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Semiclassical study

of shape resonances in the Stark effect

Kentaro Kameoka

Abstract. Semiclassical behavior of Stark resonances is studied. The complex distortion

outside a cone is introduced to study resonances in any energy region for the Stark Hamilto-

nians with non-globally analytic potentials. The non-trapping resolvent estimate is proved

by the escape function method. The Weyl law and the resonance expansion of the propaga-

tor are proved in the shape resonance model. To prove the resonance expansion theorem,

the functional pseudodifferential calculus in the Stark effect is established, which is also

useful in the study of the spectral shift function.
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1. Introduction

In this paper, we study the semiclassical behavior of the resonances for the Stark

Hamiltonian:

P.„/ D �„2�C ˇx1 C V.x/;

where V.x/ 2 C1.RnIR/ is a non-globally analytic potential and ˇ > 0.

Throughout this paper, the constant ˇ > 0 is fixed.

We set the cone

C.K; �/ D ¹x 2 R
n j jx0j � K.x1 C �/º;

where x0 D .x2; : : : ; xn/, and denote its complement by C.K; �/c. We denote

the set of all bounded smooth functions with bounded derivatives by C1
b

. Our

assumption on the potential V is as follows:

Assumption 1. The potential V.x/ 2 C1
b
.RnIR/ has an analytic continuation to

the region ¹x 2 C
n j Rex 2 C.K0; �0/

c ; jIm xj < ı0º for some �0 2 R; K0 > 0

and ı0 > 0, and @V .x/ goes to zero when Rex ! 1 in this region.

https://creativecommons.org/licenses/by/4.0/
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We introduce the complex distortion outside a cone to study semiclassical

Stark resonances. This reduces the study of resonances to that of eigenvalues of

a non-self-adjoint operator P� . We take any K > K0 and sufficiently large � > 0

(such that Lemma 2.1 holds) and deform P.„/ in C.K; �/c. Take a convex set
zC.K; �/which has a smooth boundary such that zC.K; �/ is rotationally symmetric

with respect to x0 and zC.K; �/ D C.K; �/ in x1 > ��C 1. We define

F D �.1CK�2/
1
2 dist.�; zC.K; �// � �;

where � 2 C1
c .Rn/, supp� � ¹jxj < 1º, � � 0 and

R

� D 1. We also set

v.x/ D .v1.x/; : : : ; vn.x// D @F.x/ 2 C1
b .RnIRn/:

We next set

ˆ� .x/ D x C �v.x/:

This is a diffeomorphism for real � with small j� j. We set

U�f .x/ D .detˆ0
� .x//

1
2f .ˆ� .x//;

which is unitary on L2.Rn/. We define the distorted operator

P� .„/ D U�P.„/U
�1
� :

The P� .„/ is an analytic family of closed operators for � with jIm � j <

ı0.1CK�2/�
1
2 and jRe � j small (Proposition 2.1). Moreover, P� .„/with Im � < 0

has discrete spectrum in ¹Im z > ˇ Im �º (Proposition 2.2). We note that we

exclude the condition that j� j is small by repeated applications of the Kato–Rellich

theorem. We also note that we do not require that „ is small.

We set

Lp
cone D ¹f 2 Lp j suppf � C.K; �/ for some K; �º

(in the following, we can replace L
p
cone by L

p
comp). We also set

RC.z; „/ D .z � P /�1

for Im z > 0. Then we define the (outgoing) resonances of P by meromorphic

continuations of cutoff resolvents:

Theorem 1. Suppose that Assumption 1 holds. Fix any „ > 0. Then for any

�1; �2 2 L1
cone.R

n/ such that �j 6D 0 on some open sets, the cutoff resolvent

�1RC.z/�2 .Im z > 0/ has a meromorphic continuation to Im z > �ˇı0 with

finite rank poles. The pole z is called a resonance and the multiplicity is defined

by

mz D rank
1

2�i

I

z

�1RC.�/�2d�:
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The set of resonances is independent of the choices of �1 and �2 including

multiplicities and denoted by Res.P /. Moreover, Res.P / D �d .P� / including

multiplicities in ¹Im z > ˇ Im �º if 0 > Im � > �ı0.1 C K�2/�
1
2 and jRe � j is

small.

We emphasize that there is no restriction on Re z in Theorem 1. Local singular-

ities of the potential may be allowed if we employ the perturbation argument. The

resonances are also described including multiplicities in terms of meromorphic

continuations of the matrix elements of the resolvent .f; RC.z/g/ for f; g 2 L1
cone

(Proposition 2.3) or f; g 2 A D ¹u 2 L2 j supp Ou is compactº (Proposition 2.4).

The latter formalism based on analytic vectors for 1
i
@ shows that our definition of

resonances coincides with that based on the global analytic translation when the

potential is globally analytic (Corollary 2.2).

The resonances for the Stark Hamiltonians have been investigated by many

authors. Avron and Herbst [1] defined the Stark resonances by the translation

analyticity. Herbst [11] defined the Stark resonances by the dilation analyticity.

Herbst [12] discussed the exponential decay of matrix elements of Stark propaga-

tor and its relation with Stark resonances.

The resonance of ��CV.x/Cˇx1 near a negative eigenvalueE of ��CV.x/

and the exponentially small estimate of its width in the limit ˇ ! 0 are stud-

ied by Sigal [23] and Wang [28] (see also Briet [2] and Hislop and Sigal [15,

Chapter 23]). These works employ the complex distortion in the half space. Res-

onances for many body Stark Hamiltonians have been also studied (see Herbst and

Simon [13], Sigal [22], and Wang [29]).

Dimassi and Petkov [7] studied resonances of �„2� C V.x/ C x1 and its

relation with the spectral shift function in the semiclassical limit („ ! 0). In [7],

resonances are defined and studied in the region Re z < R by the complex

distortion in the region x1 < R. While high energy resonances are also defined by

this distortion (see [14, Chapter 23]), the semiclassical study of them will require

some additional arguments such as the non-trapping estimate in the region x1 > R,

jx0j � 1. Our distortion outside a cone simplifies the study of high energy Stark

resonances.

We next state the non-trapping resolvent estimate in our setting. We denote

the trapped set for the classical flow in the energy interval Œa; b� by KŒa;b�. Thus

KŒa;b� is the set of all .x0; �0/ 2 T �Rn such that a � p.x0; �0/ � b and

supt2R jx.t/j < 1, where .x.t/; �.t // is the solution of the Hamilton equation

for p.x; �/ D j�j2 C ˇx1 C V.x/ with the initial value .x0; �0/.
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Wang [27] proved the non-trapping limiting absorbtion principle bound for the

Stark Hamiltonians, that is, the O.„�1/ bound of RC.z; „/ for Im z > 0 with suit-

able weights (see also Hislop and Nakamura [14]). The following bound implies

the bound for the analytically continued cutoff resolvent �RC.z; h/� for Im z >

�M„ log „�1, where � 2 L1
cone.R

n/, since �RC.z; h/� D �.z � P� .„//
�1� if P�

is constructed by the deformation outside supp�.

Theorem 2. Suppose that Assumption 1 holds and KŒa;b� D ;. Then for any

0 < M � zM there exists C > 0, which also depends on the construction of P� ,

such that for small „ > 0 and z 2 Œa; b�C i Œ�M„ log „�1;1/,

k.P�.„/ � z/�1k � C exp.C.Im z/�=„/=„;

where .Im z/� D max¹� Im z; 0º and � D �i zM„ log „�1.

The proof of Theorem 2 is based on the escape function method as in [18]

and [24], where the same result is proved for decaying potentials. Theorem 2

implies the non-trapping time decay estimate (Corollary 3.1) as in [19].

Our principal motivation comes from the shape resonance model. Denote the

full potential by Vˇ D ˇx1 C V .

Assumption 2 (shape resonance model). Fix a < b. We assume

¹x 2 R
n j Vˇ .x/ � bº D Gint [ Gext;

where Gint is compact and non-empty, Gext is closed, andGint\Gext D ;. Moreover,

we assume

KŒa;b� \ ¹.x; �/ j x 2 Gextº D ;:

Our first main theorem is the Weyl-type asymptotics for the Stark shape reso-

nances:

Theorem 3. Under Assumptions 1 and 2, there exists S > 0 such that

lim
„!0

.2�„/n#.Res.P.„//\ .Œa; b�� i Œ0; e�S=„�// D Vol.KŒa;b�/:

Our second main theorem is the resonance expansion theorem for Stark prop-

agators (in this paper, the symbol O for some operator means OL2!L2 unless oth-

erwise stated).
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Theorem 4. Suppose that both Assumption 1 and Assumption 2 hold. Then for any

 2 C1
c .Œa; b�/, ı > 0 and � 2 C1

b
.Rn/\L1

cone.R
n/, there exist a.„/ 2 .a�ı; a/,

b.„/ 2 .b; b C ı/ and C > 0 such that for t � C ,

�e�itP=„� .P / D
X

z2Res.P.„//\�.„/

Res�Dz e
�it�=„�RC.�; „/� .P /C O.„1/;

where �.„/ D Œa.„/; b.„/�� i Œ0; „�.

