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Abstract. We present certain results on the direct and inverse spectral theory of the

Jacobi operator with complex periodic coefficients. For instance, we show that any N -th

degree polynomial whose leading coefficient is .�1/N is the Hill discriminant of finitely

many discrete N -periodic Schrödinger operators (Theorem 1). Also, in the case where the

spectrum is a closed interval we prove a result (Theorem 2) which is the analog of Borg’s

Theorem for the non-self-adjoint Jacobi case.
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1. Introduction

We consider the periodic Jacobi (or discrete Hill-type operator) L defined as

.Lw/.n/ WD a.n/w.nC 1/C a.n � 1/w.n� 1/C b.n/w.n/; n 2 Z; (1)

where the coefficients a.n/ and b.n/ are complex-valued and periodic functions

of period N 2 N WD ¹1; 2; : : :º with

a.n/ ¤ 0 for all n 2 Z: (2)

https://creativecommons.org/licenses/by/4.0/
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Let us mention that if a.n0/ D 0 for some n0, then a.n0 C kN/ D 0 for all

k 2 Z and L splits as L D L

k2Z A, where A is a linear operator acting on an

N -dimensional space, which can be considered as a degenerate case (e.g., the

spectrum of L consists of at most N eigenvalues of infinite multiplicity).

In the special case where a.n/ � �1 the operator L becomes the one-

dimensional discrete periodic Schrödinger (or discrete Hill) operator with po-

tential b.n/. Unlike the continuous case, here there is no Liouville-type trans-

formation which transforms the general operator L of (1) to a discrete periodic

Schrödinger operator (in fact, even in the continuous case, in the presence of com-

plex coefficients the Liouville transformation becomes problematic).

From now on, unless otherwise stated, without loss of generality we will

normalize a.n/ so that
N

Y

j D1

a.j / D .�1/N (3)

(starting with an arbitrary a.n/ ¤ 0 we can always do this normalization by

replacing L by cL, where c is such that
QN

j D1 ca.j / D cN
QN

j D1 a.j / D .�1/N ).

Since a.n/ and b.n/ are N -periodic, they can be expanded as

a.n/ D A0 C
N �1
X

kD1

Ak!
kn
N and b.n/ D B0 C

N �1
X

kD1

Bk!
kn
N ; !N WD e2�i=N ;

(4)

where A0; A1; : : : ; AN �1; B0; B1; : : : ; BN �1 2 C (this is a Fourier-style expan-

sion). It is not hard to check the orthogonality relation

N �1
X

nD0

!
jn
N N!kn

N D
N �1
X

nD0

e2.j �k/n�i=N D Nıjk for j; k D 0; 1; : : : ; N � 1; (5)

where the bar denotes complex conjugation (thus N!N D !�1
N ) and ıjk is the

Kronecker delta. Using (5) in (4) yields

Ak D 1

N

N �1
X

nD0

a.n/ N!kn
N and Bk D 1

N

N �1
X

nD0

b.n/ N!kn
N ; (6)

in particular (for k D 0),

N �1
X

nD0

a.n/ D A0N and

N �1
X

nD0

b.n/ D B0N: (7)

The continuous analog of L is the operator .Hw/.x/ WD �w00.x/CV.x/w.x/,

where V.x C b/ D V.x/. In the case where V.x/ is real-valued there is a huge
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number of papers devoted to the spectral theory ofH . But, even for the case where

V.x/ is not real and, consequently, H is not self-adjoint, there is an extensive

amount of literature (see, e.g., [6], [7], [9], [10], [12], [13], [21], [23], [22], [25],

[26], [27], [31], [32], [33], [34], [35], as well as the references therein). As for the

discrete periodic case, there is, too, a considerable amount of literature (e.g., [3],

[8], [14], [16], [17], [18], [24], [30], [36], and the references therein, as well as

Barry Simon’s encyclopedia [29]).

The recent emergence of the PT-Symmetric Quantum Theory (see, e.g., [1])

provides a strong motivation for studying non-self-adjoint Schrödinger-type oper-

ators (“non-Hermitian Hamiltonians” in the physicists’ terminology), especially

in the case where their spectra are real.

Let us recall that in the continuous case, if V.x/ 2 L2
loc.R/ is real-valued, a

famous theorem of Borg [2] states that �.H/ D Œ0;1/ if and only if V.x/ D 0

a.e. However, in the case of a nonreal V.x/ the situation is very different since, as

it has been shown by Gasymov [6] (see also [13]), if

V.x/ D
1

X

kD1

cke
ikx ; with

1
X

kD1

jck j < 1; (8)

then the Hill discriminant of H is 2 cos.2�
p
�/ and, consequently, �.H/ D

Œ0;1/. Actually Gasymov’s result can be easily explained, at least formally, by

applying the substitution z WD eix to the equation .Hw/.x/ D �w.x/ and then

invoking the standard Fuchsian theory of linear ordinary differential equations.

