u1, u, are given by (3.47)—-(3.48). The function u, is ramified at z = 1.
Passing around this point we get a function

F = uy 4 e*rilema=b)y,

By analytic continuation, £ F = 0. The factor ¢27(¢=4=5) does not change under
the shifts 7,, Tp, T.. Therefore the summands u;, u, satisfy the same equation,
£u; =0, £Lu, = 0. We apply the same transformation (3.49) to the summand u
and repeat the same reasoning. We observe that

al'(c)l'(c—1)

1=¢,F l—c,b+1—c;2—c,
@Ol —bsinr@irb_o° 2hlatli-cbtl-c2-cz]

satisfies the same equation. This expression differs from (3.49) by the factor
eim(atb=o) gip mw(a + b — c), which is invariant under the shifts T,, Ty, T,.
Passing to a limit we omit restrictions to a, b, c. O

Proof of Proposition 3.12. We use the expression (3.26) for , F¥[a, b; ¢; z]. Ob-
viously, the first summand satisfies the system (3.45). By Lemma 3.13, the ex-
pression

I'(a@)L'(b)T(c —a)T(c —b) 2—c¢ ’

eni(c’—a’—b’)l—w(c/)r(c/ -1 i F a+1-c¢.,b+1—c _
. z yZ .
M@)o =)@ —o) 2-¢

=@ DO (e —1) . |:a+1—c,b—|—1—ci|
V4 2F1 , Z

satisfies the system (3.45). It differs from the second summand in (3.26) by a
factor

i%sinma’ sinwb’sinm(c’ —a’)sinm(c’ —b')
sinme’sinm(c’ — 1) '
This expression is invariant with respect to shifts 7,, T, .... Therefore the second
summand in (3.26) also satisfies the system. O
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3.9. One difference operator. By [34], formula (2.3), the Gauss hypergeomet-
ric function , Fi[p, ¢; r; z] satisfies the following difference equation

—z-2F1(p,q;r;2)

q(r —p) .
T G- pr Pt
_[ q(r —p) p(r—q) ]F(p giri2) (3.50)
G-p)A+q-—p  (p-9l+p—gl" 0"
p(r—q)

2Fi(p+1,9—1;r;2).
(r—9)(A+p—q)

Define the difference operators L, L’ acting on functions of the variables a, b,
¢, z by

— b(c —a) N a(c—b) .
b= (b—a)(l1+b—a) Ta Ty =1 (a—b)(1+a—b) (TaT, 1), 3.5

’_ b'(c'—a’) . o a(c' —b') .
L= b —a)1+b — )(T Ty = 1) (@ —b)Y1+a —b) (T Ty, 1).
(3.52)

Corollary 3.14. The complex hypergeometric function , F[a, b; ¢; z| satisfies the
Jollowing system of difference equations

L,Fy[a.bie:z] = 2, F [a bie:z], (3.53)
L',FFla,b;c;z] = Z,F [a, b;c; z]. (3.54)

3.10. Some properties of the kernel K. We have the following corollaries from
our previous considerations.

1) By (3.10) K, p is even,
Kap(zi—k,—0) =Kyp(z:k,0). (3.55)
2) By (3.8),
Kap(zik,—0) = Kap(z:k,0). (3.56)
In particular, X, 5(z: k, 0) is real on A.
3) By Proposition 3.7, X, »(z; k. 0) satisfies the following differential equa-
tions:
1
DKap(zik,0) = Z(k +0)* Ky p(z:k,0), (3.57)

_ 1
DKap(z:ik.0) = (k=0 Kap(z:k.0). (3.58)
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4) By Corollary 3.14, K, j (z; k, o) satisfies the following difference equations:

LKap(zik,0) =zK, (25 k, 0), (3.59)
EKa,b(z;k,cr) =zKyp(z: k. 0). (3.60)

4. Nonexistence of commuting self-adjoint extensions

Here we prove that for (a,b) ¢ I1 the operators %(@ + D), %(@ — @) defined
on D(C) do not admit commuting self-adjoint extensions. We analyze the set of
possible generalized eigenfunctions and show that this set is too small.

4.1. Generalized eigenfunctions. Denote by D’(C) the space of distributions
on C. We have a nuclear rigging (see [2], Section 14.2)

D(C) C L*(C, pap) C D'(0),

and apply the usual formalism of generalized eigenfunctions, see [2], Chapter 15.
Recall that we have formally symmetric and formally commuting operators

1 — 1 _
D+ = —(@ + @), D_ := —(Q —Q)
2 2i

in L2(C, p) (defined on the domain D(C)) and the spectral problem
DD =D, DD =1(D. 4.1)

Suppose that the operators D, D_ admit commuting self-adjoint extensions.
Then the operator U of spectral decomposition can be written in terms of gener-
alized eigenfunctions. Precisely, there exist a space R equipped with a measure p
and an injective measurable map r — ¢, from R to D’(C) such that

Digr = a(r)gr. D-gr =b(r)er,
where a(r), b(r) are real-valued functions, and the pairing
Uf(r) ={f ¢r}

of f € D(C) and ¢, determines a unitary operator L2(C, ) — L2(R, p), see
textbook [2], Subsection 15.2.3.19

19 Basically, this is a result of Kostyuchenko and Mityagin [23]-[24] with weaker conditions
for a rigging.
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Since the operator @ is elliptic, generalized eigenfunctions are smooth on C,
see e.g., [2], Theorem 16.2.1. Therefore in our case generalized eigenfunctions ¢,
are usual smooth solutions of the system of differential equations.

We also can identify the measure space R with its image, and so we can think
that the measure p is sitting on the space 2 of smooth solutions of the systems (4.1),
where  ranges in C. We intend to show that for any measure p on 2 the operator

J:L*(Q,p) —> L*(C, jtap)

defined by
Uhz) = / h(r)er (2) dp(r)
Q

is not unitary. Precisely:

Lemma 4.1. Let (a, b) ¢ I1. Let p be a measure on 2, and let the corresponding
operator U be bounded. Then p is an atomic measure supported by a finite set.

The idea of a proof is simple, it is explained in the next subsection, a formal
proof is completed in Subsect. 4.3.

Lemma 4.1 implies that for (a,b) ¢ Tl the operators Dy, D_ have no com-
muting self-adjoint extensions.

4.2. Almost proof of Lemma 4.1. For ¢ being in a general position, the sys-
tem (4.1) has a unique solution, and it has the form , F- IC [-; z]. Denote by Qpy, the
subset of 2 consisting of the functions , F'[-; z]. We wish to prove the following
Statement:

Lemma4.2. Let (a,b) ¢ Handa+b,a—b, a, b ¢ Z. Let p be a measure on <2,
and let the corresponding operator U be bounded. Then p is atomic on Qpyp.

Proof. Set { = A2. Then a hypergeometric solution of the system (4.1) has one
of the two forms

JFC a+Ala—2, a—)&|a+AZ
a+bla+b T

FC a+Ala+ra—Ala—2A .
a+bla+b e

In the first case we have (@ + 1) — (@ —A) = 2Re A € Z, hence A = %(k +is),
where k € Z, s € R. We come to the functions X, (z; k,is).
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In the second case we have A — A € Z,ie., A = t € R. We come to the
functions

a+tlat+ta—t|la—t
K(z;0,7) = , FF 7. 4.2
(2:0.7) 21[ a+bla+h Z} “42)
Next, we will show that
1
the measure p is zero on the setofallk=§(k+is) with s # 0. 4.3)

Our kernel has the following asymptotics at z = 0 and z = 1:

K(z:k,is) = (1 + O(2)) + Blk,is)|z|> 2% 2P(1+ 0(z)) asz —>0, (4.4)
K(z:k,is) = C(k,is)(1+ O(1 — 2))

(4.5)
+ D(k,is)|1—z|?*72%(1 + 0(1 — 2)) asz — 1,

where the coefficients B, C, D are continuous non-vanishing functions on A and
all O(-) are uniform on compact subsets of A (see formulas (3.26)—(3.31)).

