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A universality law for sign correlations

of eigenfunctions of differential operators

Felipe Gonçalves, Diogo Oliveira e Silva,1 and Stefan Steinerberger2

Abstract. We establish a sign correlation universality law for sequences of functions
¹wnºn2N satisfying a trigonometric asymptotic law. Our results are inspired by the classical
WKB asymptotic approximation for Sturm–Liouville operators, and in particular we obtain
non-trivial sign correlations for eigenfunctions of generic Schrödinger operators (including
the harmonic oscillator), as well as Laguerre and Chebyshev polynomials. Given two
distinct points x; y 2 R, we ask how often do wn.x/ and wn.y/ have the same sign.
Asymptotically, one would expect this to be true half the time, but this turns out to not
always be the case. Under certain natural assumptions, we prove that, for all x ¤ y,

1

3
� lim

N !1

1

N
#¹0 � n < N W sgn.wn.x// D sgn.wn.y//º � 2

3
;

and that these bounds are optimal, and can be attained. Our methods extend to other
problems of similar flavor and we also discuss a number of open problems.
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1. Introduction

1.1. Setup. This paper is motivated by a simple and surprising property ex-
hibited by the sequence of eigenfunctions for the eigenvalue problem of Sturm–
Liouville differential operators. Consider, on the real line, the Schrödinger oper-
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ator associated to the potential V ,

H D � d2

d x2
C V.x/: (1)

Here, V WR ! R is some function satisfying V.x/ ! 1, as jxj ! 1.

x

y

Figure 1. The potential V .x/ D x2 (dashed) and the first three eigenfunctions of the
quantum harmonic oscillator.

The eigenvalue problem

H.wn/ D �nwn (2)

has been studied extensively, the simpler case V.x/ D x2 corresponding to the
quantum harmonic oscillator whose eigenfunctions are given by the Hermite func-
tions (see Figure 1). It is well understood that, as the eigenvalues become large,
the second derivative dominates, and the eigenfunctions start to look locally like
trigonometric functions. This phenomenon gives rise to the WKB approximation,
named after Wentzel, Kramers, and Brillouin. The purpose of our paper is to es-
tablish a rather surprising universality statement for sign correlations of sequences
of functions for which a kind of WKB approximation holds.

Our starting point is very simple to state: given two distinct points x; y 2 R,
how often do wn.x/ and wn.y/ have the same sign? More precisely, we are
interested in the sign correlation limit, defined as

`¹wnº.x; y/ WD lim
N !1

1

N
#¹0 � n < N W sgn.wn.x// D sgn.wn.y//º: (3)

One could be tempted to conjecture that, in the high frequency limit, the two points
x; y decouple and the corresponding signs behave essentially like independent
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Bernoulli random variables, thus exhibiting the same sign in roughly half of the
cases. This seemingly natural conjecture turns out to be a good guess for the
generic behavior of the system. However, earlier work of the authors [8] hinted at
the possible existence of an exceptional set exhibiting a different kind of behavior,
and motivated the present paper.

1.2. Main result. We state our first main result in general terms, but modelled
by the WKB asymptotic trigonometric law. In §1.3 we apply our methods in order
to obtain sign correlations for eigenfunctions of Schrödinger operators.

A sequence ¹anº � Œ0; 1� is said to be equidistributed in Œ0; 1� if, for any
subinterval Œc; d � � Œ0; 1�,

lim
N !1

1

N
#¹0 � n < N W an 2 Œc; d �º D d � c:

A sequence ¹anº � R is said to be equidistributed modulo 1 if the sequence of
the fractional parts ¹an � bancº is equidistributed in Œ0; 1�. Our first main result
applies to a sequence of functions obeying a certain asymptotic behavior which is
inspired by the WKB approximation, and is satisfied by several classical objects
(see the examples in §4). Regarding notation, on.1/ will denote a quantity that
tends to 0, as n ! 1. We will also write an D O.bn/, or janj . jbnj, if there
exists a constant C < 1 (independent of n) such that janj � C jbnj, for every n.