An interesting question here is whether, under some smoothness requirements,

any potential V.x/ whose spectrum is Œ0;1/ must be a “Gasymov potential,” i.e.

of the form given by (8), or the complex conjugate of a Gasymov potential.

Clearly our discrete operatorL is bounded on l2.Z/, and hence the l2.Z/-spec-

trum �.L/ of L is a compact subset of C. In the present article, inspired by the

aforementioned remarks on the continuous case, we examine, among other things,

the somehow simplest case regarding the spectrum, namely the case where �.L/

is a closed interval.

2. Review of the spectral theory of L

Naturally, the spectral theory of L, acting on l2.Z/, is studied via the equation

.Lw/.n/ D a.n/w.nC1/Ca.n�1/w.n�1/Cb.n/w.n/ D �w.n/; n 2 Z; (9)

where � 2 C is the spectral parameter.
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Following [3] we introduce the two solutions u.n/ D u.nI�/ and v.n/ D
v.nI�/ of (9) which satisfy the initial conditions

u.�1/ D 0; u.0/ D 1; v.�1/ D � 1

a.�1/; v.0/ D 0: (10)

For n � 0 the solution u.n/ D u.nI�/ is a polynomial in � of degree n having the

form

u.nI�/ D 1

…n

°

�n �
h

n�1
X

j D0

b.j /
i

�n�1

C
h

X

0�j <k�n�1

b.j /b.k/ �
n�2
X

j D0

a.j /2
i

�n�2 C � � �
±

;

(11)

where

…n WD
n�1
Y

j D0

a.j /; (12)

while for n � 1 the solution v.n/ D v.nI�/ is a polynomial in � of degree n � 1

having the form

v.nI�/ D 1

…n

°

�n�1 �
n�1
X

j D1

b.j /�n�2

C
h

X

1�j <k�n�1

b.j /b.k/ �
n�2
X

j D1

a.j /2
i

�n�3 C � � �
±

(13)

(here we follow the standard convention that empty sums equal 0, while empty

products equal 1; e.g., v.1I�/ D a.0/�1).

Notice also that

ˇ

ˇ

ˇ

ˇ

u.n/ v.n/

�a.n � 1/u.n � 1/ �a.n� 1/v.n� 1/

ˇ

ˇ

ˇ

ˇ

D 1 for all n 2 Z; � 2 C: (14)

In particular, u.n/ and v.n/ are linearly independent solutions of (9) for any value

of the parameter �.

Sometimes it is more convenient, instead of the solutions u.n/ and v.n/ to work

with the (linearly independent) solutions �.n/ D �.nI�/ and 
.n/ D 
.nI�/ of (9)

determined by the initial conditions

�.0/ D 1; �.1/ D 0 and 
.0/ D 0; 
.1/ D 1: (15)
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It follows easily that

�.nI�/ D u.nI�/C Œb.0/ � ��v.nI�/ and 
.nI�/ D a.0/v.nI�/: (16)

For n � 2, we have that �.nI�/ is a polynomial in � of degree n � 2 and 
.nI�/
is a polynomial in � of degree n � 1. Finally, an easy calculation yields

ˇ

ˇ

ˇ

ˇ

�.n/ 
.n/

�.nC 1/ 
.nC 1/

ˇ

ˇ

ˇ

ˇ

D a.0/

a.n/
for all n 2 Z; � 2 C: (17)

Remark 1. For any fixed n � 0 the polynomials v.nI�/ and v.nC1I�/do not have

any common zeros (i.e. they are relatively prime). The justification of this fact is

very simple. Suppose v.nI�0/ D v.n C 1I�0/ D 0. Then, the fact that v.nI�0/

satisfies the difference equation (9) (for � D �0) implies that v.nI�0/ D 0 for

all n 2 Z, which is a contradiction since, e.g., v.1I�0/ D 1=a.0/. Likewise, the

polynomials u.nI�/ and u.nC 1I�/ do not share any common zeros for any fixed

n � 0 and the same is true for �.nI�/ and �.n C 1I�/ as well as for 
.nI�/ and


.nC 1I�/.