For definiteness, assume that a +5 > 2. Consider a point (kg, isg) € A, so # 0
and a neighborhood N of (kg,is9). Assume that p(N) > 0. Denote by Iy the
indicator function of the set N. The function U Iy has the following asymptotics
atz = 0O:

Uln(z) = a(l + 0(2)) + Blz)>72*2(1 + 0(z)) asz — 0.

Due to uniformity O(-), for a sufficiently small neighborhood N we have o # 0,
B # 0. Since a + b > 2, the actual asymptotics is

Ulx(z) = BlzP*72° (1 + 0(2)).

Therefore
Ulyx ¢ L2(C, |Z|2a+2b—2|1 _ Z|2a—2b d;)

This contradicts to boundedness of U. Thus any point has a neighborhood of zero
measure, and this implies claim (4.3) in the case a + b > 1.
In domainsa + b < 0,a —b < —1,a — b > 1 we get the same effect.

Next, examine the complementary series K(z; 0, v) of eigenfunctions, see (4.2).
We have the same asymptotics (4.4)—(4.5), we only must write the coefficients of
the form A(0, t), B(0, 1), C(0,7), D(0, 1) in (4.4)—(4.5). These functions have
zeros and poles on the axis ¢ € R. The same argument as above shows that if g
is not a zero and not a pole of all our coefficients, then the measure p is zero on
a sufficiently small neighborhood of 7. The set of zeros and poles is countable.
This completes the proof of the lemma. O
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4.3. Proof of non-self-adjointness. However, our system of differential equa-
tions (4.1) has solutions that have not the form , F° € and enumeration of all pos-
sible degenerations is tedious. So we continue the proof of Lemma 4.1 without
constrains of Lemma 4.2. Due to the homographic transformations, without loss
of generality we can set

a+b>2. (4.6)

First, we examine asymptotics in a neighborhood of z = 0.

Asymptotics at z = 0. Non-logarithmic case. Ifa + b # 2, 3, ..., then the
equation ®® = A2® has two holomorphic solutions,

at+A,a—A
a+b ’

Vi(z) :==2F |: iz

\Ifz(Z) = Zl_a_szl 1_b+k’1_b_k;2 .
2—a-—>b

The equation D® = A2® has two antiholomorphic solutions

a—l—)_k,a—)_t
a+b ’

U (2) =2 Fy |: i Z

@2(2) = El_a_szl 1_b+k’1_b_k;z .
2—a-—>b

Therefore a single-valued solution of the system must have the form
AV (2) ) (2) + B, (2)Ta ().

The first term has L?(C, Wa,p)-asymptotics at z = 0, by (4.6) the second term
has non-L2-asymptotics. Thus the spectral measure p is supported by the set of
functions of the form W (z)W;(2).

Asymptotics at z = 0. Logarithmic case. Nowleta +b =n =2,3,.... Then
the equation D® = A2® has two holomorphic solutions,

Ui(z) =2F1la+A,a—Ain,z], Wy(z2),

where W5 (z) is a logarithmic solution, which has the form (3.39). The equation
D® = A?® has two antiholomorphic solutions,

U (2) =2 Fifla+ Aa—An,z], B(Z).
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A single valued solution must have the form

AV ()T (2) + B(W1(2)Ta(2) + Wa(2) 01 (9)).

The asymptotics of the second summand is (z7*T! +Z7" 1) 4 O(z"*2) if n = 3.
If n = 2 we have (z7! + z71) + O(z%). We get a non-L? asymptotics.

Thus, for a + b > 2 the spectral measure is supported by set of functions of
the form V1 (z)V1(Z).

Single-valuedness near z = 1. Non-logarithmic case. Assume that a—b ¢ Z.
We apply formulas Erdélyi, et al., [9], (2.10.1), (2.10.5) and write explicit expan-
sions of Wy, ¥ atz = 1.

Wy (z) = 41G1(1 — 2) + Ay (1 — 2)P7Go(1 — 2),
U,(2) = 4,G1(1 —2) + A,(1 — 5)P7G(1 - 2),

where G, G, are certain series , F; and the coefficients A, A, are products
of gamma functions, see the explicit formulas (3.42)—(3.43) above. Clearly, the
product \Ill(z)\Tll(Z) can be single-valued only if 4, = ffg =0,0r 4; = le =0.
Looking to the explicit expressions for the gamma-coefficients, we observe that
the first case happens if both hypergeometric series G1(z), G»(z) are terminating
(.e,a—A=0,—1,...ora+ A =0,—1, ..., in particular, A is real). The second
variant holds if and only if both series G, (1 — z), 52(1 — Z) are terminating (i.e.,
b—A=0,—-1,...otb+A=0,—-1,...).

Single-valuedness near z = 1. Logarithmic case. Now let b —a € Z. The
transposition a <> b corresponds to a homographic transformation of differential
operators, it preserves the condition a + b = 2. Therefore we can assume
m = b —a = 0. Represent W;(z), U, (Z) as combinations of basic solutions
of the hypergeometric equations at the point z = 1,

Vi(z) = AxFila+A,a—A;b—a+ 1;z]1+ BO(1 —z2),
U, (2) = AyFila+A,a—Ab—a+ 1;Z]+ BO(1 —2),

where ®(1 — z) is a logarithmic series of the type (3.39), see Erdélyi, et al., [9],
(2.10.12). A straightforward calculation shows that the product W, (z)¥; (Z) can
be single valued near z = 1 only if B = B = 0. Therefore W;(z) is single
valued near z = 1, and therefore it is a single valued solution of a hypergeometric
equation on the whole plane C. Hence (see Erdélyi, et al., [9], Subsection 2.2.1)

W, (z) is a polynomial.
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Behavior at infinity. Thus the spectral measure p is supported by generalized
eigenfunctions of the following types

pi@)p2(3),  (1—2)P7 g, (2)q2(3),

where p;, g; are polynomials. However, our density u,(z) has a behavior
~ |z|**~2 at infinity and therefore the space L? can contain only a finite number
orthogonal functions of such a type. |

5. Symmetry of differential operators

Here we show that J; p S€nds Deyen (A) to R, » and verify that © and D are adjoint
one to another on R, 3.

In this section we denote by D, (u) C C (resp. D,(u)) the open (resp. closed)
disc in C of radius r with center at u. By S, (1) we denote the circle |z —u| = r.

5.1. The map J;, » On the space Deven(A). Introduce a natural topology in the
space R, p (C) defined in Subsect. 1.1. Consider the space R(0) of functions in
D1/3(0) having the form a(z) + B(z)|z|2¢725=2, where a(z), (z) are smooth in
Dy /3(0) up to the boundary. Let Cé’;t(ﬁl 13(0)) C C ® (D, /3(0)) be the subspace
consisting of all functions that are flat at 0. The space R(0) is a quotient space

R(0) = [C®(Dy/3(0) & |2[**T2072C (D4 /3(0))]/ C§o(D13(0)).

We equip R(0) with the topology of a quotient space. In the same way we define
a topology in the space R(1) of smooth functions in D;/3(1) having the form
y(2) + 8(2)|1 — 22472,

We define a topology in R, , as a weakest topology satisfying the following
conditions.

a) The restriction operators
Rap —> RO),  Rgp —> R(1),  Rgp —> C=(D2(0) \ (D13(0) N D1y3(1)))

are continuous.

b) For all «, 8, N the following seminorms are continuous

‘ 0°h f(2)

_ 2+a+p N
Papn(f) = sup [z In |2V | S

C\D>(0)

S.D

Recall that A := A \ {(0,0)}.
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Lemma 5.1. For|z| > 2, (k,s) € A we have the following expansion

. _ o k+4is | —k+is _
K(z;k,is)=z"9" 2 | —a—=3 B(k,s;z7Y)
k+is |_a+—k+is

(5.2)
47793 2 B(—k,—s;z_l),

where the expression B(k,s;u) for fixed k is smooth s except the point (k,s) =
(0,0).