In the decaying potential case, Helffer and Sjöstrand [10] and Stefanov [25]

and [26] proved Theorem 3. Nakamura, Stefanov, and Zworski [19] provided

a simplified proof of Theorem 3 and proved Theorem 4 after the work of Burq

and Zworski [3]. We follow the general line of [19] with a minor simplification

given by direct resolvent estimates (Proposition 4.1), which does not depend on

the maximal principle technique (see Datchev and Vasy [4] and [5] for related

resolvent estimates). Note that Theorem 4 is the resonance expansion in the limit

„ ! 0 while the resonance expansion in Herbst [12] is valid in the limit t ! 1.

To prove the resonance expansion theorem, we study the pseudodifferential

property of  .P /. The symbol class is defined by

S.m/ D ¹a.�I „/ 2 C1.T �
R

n/ j j@˛
x;�a.x; �I „/j � C˛m.x; �/º:

The Weyl quantization is defined by

aW .x; „DI „/u.x/ D .2�„/�n

“

a
�x C y

2
; �I „

�

eihx�y;�i=„u.y/dyd�:

We set

�.x; �I y; �/ D h�; yi � h�; xi:

The composition of Weyl symbols is

.a]b/.x; �/ D e
i„
2 �.Dx ;D� IDy ;D�/a.x; �/b.y; �/jyDx;�D�

�
X

k�0

1

kŠ

� i„

2
�.Dx; D� IDy; D�/

�k

a.x; �/b.y; �/jyDx;�D�;

which makes sense also for the formal power series. We denote

OpS.m/ D ¹aW .x; „DI „/ j a 2 S.m/º

and

S.m1m
�1
2 / D

\

N >0

S.m1m
�N
2 /:



682 K. Kameoka

In the case where ˇ D 0, the usual functional pseudodifferential calculus

implies f .P / 2 OpS.h�i�1/ with the principal symbol f .j�j2 C V.x// for

f 2 C1
c .R/ (see [8, Section 8]). In the case where ˇ > 0, this does not hold

since P is not elliptic in the semiclassical sense. In fact,

f .j�j2 C ˇx1 C V.x// 62 S.m/

for any tempered m since @˛
�
f .j�j2 C ˇx1 C V.x// involves the term

2j˛j�˛f .j˛j/.j�j2 C ˇx1 C V.x//

and j�j can be arbitrary large on the support of f .j�j2 C ˇx1 C V.x// when

x1 ! �1. Thus f .P / 62 OpS.m/ for any tempered m.

Nevertheless, we can treat the weighted function f .P /� and the difference of

functions f .P2/ � f .P1/. We set

m D j�j2 C hx1i;

where

hxi D .1C jxj2/
1
2 :

Take w 2 C1.RnIR�1/ depending only on x1 and w D jx1j for x1 � �2 and

w D 1 for x1 � �1.

For the weighted function f .P /�, we prove the following. Suppose that

V 2 C1
b
.RnIR/ and set

P.„/ D �„2�C ˇx1 C V.x/:

Theorem 5. Let � 2 S.w�1hx0i�s0

/ for some s0 2 R and f 2 C1
c .R/. Then

f .P /�W D aW .x; „DI „/ with a 2 S.m�1hx0i�s0

/ for 0 < „ � 1. Moreover,

a has an asymptotic expansion a �
P1

j D0 h
jaj in S.m�1hx0i�s0

/, which is the

composition of the formal asymptotic expansion of the symbol of f .P / and �.

We note that Theorem 5 holds true for �W f .P / since it is the adjoint of
Nf .P / N�W .

Remark 1.1. In particular, a0 D f .j�j2 C x1 C V.x//�.x; �/ and

suppaj � supp� \
�

[

k�1

suppf .k/.j�j2 C ˇx1 C V.x//
�

for j � 1. This implies that

.1 � g/.P.„//�W f .P.„// D „1 OpS.m�1/

for f; g 2 C1
c .R/ with g D 1 near suppf . This is used in Subsection 4.3.
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For the difference of functions f .P2/�f .P1/, we prove the following. Suppose

Vj 2 C1
b
.RnIR/ and set

Pj .„/ D �„2�C ˇx1 C Vj .x/; where j D 1; 2.

Theorem 6. Suppose V2 � V1 2 S.w�1hx0i�s0

/ for some s0 2 R and let

f 2 C1
c .R/. Then

f .P2/ � f .P1/ D aW .x; „DI „/

with a 2 S.m�1hx0i�s0

/ for 0 < „ � 1. Moreover, a has an asymptotic expansion

a �
P1

j D0 h
jaj in S.m�1hx0i�s0

/, which is the difference of the formal asymp-

totic expansion of the symbols of f .P2/ and f .P1/.

Corollary 1.1. Suppose that the assumption in Theorem 6 holds with s0 > n � 1.

Then the derivative of the spectral shift function � 0 defined by

h� 0; f i D tr.f .P2/ � f .P1//

for f 2 C1
c .R/ has an asymptotic expansion

� 0 � .2�„/�n
X

j �0

„j �j in D
0.R/

(the space of distributions), where

h�0; f i D

“

.f .j�j2 C ˇx1 C V2/ � f .j�j2 C ˇx1 C V1//dxd�

and �1 D 0.

We can also discuss the spectral shift function by the formula (see [21])

tr.f .P / � f .P0// D � tr..@x1
V /f .P //

and Theorem 5, where

P0 D �„2�C ˇx1:

Dimassi and Petkov [7] and Dimassi and Fujiié [6] proved many properties of the

spectral shift function by constructing an elliptic operator zP such that

� tr..@x1
V /f .P // D � tr..@x1

V /f . zP //C O.„1/:

Remark 1.2. The trace class property and finite terms in the asymptotic expansion

can be discussed even if we only assume V1 � V2 2 S.w�M hx0i�s0

/ for large M

and s0 > n� 1.
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This paper is organized as follows. In Section 2, we define the Stark resonances

in various manners and in particular prove Theorem 1. In Section 3, we prove

the non-trapping resolvent estimate for the Stark Hamiltonian (Theorem 2). In

Section 4, we study the shape resonance model in the Stark effect and prove the

Weyl-type asymptotics (Theorem 3) and the resonance expansion (Theorem 4). In

Section 5, we prove the functional pseudodifferential calculus in the Stark effect

(Theorems 5 and 6). In Appendix A, we justify the commutator calculations of

the Stark resolvent in Section 5.

2. Definition of resonances

Throughout this section, we assume Assumption 1.

2.1. Complex distortion. We prove Theorem 1 in this subsection. Recall

that F D �.1 C K�2/
1
2 dist.�; zC.K; �// � �, v.x/ D .v1.x/; : : : ; vn.x// D

@F.x/, ˆ� .x/ D x C �v.x/, U�f .x/ D .detˆ0
�
.x//

1
2f .ˆ� .x//, and P� .„/ D

U�P.„/U
�1
�

. We first note that F 2 C1.RnIR/ is concave since zC.K; �/ is con-

vex and the convolution with a positive function preserves convexity. We have

v1.x/ � 1 on C.K; �C 1/c by the coefficient .1CK�2/
1
2 in the definition of F .

Moreover, .x1/�@
˛vj is bounded for j˛j � 1. This follows from the replacement

of C.K; �/ by zC.K; �/ for j˛j D 1 and from the mollification for j˛j � 2. We also

note that ˆ0
�

D I C �@2F is symmetric. A calculation (using the invariance of

Laplace–Beltrami operator) shows that

P� .„/ D �„2
X

i;j

g
� 1

4

�
@ig

1
2

�
g

ij

�
@jg

� 1
4

�
C ˇx1 C ˇ�v1 C V.ˆ� .x//

D �„2
X

i;j

@ig
ij

�
@j C „2r� .x/C ˇx1 C ˇ�v1 C V.ˆ� .x//;

where .g
ij

�
/ D .ˆ0

�
/�2, g� D det.ˆ0

�
/2 and r� D �

P

i;j g
� 1

4

�
.@i.g

1
2

�
g

ij

�
@jg

� 1
4

�
//.

This expression defines P� .„/ as a differential operator for complex � with small

jRe � j and jIm � j < .1CK�2/�
1
2 ı0. We denote the semiclassical principal symbol

of P� .„/ by

p� D h.I C �F 00/�1�; .I C �F 00/�1�i C ˇx1 C ˇ�v1 C V.ˆ� .x//:

An advantage of our definition of P� .„/ is as follows:

Lemma 2.1. For Im � � 0, Im.�„2
P

i;j @ig
ij

�
@j / � 0 in the form sense. If � > 0

is large and Im � � 0, then Imp� � �1
2
ˇjIm � jv1.x/ � 0 on T �

R
n.
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Proof. Since F is concave, Im.h.I C �F 00/�1�; .I C �F 00/�1�i/ � 0 by diag-

onalizing F 00. This also implies the first statement. We have jImV.ˆ� .x//j .

jIm � j sup j@V .y/ �v.x/j, where y ranges over a small complex neighborhood of x.