Now let S be the “N -shift” operator

.Sf /.n/ WD f .nCN/: (18)

Our assumption a.nCN/ D a.n/ and b.nCN/ D b.n/ for all n 2 Z implies that

the linear operator S maps solutions of (9) to solutions of (9) for the same value

of � (in other words, S commutes with L), and by exploiting this very simple

property we can derive the (Floquet) spectral theory of L.

For each � 2 C let W D W.�/ be the two-dimensional vector space of the

solutions of (9). By the previous discussion, for each � 2 C the solutions u and v

of (9) can be taken as a basis of W.�/, and the matrix of the operator S jW with

respect to the basis .u; v/ is

S D S.�/ D
�

u.N I�/ v.N I�/
�a.�1/u.N � 1I�/ �a.�1/v.N � 1I�/

�

; (19)

where by a little abuse of notation we have also denoted by S the matrix of the

operator S restricted to W (we should not forget that the matrix S and the vector

space W depend on �). Thus, S is the Floquet (or monodromy) matrix associated

to equation (9), and formula (14) together with the fact that a.n/ is N -periodic

yield immediately that

detS.�/ � 1: (20)
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It follows that the characteristic polynomial of S.�/ has the form

det.S � rI / D r2 ��.�/r C 1; (21)

where

�.�/ WD trS D u.N I�/ � a.�1/v.N � 1I�/:
Also, it is easy to check that�.�/ can be expressed in terms of the solutions �.nI�/
and 
.nI�/ (recall (15)) as

�.�/ D �.N I�/C 
.N C 1I�/: (22)

The quantity �.�/ is the (discrete) Hill discriminant of L and from (21), (7),

(11), (13), and (3) it follows that it is a polynomial of � of degree N having the

form

�.�/ D

.�1/N
°

�N � B0N�
N �1 C

h

X

1�j <k�N

b.j /b.k/ �
N

X

j D1

a.j /2
i

�N �2 C � � �
±

: (23)

The eigenvalues r1.�/ and r2.�/ of S are the Floquet multipliers, while their

corresponding eigenvectors �1.nI�/ and �2.nI�/ are the Floquet solutions of (9)

so that

�j .nCN/ D .S�j /.n/ D rj�j .n/; j D 1; 2: (24)

From (21) we have

r1.�/r2.�/ � 1 and r1.�/C r2.�/ D �.�/; (25)

so that

r1.�/; r2.�/ D �.�/˙
p

�.�/2 � 4
2

: (26)

Let us also notice that, by (25) S.�/ can have a Jordan anomaly only if r1.�/ D
r2.�/ D ˙1 (equivalently, only if �.�/ D ˙2) and in the presence of such an

anomaly the matrix S.�/ is similar to the canonical matrix

�˙1 1

0 ˙1

�

:

If this is the case, then there is only one Floquet solution �.n/ satisfying the

condition �.nC N/ D ˙�.n/, while there is a second solution g.n/ (sometimes

called a generalized Floquet solution), linearly independent to �.n/, satisfying

g.nCN/ D ˙g.n/C �.n/ for all n 2 Z: (27)
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Recall, however, that even if r1.�/ D r2.�/ D ˙1, the Floquet matrix may still be

diagonalizable (and, hence, S.�/ D ˙I , where I is the 2 � 2 identity matrix), in

which case we have coexistence of two periodic (if S.�/ D I ) or antiperiodic (if

S.�/ D �I ), linearly independent Floquet solutions.

Remark 2. Suppose that a function �.x/ satisfies

�.x CN/ D r�.x/ for all x 2 R; (28)

where r ¤ 0 is a constant. We write

r D eˇN (29)

and set

p.x/ WD e�ˇx�.x/: (30)

Then, by using (28) and (29) in (30) we see immediately that p.x/ is N -periodic

and �.x/ can be written as

�.x/ D eˇxp.x/; where p.x CN/ D p.x/: (31)

Suppose now that g.x/ satisfies

g.x C N/ D rg.x/C �.x/ for all x 2 R; (32)

where �.x/ satisfies (28). We set

p1.x/ WD e�ˇxg.x/ � x

Nr
p.x/; (33)

where p.x/ is given by (30). Then, in view of (32), (29), and (31) we have

p1.x CN/ D e�ˇxe�ˇN Œrg.x/C �.x/� � x

Nr
p.x/ � 1

r
p.x/ D p1.x/: (34)

Therefore, g.x/ can be expressed as

g.x/ D eˇxp1.x/C x

Nr
eˇxp.x/ D eˇxp1.x/C x

Nr
�.x/; (35)

where p1.x/ and p.x/ are N -periodic.