Proof. We refer to expansion (3.32)—(3.34). Notice that for k = 0, s = 0 we have
a singularity in this expansion (but the kernel itself is analytic at this point). O
Proposition 5.2. a) Let ® € Deven(A). Then J 5, ® € Ry p.

b) Moreover, the operator J; p IS a continuous operator from Deyen (A) to Rap-
Proof. Forms of asymptotics of J*, ® at 0 and 1 follow from (3.26) and (3.29).

Let us examine the asymptotics at z — oo. Without loss of generality we can
assume that |k| is fixed. We write

JE,0(2) = smab | —ath /Z_iZS =3 Bk, s: 2710k, 5) ds +{
R

similar
term

. - +8
Differentiating the first summand by &W

Lemma 3.6, we get an expression of the form

and keeping in mind (3.32) and

k k K is
—a—z—a|-a+5—p E : 5= o.B
z 2 2 z72 TUp’q (a,b,k,s)
0<p<a,05g<p

Tk —is | k +,-s)(a 4k J;is)p(a Lk +is>p

2
' (a 4 k—2iS)q(a 4 —k2—is>q

1
'r(D(b_k—;is ‘b_—k;—is>r(D
1
<a+k;is ‘a+_k;is)(a+b)p(a+b)q

a+*8 4 pa+ S 4 p
<2 F iz
a+b+p

k—is

—k—is k—is
[
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where Uj,. ’qﬁ (a, b, k,s) are polynomials. It is easy to verify that the integrand is a
smooth compactly supported function on A. Next, we write

. i 9 .
2|7 — —|z|7,
d In|z| ds d

integrate our expansion by parts N times and observe that py g v (J), @) < oo.
The continuity follows from the same considerations. |

As a corollary, we obtain the following lemma.

Lemma 5.3. The operator J}, is continuous as an operator from Deven(A) t0 the
space L*(C, ta.p)-

Proof. Indeed, for (a,b) € II the identical embedding f +— f of R, to
L?(C, uq.p) is continuous. O

Lemma S4. If f € Ry p, then® f € Ry p.

Proof. Letus check the behavior of ® f at 0, For definiteness assume that a+b # 1.
Then near zero we have

Df =D(a(z) + B@)|z['*7P)
- {(z(l - z)d—2 T (a+ b)i)zl—a—b} .z1=a=b g (2) + {the rest).
dz? dz

Obviously, the rest has the form &(z) + B(z)|z|>~*~? with smooth @, B. The
expression in the curly brackets2° is —(a + b)(a + b — 1)z17972, O

5.2. Symmetry of differential operators

Proposition 5.5. Forany f, g € R, p (©)
(Df.g) = (/. Dg).

Proof. Let f, g € R, p. We wish to show that

/ (Df(2)- 2@ — £(2) - Dg@)ptasy dE = 0.

C

20 Cf., [11], Section 1.2.
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By Lemma 5.3, ® f, g € L*(C, jt4,5). Therefore our improper integral abso-
lutely converges, we write it as

im [ () dz /\.dz.
e—>0 20

D1/5(0)\(De(0)UD(1))

Next, we integrate two times by parts in z (with the Green formula) and after a
simple calculation come to

8113(1){ /V(z)dz—/V(z)dz—/V(z)dz}, (5.3)
S1/£(0) Se(0) Se(1)

where

i
4 BON- (1 - (o)

Ve = (5@ - f@)-

We claim that all summands in (5.3) tend to 0. For the first summand this is clear.
For the second summand we represent f, g as

f(2) = a(z) + p(z)z! 7 P=ad,
8(2) = y(2) + 8(z)z' 7o,

Then V(z) transforms to an expression of the following type:

(A(Z) +B(Z)Z—a—b|1—a—b +C(Z)22_2a_2b mod 2—2a—2b>

. Z(l _ Z) . Za+b—1|a+b—1(1 _ Z)a—bla—b

where A(z), B(z), C(z) are smooth near 0. We emphasize that the term with

z172a=2b[2=2a=2b i the bracket appears with the coefficient

(2—2a -2b)(B(2)8(z) — B(2)é(2)) = 0.
Thus we get summands with the following behavior at O:
~ A(0)2a+b|a+b—l’ ~ B(O)ZO, ~ C(O)Zz_“_bll_”_b.

Since 0 < a + b < 2 all powers are > —1 and therefore?! fl 2|=e()) dZ tends
to 0. O

21 See a discussion of a parallel situation for ordinary differential operators in [36], Section
1. However, in the one-dimensional case we must impose boundary conditions in such points.
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6. The operator J 7, is an isometry

Here we prove half of Theorem 1.3.

6.1. The statement. First, denote by A the subset of A consisting of (k+is)/2
such that k¥ > Oor k = 0 and s > 0. We have an obvious identification
Deven(A) ~ D(A-l—)~

Lemma 6.1. Letu(A), v(A) be smooth compactly supported function on A 1. Then
<Ja*,bu’ J;,bv)Lz(C,ua_h) = 2(u. V) 12(A 4 0 )

Our proof is based on heuristic arguments outlined in Berezin, Shubin [3],
Section 2.6, for ordinary differential operators. However, this way is tiresome.
6.2. Preliminary remarks. Recall that

Jru(z) =2 [ UMK (z, Mg p(A)dA.
At

By Lemma 5.3, this operator is continuous as an operator D(A ;) — L2(C, Hab)-
Therefore the sesquilinear form

T(u,v):= (J;bu, Ja*,bv) 6.1)

Lz(csﬂa.h)

is continuous as a form D(A+) x D(A4+) — C. By the kernel theorem (see, e.g.,
[19], Section 5.2) it is determined by a distribution. Formally, we transform (6.1)
as

[ ([ v imapiiz) - ([ 1035005010 itan(c) a2

¢ A+ At
(6.2)
= [ [ w0 @HG 500000102, (6.3)
Ay Ay
where
H(A,v) = /K(z,)&)ﬂ((z,v),u,a,b(z) dz. (6.4)
¢

Notice that all integrals in line (6.2) converge absolutely. However, the triple
integral | Al / Ay /¢ is not absolutely convergent. The integrand in (6.4) decreases
as |z|72 and the integral diverges.
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However, we regard H (A, v) as a distribution, then Lemma 6.1 can be refor-
mulated in the form:

Lemma 6.2. We have the following identity of distributions on D(A ) x D(A4):
H(A,v) =38 —v). (6.5)
6.3. Orthogonality of packets

Lemma 6.3. Let u, v € D(A+) and supports supp(u), supp(v) have empty
intersection. Then

(Japs J;ybv>L2((D’Ma,b) =0.

Proof. Denote Dy := %(@ +9), D_ = %((’D — D). By Proposition 5.2,
Ja*,bu is contained in the space R, ;. By Proposition 5.5, the operators D,
D_ are formally symmetric on R, ;. Since they formally commute, for any real
polynomial p(D4, D_) we have

<p(D+’ D—)Ja*,bu7 J;(’bv> = (J;(’bu’ p(D+’ D—)Ja*,bv>’
or
(JoppReA, ImA) - u, J7v) = (J pu, J;, p(Red, Im A) - v), (6.6)

where - denotes the operator of multiplication by a function. We choose a sequence
pn of polynomials such that px uniformly converges to 1 on supp(u) with all
derivatives and converges to 0 on supp(v). By Lemma 5.3 the map J a*,b is
continuous as a map D(Ay) — L2(C, uap). Replacing p by py in (6.6) and
passing to a limit, we come to the desired statement. |

6.4. Next reduction of our statement. Let S(u,v) be an Hermitian form on
D(A+). We say that S is C®-smooth if it has the form

S(u,v) = / /M(A,v)u()&)va)cbwfv,

Ay Ay
where M is a real analytic function on A4 x A4.
Lemma 6.4. We have

(o Ty pV) L2(Cop ) = (U V) L2(A g ) T S, V), (6.7)

where S(u, v) is C®-smooth.
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This lemma together with Lemma 6.3 imply the desired statement, i.e., the
identity (6.5). Indeed, for any u, v with disjoint support, we have

/ / M, )uA)v(0)xa,p(A)xa s (vV)dAdy = 0,

Ay Ag

therefore M(A,v) = 0.