Thus for large �, jImV.ˆ� .x//j � "jIm � jjv.x/j; " � 1. Since v1.x/ � cjv.x/j,

we have Im.ˇ�v1 C V.ˆ� .x/// � �1
2
ˇjIm � jv1.x/ � 0. �

We next study the operator-theoretic property of P� . Since .P�u1; u2/ D

.u1; P N�u2/ for u1; u2 2 C1
c , P� .„/ is closable on C1

c and the closure is also

denoted by P� .„/. We first prove the analyticity of P� with respect to � .

Proposition 2.1. For 0 < „ � 1, P� is an analytic family of type (A) with respect

to � with jIm � j < ı0.1CK�2/�
1
2 and jRe � j small. That is, D.P�/ D D.P / and

P�u is analytic with respect to � for any u 2 D.P / D D.P�/. Thus, .P� � z/�1

is analytic with respect to � . Moreover, P �
�

D P N� .

Proof. We prove k.P� � P� 0/uk � C j� � � 0jkP�uk C Ckuk for u 2 C1
c , where

C is independent of � and � 0. We only have to estimate k.„2
P

i;j @ig
ij

�
@j �

„2
P

i;j @ig
ij

� 0@j /uk. Take w 2 C1.RnIR�1/ depending only on x1 and w D jx1j

for x1 � �2 and w D 1 for x1 � �1. Since .x1/�@
˛vj is bounded for j˛j � 1 and

Re
P

g
ij

�
�i�j � cj�j2 for small jRe � j,










�

„2
X

i;j

@ig
ij

�
@j � „2

X

i;j

@ig
ij

� 0@j

�

u









� C j� � � 0jkw�1ukH 2
„

� C j� � � 0jkw�1„2
X

i;j

@ig
ij

�
@juk C C j� � � 0jkw�1uk

� C j� � � 0jkx1w
�1uk C C j� � � 0jkw�1P�uk C Ckuk:

The first term can be estimated as follows. We take �.x1/ such that �.x1/ D 0

for x1 � 1 and �.x1/ D 1 for x1 � 2. Then kx1w
�1uk � Ckx1�uk C Ckuk �

CkP��ukCCkuk � CkŒP� ; ��ukCCkP�ukCCkuk � CkP�ukCCkuk, where

the last inequality follows from the standard elliptic estimate.

Repeated applications of Kato–Rellich theorem ([20, Section X.2]) to
�

0 P N�

P� 0

�

show that P� is closed on D.P�/ D D.P / and P N� D P �
�

for small jRe � j and

jIm � j < .1CK�2/�
1
2 ı0.

SinceP�u is analytic with respect to � for u 2 C1
c , an approximation argument

shows that P�u is analytic with respect to � for u 2 D.P /. This implies that

.P� �z/�1 is analytic with respect to � by the general theory (see [17, Sections 7.1

and 7.2]). �
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We next prove the discreteness of the spectrum of P� in ¹Im z > ˇ Im �º.

Proposition 2.2. Fix � with �ı0.1CK�2/�
1
2 < Im � < 0 and jRe � j small. Then

for 0 < „ � 1, P� � z is an analytic family of Fredholm operators with index 0 on

¹Im z > ˇ Im �º and invertible for Im z � 1. Thus .P� � z/�1 is meromorphic on

¹Im z > ˇ Im �º with finite rank poles.

Remark 2.1. In fact, P� �z is invertible for Im z � 0 by Theorem 1, Corollary 2.1

and Remark 2.4.

Proof. Set zP� D P� � iM�.x=M/�.„D=M/2�.x=M/, where M > 1, 0 � � 2

C1
c .Rn/, � D 1 near ¹jxj � 1=3º, supp� � ¹jxj � 1º and

R

� D 1. Take

� b ¹Im z > ˇ Im �º. We prove that k. zP� � z/�1k � C for 0 < „ � 1 and z 2 �

for large M > 1.

Take 1 � R � M and let �1; �2 2 C1
b
.Rn/ be cutoff functions near

C.K;R/ and C.K;R/c respectively. We first note that � Im.�2u; . zP� � z/�2u/ �

ck�2uk2 �O.R�1/kuk2 since Im.ˇ�v1 CV.ˆ� .x//� z/ � �c near C.K;R/c by

Lemma 2.1 and r� .x/ D O.R�1/ near C.K;R/c. Thus we can take large R > 0

such that k. zP� � z/�2uk � ck�2uk.

We next prove k. zP� � z/�1uk � ck�1uk for large M > R. We take small

" > 0 and set �j;M D �j .G.x/=M/, where �1 2 C1
b
.R/ is a cutoff near .�1; "�,

�2 2 C1
b
.R/ is a cutoff near Œ2";1/ andG.x/ D .1CK�2/

1
2 dist.�; zC.K;R//��,

where � is as above. Then �1;M ; �2;M 2 C1
b

, k@˛�j;M k1 D O.M�1/ for

j˛j � 1, �1;M D 1 near supp @�j , �2;M D 1 on C.K;R C 2"M/c , �2;M D 0

on supp�1 and supp�1;M \ supp�2;M D ;. Take w 2 C1.RnIR�1/ depending

only on x1 and w D jx1j for x1 � �2 and w D 1 for x1 � �1. We set Q D
zP� � zCˇ�2;Mw� iM�2;M . We now prove thatQ�1WH k

„
! H kC2

„
is uniformly

bounded with respect to large M > 1 for any k, where H k
„

D h„Di�kL2.

Denote the seminorms in S.h�iN / by jajN;˛ D supx;� j@˛
x;�
aj=h�iN . We set

Q D qW . Then

qD
X

g
ij

�
�i�j Cˇx1 � iM�.x=M/2�.�=M/2 Cˇ�2;Mw� iM�2;M CkM .x; �/;

where kM is bounded in S.1/ with respect to M > 1. We note that for

j˛j � 1, supM >1 jM�.x=M/2�.�=M/2j0;˛ < 1, supM >1 j�2;Mwj0;˛ < 1 and

supM >1 jiM�2;M j0;˛ < 1 since supp @�2;M � ¹x1 > �CM º and k@˛�2;M k1 D

O.M�1/ for j˛j � 1. We also recall that Re
P

g
ij

�
�i�j � cj�j2 for some c > 0 and

Im
P

g
ij

�
�i�j � 0. Thus jq�1j�2;˛ � C supx;� B�.x; �/ for j˛j D � if we set

B� Dh�i�C2=jcj�j2Cˇx1�iM�.x=M/2�.�=M/2C�2;Mˇw�iM�2;M CkM j�C1:
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We have R
n D ¹jxj < M=3º [ C.K;R C 2"M/c [ ¹x1 > cM º for some

c > 0 since " is small. Take large C1 > 0. For jxj < M=3; j�j < C1M
1=2, we

see B� � CM .�C2/=2=M �C1 D CM��=2 in view of iM�.x=M/2�.�=M/2. For

jxj < M=3; j�j > C1M
1=2, we see B� � C j�j�C2=.cj�j2 � ˇM C kM /

�C1 �

C j�j�C2=j�j2�C2 D C j�j�� � CM��=2 since cj�j2 � ˇM by C1 � 1. For

x 2 C.K;RC 2"M/c , we see B� � C h�i�C2=jcj�j2 � iM C kM j�C1 in view of

�2;Mˇw � iM�2;M . This is bounded by CM��=2 by considering j�j 7 C1M
1=2.

For x1 > cM , we see B�.x; �/ � C h�i�C2=.j�j2 CM C kM /
�C1 � CM��=2 by

considering j�j 7 C1M
1=2.

Thus we have proved jq�1j�2;˛ D O.M�j˛j=2/. Thus we see that the map

.q�1/W WH k
„

! H kC2
„

is uniformly bounded with respect to M > 1. We also

see that limM !1 q1 D 0 in S.1/ if q�1]q D 1 C q1 since @x;�q is bounded

in S.h�i2/ with respect to M and limM !1 @x;�q
�1 D 0 in S.h�i�2/. Thus

.1 C qW
1 /

�1WH k
„

! H k
„

is uniformly bounded with respect to large M > 1.

Thus Q�1WH k
„

! H kC2
„

is uniformly bounded with respect to large M > 1

(in fact Q�1 2 OpS.h�i�2/ uniformly for large M by Beals’s theorem). Thus

k�1uk D kQ�1Q�1uk � CkQ�1uk D Ck. zP� � z/�1uk since �2;M D 0 on

supp�1. Thus,

kuk �
X

k�juk � C
X

k. zP� � z/�juk � Ck. zP� � z/uk C C
X

kŒ zP� ; �j �uk:

We finally estimate kŒ zP� ; �j �uk. Since �1;M D 1 near supp @�j and @�. zp� �z/

is bounded in S.h�i/ with respect to M > 1, we have

kŒ zP� ; �j �uk � kŒ zP� ; �j ��1;Muk C kŒ zP� ; �j �.1� �1;M /uk

� Ck�1;MukH 1
„

C O.M�1/kukL2 :

Since Q�1WH�1
„

! H 1
„

is uniformly bounded with respect to large M > 1 we

have k�1;MukH 1
„

� CkQ�1;MukH �1
„

. Since supp�1;M \supp�2;M D ;, we have

kQ�1;MukH �1
„

D k. zP� � z/�1;MukH �1
„

� k. zP� � z/ukL2 C kŒ zP� ; �1;M �ukH �1
„

.