Finally, let us mention that all the above are valid if the functions are defined

only for x 2 Z, provided, of course, that N 2 Z.

It is sometimes more convenient to view r1.�/ and r2.�/ as the two branches

of a (single-valued) analytic function r.�/ defined on the Riemann surface † of

the function
p

�.�/2 � 4. Then, (26) can be written as

r.�/ D �.�/C
p

�.�/2 � 4
2

(36)
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and r.�/ can be called the Floquet multiplier associated to (9). Let us notice that,

since �.�/2 � 4 is a polynomial of even degree, † has two points at 1. If †f in

denotes the set of finite points of† (namely†minus its two points at 1), then (25)

implies that r.�/ has neither zeros nor poles in †f in. As for the two points at 1
of †, since �.�/ has degree N it follows from (25) and (36) that at one of these

points r.�/ has a zero of multiplicity N , while at the other it has a pole of orderN .

Also, it maybe worth mentioning (i) that (36) is equivalent to

�.�/ D r.�/C 1

r.�/
(37)

and (ii) that
r 0.�/

r.�/
D �0.�/

p

�.�/2 � 4
: (38)

The Floquet solutions too can be viewed as the two branches of a meromorphic

function defined on †. First we normalize them so that �1.0I�/ D �2.0I�/ D 1.

It, then, follows that �1.nI�/ and �2.nI�/ are the branches of the function

�.nI�/ D u.nI�/ � u.N I�/ � r.�/
v.N I�/ v.nI�/: (39)

As we have already mention, deg� v.N I�/ D N � 1 (where deg� v.N I�/ denotes

the degree of v.N I�/ viewed as a polynomial of �). Hence, �.nI�/, as a function

of �, can have at mostN �1 poles in†f in counting multiplicities (in the non-self-

adjoint case the zeros of v.N I�/ are not necessarily simple – an example where

v.4I�/ has a triple zero is mentioned in §2.3).

Having �.�/ and r.�/, the l2.Z/-spectrum �.L/ of L can be characterized as

�.L/ D ¹� 2 CW�.�/ 2 Œ�2; 2�º () �.L/ D ¹� 2 CW jr.�/j D 1º; (40)

which implies that �.L/ is a finite union of bounded analytic arcs lying in the

complex plane (notice that by the first equality in (25) we have that jr1.�/j D 1 if

and only if jr2.�/j D 1).

The adjoint operator L� of L is given by the formula

.L�w/.x/ D a.n/w.nC 1/C a.n � 1/w.n� 1/C b.n/w.n/; n 2 Z; (41)

where the bar denotes complex conjugation. Hence L is self-adjoint if and only if

a.n/ and b.n/ are real-valued. In general we have

�.L�/ D �.L/; (42)

namely � 2 �.L�/ if and only if � 2 �.L/. If in particular �.L/ � R, then

�.L�/ D �.L/.
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2.1. Floquet spectrum; periodic and antiperiodic eigenvalues. In view of (25)

and (26), formula (40) yields some additional characterizations of the l2.Z/-spec-

trum of L, namely

�.L/ D ¹� 2 CW�.�/ D 2 cos.�/; 0 � � � �º (43)

and

�.L/ D ¹� 2 CW r1.�/ D ei�; 0 � � � �º: (44)

Thus, if for a given � 2 Œ0; ��, we introduce the Floquet spectrum

��.L/ WD ¹� 2 CW�.�/ D 2 cos.�/º; (45)

then �.L/ can be written as the disjoint union

�.L/ D
[

0����

��.L/: (46)

Clearly, the Floquet spectrum ��.L/ is the set of zeros of the N -th degree polyno-

mial

F�.�/ WD �.�/ � 2 cos.�/: (47)

Observe that F 0
�.�/ D �0.�/ is independent of � and has degree N � 1. Thus, if �

is a multiple zero of F�.�/, then � must be a zero of �0.�/, and there are at most

N � 1 such zeros (which, of course, are independent of �). For each such value

of � there is at most one � 2 Œ0; �� for which F�.�/ D 0 (since cos.�/ is strictly

decreasing on Œ0; ��). It follows that there are at most N � 1 values of � 2 Œ0; ��

for which F�.�/ has multiple zeros and, therefore, if � is not equal to any of those

exceptional values, the Floquet spectrum ��.L/ consists of N distinct �-Floquet

eigenvalues. Recall, e.g., that in the self-adjoint case, if � ¤ 0; � , then F�.�/ has

N distinct zeros.