The rest of this section is occupied by the proof of Lemma 6.4.

6.5. Beginning of the proof of Lemma 6.4. Cleaning of the problem

Step 1. Represent

u=> wlSRed—k/2), v=> vdRer—1/2),
k I

in fact the sums are finite and uy, v; depend on a real variable s. By Lemma 6.3,
we have

a

Therefore it is sufficient to examine only inner products

(Jyptics Iy pok) = / R(z)dz,
¢
where

R(z) .= / uk(is)UC(z, %(k + is))xa,b(%(k + is)) ds

At
: / Wx(z, %(k + it))xa,b(%(k n it)) dt pap(2).

Ay

Step 2. Represent the integral as
/ R + / R.
lzZl<2 |z|=2

Let us show that the first summand is C “-smooth. In this case the triple integral
absolutely converges and can be written as

/Rd% =ﬂ[ﬂ[uk(is)mL(s,t) ds dt,

|z|<2
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where | |
L(s,1) = /ﬂc(z, S+ is))ﬂ((z, S+ it))//,a,b(z) dz.
|z]<2
Integrand makes sense for complex s, ¢ that are sufficiently close to R and the
integral absolutely converges (singularities at z = 0 and 1 have the forms (4.4),
(4.5)). Therefore L(s, t) is a holomorphic function in s, ¢ near R x R.
Therefore our question is reduced to an examination the integral

/R(z)dE

|z|>2

Step 3. A decomposition of the kernel. Applying Theorem 3.9.c, we write
X(z, A) in the domain |z| = 2 as

Kz, A) =W+ Wo + W3

_ _ 6.8

= AA)(—2) M L A=A (—z) A Lz, ), ©9
where c B

AL = el —24 .
TCh—A|b+MICa—A]a+A)
and
U(z,A) = 0(z]™%* ) asz — oo
Notice that
[A)? = A A=) = x5 (D). (6.9)

Therefore the integral fl R(z) dZ splits into a sum of 9 summands Vg,

where o, 8 = 1,2, or 3,

z|>2

1
Vg = / /Wa(z;k,s)uk(is)%a,b(a(k—I—is)) ds
|z|>2 R

/ Wg(z:k, t)vk(it)xa,b(%(k + it)) dt - pgp(z)dz.
R

Step 4. For five summands Vi3, Va3, Va1, V32, V33 we immediately get absolute
convergence of triple integrals and C“-smoothness. For instance,

- 1 -1
Viz = (I)ur@)A( 5k —is)
13 E[E[uklsukl (2 lS)

( / (g)_k|z|_2“+”\11(z,%(k+is))ua,b(z) dé) ds dr.

|z|=2

(we simplified the integrand using (6.9)). The expression in the square brackets is
real analytic (the integrand decreases as |z|™3).
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Step 5. Non-obvious summands are Vyy, Vi, Va1, Vaz. We start with Vi,

Vip i= / /uk(is)A(%(k +is))(g)_k/2|z|_2“_isxa,b(%(k +is)> ds

|z]z2 R

-/A(%(k +it))vk(it)(%)k/2|z|_2“+”

R

1 . -
: xa,b(a(k + lt)) dtpap(z) d.

For k = 0 we must keep in mind that the integration [, actually is taken over a
ray [e, oo) for some ¢ > 0. Applying (6.9), we come to

V1 :=///uk(is)m

z|z2R R
1 -1 /1 -1 L -
-A(E(k — is)) A(E(k n it)) 2|44 g dipg, () d3.
(6.10)
Next, we notice that
Ma,b(z) — |Z|2a+2b—2|1 _Z|2a—2b — |Z|4a—2 + 0(|Z|4a—3) as 7z — oo.
We write
Hap(2) = 12[*72 + (ap(2) = 2*72), (6.11)

substitute this to (6.10) and decompose (6.10) as a sum of two integrals. The
second summand immediately gives a C“-smooth term. The first summand is the
topic of our interest. It equals the following expression:

I, v) = / //uk(is)MA(%(k—is))_lA(%(k+it))_l
lz|22 R R (6.12)

Jz|mF Y ds dr dz.

6.6. Application of the Sokhotski formula and disappearance of a singular
term

Step 6. Extension to the complex domain. Now consider a function /(u, v, &)
obtained by replacing s + s — i ¢ in the boxed term, ¢ > 0. The new triple inte-
gral absolutely converges, we can change the order of integrations and explicitly
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integrate in z. We get
1 —is—e+it

I(u,v,¢) =//uk(is)WA(%(k—is))_lA(%(k—i—it))_ L dsdr.
R R

—is—¢e—+it

[ ]. {
(“’L) EIIIl (u’!”é)'

Indeed, we integrate /(u, v, &) two times by parts in s and come to

— 1 SN\ 92 . 1 .\t
I, v,8) = //vk(zt)A<§(k+zt)> /m[uk(ls)A(E(k—ls)) ]
z]z2 R R
|Z|—2—£—is+it _
B dsdid?
i21n2 |2

The new triple integral absolutely converges and is continuous at ¢ = 0.

Thus we come to the so-called distribution ﬁ, see, e.g., [15]. Recall the
Sokhotski formula
A fy)d A fy)d
lim [ L2229 p.V./ LD ir, (6.13)
e—~>+0 X—y—1¢& X =Y
o o

where p.v. denotes the principal value of an integral.
Applying this formula and keeping in mind (6.9), we come to

. : 1 ) -1 1 ) —1 p—is+it
I(u,v) =p.v.//uk(zs)vk(zt)A(5(k —ls)) A(E(k +lt)) P ds dt
R R
L 1 .
+ / uk(zs)vk(zs)xa,b(z(k + lS)) ds.
R
(6.14)
Step 8. We deal with V5, in the same way and come to
[ — 1 ) -1 1 ) -1 2—it+is
Vao =p.v.//uk(ls)vk(zt)A(§(k —lt)) A(E(k —|—1s)) S dsdi
R R

—_ 1
+ / uk(is)vk(is)xa,b(i(k + is)) ds + {a C“-smooth term}.

R
(6.15)
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Next, we take the sum V7; + V5, modulo C“-smooth terms. The expression

i () i) e

1 L] O\ —irtis
—A(E(k—zt)) A(E(kJrzs)) 2 )
has the form
L(t,s)— L(s,t)
s —1
with analytic L(¢, s). It has a removable singularity on the line ¢ = s. Thus the first

summands in (6.14) and (6.15) give us a C“-smooth term, the second summands
give us the first term in (6.7), i.e., the desired delta-function.

6.7. End of the proof of Lemma 6.4. Step 9. Next, we examine the term V.
We write the integral and apply the transformation (6.11). We get a sum of a
C®-smooth term and the integral

Ju,v) = ///uk(is)mA(—%(k+is))_1A(—%(k+it))_l
IzIz2 R R

.(f)k 2|27t | 4% dr ds.

Z

As above, we change s — s —i¢ in the box and get integrals J(u, v, ) with ¢ > 0.
As above,

-1

S 1 -1 1
J(u,v;e) = (i) (i)A( — z(k +is)) Al — sk +i1)
U,v;€ R/R/uklsvkl ( 5 lS) ( 5 1)

: [ /(g)_k|z|—2—8—”—” d?] dt ds.

|z|=2

If £ > 0, then the term in square brackets is zero (we pass to polar coordinates
and get O after the integration with respect to the angle coordinate). If k = 0, then
we get
2—8—i s—it
e+i(s+1)

However, supp(ug), supp(vo) are contained in domains s > 0, ¢ > 0, and actually
we have no singularity. Thus V7, is C“-smooth.