Since @�. zp� �z/ is bounded inS.h�i/with respect toM > 1 and @�1;M D O.M�1/

in S.1/, we have kŒ zP� ; �1;M �ukH �1
„

� CM�1kukL2 . Thus we have k. zP� �z/uk �

ckuk for large M > 1 and 0 < „ � 1.

We also have k. zP� � z/�uk � ckuk for large M > 1 since . zP� � z/� D

P N� C iM�.x=M/�.„D=M/2�.x=M/ � Nz by Proposition 2.1. Banach’s closed

range theorem thus implies that zP� � z is invertible and k. zP� � z/�1k � C for

0 < „ � 1 and z 2 � for large M > 1. Since M�.x=M/�.„D=M/2�.x=M/

is compact, P� � z D .1C iM�.x=M/�.„D=M/2�.x=M/. zP� � z/�1/. zP� � z/

is Fredholm with index 0. Finally, P� � z0 is invertible for Im z0 � 1 since

� Im.u; .P� � z/u/ � Im z0kuk2 � C„2kuk2 by Lemma 2.1. �
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Remark 2.2. The proof will be simplified if we assume that 0 < „ � 1.

Proof of Theorem 1. Take any 0 < ı1 < ı0. Take �1; �2 2 L1
cone.R

n/ such

that �j 6D 0 on some open sets. Construct P� outside supp�j and C.K; �/ with

.1CK�2/�
1
2 ı0 > ı1. Then �1RC.z/�2 D �1U�RC.z/U

�1
�
�2 D �1.z�P� /

�1�2

for real � and Im z > 0. The right hand side has an analytic continuation with

respect to � with jIm � j < ı1 and jRe � j small by Proposition 2.1. This in

turn implies that the left hand side has a meromorphic continuation to Im z >

�ˇı1 by Proposition 2.2. If z 62 �d .P� /, this is analytic near z. Suppose that

z 2 �d .P� /. Then the multiplicity of the pole z of �1RC.z/�2 is given by

rank 1
2�i

H

z �1RC.�/�2d� D rank 1
2�i

H

z �1.� � P� /
�1�2d� D rank�1…

�
z�2,

where…�
z D 1

2�i

H

z
.��P�/

�1d� is the generalized eigenprojection ofP� at z. We

have .P� �z/k…�
z D 0 for some k by the general theory of closed operators. Then

the repeated applications of the unique continuation theorem for second order

elliptic operators imply that rank�1…
�
z D rank…�

z . Since .…�
z /

� D …
N�
Nz , the same

argument for the adjoint implies that rank�1…
�
z D rank�1…

�
z�2. This proves that

the definition of resonances is independent of �1, �2 and the multiplicity is given

by mz D rank…�
z . �

Remark 2.3. The facts that k. zP� � z/�1k D O.1/ for z 2 � and k.P� � z0/
�1k D

O.1/ if Im z0 > 0 in the proof of Proposition 2.2 imply the following general upper

bound on the number of the resonances; if � b ¹Im z > �ˇı0º, then

#.Res.P.„//\�/ D O.„�n/

and the following a priori resolvent bound; if z 2 � b ¹Im z > ˇ Im �º,

0 < ı.„/ < c < 1 and dist.z;Res.P.„/// � ı.„/, then

k.P� � z/�1k � C exp
�

C„�n log
1

ı.„/

�

:

See [9, Section 7.2] for the proof.

2.2. Meromorphic continuations of matrix elements. The resonances are also

described by meromorphic continuations of the matrix elements of the resolvent.

Proposition 2.3. The matrix element of the resolvent .f; RC.z/g/ has a meromor-

phic continuation to Im z > �ˇı0 for any f; g 2 L2
cone. For z with Im z > �ˇı0,

z is a resonance of P if and only if z is a pole of .f; RC.z/g/ for some f; g 2 L2
cone

and the multiplicity mz is given by the maximal number k such that there exist

f1; : : : ; fk; g1; : : : ; gk 2 L2
cone with det

�

1
2�i

H

z.fi ; RC.�/gj /d�
�k

i;j D1
6D 0.
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Moreover, for any non-empty open bounded U � R
n and an orthonormal

basis ¹fiº of L2.U /, mz D rank
�

1
2�i

H

z
.fi ; RC.�/fj /d�

�1

i;j D1
.

Proof. Take �1; �2 as in Theorem 1 and set…
�1;�2
z D 1

2�i

H

z �1RC.�/�2d�. Then

mz D rank…
�1;�2
z . We have

.f;…�1;�2
z g/ D

�

f;
1

2�i

I

z

�1RC.�/�2d�g

�

D
1

2�i

I

z

.�1f;RC.�/�2g/d�:

The proposition easily follows from this. �

Corollary 2.1. Res.P / \ R D �pp.P /.

Proof. This follows from Proposition 2.3 and the formula

lim
"!C0

".f; .P � � � i"/�1g/ D i.f; E¹�ºg/: �

Remark 2.4. The absence of embedded eigenvalues �pp.P / D ; for the Stark

Hamiltonian was proved by Avron and Herbst [1].

The resonances are also described based on analytic vectors. Set

A D ¹u 2 L2.Rn/ j supp Ou is compactº;

which consists of analytic vectors for the generators of the translations

�1

i
@1; : : : ;

1

i
@n

�

:

Proposition 2.4. The matrix element of the resolvent .f; RC.z/g/ has a meromor-

phic continuation to Im z > �ˇı0 for any f; g 2 A. For z with Im z > �ˇı0, z is

a resonance of P if and only if z is a pole of .f; RC.z/g/ for some f; g 2 A

and the multiplicity is given by the maximal number k such that there exist

f1; : : : ; fk; g1; : : : ; gk 2 A with det
�

1
2�i

H

z
.fi ; RC.�/gj /d�

�k

i;j D1
6D 0.

Proof. Take any 0 < ı1 < ı0 and construct P� outside C.K; �/ satisfying the

condition .1C K�2/�
1
2 ı0 > ı1. We first note that U�f (f 2 A) has an analytic

continuation for small jRe � j by the definition of A. Take f; g 2 A. Then

.f; RC.z/g/ D .U�f; U�RC.z/U
�1
� U�g/ D .U N�

f; .z � P� /
�1U�g/

for real � and Im z > 0. The right hand side is analytic with respect to � by

Proposition 2.1. This in turn implies that the left hand side has a meromorphic
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continuation to Im z > �ˇı1 by Proposition 2.2. Then we have

1

2�i

I

z

.f; RC.�/g/d� D
1

2�i

I

z

.U N�f; .� � P� /
�1U�g/d� D .U N�f;…

�
zU�g/:

We note that if we replace �.x/ by "n�."x/ in the definition of F.x/, v.x/

and P� , the Lipschitz constant of v.x/ is bounded by C" for some C > 0. Thus

taking " > 0 sufficiently small and arguing as in [16, Theorem 3], we see that

¹U�f j f 2 Aº is dense in L2. These prove the proposition. �

Corollary 2.2. In addition to Assumption 1, suppose that V has an analytic

continuation to jIm zj < ı0 and is bounded in this region. Then for �ı0 <

Im � < 0, the resonances of P in Im z > ˇ Im � coincide with the eigenvalues

of P 0
�

D �„2�Cˇx1 Cˇ�CV.x1 C�; x0/ including multiplicities. In particular,

Res.�„2�C ˇx1/ D ;.

Proof. Arguing as above, the eigenvalues ofP 0
�

are described by the meromorphic

continuation of .f; RC.z/g/ for f; g 2 A and thus coincide with Res.P / by

Proposition 2.4. �

3. Non-trapping estimates

Proof of Theorem 2. We only sketch the proof since it is similar to that of [24,

Theorem 1]. The non-trapping assumption enables us to construct an escape

function G 2 C1
c .T �

R
n/ such that ¹p;Gº � 1 on p�1.Œ Qa; Qb�/ \ ¹jxj < Rº for

some Qa < a < b < Qb, where R > 0 is large. We set

P�;" D e�"GW =„P�e
"GW =„;

where M1„ � " � jIm � j and M1 � 1. We consider z with a � Re z � b and

.Im z/� � ".

Take microlocal cutoffs ‰1, ‰2, and ‰3 near

¹x1 � R1º [ ¹jx1j < R1; jx
0j < R0; p.x; �/ 62 Œ Qa; Qb�º;

¹jx1j < R1; jx
0j < R0; p.x; �/ 2 Œ Qa; Qb�º;

and

¹x1 < �R1º [ ¹jx1j < R1; jx
0j > R0º;

respectively, where 1 � R1 � R0 � R. The elliptic estimate implies
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k.P�;" � z/‰1uk � ck‰1uk � O.„1/kuk for R1 � 1. Lemma 2.1, the con-

struction of G and the sharp Gårding inequality imply that k.P�;" � z/‰2uk �

c"k‰2uk � O.„1/kuk for M1 � 1 and .Im z/� � ". Since P�;" is not elliptic

in the semiclassical sense, we estimate ‰3u by considering quadratic form. Then

Lemma 2.1 implies k.P�;" � z/‰3uk � cjIm � jk‰3uk for .Im z/� � " � jIm � j.