Let us first consider the case � 2 .0; �/, namely � ¤ 0 and � ¤ � . Under

this assumption for �, if � 2 ��.L/, we have r1.�/ D ei� ¤ ˙1 and, therefore,

� is not a branch point of r.�/, hence there are two linearly independent Floquet

solutions �1.n/ D �1.nI�/ and �1.n/ D �2.nI�/ corresponding to any particular

� 2 ��.L/, satisfying

�1.nCN/ D ei��1.n/; n 2 Z (48)

and

�2.nCN/ D e�i��2.n/; n 2 Z: (49)

In view of (31) of Remark 2, formula (48) implies that

�1.n/ D ei�n=Np.n/; where p.nCN/ D p.n/: (50)
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By using (50) in (9) we can see that p.n/ satisfies the boundary value problem

a.n/ei�=Np.nC 1/C a.n � 1/e�i�=Np.n� 1/C b.n/p.n/ D �p.n/;

p.0/ D p.N/; p.1/ D p.N C 1/:
(51)

Problem (51) can be written in the matrix form

M� Ep D � Ep (52)

where Ep is the column vector Ep WD Œp.0/; : : : ; p.N � 1/�> and M� is the N � N
matrix (for N � 3)

M� WD

2

6

6

6

6

6

6

6

6

4

b.0/ a.0/ei�=N 0 � � � a.N � 1/e�i�=N

a.0/e�i�=N b.1/ a.1/ei�=N � � � 0

0 a.1/e�i�=N b.2/ � � � 0
:::

:::
:::

: : :
:::

0 0 0 � � � a.N � 2/ei�=N

a.N � 1/ei�=N 0 0 � � � b.N � 1/

3

7

7

7

7

7

7

7

7

5

:

(53)

If � is such that the polynomial F�.�/ of (47) has simple zeros, then F�.�/ must

be the characteristic polynomial of M� . Then, by continuity we have that

det.M� � �I/ D �.�/ � 2 cos.�/ for all � 2 Œ0; �� (54)

(and, consequently, by analytic continuation the above equation must hold for all

� 2 C). In particular, the spectrum of M� is ��.L/. Furthermore, the (pure)

eigenvectors of M� correspond precisely to the Floquet solutions satisfying (48).

If � 2 C is such that one of the Floquet multipliers is equal to 1, then � is a

periodic eigenvalue of L. In this case (25) and (36) imply that r1.�/ D r2.�/ D
r.�/ D 1 or, equivalently, �.�/ D 2. Likewise, if � 2 C is such that one

of the Floquet multipliers is equal to �1, then � is an antiperiodic eigenvalue

of L. In this case (25) and (36) imply that r1.�/ D r2.�/ D r.�/ D �1
or, equivalently, �.�/ D �2. Furthermore, by (40) we have that periodic and

antiperiodic eigenvalues are always in the spectrum �.L/ of L.

If � 2 C is neither a periodic nor an antiperiodic eigenvalue of L, then

from (25) we get that r1.�/ ¤ r2.�/, which in turn implies that � is not a branch

point of r.�/ (and, also, as we have already seen, that the Floquet matrix S.�/ is

diagonalizable). Thus, branch points of r.�/ as well as Jordan anomalies of S.�/

can occur only at periodic or antiperiodic eigenvalues of L, and for these reasons

these eigenvalues are quite special. Let us recall that in the self-adjoint case � is a

branch point of r.�/ if and only if S.�/ has a Jordan anomaly (and such a � must
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necessarily be real). However, this is not always true in the non-self-adjoint case.

We will encounter this phenomenon in §4.2.

If w.n/ is a periodic or antiperiodic (Floquet) solution of (9) (for a fixed �),

then, obviously, w.nC 2N/ D u.n/, i.e. w.n/ is 2N -periodic. Conversely, if for

a fixed � the equation (9) posesses a 2N -periodic solution w.n/, then, in view

of (18), we get .S2w/.n/ D w.n C 2N/ D w.n/. Thus, the operator .S jW/2,

acting of the two-dimensional space W D W.�/, has an eigenvalue equal to 1,

and, consequently, both eigenvalues r1.�/
2 and r2.�/

2 of .S jW/2 are equal to 1.

Hence r1.�/ D r2.�/ D ˙1 and w.n/ is a periodic or an antiperiodic (Floquet)

solution of (9).