The same examination shows C “-smoothness of V5;. This completes the proof
of Lemma 6.4. O
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7. Asymptotics of the kernel in the parameters

7.1. The statement. Let us modify a notation for the kernel K. Set
K°(z; A;0)
. 1
" TCa+b|a+b)
a+A+%|a—i+%,a—x—%|a+i—%;z}

a+bla+b
_ 1
C TCa+bla+b)

a+ k+g+1s |a + —k+g+ts’ a+ —k—g—ts |a + k—c;—ts‘z:|

a+bla+b

where A € A, 0 € R. In fact,

J<°(z; k —;is;a) = K(z:k,0 +is).

However, in calculations of this section the variables ¢ and is have different
meanings.
Denote
tr(z) =1+ 1-1/z.

Theorem 7.1. Then for a fixed z we have the following asymptotic expansion

K°(z; A, 0)
_ 1
MCa—2-=%1a+A—3TCh+A+Z[b—A+3)-[Al
=1z L= 2Pz

(2)\ A~ AR M=) A0 NT—Z
[(z (z)) + A A 0 NT= A (0. NT—F) (7.1)

1+(2) kzo,lao,k!“
k+I<N
¢ S+AIG—2 Akl
+ ( +(Z))2 ’ 7Ak(0,—\/1—z)Al(o,—«/1—Z)]
—(2) k!
k=0,1=0,
I RN(Z, 0. )L), k+I<N

where Ay (§) are rational expressions in & (depending on the parameters a and b)
having poles at £ = 0, £1 and Ay = 1. The reminder Ry (z) satisfies

Ry(z,0.0) = O(AI™), asi — oo,

moreover O(-) is uniform in z and o on compact subsets in C x R.
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The proof occupies the rest of this section.

Remark. This formula is a counterpart of Watson’s [44] formula for asymptotics
of the Gauss hypergeometric functions , Fi[a — A, b + A; ¢; z] in the parameter A
(see an exposition of Watson’s results in [25], Sect. 7.2, see also a remark in [41],
p.162, on typos in [44]). We do not see a way to reduce our statement to Watson’s
work.

Remark. Lemma 2.1 gives us an asymptotics of the gamma-factor in (7.1).

7.2. Stationary phase approximation. We transform X°(z, A, o) as

1
MCa—2—%1a+A—TCh+A+Z1b—2+%)-[Al

_ (7.2)
-/R(t,z,o)exp{Q(z,z,A,a)}df,
C
where
R(t.z) = 1% %1 emg=1( _ ppr 8=t [p+s-1( _y yma-% (73
and
o t(l—zt) 3 t(l—zt)
0(t,z,2) ._)Lln<—1_1 ) Mn(—l _t1> s
= ikImln(%) —i—isln(%).

The function Im In(-) is ramified, however the exponent is well defined and formu-
las below contain only partial derivatives of In(-), which are independent of the
choice of a branch.

We apply the stationary phase approximation, see, e.g., Fedoryuk [10], Hor-
mander [19]. Singular points are 0, 1, co. Stationary points are

tr=1+1-1/z,

they are the same for both summands in (7.4). This could be a fatal obstacle for
an evaluation of a uniform asymptotics, however this does not happen. Also the
domain of convergence of the integral (7.2) is smaller than it is necessary for our
purposes.

Consider a partition of unity

L=po+p1+p,-1 + poc+pey +pr_+7,
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where pq is zero outside a small neighborhood of «, and 7 is zero in neighborhoods
of 0, 1, z71, oo, 4. According to this partition we expand (7.2) into a sum of 7
integrals,

I'=Iv+ L+ 1,1+ I+ 1y +1_ +J.
Obviously (see [10], Lemma II1.2.1), for each N we have

J=0(>+sN asn+is— oo.

7.3. Preparatory statement

Theorem 7.2. Let Q be a domain in C, f(t), ¢(t) be holomorphic in Q. Let ty
be a unique zero of ¢’ (t) in Q and ¢ (ty) # 0. Let p(t) be a C*°-smooth function
compactly supported by Q such that p = 1 in a neighborhood of ty. Consider the
integral

I(A) = /p(l)f(l)JTl)eXP{i Re(Ap (1))} i, (7.5)
Q
where A € C is a parameter.

a) For |A| > 1 we have the following expansion

1 A~kAt .
IAD)=—— i Re(Ao(t _— , ,Q Ryx(1)),
) = o] S0 ReCie( 0))}(,@(;;0 (£ p)ai(f.9) + Ry(D)
k+I<N
(7.6)
where ay are rational expressions
ax = ax(¢(to). ¢'(t0). .. .; f(to). ' (t0)....:¢" (t0)™")
and ap = 1. The reminder Ry satisfies
Ry(A) = 0(AYN) as A — oo. (1.7)

b) The asymptotic expansion

N ~RTY L ash > oo

k=0,1=0
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can be written as

1(A) ~ exp{i Re(A¢(t0))}

1
£ (t0)]|7]

ex p{Wazz}(f(l) expiA(p(t) — ¢/ (to) — —<p”(to)(t — 10) )})‘

exp{——— 8_2}
21" (t0) 012

S @) expiA{ o) — ¢'(to) — 59" (o) (1 — 10)?
; t

=to

(7.8)

c) Let ¢ = @y, [ = fo smoothly depend on a parameter a, where a ranges in

a compact domain K C C and the conditions of the preamble of the theorem are
satisfied for all a. Then O(:) in (7.7) is uniform ina € K.

Proof. b) We use Fedoryuk [10], Proposition II1.2.2 or Hérmander [19], Theorem
7.7.5. Let f be a smooth compactly supported function on R”, let S be smooth.
Consider an n-dimensional integral

1(0) :=/f(x)exp{ioS(x)}dx, t=1.

Let x¢ be a unique critical point of S on the support of f, let it be nondegenerate.
Let H(xo) be the Hessian of S at x¢ (i.e., the matrix composed of second partial
derivatives), let sgn H(xo) denote the signature of the Hessian (the number of
positive eigenvalues minus the number of negative eigenvalues). Consider the
second order differential operator

i _
L= §<H(X0) lvx, Vx)’

where V, denotes the vector column composed of , 33’7 . Denote

Bx s

S0x.30) = $() — S(x0) — S (HE0)(x — ). (x —x0)), (79)

this expression is the part of the Taylor expansion of S(x) at x¢ starting cubic
terms. Then the following expansion take holds:

I(o)=(%r)n | det H (xo)|™ 1/2<3xp[ sgnH(xo)]

b4

1 k—L"(f(X) explioS(x.xo))| _ +0 VEVIVE)).
0

x
I

(7.10)

where V(o) is bounded.
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Let us return to our integral (7.5). Without loss of generality, we can set#y = 0,
gD//(Zo) =1,i.e.,

1
o(t) = Etz +r(t), wherer(0) =r'(0)=r"(0)=0
Set A = se'?, s > 0.Setz = x + iy, then

1
¢(x,y) = S (% = y* +2ixy) + r(x, ).
Thus we come to an oscillating integral in s with the parameter 0,
16.6) = [ pte) fx.3) F)
-expl{is(cos Regp(x,y) + sinf Ime(x, y))} dx dy.

We wish to apply the general statement formulated above. The Hessian is given

by
_ . fcos®  sinf 1 _ 1l cosf sind
i = 2(sin@ —cos@)’ = 2(sin0 —cos 9)'

The signature is 0. The differential operator L is
2 2 2 : 2 2
—if d

i 0 0 i/ g0 :
L = Z(cos@(ax2 3y 2) +2s1n98x8y) = E(e PYe +e ﬁ)
Next, we rewrite our phase function S(-) as
e_iogo(t) + emm.
Therefore the expression (7.9) is

e‘ier(t) + eier(_t).