Thus

kuk � C"�1
X

k.P�;" � z/‰juk

� C"�1k.P�;" � z/uk C C"�1
X

kŒP�;"; ‰j �uk

� C"�1k.P�;" � z/uk C C„=".k.P�;" � z/uk C kuk/:

Choosing M1 > 0 large and substituting C„="kuk < 1=2kuk, we obtain

k.P�;" � z/uk � c"kuk:

For .Im z/� � M1„, we take " D zM1„ with zM1 � M1 and we have

k.P� � z/�1k � C„�1 � C exp.C.Im z/�=„/=„

since ke˙"GW =„k � C .

For M1„ � .Im z/� � M„ log „�1, we take " D C.Im z/� with large C > 0

and we have k.P� � z/�1k � C exp.C "=„/=" � C exp.C.Im z/�=„/=.Im z/� �

C exp.C.Im z/�=„/=„ since ke˙"GW =„k � exp.C "=„/. �

Corollary 3.1. Suppose that Assumption 1 holds and KŒa;b� D ;. Then for any

 2 C1
c .Œa; b�/ and � 2 L1

cone.R
n/, there exists C > 0 such that

�e�itP=„ .P /� D OL2!L2.h.t � C/C=„i�1/;

where .t � C/C D max¹t � C; 0º.

Proof. This follows from Theorem 2 employing Stone’s formula, an almost ana-

lytic extension of  and Green’s formula. Since the proof is the same as that of

[19, Lemma 4.2], we omit the details. �

4. Shape resonance model

In this section, we discuss the shape resonances for the Stark Hamiltonian gen-

erated by potential wells. Recall that p.x; �/ D j�j2 C Vˇ .x/, Vˇ D ˇx1 C V

and KŒa;b� is the trapped set in the energy interval Œa; b�. Throughout this section,
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we assume Assumption 1 and Assumption 2. Note that Assumption 2 implies

KŒa;b� D ¹.x; �/ j x 2 Gint; a � p.x; �/ � bº. We fix sufficiently small ı > 0.

Then Assumption 2 holds true with Œa; b� replaced by Œa � ı; b C ı�.

Fix a cutoff function �0 near Gint such that

supp @�0 b ¹x 2 R
n j V.x/ > b C 2ıº:

Complex distorted operators in this section are constructed outside supp�0. Let

V ext.x/ be a potential obtained by filling up the wells: V ext D Vˇ near supp.1��0/

and V ext > b C 2ı near Gint, and P ext D �„2� C V ext with the corresponding

distorted operator P ext
�

. Let V int.x/ be a potential flattened outside the wells:

V int.x/ D Vˇ near supp�0 and V int.x/ D bC 2ı outside a small neighborhood of

supp�0, and P int D �„2�C V int.

In the following we set ˛.„/ D „C and 
.„/ D M„ log „�1, or ˛.„/ D C„

and 
.„/ D M„. Then Theorem 2 implies that k.P ext
�
.„/ � z/�1k D O.˛.„/�1/

for a � ı � Re z � b C ı, Im z � �
.„/ and � D �i zM„ log „�1.

Remark 4.1. The results in Subsections 4.1 and 4.2 remain true if we replace

the non-trapping condition outside the wells by a resolvent assumption as follows:

there exist ˛.„/, 
.„/ and real numbers a < b with ˛.„/; 
.„/ > e�S=„ for any

S > 0 such that k.P ext
�
.„/ � z/�1k D O.˛.„/�1/ for a � ı � Re z � b C ı and

Im z � �
.„/.

The basic estimate in this section is the following Agmon estimate which is

valid in more general settings (see [30, Section 7.1]).

Lemma 4.1. For any open set U with xU � ¹x 2 R
n j V.x/ > b C 2ıº, any

z 2 Œb � C0; b C ı�C i Œ�C0; C0� and small „ > 0, there exists S0 > 0 such that

kukH 2
„

.U / � e�S0=„kukL2.U1/ C Ck.P � z/ukL2.U1/;

where U1 is any open set with xU � U1.

This is also valid for P� if U is away from the region of deformation in the

definition of P� . In the following we fix S0 such that Lemma 4.1 holds true where

U is a small neighborhood of supp @�0, and moreover Lemma 4.1 with P replaced

by P int holds true where U is a small neighborhood of supp.1 � �0/.

4.1. Resolvent estimate. In [19] the resolvent estimate is obtained by the ab-

stract method based on the maximum principle technique. In the shape resonance

model, we give more direct resolvent estimate based on the commutator calcula-

tion and the Agmon estimate.
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Proposition 4.1. For small „ > 0,

k.1� �0/.P� � z/�1k � C˛.„/�1; k�0.P� � z/�1k � C dist.z; �.P int//�1

if a � ı � Re z � b C ı, Im z � �
.„/ and dist.z; �.P int// � e�S0=„.

Proof. We have

k.1� �0/.P� � z/�1k D k.P ext
� � z/�1.P ext

� � z/.1� �0/.P� � z/�1k

� ˛.„/�1k.P� � z/.1� �0/.P� � z/�1k

� ˛.„/�1.1C kŒP� ; �0�.P� � z/�1k/

� C˛.„/�1.1C e�S0=„k.P� � z/�1k/

� C˛.„/�1.1C e�S0=„k�0.P� � z/�1k/:

The third inequality follows from the Agmon estimate. The last inequality follows

if we subtract C˛.„/�1e�S0=„k.1��0/.P� �z/�1k � 1
2
k.1��0/.P� �z/�1k from

both sides for small „ > 0. We also have

k�0.P� � z/�1k D k.P int � z/�1.P int � z/�0.P� � z/�1k

� dist.z; �.P int//�1k.P� � z/�0.P� � z/�1k

� dist.z; �.P int//�1.1C kŒP� ; �0�.P� � z/�1k/

� C dist.z; �.P int//�1.1C „e�S0=„k.P� � z/�1k/

� C dist.z; �.P int//�1.1C „e�S0=„k.1� �0/.P� � z/�1k/:

The third inequality follows from the Agmon estimate. The last inequality follows

if we subtract C„ dist.z; �.P int//�1e�S0=„k�0.P� � z/�1k � C„k�0.P� � z/�1k

from both sides for small „ > 0. Substituting the left hand side of each inequality

for the right hand side of the other inequality and subtracting the small remainder

from both sides, we obtain the desired results. �

Remark 4.2. This proposition shows the dichotomy for resonances:

Res.P.„//\ .Œa � ı; b C ı�� i Œe�S0=„; 
.„/�/ D ; for small „ > 0:

As in [26] and [19], we decompose resonances into clusters.

Lemma 4.2. For small „ > 0, there exist aj .„/ < bj .„/ < aj C1.„/ such that

�

Res.P.„//[ �.P int/
�

\
�h

a �
ı

2
; b C

ı

2

i

� i Œ0; e�S0=„�
�

�

J.„/
[

j D1

�j .„/;
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where

�j .„/ D Œaj .„/; bj .„/�� i Œ0; e
�S0=„�;

bj � aj � C„�ne�S0=„;

aj C1 � bj � 2e�S0=„;

a1 2
�

a �
2

3
ı; a �

1

3
ı
�

;

bJ.„/ 2
�

b C
1

3
ı; b C

2

3
ı
�

;

and

Res.P / \ ..Œa1 � c„n; a1�� i Œ0; e
�S0=„�/ [ .ŒbJ.„/; bJ.„/ C c„n�� i Œ0; e�S0=„�//

D ;:

Moreover,

k.1 � �0/.P� � z/�1k � C˛.„/�1; z 2 @ z�j .„/;

where

z�j .„/ D Œaj .„/� e�S0=„; bj .„/C e�S0=„�C i Œ�2e�S0=„; e�S0=„�:

Proof. The first statement follows easily from the fact that

#.�.P int/ \ Œa � ı; b C ı�/ D O.„�n/

and Proposition 4.1 (or Remark 2.3). The second statement follows from Propo-

sition 4.1. �

4.2. The Weyl law. We prove Theorem 3 in this subsection. Set

…�
j D

1

2�i

Z

@ z�j

.z � P� /
�1dz

and

…int
j D

1

2�i

Z

@ z�j

.z � P int/�1dz:

Since supp�0 \ supp.P� � P int/ D ;, we have

…�
j �…int

j D
1

2�i

Z

@ z�j

.z � P� /
�1.1 � �0/.P� � P int/.z � P int/�1dz:
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Proposition 4.2. For any 0 < S < S0,

…�
j D …int

j C O.e�S=„/:

Remark 4.3. In the decaying potential case, we immediately have

k.P� � P int/.z � P int/�1k � e�S0=„k.z � P int/�1k C C � C

for z 2 @ z�j by the Agmon estimate for P int and dist.z; �.P int// � e�S0=„ since

P� � P int has bounded coefficients. This and Lemma 4.2 imply

k…�
j �…int

j k � C j@ z�j j˛.„/�1 D O.e�S=„/:

Since P� � P int has an unbounded coefficient in our case, we need additional

arguments.