Now, for an integer m � 1 let us consider the space

Pm WD ¹f .n/W f .nCm/ D f .n/ for all n 2 Zº; (55)

namely the set of m-periodic sequences over the complex numbers. Obviously,

Pm is a vector space of (complex) dimensionm. In the case wherem is a multiple

ofN , the operator L, havingN -periodic coefficients a.n/ and b.n/, maps Pm into

Pm. In particular, for m D 2N the operator L maps P2N into P2N and, due to the

previous discussion this is the most interesting case. As a basis of P2N we can

choose the sequences

ej .n/ WD ıjn; n 2 Z; j D 1; : : : ; 2N; (56)

where ıjn is the Kronecker delta. Then, the 2N �2N matrix ofLjP2N
with respect

to that basis is

L2N WD

2

6

6

6

6

6

6

6

6

6

6

4

b.1/ a.1/ 0 � � � 0 0 a.2N/

a.1/ b.2/ a.2/ � � � 0 0 0

0 a.2/ b.3/ � � � 0 0 0
:::

:::
:::

: : :
:::

:::
:::

0 0 0 � � � b.2N � 2/ a.2N � 2/ 0

0 0 0 � � � a.2N � 2/ b.2N � 1/ a.2N � 1/
a.2N/ 0 0 � � � 0 a.2N � 1/ b.2N/

3

7

7

7

7

7

7

7

7

7

7

5

;

(57)

where a.n C N/ D a.n/ and b.n C N/ D b.n/. Notice that the matrix L2N is

symmetric, but not Hermitian, unless, of course a.n/ and b.n/ are real-valued, in

which case L2N is real symmetric (hence Hermitian) and its associated operator

LjP2N
is self-adjoint.

It follows that the eigenvectors ofLjP2N
(inP2N ), being 2N -periodic solutions

of (9), are precisely the N -periodic andN -antiperiodic (linearly independent) so-

lutions of (9). Also, the spectrum of the operatorLjP2N
, i.e. the set of eigenvalues
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of the matrix L2N , coincides with the set of periodic and antiperiodic eigenvalues

of L, that is the zeros of the polynomials �.�/ � 2 and �.�/C 2. From (23) we

know that �.�/ has degree N . Hence the polynomial �.�/ � 2 has at most N

distinct zeros and the same is true for�.�/C2. Obviously, these two polynomials

cannot have common zeros. On the other hand �.�/ � 2 and �.�/C 2 have the

same derivative, namely �0.�/, from which it follows that �.�/2 � 4 has at least

N C 1 distinct zeros (the derivative of �.�/2 � 4 is 2�.�/�0.�/ and �.�/ does

not have common zeros with �.�/2 � 4).
From (23) we get that �.�/2 � 4 is a monic polynomial of degree 2N , i.e. its

leading term is �2N . Also, for generic a.n/ and b.n/ we have that �.�/2 � 4 has

2N simple zeros. Therefore, the characteristic polynomial of L2N is

det.L2N � �I/ D �.�/2 � 4: (58)

Another way to justify (58) is by using an argument similar to one used for

establishing (54).

2.2. Certain classes of isospectral operators. Here we will present some

classes of operators sharing the same spectral properties.

Let al .n/ WD a.n C l/ and bl .n/ WD b.n C l/, where l 2 Z, and consider the

operator

.Llw/.n/ WD al .n/w.nC 1/C al .n � 1/w.n� 1/C bl .n/w.n/; n 2 Z: (59)

Then, by writing equation (24) as

�j .nC l CN I�/ D rj .�/�j .nC l I�/; j D 1; 2: (60)

we can see thatL andLl have the same multiplier r.�/ and, consequently, the same

discriminant. Hence, �.Ll/ D �.L/. Also, if a].n/ WD a.�n/, b].n/ WD b.�n/,
and L] is the operator associated to a] and b], then �.�nI�/ is a Floquet solution

of L]w D �w if and only if �.nI�/ is a Floquet solution of Lw D �w. It

follows that L and L] have the same multiplier, the same discriminant, and the

same spectrum.

This is to be compared with the continuous case where the potentials V.x/,

V �.x/ WD V.x C �/, and V ].x/ WD V.�x/ have the same multiplier (hence the

same discriminant and the same L2.R/-spectrum) for all � 2 R) even for nonreal

values of �, as long as V.x/ is analytic and V.x C �/ makes sense.

We continue with another case of isospectrality. Formula (23) hints that

the discriminant �.�/ may stay unchanged if for some n we replace a.n/ by

�a.n/. Actually this guess is essentially true as it follows from a simple fact
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mentioned in [30] for the self-adjoint case, which extends automatically in the

case of complex a.n/ and b.n/.

Proposition 1. Suppose �.n/ D 1 or �1 and �.n C N/ D �.n/ for all n 2 Z.