Theorem 1 (main result). Given D � R, let wnW D ! R be a sequence of

functions satisfying

wn.x/ D .1 C on.1//�.x; n/ cos .2�.�n'.x/ � �//; (4)

for every x 2 D and some ¹�nº � R, � 2 R, and function �W D � N ! R.

Consider distinct points x; y 2 D such that '.x/ ¤ ˙'.y/ and �.x; n/�.y; n/ > 0

for all n. If the sequences ¹p�1�n'.x/º and ¹q�1�n'.y/º are equidistributed

modulo 1 for any p; q 2 Z n ¹0º, then the sign correlation limit (3) exists, and

satisfies
1

3
� `¹wnº.x; y/ � 2

3
: (5)

Moreover, these constants are optimal.

We believe this result to be rather surprising. In particular, it establishes
the existence of correlations different from 1

2
. These correlations are, however,

universally bounded away from both 0 and 1. Theorem 1 motivates a number of
natural questions, see §1.4 below.
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1.3. Sharper asymptotics. The sign correlation limit can be computed exactly

in a number of situations of interest. We proceed to describe one such situation.
Let V 2 L1

loc.R/ be a locally integrable potential such that V.x/ ! 1, as
jxj ! 1, and assume V to be bounded from below,

essinfx2R V.x/ > �1: (6)

We renormalize the Hamiltonian by HV D � 1
4�2

d2

dx2 C V.x/ (adapted to our
choice of normalization of the Fourier transform, see §2 below). Under these
conditions, the operator HV given by (1) is known to have compact resolvent. In
particular, HV has purely discrete spectrum and a complete set of eigenfunctions,
see [13, Theorem XIII.67]. This means that there exists an orthogonal basis ¹wnº
of L2.R/ such that HV .wn/ D �nwn, where the eigenvalues ¹�nº form a non-
decreasing sequence satisfying �n ! 1, as n ! 1. In addition, we require V to
be an even function. This implies that the basis ¹wnº naturally splits into even and
odd functions, since the corresponding subspaces are HV -invariant. In particular,
we can reorder the basis elements in such a way that wn is an even function if n

is even, and an odd function if n is odd. After doing so, the sequence ¹�nº may
no longer be non-decreasing, however we still have that �n ! 1, as n ! 1.
By uniqueness of solutions to the eigenvalue problem (2), we may further impose
sgn.w2n.0// D sgn.w0

2nC1.0// D .�1/n. Here and in the rest of the paper a prime
denotes differentiation with respect to the variable x. We will also require both
subsequences ¹

p
�2nxº and ¹

p

�2nC1xº to be equidistributed modulo 1, for every
x ¤ 0. Whether this should generically be the case is discussed in Problem (3)
from §1.4 below. We are now ready to state our second main result.

Theorem 2 (sharper asymptotics). Let V 2 L1
loc.R/ be an even potential, bounded

from below in the sense of (6), and such that V.x/ ! 1, as jxj ! 1. For each

n 2 N, assume that for the associated eigenvalue problem HV .wn/ D �nwn, the

following assertions hold:

(H1) the function wn is even if n is even, and odd if n is odd;

(H2) the sequences ¹
p

�2nxº and ¹
p

�2nC1xº are equidistributed modulo 1, for

any x 2 R n ¹0º; and

(H3) sgn.w2n.0// D sgn.w0
2nC1.0// D .�1/n.

Then the asymptotic

wn.x/ D .1 C on.1//
�

wn.0/2 C w0
n.0/2

4�2�n

�1=2

cos
�

2�
�

p

�nx � n

4

��

(7)
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holds uniformly on compact subsets of the real line. If x; y are distinct real

numbers such that x
y

D p
q

for some nonzero coprime integers p; q, then the sign

correlation limit (3) is given by

`¹wnº.x; y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2
C 1

2pq
if p � q � 1 mod 4; or p � q � 3 mod 4;

1

2
otherwise:

(8)

If x
y

is irrational, then `¹wnº.x; y/ D 1
2
:

The asymptotic (7) is exactly the one given via WKB approximation. The
quadratic case V.x/ D x2, where the WKB approximation coincides with the
classical asymptotic for Hermite polynomials, falls under the scope of Theorem 2
and is described in more detail in §4 (together with higher dimensional extensions,
provided by the Laguerre polynomials).