Proof of Proposition 4.2. Since z � P int is elliptic near supp.P� � P int/,

k.P� � P int/.z � P int/�1�0k

� Ck.z � P int/.P� � P int/.z � P int/�1�0kL2!H �2
„

D CkŒP int; P� � P int�.z � P int/�1�0kL2!H �2
„

� Ce�S0=„k.z � P int/�1k � C;

where the last two inequalities follow from the Agmon estimate for P int and

dist.z; �.P int// � e�S0=„ (note that ŒP int; P� � P int� has bounded coefficients).

This and Lemma 4.2 imply

k.…�
j �…int

j /�0k � C j@ z�j j˛.„/�1 D O.e�S=„/:

Finally, we have k…�
j .1� �0/k � C j@ z�j j˛.„/�1 D O.e�S=„/ by Lemma 4.2, and

k.1 � �0/…
int
j k � C„�ne�S0=„ D O.e�S=„/ by the Agmon estimate. �

Proof of Theorem 3. Proposition 4.2 implies that rank…�
j D rank…int

j for small

„ > 0. Thus the Weyl law for discrete eigenvalues ofP int completes the proof. �

4.3. Resonance expansion. We prove Theorem 4 in this subsection. Theorem 5

and Theorem 6 are used in this subsection. In the following, we take

 2 C1
c .Œa; b�/ and � 2 C1

b \ L1
cone

as in Theorem 4. We take

a.„/ D a1.„/ �
c

2
„n and b.„/ D bJ.„/ C

c

2
„n
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(see Lemma 4.2), and set

�.„/ D Œa.„/; b.„/�� i Œ0; „�:

We first prove Theorem 4 after large time t > „�nC1�" (see Burq and Zworski [3]).

Proposition 4.3. Under the above notation and for any " > 0,

�e�itP=„� .P / D
X

z2Res.P.„//\�.„/

Res�Dz e
�it�=„�RC.�; „/� .P /C O.„1/

for t > „�nC1�".

Proof. This is proved by Stone’s formula, the almost analytic extension technique

and Green’s formula. If we employ Proposition 4.1 as the resolvent estimate, the

claimed result follows. Since the argument of the proof is the same as [3], we

omit the details. We note that calculations involving the energy cutoff  .P / are

justified by Theorem 5. �

Remark 4.4. If we employ Remark 2.3 as the resolvent estimate, the result

of Burq and Zworski [3] is obtained for the Stark Hamiltonian case. Namely,

Proposition 4.3 remains true under Assumption 1 for t > „�L for some choices

of �.„/ and L > 0.

We move to the proof of Theorem 4 up to large time C � t � eS=2„. We first

prepare the Agmon estimate for continuous spectrum ([19, Lemma 4.3]):

Lemma 4.3. If Q�0 2 C1
c .Rn/ is a cutoff near supp @�0 and  1 2 C1

c .R/ is

supported near Œa; b�,

Q�0 1.P.„//; Q�0 1.P
int.„//; Q�0 1.P

ext.„// D OL2!H 2
„
.e�S0=2„/:

Proof. This follows from the Agmon estimate, the almost analytic extension

technique and Green’s formula. Since the proof is the same as [19, Lemma 4.3],

we omit the details. �

We next compare the different quantum dynamics [19, Lemma 4.4].

Lemma 4.4. For  1 2 C1
c .R/ supported near Œa; b� and t 2 R,

.1� �0/e
�itP=„ 1.P /�0 D O.jt je�S0=2„/C O.„1/;

�0e
�itP=„ 1.P / D �0e

�itP int=„ 1.P
int/C O.jt je�S0=2„/C O.„1/;

.1 � �0/e
�itP=„ 1.P / D .1� �0/e

�itP ext=„ 1.P
ext/C O.jt je�S0=2„/C O.„1/:
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Proof. The proof relies on Duhamel’s formula as in [19]. Lemma 4.3 implies that

both .1��0/e
�itP=„ 1.P /�0 and �0.e

�itP=„ 1.P /� e
�itP int=„ 1.P

int//, as well

as .1��0/.e
�itP=„ 1.P /� e�itP ext=„ 1.P

ext// applied by i„@t �P from the left

are OL2!L2.e�S0=2„/.

As for the initial values, we have .1 � �0/ 1.P /�0 D O.„1/ by Theorem 5,

�0. 1.P / �  1.P
int// D O.„1/ by Theorem 5 and the usual functional calculus

for elliptic pseudodifferential operators, and .1��0/. 1.P /� 1.P
ext// D O.„1/

by Theorem 6 (Theorem 6 is used only at this point). �

Proposition 4.4. Under the above notation and for any 0 < S < S0,

�e�itP=„� .P / D
X

z2Res.P.„//\�.„/

Res�Dz e
�it�=„�1RC.�; „/�1 .P /

C �2O.h.t � C/C=„i�1/�2 .P /C O.„1/

for 0 � t � eS=2„, where �1 D ��0 and �2 D �.1� �0/.

Proof. We only sketch the proof since it is the same as [19]. Lemma 4.4 and

Theorem 5 show that

�e�itP=„� .P / D �1e
�itP int=„ 1.P

int/�1 .P /

C �2e
�itP ext=„ 1.P

ext/�2 .P /C O.„1/;

where  1 D  . The second term is estimated by Corollary 3.1. The eigenfunc-

tion expansion of the first term is approximated by the first term of the right hand

side of Proposition 4.4 by the same argument as in Proposition 4.2 with

…�
j D

1

2�i

Z

@ z�j

.z � P�/
�1dz and …int

j D
1

2�i

Z

@ z�j

.z � P int/�1dz

replaced by

1

2�i

Z

@ z�j

e�itz=„.z � P�/
�1dz and

1

2�i

Z

@ z�j

e�itz=„.z � P int/�1dz

respectively. �

We next estimate the residue outside the well.

Lemma 4.5. For any Q� 2 C1
b

\ L1
cone and any 0 < S < S0,

X

z2Res.P.„//\�j .„/

Res�Dz e
�it�=„�2RC.�/ Q� D O.e�S=„/

for 0 � t � eS=„, where �2 is as in Proposition 4.4.
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Proof. Since je�itz=„j is bounded on @ z�j for 0 � t � eS=„, by Lemma 4.2












1

2�i

Z

@ z�j

e�itz=„�.1� �0/.z � P�/ Q�dz













� C˛.„/�1j@ z�j j D O.e�S=„/: �

Proof of Theorem 4. Proposition 4.3 proves Theorem 4 for t > „�nC1�". Propo-

sition 4.4 and Lemma 4.5 prove Theorem 4 for C � t � eS=2„. �

5. Functional pseudodifferential calculus in the Stark effect

In this section, we prove Theorem 5 and Theorem 6. In Subsections 5.1 and 5.2,

we set P.„/ D �„2� C ˇx1 C V.x/, where V 2 C1
b
.RnIR/. The commutator

calculations below are justified by Corollary A.1 in Appendix A.

5.1. Weighted resolvent estimates. We estimate the weighted resolvents in this

subsection. Take w 2 C1.RnIR�1/ depending only on x1 and w D jx1j for

x1 � �2 and w D 1 for x1 � �1.

Lemma 5.1. For any k � 0, jzj . 1 and 0 < „ � 1,

kw�k�1.P � z/�1wkkL2!H 2
„

. jIm zj�1 .1C „=jIm zj/3k :

Proof. We first prove the case where k D 0. Take � 2 C1.Rn/ depending only

on x1 and � D 0 for x1 � 1 and � D 1 for x1 � 2. We set �R.x/ D �.x=R/.

khhDi2w�1.P � z/�1ukL2

� Ckw�1hhDi2.P � z/�1ukL2

D Ckw�1.P � z C z � ˇx1 � V C 1/.P � z/�1ukL2

� Ck�Rx1.P � z/�1ukL2 C CkukL2 C CRk.P � z/�1ukL2

� Ck�Rx1.P � z/�1ukL2 C CRjIm zj�1kukL2 ;

since jzj . 1. Since P.„/� z is elliptic near the support of �, we have

k�Rx1.P � z/�1ukL2 � Ck.P � z/�R.P � z/�1ukL2

� CkukL2 C CkŒP; �R�.P � z/�1ukL2 :

Substituting

kŒP; �R�.P � z/�1ukL2 � C„R�1khhDi2w�1.P � z/�1ukL2

for large R, the proof for k D 0 is completed.
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We next assume that Lemma 5.1 is true for k � 1. The case where k D 0

implies

kw�k�1.P � z/�1wkkL2!H 2
„

D kw�1.P � z/�1.P � z/w�k.P � z/�1wkkL2!H 2
„

. jIm zj�1k.P � z/w�k.P � z/�1wkkL2!L2

. jIm zj�1 C .„=jIm zj/kw�k�1.P � z/�1wkkL2!H 1
„
:

We have

.„=jIm zj/kw�k�1.P � z/�1wkkL2!H 1
„

� .„=jIm zj/kw�1.P � z/�1kL2!H 1
„

C .„=jIm zj/kw�k�1.P � z/�1ŒP; wk�.P � z/�1kL2!H 1
„
:

The first term can be estimated by jIm zj�1.„=jIm zj/ by the case where k D 0.