Applying (7.10), we get
b/ i (90° _ig 0°
I(s,0) := —exp{ s( 72 +e eﬁ)}
(SO f@) explisEr(t) + e r)Nli—o
= T expl s Y@ estise roy)|

s

exp| s-rp N T explise r D))

We obtained asymptotics in s for fixed 6. However, 6 ranges in a compact set,
by [10], Theorem II1.2.2, we get that the term V(-) in (7.10) is bounded uniformly
in 6.

a) follows from b).

¢) We again refer to the parametric version of the stationary phase approxima-
tion, see [10], Theorem III.2.2. O
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7.4. Contribution of the stationary points. Let us apply Theorem 7.2 to our

integral (7.2). We have

) = Rt.2) = (—

() = 2ln(t(; - tz))

Denote

{=+1-1/z.

We substitute = 7 and transform the factors of R(r,z) = f(¢) f(¢):

(1 _Zzt)ala =ty (1 _fz)ala = ((z — )z)~@/21=4/2,
(1 —t)blb _ (1 . )b/2lb/2
LAY £\81%
(m%zz)) =65
w07 =)
Next,
o(ty) = 21n<11 12)
therefore
exp{l Re(@(t+) (k—i—zs))} (11;?) A=A _ (E—I)M_A-
Finally,
" -2 2 222
@"(t) = e +t_2+m’
and B
¢"(ty) = RN

Uniting these data we get that the leading term at the point ¢4 is

[_\Al=A 1
_1EI] — 2P —a—b<_) -
|é‘|| Z| |Z| [+ (k2+S2)1/2

—)a- )b(ﬁ)%(z(z—l)) !

(7.11)

(7.12)

(7.13)

(7.14)

(7.15)

The general form of the asymptotic expansion at ¢t = ¢ follows from Theo-

rem 7.2.
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7.5. Contributions of the singular points
Lemma 7.3. Contributions at the singular points 0, 1, oo are O(|A|™N) forany N.

Proof. For definiteness examine the point 0. We have the integral

’

t(1— ZZ))M—Z i

Iy(A) = /,O()(l‘)[a—lla—l(l _ l‘)c_a_l(l . Zt)_”( —

(&

defined as an analytic continuation. Keeping in mind that a support of py can be
chosen sufficiently small, we pass to a new variable in a neighborhood of 0,

t(l—zt)
U=—>",
1—1
and come to an integral of the form

Io(h) = /ua—x—1|a+i—1q)(u) di,
C

where ® is a smooth compactly supported function. It remains to apply Theo-
rem 2.2.

Argumentation for other singular points is the same. |

8. Symmetry of difference operators

Here we prove Theorem 1.7, i.e., show that if f € D(C), then Jap f is contained
in the space W, of meromorphic functions on A¢. Also we show that £ and £
are formally adjoint one to another on W, p, see Theorem 8.4.

8.1. Beginning of the proof of Theorem 1.7. We follow the list of properties in
the definition of W, 3, see Subsect. 1.8,

a) is a corollary of the symmetry X, ,(z: =k, —0) = K, p(z: k, 0).

b) We must examine poles of X, ;(z; k., o) as a function of the variable o for
afixedz € C,k € Z. Leta + b # 1. We look to the expansion (3.26) of 2FI‘D[-]
at z = 0. The only source of poles of X are zeros of the denominators in (3.28),
i.e., zeros of the expression

e (o =T e )
T¢(b + bt _k;U)FC(b + —kz—“ bt —"2—0).
(8.1)

R(k,0) := FC(a +

k+o
2

This gives us the desired list of possible poles.
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Let us examine the case a + » = 1. The decomposition of the hypergeometric
functions (3.26) at z = 0 produces an expression of the type

ua,b(27 kya) - vz,a,b(zs k, O—)

8.2
a+b-1 8.2)

j<:a,b(z§ks U) =

with u, 5, V4,5 having poles at zeros of R(k, o). A decomposition at z = 1 gives

Uap(z,k,0) = Vup(z,k,0)
a—b ’

Kap(zik,0) =

therefore the singularity in (8.2) ata + b = 1 is removable.

d) Indeed, we have X, 5 (p,q) = Kap(q. p), ie.,

P+CI‘ —ptq —P—CI‘ P—4q

zFlc a+—2 a+ > ,a+ > a+—2 .
a+bla+b

P‘i‘(/]‘ pP—4q —P—CI‘ —pP+q
_FC a+—2 a+ 5 ,a+ 3 a—l-i2 .
a+bla+b
This is a special case of the symmetry (3.36).
We also mention the following similar identity for (8.1):

R(p.q) = R(q. p), (8.3)

it is a special case of (3.37).

The statement c¢) about the behavior at infinity is a corollary of the expan-
sion (7.1) and the following lemma

Lemma 8.1. Let t1(z) be as in Theorem 7.1. Let ® € D(C) be a function with
a simply connected support. Then for any A > 0 for any N > 0 in the strip
|Reo| < A we have

_ (k+0)/2|(=k+0)/ _
/@(z)(;z;) TORITETOR 12 002 + (Imo)?)~N

¢
as (k? + Imo)?) — oco.

We need a simply connected support since the integrand is ramified at the
points z = 0, z = 1. A proof of the lemma requires some preparations.
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8.2. A change of variable. We define a new variable

_ ()

) (8.4)
The inverse map is done by
=t =L 85)
The map {(p) determines a two-sheet covering map from
C:=cC\{0.1,-1} (8.6)

to €. Notice that

_1)\2 _ 2 _
PRV k) Yy y = A S (700 S ik SO

4p p+1 4p2
__2r __2 L+ _
= = =0 (8.8)
Also,
tp~H=¢tp). P hHrt=tpp. (8.9)

8.3. Proof of Theorem 1.7.c

Proof of Lemma 8.1. We substitute z = {(p) to the integral and get

1

ie [ P @I~ 1P d

C

This is a Mellin transform of a function compactly supported by C. In virtue of
Theorem 2.2 the integral rapidly decreases in the union of strips |[Rec| < 4. O

Proof of the statement c) of Theorem 1.7. We represent ¢(z) as a sum of func-

tions in D(C) with simply connected supports. Next, we decompose the kernel
according to Theorem 7.1 and apply the lemma to each summand. |

8.4. Continuity

Corollary 8.2. The map J, , is a continuous map from D(C) 10 L2, (A, Xap)-

even
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Proof. Define the following seminorms on the space of smooth functions on A:

N F N
Pa,N (F) = sup | — (1 + [A])¥|,
ren | 00

and the space Y defined by these seminorms. Clearly, our proof provides a
continuity of J, 5 as a map D(C) to Y. It remains to notice that the identical
embedding f +— f of Y to L? is continuous.

Ifk =0anda =1 (or b = 1), then elements of W, ; have a pole of order
two22 at k = 0, s = 0. In this case we write A2 F instead of F in the definition of
the seminorms. U

8.5. Invariance of W, ;. Consider the difference operators £, £ defined above,
see (1.28),

(a+k+0)(b+k+o)

LF(k,0) = w+ixv+k+£ (Fk + 1,0 + 1) — F(k,0))
(e + =)0+ =52)
e k=10 =)= o)
(8.10)
EF&aﬁ:@+:%;O)@+_k;axF&—l0+D—F%0D
’ (=k +0)(1 —k +0) ' ' &.11)

(«+ 52 +57)

oa e Pk + Lo =D = Flk.0).

+

Lemma 8.3. The space W, p, is invariant with respect to the operators £, £

Proof. Since F(0,—1) = F(1,0) = F(—1,0) = F(0, 1), the expressions

Fk+ 1,0 +1)—F(k,o) Flk—1,0—1)—F(k, o)
l+k+o ’ l1—-k—0o

have no polesat k = —1,0 = 0 and k = 1, 0 = 0 respectively.