Let a.n/ and b.n/ be the coefficients of the (N -periodic) Jacobi operator L

of (1) and consider the operator yL whose coefficients are Oa.n/ WD �.n/a.n/ and
Ob.n/ WD b.n/. If �.�/ and y�.�/ are the discriminants of L and yL respectively,

then

y�.�/ D .�1/�.�/�.�/; where �.�/ WD #¹nW �.n/ D �1; 0 � n � N � 1º (61)

(as usual, #S denotes the cardinality of the set S). In particular, �.yL/ D �.L/.

Proof. Suppose w.n/ satisfies .Lw/.n/ D �w.n/. Then it is easy to see that

Ow.n/ WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

w.n/

n�1
Y

j D0

�.j /; n > 0;

w.0/; n D 0;

w.n/

�1
Y

j Dn

�.j /; n < 0;

(62)

satisfies .yL Ow/.n/ D � Ow.n/. In particular, w.n/ is a Floquet solution associated

to L, with multiplier r , if and only if Ow.n/ is a Floquet solution associated to
yL with multiplier Or WD .�1/�.�/r , and the proof is completed by recalling that

�.�/ D r.�/C r.�/�1 and y�.�/ D Or.�/C Or.�/�1. �

Motivated by Proposition 1 we introduce the following equivalence relation

between Jacobi operators.

Definition 1. Two Jacobi operators L and yL (of complex coefficients) are called

equivalent, symbolically L � yL, if their associated coefficients a.n/, b.n/, Oa.n/,
and Ob.n/ are related as Oa.n/ D �.n/a.n/ and Ob.n/ D b.n/ for all n 2 Z, where

�.n/ D 1 or �1.

In other words, L � yL, if a.n/2 D Oa.n/2 and Ob.n/ D b.n/ for all n 2 Z.

Remark 3. Clearly, in the N -periodic case, if the coefficient a.n/ of L satisfies

the normalization (3), then the coefficient Oa.n/ D �.n/a.n/ of yL satisfies (3)

if and only if �.�/ of (61) satisfies .�1/�.�/ D 1 (i.e. �.�/ is even). Thus, if

the coefficients of both L and yL satisfy the normalization (3) and L � yL, then
y�.�/ D �.�/.
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2.3. The Dirichlet spectrum. Let us look at the Dirichlet-type boundary value

problem (N � 2)

.L /.n/ D a.n/ .nC 1/C a.n � 1/ .n � 1/C b.n/ .n/ D � .n/; (63)

 .0/ D  .N/ D 0 (64)

(notice that .n/ can be extended so that it satisfies (63) for all n 2 Z). Clearly, the

eigenvalues of the problem (63)–(64) are the zeros of the polynomial v.N I�/. As

we have seen deg� v.N I�/ D N � 1, hence there are N � 1 Dirichlet eigenvalues

�1; : : : ; �N �1, counting multiplicities. Hence, in view of (13), (3), and (16)

v.N I�/ D .�1/N
N �1
Y

j D1

.���j / and 
.N I�/ D .�1/Na.0/
N �1
Y

j D1

.���j /: (65)

In the case where a.n/ and b.n/ are real-valued, the problem (63)–(64) is self-

adjoint and hence the eigenfunctions form a basis of the underlying vector space,

which is clearly .N �1/-dimensional. Since for each�j we cannot have more than

one Dirichlet eigenfunction (up to linear independence), it follows that in the real

case the zeros of v.N I�/ are real and simple (and between any two bands of the

spectrum there is exactly one Dirichlet eigenvalue). However, this is not always

true in the case of nonreal a.n/, b.n/. For example, ifN D 4 and a.n/ � �1, then

v.4I�/ D �Œ� � b.1/�Œ� � b.2/�Œ� � b.3/�/C � � b.1/C � � b.3/;

and the choice b.1/ D �b.3/ D
p
2i and b.2/ D 0 yields v.4I�/ D ��3, hence

�1 D �2 D �3 D 0. Fixing b.4/ D 0 gives a specific “pathological” example,

namely

a.n/ � �1; b.n/ D in � .�i/np
2

:

Next, let us observe that by invoking (13) we get immediately the “trace

formula”

�1 C � � � C �N �1 D b.1/C � � � C b.N � 1/; (66)

which, in view of (7) can be also written as

�1 C � � � C �N �1 D B0N � b.0/: (67)

Also, since by (7) and (23) we have

�.�/2 � 4 D ¹�2N � 2Œb.1/C � � � C b.N/��2N �1 C � � � º; (68)
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it follows that (recall (7))

2N �1
X

j D0

�j D 2Œb.1/C � � � C b.N/� D 2B0N; (69)

where �j , j D 0; 1; : : : ; 2N�1, are the zeros of�.�/2�4 (counting multiplicities),

namely the periodic and antiperiodic eigenvalues. Furthermore, (67) yields

2N �1
X

j D0

�j � 2
N �1
X

j D1

�j D 2b.0/: (70)

Finally, let us mention that the Dirichlet eigenfunction  .n/, extended to Z, is

always a Floquet solution.