1.4. Further remarks and open problems. (1) Can Theorems 1 and 2 be
extended to sign correlations of three or more points? What can be said about the
density with which a specific sign configuration, say .C; �; C; �; �/, can occur?
Some of these may be universally bounded away from 0 and 1, while others may
not be. In principle, our approach provides a framework for obtaining such bounds
since each such question is reduced to a finite computation. However, the increase
in complexity is substantial, which is why we have not been able to further explore
this question. We believe it to be a promising avenue for future research.

(2) Is it possible to characterize the class of potentials V such that our result
applies to eigenfunctions of the Schrödinger operator HV ? The WKB approxima-
tion seems to be a valuable tool, however, it is not clear to us whether a suitable
theory on the equidistribution of the eigenvalues of differential operators exists.
On the other hand, the asymptotic growth of ¹�nº, as n ! 1, has been studied
extensively (see [7]). Bohr’s asymptotic formula

#¹�n � �º � 1

�

1
Z

0

p

.� � V.x//C d x;

gives some information about the possible equidistribution of ¹
p

�nº, but this
question seems more subtle.

(3) As we shall see, these questions are connected to classical problems on the
asymptotic behavior of geodesics on the d -dimensional torus Td . It is natural to
expect that several of the new developments regarding strong forms of linear flow
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rigidity [1, 2, 3, 4, 9, 15] can be used to make more precise statements in some
special cases. We also note that at least for some classical families of orthogonal
polynomials it should be possible to obtain more precise quantitative information
– see §4 below for further details.

2. Useful lemmata

We start with a general result that will serve as a first step towards computing the
sign correlation limit of a sequence of functions over a fixed finite set of points
a D .a1; : : : ; ad / 2 Rd .

Lemma 1. Given a 2 Rd , assume that �a 2 Zd , for some � > 0. Let f W R ! R

be a continuous 1-periodic function. Let ¹�nº � R be a sequence such that ¹�n

�
º

is equidistributed modulo 1. Let s 2 ¹�1; 1ºd . Then

lim
N !1

1

N
#¹0 � n < N W .sgnŒf .�na1/�; : : : ; sgnŒf .�nad /�/ D ˙sºD

1
Z

0

‰.�ta/ d t;

where the function ‰WRd ! ¹0; 1º is defined as follows: given u 2 Rd , then

‰.u/ D 1 if .sgnŒf .u1/�; : : : ; sgnŒf .ud /�/ D ˙s, and ‰.u/ D 0 otherwise.

Proof. Consider the function g.t/ WD ‰.�ta/, which satisfies g.t C 1/ D g.t/,
for every t 2 R. By construction, we have that

¹0 � n < N W .sgnŒf .�na1/�; : : : ; sgnŒf .�nad /�/ D ˙sº

D
°

0 � n < N W g
��n

�

�

D 1
±

:

Since the function g is 1-periodic and the sequence
®

�n

�

¯

is equidistributed modulo
1, we have that, as N ! 1,

1

N
#¹0 � n < N W .sgnŒf .�na1/�; : : : ; sgnŒf .�nad /�/ D ˙sº

�! j¹t 2 Œ0; 1�W g.t/ D 1ºj D
1

Z

0

g.t/ d t:

The last identity follows from the fact that the function g takes values in ¹0; 1º.
This concludes the proof of the lemma. �
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Only the case d D 2 of Lemma 1 will be relevant to our applications. For the
remainder of the section, we will discuss integrals of the function