The second term can be estimated by

.„=jIm zj/2kw�k�1.P � z/�1h„Diwk�1kL2!H 1
„

. .„=jIm zj/2kw�2.P � z/�1kL2!H 2
„

C .„=jIm zj/2kw�k�1.P � z/�1ŒP; h„Diwk�1�.P � z/�1kL2!H 1
„
:

The first term can be estimated by jIm zj�1.„=jIm zj/2 by the case where k D 0.

The second term can be estimated by

.„=jIm zj/3kw�k�1.P � z/�1wk�1kL2!H 1
„

C .„=jIm zj/2kw�k�1.P � z/�1wk�1kL2!H 1
„

� kw�1h„Di2„.P � z/�1kL2!L2

. .„=jIm zj/3kw�k�1.P � z/�1wk�1kL2!H 1
„

by the case where k D 0. The induction hypothesis completes the proof. �

Remark 5.1. Similar calculations show that

kwk.P � z/�1w�kkL2!L2 . jIm zj�1 .1C „=jIm zj/2k

and

kwk�1.P � z/�1w�kkL2!H 2
„

. jIm zj�1 .1C „=jIm zj/2k

for jzj . 1 and 0 < „ � 1.
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5.2. Weighted resolvents as ‰DOs. We set

Sı.m/ D ¹a.�I „/ 2 C1.T �
R

n/ j j@˛
x;�a.x; �I „/j � C˛„�ıj˛jm.x; �/º:

The natural asymptotic expansion for a 2 Sı.m/ with 0 � ı < 1
2

is of the form

a �
P

„.1�2ı/jaj with aj 2 Sı.m/. We set Sı.m1m
�1
2 / D

T

N >0 Sı.m1m
�N
2 /.

To simplify the statement, we introduce the symbol class for weighted resol-

vents S�k
WR.m/ D jIm zj�kS0

WR.m/, where

S0
WR.m/ D

°

a.x; �I z; „/
ˇ

ˇ

ˇ j@˛
x;�aj � C˛jIm zj�C˛m.x; �/ for jzj . 1 and

a 2 Sı.m/ uniformly for „ı . jIm zj; jzj . 1 for any 0 � ı <
1

2

±

:

We say that a 2 S�k
WR.m/ has an asymptotic expansion a �

P

„jaj in S�k
WR.m/

if aj 2 S
�k�2j
WR .m/ and a �

P

„jaj D „�kı
P

„.1�2ı/j „.kC2j /ıaj in „�kıSı.m/

uniformly for „ı . jIm zj; jzj . 1 for any 0 � ı < 1
2
. We set

S�k
WR.m1m

�1
2 / D

\

N >0

S�k
WR.m1m

�N
2 /:

In the following, we set m D j�j2 C hx1i.

Proposition 5.1. If b 2 S0
WR.w

�1m�khx0i�s0

/, then

.P � z/�1bW 2 OpS�1
WR.w

�1m�k�1hx0i�s0

/:

Proof. We set zP D �„2�Cˇhx1iCC , where C � 1 so that zP�1 2 OpS.m�1/.

Applying hx0is0 zP k from the right, we may assume that s0 D k D 0. Applyingwj zP

from the right, we only have to prove .P � z/�1bW zP 2 OpS�1
WR.1/. Since zP �

PC2ˇw, we only have to prove .P �z/�1bW .P �z/ D bW C.P �z/�1ŒbW ; P � 2

OpS�1
WR.1/ and .P � z/�1bW 2 OpS�1

WR.1/. For this it is enough to prove

.P � z/�1h„DibW 2 OpS�1
WR.1/. Let l1; l2; : : : ; lN be linear forms on R

2n. Then

adlW
1

.x;„D/ : : : adlW
N

.x;„D/

�

.P � z/�1h„DibW
�

consists of the terms such as

.P � z/�1.adlW
1

.x;„D/ P /.P � z/�1.adlW
2

.x;„D/ P /.P � z/�1

� .adlW
3 .x;„D/ adlW

4 .x;„D/ P /.P � z/�1 : : :

� .adlW
N�1.x;„D/ P /.P � z/�1 adlW

N .x;„D/.h„DibW /

D ..P � z/�1.adlW
1 .x;„D/ P /w

�1/.w.P � z/�1.adlW
2 .x;„D/ P /w

�2/

� .w2.P � z/�1.adlW
3

.x;„D/ adlW
4

.x;„D/ P /w
�3/ : : :

� .ws�1.P � z/�1.adlW
N�1

.x;„D/ P /w
�s/.ws.P � z/�1h„Diw�s�1/

� .wsC1h„Di�1 adlW
N

.x;„D/.h„DibW //;

where s � N . Lemma 5.1 and Beals’s theorem complete the proof. �
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We next calculate the asymptotic expansion of the weighted resolvent. Let

r.x; �; z; „/ �
P

j �0 „j rj be the formal symbol of .P �z/�1 given by the standard

parametrix construction, which does not belong to any symbol class. We easily

see that r0 D .p.x; �/ � z/�1 and rj .x; �; z/ D
qj .x;�;z/

.p.x;�/�z/2j C1 for j � 1, where

qj .x; �; z/ D
P2j �1

kD0
qj;k.x; �/z

k with qj;k.x; �/ 2 S.m2j �k/.

Proposition 5.2. Suppose that b has an asymptotic expansion �
P

„jbj in

S0
WR.w

�1m�khx0i�s0

/. Then the symbol of .P � z/�1bW has an asymptotic

expansion �
� P

„j rj
�

]
� P

„jbj
�

in S�1
WR.w

�1m�k�1hx0i�s0

/.

Proof. Take 0 � ı < 1
2

and consider z with „ı . jIm zj; jzj . 1. Borel’s

theorem enables us to take a 2 „�ıSı.w
�1m�k�1hx0i�s0

/ such that a has an

asymptotic expansion a � „�ı
�

P

j „.1�2ı/j „.2j C1/ırj
�

]
�

P

„.1�2ı/j „2jıbj
�

in

„�ıSı.w
�1m�k�1hx0i�s0

/ which is uniform with respect to z. Then

.P � z/aW D bW C „1 OpS.w�1m�khx0i�s0

/

since

.p � z/]
��

X

„j rj

�

]
�

X

„jbj

��

�
�

.p � z/]
�

X

„j rj

��

]
�

X

„jbj

�

�
X

„jbj

in the formal power series sense. Thus,

aW .x; „DI „/ D .P � z/�1bW C .P � z/�1„1 OpS.w�1m�khx0i�s0

/

D .P � z/�1bW C „1 OpS.w�1m�k�1hx0i�s0

/:

The last equality follows from Proposition 5.1. �

5.3. Proofs

Proof of Theorem 5. Applying hx0is0

from the right, we may assume that s0 D 0.

We take an almost analytic extension Qf 2 C1
c .C/ of f : N@ Qf D O.jIm zj1/ and

Qf jR D f . The Helffer–Sjöstrand formula shows

f .P /�W D
1

2�i

Z

N@ Qf .z/.z � P /�1�W dz ^ d Nz:

Take 0 < ı < 1
2
. Proposition 5.1 implies .z � P /�1�W 2 OpS�1

WR.w
�1m�1/.
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Thus

f .P /�W D aW .x; „DI „/ 2 OpS.w�1m�1/

and the integral for jIm zj < hı contributes only as h1 OpS.w�1m�1/. Proposi-

tion 5.2 implies that .z�P /�1�W has an asymptotic expansion in „�ıSı.w
�1m�1/

which is uniform with respect to z with jIm zj > hı . Thus

a �
�

„�ı
X

„j.1�2ı/„.1C2j /ı Qaj

�

]�

in „�ıSı.w
�1m�1/, where

Qaj D
1

2�i

Z

jIm zj>hı

N@ Qf .z/
qj .x; �; z/

.z � p.x; �//2j C1
dz ^ d Nz:

We set

aj D
1

2�i

Z

N@ Qf .z/
qj .x; �; z/

.z � p.x; �//2j C1
dz ^ d Nz

D
1

.2j /Š
@

2j
t .qj .x; �; t /f .t//tDp.x;�/:

We easily see that .aj � Qaj /]� 2 „1S.w�1m�1/ and aj 2 S.w�1m�1/. Thus we

have in fact a �
�P

„jaj

�

]� in S.w�1m�1/. We set fk.t / D .t � i/kf .t/. Then

fk.P /�
W has an asymptotic expansion in S.w�1m�1/ by the above argument.