Since a function F(k, o) is even, it can not have a pole of order 1 at k = 0,
o=0.

New poles of F(k + 1,0 + 1) that are not poles of F(k, o) are annihilated by
the rational factor in (8.10).

22 At the same point the spectral density has a zero of order 4.
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The condition £F(p,q) = £F(q, p) follows from a straightforward calcula-
tion. O

8.6. Symmetry
Theorem 8.4. For (a,b) € I, for F, G € W, ; we have
(CF. G)12(Acdky ) = (F £G) 12(a.dK, ) (8.12)

Corollary 8.5. Operators %(2 + £), %(2 — £) are symmetric on the Ja p-image
of D(C).

Remark. In fact, the proof uses only properties of F € W, in strips |Reo| <
1 + €. So we can define operators £, £ on a space of meromorphic functions in
the strip satisfying an obvious list of conditions.

8.7. Proof of Theorem 8.4 for the case (a, b) € ¢ont. First, we notice that for
pure imaginary o we have G(k,o0) = G(k,—0), the last function is meromorphic
and also is contained in W, 5. Let R(k, o) be given by (8.1). Then

4% (LF, G)
k k
5| e )

k+o)1+k+o0)

(F(k + 1,0 + 1) = F(k,0))
kR

(14 =52)0+ =57

(—k —o0)(1—k —0)
-G(k.—5)(k — 0)(k + 0)R(k, 0)do.

+

(F(k — 1,0 — 1) — F(k, 0))}

(8.13)

Let us expand the expression in the curly brackets {...} as a sum of 4 sum-
mands that include F(k + 1,0+ 1), F(k,0), F(k—1,0—1), F(k,0). The whole
expression {...} is holomorphic near the contour of integration. The summands
have simple poles on the contour, and we pass to an integration in the sense of
principal values.

Let us examine the summand corresponding F(k + 1,0 + 1). We get

k— .
Zv.p./ 7% F(k 41,0+ )Gk, —5)R(k,0)do, (8.14)
P’ J l+k+o
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where
E(k,a)::( k;“)(b+1+k;r“)R(k,a)
=r@(a+1+k;° |+ _k;_U)FC(a—i— _k2_° a+ _kz_a)
-FC(b+1+kJ2rU ‘b+_k2+0)r@(b+_k2_0 ‘b+_k2_0).
(8.15)

Lemma 8.6. For0 < a < 1,0 < b < 1 the integrand in (8.14) has no poles in
the strip —1 < Imo < 0.

Proof. We enumerate possible (simple) poles of the factors.

a) Factor G(k,—0). In this case we can have poles if k = 0. Since a < 1,
b < 1 the poles 2 —2a, 2 — 2b are outside our strip. On other hand the pole 2a — 2
(resp. 2b — 2) is contained in the strip if 1/2 <a < 1 (resp. if 1/2 < b < 1).

b) Factor F(k + 1,0 + 1) has a pole in our strip for k = —1 ato = 2a — 1
(resp.o =2b—1)if0 <a < 1/2, (resp. 0 < b < 1/2).

¢) Since a > 0, b > 0 the expression R(k, o) has no poles in our strip.

However, the poles of G(k, —o) and of F(k + 1,0 + 1) are zeros of R(k, o).
Therefore the product is holomorphic. O

Lemma 8.7. In (8.14) we can change the integration contour to 1 + iR.

Proof. The integrand has no poles between contours i R and 1 +i R, but has poles
on contours, the integral is taken in the sense of principal values. We have only
two such poles, 0 = 0 on the contour iR for k = —1 and 0 = —1 for k = 0. Thus
the difference between the two integrals is 27 by half of the sum of residues, i.e.,

2”{( 1—0)F(0,0 + 1)G(—1,-5)

~l+o ~l+o

-(a+1+ )(b+1+ )R(—l,

+(0-0)F(l,o+ DGO, ~5)(a + 1+ )(b+1+ )

ok

Let us show that the sum is zero. Since F', G are even and satisfy (1.25), we have

F(0,1) = F(1,0), G(—1,0) = G(0,—1).
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By (8.3),
R(—1,0) = R(0,—1).

The remaining factors give

(e g)o+g) e (@ 3)(o+3)
i.e., the same expressions with different signs. |

End of the proof of Theorem 8.4 for the case (a,b) € Ion. Thus we can replace
the integration in (8.14) by the integration over the contour —1 + i R. We change
the variables/ =k + 1, = 0 4+ 1 and get

[ —t -
p- | ———F(U, )Gl —-1,—t+ DRI —-1,t—1)dt.
v | O 0GT- T DR )
iR

Next,

Ru—1,0-1)=RUn(a+ _lz_t)(b + _lz_t),

and we come to

(a + _lz_t)(b+ _12_[)

Xl:v.p.i{F(l,t)[ T-ha=T=h G(1—1,—z‘+1)]

(=11 +)R(. 1) dt.

We transform the expression in the big brackets to the form U(/, —7) , where

(a N —12+t><b N —12+l>

(—+0(1—1+1)

Udl,t) =

G —1,t+1).

Thus we finished the transformation of the summand of the (8.13) corresponding
to F(k + 1,0 + 1). The transformation of the summand corresponding to F(k —
1,0 — 1) is similar. The case of the summands F(k, o) is obvious. We come to
the desired expression. |

8.8. End of the proof of Theorem 8.4. Due to the homographic transforma-
tions, it is sufficient to examine the case a < 0. Let ®, ¥ € W, ;. Denote

Ua.b;k,0) := O(k,0)W(k,—0)xgp(k,0). (8.16)



576 V. F. Molchanov and Yu. A. Neretin

For (a, b) € I¢one We have

A% (D W) 2(p 4, ) = Z/ Ua, bk, o) do. (8.17)
kim

We wish to write the analytic continuation of this expression to the domain
(a,b) e Il,a <0.

Possible singularities of U as a function in ¢ in the strip |Reo| < 1 are the
following:

— if b > 1/2, then both functions ®, W have poles at (k, o) = (0, £(2 — 2b);

— x4.p(k,0) has poles at (k,0) = (0, £2a).

Due to our restrictions 2b — 2 < 2a < —2a < 2 —2b.

Thus all summands of (8.17) except 0-th are holomorphic in |a| < 1 —b.

Lemma 8.8. Fix b. Assume that ®, V be even rapidly decreasing meromorphic
functions in the strip |Re o| < 1 satisfying the condition (1.25) and having poles
only at the points (0, £(2 — 2b). Then the following expression is holomorphic in
the domain |a| < 1 — b:

/U(a,b;O,cr)dcr, ifa=0,
y (@) =" (8.18)

/ U(a,b;0,0)do + 4miresg=24 U(a, b;0,0), ifa <0.
iR

Proof of Lemma 8.8. Denote

(@) = [ U@.b:0.0)d0. 22(@) 1= 21 1050124 Ula. b:0.0).
iR
Since U is evenin o, we have E_(a) = —E +(a). Due to the factor (k +0)(k —0)

in the Plancherel density, we have E 4 (0) = 0. Therefore E 4 (a) are holomorphic
in the disk |a| < 1 —b.

Consider a contour L on the plane 0 € C composed of the ray (—oo, b — 1+ ¢],
the upper half of the circle |[o0| = 1 — b — ¢ and the ray [l — b — ¢, +00]. The
function

yr(a) == / U(a,b;0,0)do
L
is holomorphicina for |a| < 1—b. For Rea > 0 we have y1.(a) = yir(a)—E +(a).
For Rea < 0 we have yr(a) = vyir(a) — E_(a). This gives us the analytic
continuation. O
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Proof of Theorem 8.4 for a < 0. Thus the analytic continuation of the pairing
471 (@, W) 2(4 x, ,) to the domain a < 0 is given by

Vb(a)+z /U(a,b;k,a) do,

k#0 /R
i.e., fora < 0 we get 472 (®, W) 2(a(,.ak, -

Now we see that both sides of (8.12) are real analytic in the parameter a and
coincide for a > 0. Therefore they coincide for a < 0. O

9. The operator J, p is an isometry

Here we prove the second part of Theorem 1.3.