ˆ.x; y/ WD sgn.cos.2�x/ cos.2�y// (9)

over rays of the two-dimensional torus T2 D R2=Z2, which will play a key role in
the proof of our main theorems. We remark that the Haar measure onT2 coincides
with the Lebesgue measure on the fundamental domain Œ0; 1�2. We further note
that, given a ray  WR ! T2 defined by .t/ D .At �˛; Bt �ˇ/ for some A; B ¤ 0,
then

lim
T !1

1

T

T
Z

0

ˆ..t// d t D lim
T !1

1

T

T
Z

0

ˆ. Q.t// d t ; (10)

where Q WR ! T2 is in turn given by Q.t/ D .t; at C b/, with a D B=A and
b D .B=A/˛�ˇ. The following lemma is well known, with suitable modifications
and vast generalizations appearing in [5, 6, 12]. For the sake of completeness, we
provide a short proof.

Lemma 2. Given a; b 2 R, let .t/ D .t; at C b/ be the corresponding line in R2.

Then the limit

lim
T !1

1

T

T
Z

0

ˆ..t// d t (11)

exists. Moreover, if the limit is nonzero, then the coefficient a is a rational number.

Proof. Since the function ˆ is 1-periodic in the variables x and y, the problem
reduces to a standard question in equidistribution theory on the 2-dimensional
torus T2. If a is irrational, then the line t 7! .t; at C b/ is densely wound and
equidistributes over T2, and the averaged integral in (11) converges to the average
value of ˆ,

lim
T !1

1

T

T
Z

0

ˆ..t// d t D
Z

T2

ˆ.x; y/ d x d y D 0;

see [6, §2.3]. If a is rational, then the line t 7! .t; at C b/ gives rise to a closed
geodesic on T2, and the existence of the limit (11) follows from periodicity. �
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The next lemma further analyzes the case of rational slope a D p=q 2 Q. It is
of quantitative flavor, and relies on the explicit form of the function ˆ. We achieve
this by resorting to Fourier series, and will normalize the Fourier coefficients of
an integrable function f W Œ0; 1� ! C in the following way:

Of .n/ D
1

Z

0

f .x/e�2�inx d x:

Lemma 3. Let A; B 2 R be nonzero real numbers, such that A=B D p=q for

some coprime p; q 2 Z. Let ˛; ˇ 2 R and let .t/ D .At � ˛; Bt � ˇ/ be the

corresponding ray on T2. If either p or q are even, then

lim
T !1

1

T

T
Z

0

ˆ..t// d t D 0:

If both p and q are odd, then

lim
T !1

1

T

T
Z

0

ˆ..t// d t D .�1/
pCq

2
C1 8

�2pq

1
X

`D0

cos.2�.2` C 1/.pˇ � q˛//

.2` C 1/2
:

In particular, in this case, we have that

ˇ

ˇ

ˇ

ˇ

lim
T !1

1

T

T
Z

0

ˆ..t// d t

ˇ

ˇ

ˇ

ˇ

� 1

jpqj .p; q odd/

where equality is attained if and only if pˇ � q˛ is an integer.

Proof. By periodicity, recall (10), we have that

lim
T !1

1

T

T
Z

0

ˆ..t// d t D
1

Z

0

ˆ.pt � ˛; qt � ˇ/ d t:

Expanding the function ˆ in Fourier series,

ˆ.x; y/ D 4

�2

X

n;m2Z
m;n¤0

sin.�n
2

/ sin.�m
2

/

mn
e2�i.mxCny/;
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we obtain that

1
Z

0

ˆ.pt � ˛; qt � ˇ/ d t

D 4

�2

X

n;m2Z
m;n¤0

sin.�n
2

/ sin.�m
2

/

mn

1
Z

0

e2�i.mpCnq/t e�2�i.m˛Cnˇ/ d t

D 8

�2pq

1
X

kD1

sin.�kp
2

/ sin.�kq
2

/

k2
cos.2�k.pˇ � q˛//:

This quantity vanishes if either p or q are even. On the other hand, if both p and
q are odd, then

1
Z

0

ˆ.pt � ˛; qt � ˇ/ d t D .�1/
pCq

2
C1 8

�2pq

1
X

`D0

cos.2�.2` C 1/.pˇ � q˛//

.2` C 1/2
:

Since
P1

`D0
1

.2`C1/2 D �2

8
; the triangle inequality implies

ˇ

ˇ

ˇ

ˇ

1
Z

0

ˆ.pt � ˛; qt � ˇ/ d t

ˇ

ˇ

ˇ

ˇ

� 1

jpqj ;

where equality is attained if and only if pˇ � q˛ 2 Z. �

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let x ¤ y 2 D be given, satisfying '.x/ ¤ ˙'.y/. No
generality is lost in assuming that '.x/='.y/ D p=q for some coprime p; q 2 Z,
and that p='.x/ D q='.y/ > 0, for otherwise Lemma 2 would imply that
`¹wnº.x; y/ D 1

2
, and there is nothing to prove. Now, since the function (4) satisfies

�.x; n/�.y; n/ > 0 for all n, we have that

`¹wnº.x; y/ D `¹unº.x; y/; (12)

where un.x/ WD cos.2�.�n'.x/ � �//. We focus on the latter limit, and prepare
to apply Lemma 1 with a D .'.x/; '.y//, s D .1; 1/, � D p='.x/ D q='.y/, and
f .z/ D cos.2�.z � �//. Note that our equidistribution assumption implies that
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the sequence
®

�n

�

¯

D ¹p�1�n'.x/º is equidistributed modulo 1, and so all the
hypotheses of Lemma 1 are satisfied. The conclusion is that

`¹unº.x; y/ D
1

Z

0

‰.pt � �; qt � �/ d t; (13)

where the function ‰ is related to ˆ from (9) via ˆ D 2‰ � 1. It then follows
from (12) and (13) that

`¹wnº.x; y/ D 1

2
C 1

2

1
Z

0

ˆ.pt � �; qt � �/ d t: (14)

The latter integral was computed in the course of the proof of Lemma 3, and is
non-zero only if both p; q are odd. In that case, applying Lemma 3 with A D '.x/,
B D '.y/, and ˛ D ˇ D � , yields

ˇ

ˇ

ˇ

ˇ

1
Z

0

ˆ.pt � �; qt � �/ d t

ˇ

ˇ

ˇ

ˇ

� 1

jpqj : (15)

To finish the argument, note that p; q both being odd, and '.x/ ¤ ˙'.y/, jointly
force the inequality 1

jpqj
� 1

3
. Estimates (14) and (15) then imply (5), which is

the first desired conclusion. To verify the claimed optimality, recall the cases of
equality in Lemma 3 and consider the particular case when '.x/ D 3'.y/ and
�.'.x/ � '.y// 2 Z. �

Proof of Theorem 2. Let us briefly recall the proof of the asymptotic (7). Start
by noting that two linearly independent solutions of the associated homogeneous
equation w00

n C 4�2�nwn D 0 are given by

wn;1.x/ WD cos.2�
p

�nx/ and wn;2.x/ WD sin.2�
p

�nx/;

and have constant Wronskian

W.w.1/
n ; w.2/

n / WD det

�

wn;1 wn;2

w0
n;1 w0

n;2

�

D 2�
p

�n:

The general solution to the eigenvalue problem (2) is then given by

a cos.2�
p

�nx/ C b sin.2�
p

�nx/ C 2�p
�n

x
Z

0

sin.2�
p

�n.x � t //V .t/wn.t / d t;

(16)
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for some a; b 2 R, as can be easily checked by direct differentiation. Evaluat-
ing (16) and its derivative at zero while appealing to hypotheses (H1) and (H3),
we then have that

wn.x/ D
s

wn.0/2 C w0
n.0/2

4�2�n

cos
�

2�
�

p

�nx � n

4

��

C 2�p
�n

x
Z

0

sin.2�
p

�n.x � t //V .t/wn.t / d t:

(17)

Define Mn.x/ WD max¹jwn.y/jW y 2 Œ0; x�º. Applying the integral form of
Grönwall’s inequality [17, Theorem 1.10] to (17), we deduce

Mn.x/ �
�

wn.0/2 C w0
n.0/2

4�2�n

�1=2

C on.1/Mn.x/;

and therefore

Mn.x/ .