Proposition 5.2 with z D i implies that f .P /�W D .P � i/�kfk.P /�
W has

an asymptotic expansion in S.w�1m�k�1/, which coincides with the formal

one
�
P

„jaj

�

]�. Since k is arbitrary, f .P /�W has an asymptotic expansion in

S.w�1m�1/ D S.m�1/. �

Proof of Theorem 6. The Helffer–Sjöstrand formula and the resolvent equation

show that

f .P2/ � f .P1/ D
1

2�i

Z

N@ Qf .z/.z � P2/
�1.V2 � V1/.z � P1/

�1dz ^ d Nz:

Take 0 < ı < 1
2
. We have

.V2 � V1/.z � P1/
�1 2 OpS�1

WR.w
�1m�1hx0i�s0

/

by Proposition 5.1. Thus Proposition 5.1 again implies

.z � P2/
�1.V2 � V1/.z � P1/

�1 2 OpS�2
WR.w

�1m�2hx0i�s0

/:

This implies that

f .P2/ � f .P1/ 2 OpS.w�1m�2hx0i�s0

/

and the integral for jIm zj < hı contributes only as h1 OpS.w�1m�2hx0i�s0

/.
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The twice applications of Proposition 5.2 show that .z�P2/
�1.V2�V1/.z�P1/

�1

has an asymptotic expansion in „�2ıSı.w
�1m�2hx0i�s0

/ which is uniform with

respect to z with jIm zj > hı . Thus the similar argument as in the proof of

Theorem 5 shows that the differencef .P2/�f .P1/ has an asymptotic expansion in

OpS.w�1m�2hx0i�s0

/. We next prove that f .P2/� f .P1/ has an asymptotic ex-

pansion in OpS.w�1m�N hx0i�s0

/ for any N . Suppose that this is true for N .

Applying this hypothesis to g.t/ D .t C i/f .t/, we see that .P2 C i/f .P2/�

.P1 C i/f .P1/ has an asymptotic expansion in OpS.w�1m�N hx0i�s0

/. Proposi-

tion 5.2 shows that f .P2/�.P2 C i/�1.P1 C i/f .P1/ has an asymptotic expansion

in OpS.w�1m�N �1hx0i�s0

/. We observe that

f .P2/ � f .P1/

D .f .P2/ � .P2 C i/�1.P1 C i/f .P1//C .P2 C i/�1.V1 � V2/f .P1/:

Theorem 5 and Proposition 5.2 show that the second term also has an asymptotic

expansion in OpS.w�1m�1hx0i�s0

/. Thus f .P2/ � f .P1/ has an asymptotic

expansion in OpS.w�1m�N �1hx0i�s0

/. Thus f .P2/ � f .P1/ has an asymptotic

expansion in OpS.w�1m�1hx0i�s0

/ D OpS.m�1hx0i�s0

/. Finally, we calculate

the asymptotic expansion of f .P2/�f .P1/, whose existence has been proved now.

Take � 2 C1
c .Rn/ which is equal to 1 on a large ball. We see from Theorem 5

that .f .P2/� f .P1//� has an asymptotic expansion in OpS.m�1hx0i�s0

/ which

coincides with the formal calculation. Since � is arbitrary, we conclude that the

asymptotic expansion of f .P2/ � f .P1/ coincides with the formal one. �

Appendix A. Commutator calculation

In this appendix, we assume that V 2 C1
b
.RnIR/ and setP D ��Cˇx1 CV.x/.

We denote Schwartz space and its dual by � and �
0. To justify the commutator

calculations in Section 5, we prove the following;

Proposition A.1. For Im z 6D 0, .P � z/�1 is continuous from � to � . Thus, there

is a unique continuous extension .P � z/�1W �
0 ! �

0 and this is the inverse of

P � zW � 0 ! � 0. In particular, Ker.P � z/ D ¹0º on � 0.

This enables us to compute the commutator with the resolvent.

Corollary A.1. For any linear operator T W �
0 ! �

0,

ŒT; .P � z/�1� D �.P � z/�1ŒT; P �.P � z/�1

as an operator from �
0 to �

0.
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Remark A.1. (1) We always have .P �z/ŒT; .P �z/�1�u D �ŒT; P �.P �z/�1u if

u; T u 2 L2. If we know that ŒT; P �.P �z/�1u 2 L2 and ŒT; .P �z/�1�u 2 L2, we

conclude that ŒT; .P � z/�1�u D �.P � z/�1ŒT; P �.P � z/�1u since the domain

of P is ¹u 2 L2 j Pu 2 L2º.

(2) If we only know that ŒT; P �.P � z/�1u 2 L2, we cannot immediately

conclude that we have ŒT; .P � z/�1�u 2 L2 and that we have ŒT; .P � z/�1�u D

�.P � z/�1ŒT; P �.P � z/�1u. If we had a generalized eigenfunction v 2 � 0

with .P � z/v D 0, there would be the possibility that ŒT; .P � z/�1�u D

v � .P � z/�1ŒT; P �.P � z/�1u 62 L2. The above proposition excludes this

possibility.

To apply the perturbation argument, we introduce the Banach space

Y N D
\

kCs�N

H k;s ;

where H k;s is the weighted Sobolev space

H k;s D ¹u 2 L2 j kukk;s D khDikhxisukL2 < 1º:

We only consider k; s 2 Z�0. The following proposition implies Proposition A.1

since � D
T

k;s�0H
k;s including the topology.

Proposition A.2. For Im z 6D 0, .P � z/�1WY N ! Y N is a bounded operator for

any N � 0.

Proof. We first give a formal proof without justifying the commutator calculation.

Take u 2 Y N . Then for k C s � N ,

k.P � z/�1ukk;s

D khDikhxis.P � z/�1ukL2

� k.P � z/�1ŒhDikhxis ; P �.P � z/�1ukL2 C k.P � z/�1hDikhxisukL2

� jIm zj�1kŒhDikhxis ; P �.P � z/�1ukL2 C jIm zj�1kukk;s :

Since ŒhDikhxis ; P � consists of the terms which can be estimated by hDik�1hxis

and hDikC1hxis�1,

kŒhDikhxis ; P �.P � z/�1ukL2 . k.P � z/�1ukk�1;s C k.P � z/�1ukkC1;s�1

(if k=0 or s=0, the first or the second term does not appear). Since one computation

of the commutator adds jIm zj�1, the repetition of this procedure shows that

k.P � z/�1kY N !Y N � CN jIm zj�1 max¹1; .1=jIm zj/2N º (A.1)

if the above calculation is justified. We next give a rigorous proof.
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We first assume that V D 0. We set P0 D �� C ˇx1. Then we have an

explicit diagonalization Fx0 exp
�

� i
3ˇ
D3

1

�

P0 exp
�

i
3ˇ
D3

1

�

F�1
x0 D j� 0j2 C ˇx1,

where Fx0 is the Fourier transform with respect to x0. Since Fx0 exp.� i
3ˇ
D3

1/ and

.j� 0j2 C ˇx1 � z/�1 preserve � , we conclude that .P0 � z/�1 preserves � . Thus

Proposition A.1 and Corollary A.1 are true for V D 0. Then the above calculation

is justified and the estimate (A.1) is true for P0 � z.

We next assume that V 2 C1
b
.RnIR/ and fix N � 0. We note that V is a

bounded operator from Y N to Y N . This and the estimate (A.1) for P0 imply that

there exists �0 > 0 such that k.P0 � z/�1V kY N !Y N < 1 for jIm zj > �0. Thus

the Neumann series argument shows that

.P � z/�1 D .1C .P0 � z/�1V /�1.P0 � z/�1

is bounded from Y N to Y N for jIm zj > �0. Then the above calculation is justified

by Remark A.1(1) and the a priori estimate (A.1) (rather than the estimate from

the Neumann series argument) is true for P � z with jIm zj > �0.

We next weaken the assumption that jIm zj > �0. Take z0 with jIm z0j > �0.

If jz � z0jCN jIm z0j�1 max¹1; .1=jIm z0j/2N º < 1, the estimate (A.1) for P � z0

and the Neumann series argument show that

.P � z/�1 D .1C .z0 � z/.P � z0/
�1/�1.P � z0/

�1

is bounded from Y N to Y N . Thus the above calculation is justified by Re-

mark A.1(1) and the estimate (A.1) is true forP�z. Since jIm z0j > �0 is arbitrary,

(A.1) is true for P � z with jIm zj > �1, where

�1 D �0 � .CN�
�1
0 max¹1; .1=�0/

2N º/�1:

The repetition of this argument shows that the estimate (A.1) is true for P � z

with jIm zj > �j , where �j D �j �1 � .CN�
�1
j �1 max¹1; .1=�j �1/

2N º/�1. We may

assume that CN > 1 and thus �j > 0. Since �0 > �1 > �2 > � � � > 0, there exists

�1 D limj !1 �j . To finish the proof, it is enough to show that �1 D 0. Assume

on the contrary that �1 > 0. Then

�j �1 � �j D .CN�
�1
j �1 max¹1; .1=�j �1/

2N º/�1 > .CN�
�1
1 max¹1; .1=�1/

2N º/�1

for any j . Thus limj !1 �j D �1, which is a contradiction. �

Remark A.2. All the results in this appendix are true for ˇ D 0. The free diago-

nalization is of course the Fourier transform. If we replace jIm zj by dist.z; �.P //

in the proof, the results in this case are also true for any z in the resolvent set

C n �.P /.
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