9.1. Statement
Lemma 9.1. Let f, g be smooth compactly supported functions on C. Then

(Jab [ Jap@) 12y ) = (812 g 1)

Here a way of a proof is simpler than in Section 6. We show that J, ; is a
perturbation of a version of the Mellin transform.

9.2. Orthogonality of packets
Lemma 9.2. Let f, g € D(C). Let supp(f) N supp(g) = @. Then
<Ja,bf’ Ja,bg)Lgven(AC,dKa,b) = 0.
Proof. By Corollary 8.2 the operator J, 5 is continuous as an operator
D(C) — L*(Ac.dKap).

by Theorem 8.4 it is symmetric on the image of D(C, Hap).- We consider the
difference operators

1 - 1 -
5(2—1— £), 5(2—2)

and repeat the proof of Lemma 6.3. |
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9.3. Decomposition of the kernel. Starting from this place we examine the
restriction of J, 5 f to A. Recall that the operator J, 5 is defined by the formula

Jos f) = / FK (D tanp () dE. ©.1)
C

Decompose the kernel K(z, A) according to (7.1) with N = 3. We consider
A € A, and therefore we set 0 = 0. Denote by w the factor depending on A in the
front of the expansion. We have

o(M)o) = x4 (A). 9.2)
Notice also that the expression in brackets in (7.1) has a singularity at A = 0.
Denote by ®(4) a smooth function, which equals O for |[A| < 1/3 and 1 for

|A| = 1/2. Represent the kernel as

K(z,A) = w(M)|1 — z|P~%|z|7¢?

{ED T+ E3)]

N
+®(A)[(i8) an A= DAT=2)
‘Zkires
I_(2)\ M4 o AR
+(t+(z)> k>§>0k!l! Ae(=v1=2)
1<k i< A(—VT=3)]
S SC

where R3(z, A) is a smooth function in z € Cand A,
R3(z,A) = O(JA|™3) as A — oo.

uniformly on compact subsets of C. The summands correspondingtok = 0,/ = 0
are smooth at A = 0, so we do not multiply them by the patch function ®(1).

Next, we change the variable as in (8.4)—(8.9):

2
t(p) = LD
4
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and represent the operator J, 3 in the form
Jap J(A) = 0(}) / SEEYN =L 21 (p) TV IE (p)

' {[p“_i +(p" )M

+®()x)[p*”z)k o A (2= )Al( )

1
k>ol>0kl p+1 p+1
1<k+I<2
Akt p—1 p—1
+ (Y A (-2 (-2
k!
k50120, k! p+1 p+1
1<k+I<2

+ RE(p). M)} dp,

where € denotes € := C\ {0, 1, —1} as above.
It is convenient to split the operator J, j, into a sum of operators,

Jaw = Voo + Vool + DV + D Vi + Viem, 9.3)

where the summands correspond to the summands of the previous formula. We
also denote

y(p) =1 =PI e ()21 (p) 2.
9.4. The main term

Lemma 9.3. The operator %(VOTO + Vo.0) is a unitary operator from L%(C, pap)
10 L2, (A, %4 ).

Proof. We have

((Voj,Lo + Vo) /. (VoTo + V0.0)8)L2(A %)
-/ ( [ 16+ dﬁ)
A e

- ( [ F@@ra@ e+ g dé)oh

i
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(we also applied (9.2). Transform this expression as
[ ([ 1cwmm@lpre i a)
A ¢

: ( / 2C@)y(@)lq|(q A1y gAmtl=A=t dc?)cix.

i

9.4)

Now we apply the remark about Mellin transforms of even functions from Sub-
section 2.3. Keeping in mind (8.9), we observe that functions f(¢(p))y(p)|p|*
are x-even. Therefore both integrals over € in (9.4) are Mellin transforms of even
functions, and we can apply the Plancherel formula for the Mellin transform. We
come to

d3

/ HENREDI (PRIl SE

:
= / FEPNEEPHIN = PP L (P21 (p)
S(1=¢ITE P PIE (P d p.

By (8.7)—(8.8) the expression in the big brackets is 1. Now we return to the variable
z = {(p) and get the desired expression

/ f(2)g(@)hap(z) dZ. O
¢

9.5. Other terms

Lemma 9.4. The Hermitian form

{£.8} = (Jan [ Jab @) 120 %0 ) — (Voo + Vo) /r Voo + Vo) &) 12(A 0 1)
9.5)
on D(C) can be written as

fig) = [ [ K(p.q) fC(p)EE@) df di. 9.6)

where K is a locally integrable function on € x € smooth outside the sets p = q,
—1
r=q -
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Proof. Expanding J, 5 according to (9.3), we get many summands in (9.5). We
wish to show that each summand can be written as (9.6) with its own K. Let us

start the discussion with the summand

Voo - Vo8 12(A kg »)
— 0O ) =
-/ =0 ( [ rconpiprp dﬁ)
: 9.7)

A
)(q—l))k—ll—)_k—l dc?)c?)t.

L g—1
( / @ @laP (-1

pd
The integral in the first big bracket is the Mellin transform of the function

F(p) == fEC(p)y(p)lpl*

The integral in the second big bracket is a complex conjugate to the Mellin

transform of
- 1y g'-1
G(@) = ga™ Ny g A (~2my)

Thus we get
O) ~
( )d)L.

_ _ 11—
(Voo /- Vor8)12(A e ) = /MF(A)MG(K)T
A

Denote by L(p) the inverse Mellin transform of %@). It is easy to see that L(p)
is an integrable function with a unique singularity of the type 1/(1 — p) at p = 1.

We rewrite our integral as
| [ toorme@ s

¢ ¢

and it has the desired form.
For other pairs V¢, V,j/ > Where &, ¢’ = 41, we have similar calculations.

Instead of the boxed factor in (9.7), we get
1-01)

K+ Y IHK

9.8)
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Fork + [ + k' + I’ < 2 we repeat the same considerations, in these cases inverse
Mellin transforms of the functions (9.8) have (integrable) singularities?3 at p = 1

of types .
L el Y R
1—p 1—p 1—p
Ifk +1+k’+ 1’ = 3, then this expression is integrable in A, the triple integral
is convergent, we can change the order of integrations and we immediately get an
expression of the form (9.6) with real analytic K(p, q).
For the pairs including V. we get absolutely convergent triple integrals and

analytic kernels K(p, q). |

9.6. Proof of Lemma 9.1. Now let f, g € D(C) have disjoint supports. Then
both terms in (9.5) are zero (see Lemma 9.2). Therefore the kernel K(p, ¢) satisfy
the following property:

e = [ [ K0 7@ dp dg =0
¢ ¢
if ¢, ¥ are x-even elements D(C) with disjoint supports.

We claim that { f, g} = 0 for any x-even functions f, g € D(C). To observe
this, we take a x-even partition of unity z; with small supports, and decompose

(fgd =) {ufug
Kl

Clearly, we can make this sum as close to zero as we want by refinement of a
partition of unity. We omit trivial details.

10. Domains of self-adjointness

Thus J,  is unitary. Clearly the multiplication operators

1
f@) — %(Z +Of@. f@)r— -0 f(F)

defined on D(C) are essentially self-adjoint in L2(C, Wa,p) and commute. There-

fore the operators %(2 +2), 2_1, (£—£) are essentially self-adjoint and commute on
the subspace Ja,bﬂ((f]) C L? 2(Ac,dKgp). But W, contains this image. This

eve
establishes Theorem 1.2.a.

Theorem 1.8.a follows from the same argumentation.

23 We can refer to corresponding formulas for the Fourier transform, see [14], Addendum,
Sect. 1.7 (Russian edition) or [15], Sect. B.1.3 (English translation).
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