�

wn.0/2 C w0
n.0/2

4�2�n

�1=2

;

from where asymptotic (7) follows at once.
The rest of the proof follows similar steps to those of Theorem 1. Firstly, we

can restrict attention to the case of rational x=y. Secondly,

`¹wnº.x; y/ D `¹vnº.x; y/;

where vn.x/ WD cos.2�.
p

�nx � n
4
//. Thirdly, given the equidistribution assump-

tion (H2), Lemma 1 again applies and reduces the computation to

`¹vnº.x; y/ D
1

Z

0

�‰0 C ‰1

2

�

.pt; qt/ d t:

Here, the functions ‰0; ‰1 are given by ˆ0 DW 2‰0 �1 and ˆ1 DW 2‰0 �1, where
ˆ0 WD ˆ was given in (9), and ˆ1.x; y/ WD ˆ

�

x � 1
4
; y � 1

4

�

. Consequently,

`¹wnº.x; y/ D 1

2
C 1

4

1
Z

0

ˆ.pt; qt/ d t C 1

4

1
Z

0

ˆ
�

pt � 1

4
; qt � 1

4

�

d t:

These integrals can be calculated with Lemma 3. Invoking it with ˛ D ˇ D 0,
and then with ˛ D ˇ D 1

4
, yields

`¹wnº.x; y/ D 1

2
C 1

4pq
..�1/

pCq
2

C1 C .�1/pC1/:

This is readily seen to be equivalent to the result as stated in (8). �
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4. Further examples:

Hermite functions, Laguerre polynomials

and sets of bounded remainder

4.1. Hermite functions. One could think of replacing hypothesis (4) from The-
orem 1 by a less restrictive assumption of the form

wn.x/ D .1 C on.1//�.x; n/ cos.2�.�n'.x/ � �n//;

where ¹�nº is now a sequence. Without any further assumption, several steps of
the preceding proofs break down completely. However, if some quantitative con-
trol on the speed with which the sequences ¹�n'.x/º and ¹�n'.y/º equidistribute
modulo 1 is known, then we can allow for a certain degree of variability in the
sequence ¹�nº. It is not clear to us what the sharp version of such a statement
would be, and we leave it for future research.

Cases in which the sequence ¹�nº changes rapidly with n, but does so in a
structured manner, are also of interest. Such cases may be dealt with by parti-
tioning ¹wnº into an appropriate number of subsequences, as we now illustrate. A
particularly nice example which fits into this framework (and served as original
inspiration for Theorem 2) is that of the Schrödinger operator on the real line,

H WD � 1

4�2

d2

d x2
C x2:

The operator H is diagonalized by the Hermite functions,

'n.x/ WD Hn.
p

2�x/e��x2

:

Here, ¹Hn.x/º denote the classical Hermite polynomials, which are orthogonal
with respect to the standard Gaussian measure e��x2

d x. As is well known,

H.'n/ D 2n C 1

2�
'n: (18)

Moreover, the asymptotic from [16, Theorem 8.22.6 and Formula (8.22.8)],

Hn.
p

2�x/e��x2 D .1 C on.1//
�.n C 1/

�
�

n
2

C 1
� cos

�

2�
�

r

2n C 1

2�
x � n

4

��

shows that the eigenfunctions ¹'nº in (18) do not satisfy the assumptions of
Theorem 1, but that the subsequences ¹'2nº and ¹'2nC1º do. We further note
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that the basis ¹'nº diagonalizes the Fourier transform in the following sense: the
elements of ¹'nº are pairwise orthogonal, dense in L2.R/, and

O'n.�/ D
1

Z

�1

'n.x/e�2�i�x d x D .�i/n'n.�/:

A simple consequence of Theorem 2 (plus a short computation) is the follow-
ing.

Proposition 3 (Sign correlations for Hermite functions). Let x; y ¤ 0 and

y=x 2 Z. Then

`¹'nº.x; y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2
C x

2y
if

y

x
� 1 mod 4;

1

2
otherwise.

4.2. Laguerre polynomials. An extension of the previous example to higher
dimensions involves the so-called Laguerre polynomials. Let ¹L�

n.x/º be the
(generalized) Laguerre polynomials with parameter � > �1, defined via

1
Z

0

L�
n.x/L�

m.x/x�e�x d x D �.n C � C 1/

nŠ
ı.n � m/: (19)

It is well known, see [16, Formula (8.22.2)], that

L�
n.2�x2/e��x2 D .1 C on.1//

n�=2�1=4

p
�.2�/�=2C1=4x�C1=2

� cos
�

2�
�

r

4n C 2� C 2

2�
x � 2� C 1

8

��

:

It is also known that the set of Laguerre functions

x 2 Rd 7�! ˆn.x/ WD L�
n.2�jxj2/e��jxj2;

with � D d=2 � 1, diagonalizes the operator H D � 1
4�2 � C jxj2 over the space of

radial functions in Rd , and that

H.ˆn/ D .4n C 2� C 2/

2�
ˆn:

We also note that ¹ˆnº diagonalizes the Fourier transform over the space of square
integrable radial functions in Rd . Indeed,

ŷ
n.�/ D

Z

Rd

ˆn.x/e�2�i��x d x D .�1/nˆn.�/:
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The following result is a direct application of Lemma 3 with ˛ D ˇ D 2�C1
8

D
d�1

8
.

Proposition 4 (Sign correlations for Laguerre functions). Let r1; r2 > 0 be radii

such that r1

r2
D p

q
for some coprime integers p and q. Then

`¹ˆnº.r1; r2/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2
if p or q is even; or if p; q and

.p � q/.d � 1/

2
are odd,

1

2
� 1

2pq
.�1/

pCq
2

C .p�q/.d�1/
4 otherwise.

4.3. Sets of bounded remainder. In this final section, we describe a curious
phenomenon that was discovered by accident. Consider the family of Chebyshev
polynomials of the first kind on the interval Œ�1; 1�, denoted ¹Tnºn�0 and defined
via Tn.x/ WD cos.n arccos x/. This turns out to be one of the extremal examples
for Theorem 1 since

#
°

0 � n < N W sgn Tn

�

cos
�2�

10

��

D sgn Tn

�

cos
�

3
2�

10

��±

D .1 C oN .1//
N

3
:

Indeed, the arising quantities simplify to

Tn

�

cos
�2�

10

��

D cos
�2�n

10

�

and Tn

�

cos
�

3
2�

10

��

D cos
�

3
2�n

10

�

;

and both sequences
®

2�n
10

¯

and
®

32�n
10

¯

are equidistributed modulo 1. If we go
one step further and try to understand the error term, we encounter the following
surprising phenomenon. At least for N � 104, we used to Mathematica to verify
that

ˇ

ˇ

ˇ#
°

0 � n < N W sgn Tn

�

cos
�2�

10

��

D sgn Tn

�

cos
�

3
2�

10

��±

� N

3

ˇ

ˇ

ˇ � 10:

This somewhat surprising behavior is porbably related to the fine structure of Kro-
necker sequences [10, 11, 14]; one cannot hope for such strong results in general.
This is reminiscent of exciting new developments in the theory of continuous flows
on the torus, Beck’s [1, 2, 3, 4] superuniformity theory, that may have nontrivial
implications. We also refer to a related paper by Grepstad & Larcher on sets with
bounded remainder [9], which seems to provide further interesting directions of
research.
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