2.4. The unperturbed case. If a.n/ � �1 and b.n/ � 0 (viewed as N -periodic

functions), then the operator L reduces to the unperturbed operator

.zLw/.n/ WD �w.nC 1/ �w.n� 1/; n 2 Z; (71)

and equation (9) becomes

.zLw/.n/ D �w.nC 1/ �w.n� 1/ D �w.n/; n 2 Z: (72)

From now on a tilded quantity will be always associated with the unperturbed

case.

It is convenient to introduce a new spectral parameter z related to � as

z C z�1 WD ��: (73)

Then, the solutions � and 
 (recall (15)) in the unperturbed case become respec-

tively

Q�.nI�/ D z1�n � zn�1

z � z�1
; and Q
.nI�/ D zn � z�n

z � z�1
: (74)

In particular, for � D �2 (equivalently z D 1) we have

Q�.nI �2/ D 1� n and Q
.nI �2/ D n; (75)

while for � D 2 (equivalently z D �1) we have

Q�.nI 2/ D .�1/n�1n and Q
.nI 2/ D .�1/n�1.n � 1/: (76)

By straightforward induction we can also see that the solution Q
.nI�/, n � 3,

expanded in descending powers of �, has the form

Q
.nI�/ D .�1/n�1�n�1 C .�1/n.n � 2/�n�3 C � � � (77)
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Now, using (74) in (22) we get that the discriminant of the unperturbed operator

is

z�N .�/ WD zN C z�N D
���C

p
�2 � 4
2

�N

C
��� �

p
�2 � 4
2

�N

: (78)

Also, from (77) and the fact that for n � 2 we have (in the unperturbed case) that

Qu.nI�/ D �Qv.n� 1I�/, we obtain the expansion

z�N .�/ D .�1/N�N � .�1/NN�N �2 C � � � ; for N � 2 (79)

(this also follows immediately from (23)). Thus, in particular, the coefficient of

�N �1 in z�N .�/ is 0, which can be also seen from (23).

From the above formulas it follows easily that in the unperturbed case the

Floquet multiplier becomes

Qr.�/ D zN D
���C

p
�2 � 4
2

�N

; (80)

while the spectrum is

�.zL/ D Œ�2; 2�: (81)

Furthermore, if we set

zk WD ei�k=N ; k D 0; 1; : : : ; 2N � 1; (82)

and

Q�k WD �.zk C z�1
k / D �2 cos

��k

N

�

; k D 0; 1; : : : ; 2N � 1; (83)

then Q�0 D �2, Q�N D 2 and Q�k D Q�2N �k for k D 1; : : : ; N �1. In addition, Q�0 and
Q�N are simple zeros of z�N .�/

2 � 4, while Q�k, k D 1; : : : ; N � 1, are double zeros

of z�N .�/
2 � 4. It follows that Q�0 D �2 is a periodic eigenvalue of zL of geometric

multiplicity 1, the corresponding eigenfunction being Q�.nI �2/ � 1, while Q�N D
2 is a periodic (antiperiodic) eigenvalue of zL of geometric multiplicity 1, if N is

even (odd), the corresponding eigenfunction being Q�.nI 2/ D .�1/n. Finally, each
Q�k D 2 cos.�k=N/, k D 1; : : : ; N �1, is a periodic (antiperiodic) eigenvalue of zL
of geometric multiplicity 2, if k is even (odd), while the associated eigenfunctions

are Q�1.nI Q�k/ D ei�kn=N and Q�.nI Q�k/ D e�i�kn=N (i.e. we have coexistence of

two linearly independent periodic or antiperiodic solutions).

2.5. The essentially unperturbed operators

Definition 2. We say thatL of (1) is an essentially unperturbed operator ifL � zL,

i.e. if a.n/2 � 1 and b.n/ � 0.



Periodic Jacobi operators with complex coefficients 797

From the above definition it follows that, for a given period N there are 2N

essentially unperturbed operators, one of them being zL. Obviously the essen-

tially unperturbed operators have real coefficients and hence they are self-adjoint.

Notice also thatL is essentially unperturbed if and only if �L is essentially unper-

turbed. If N is odd and L is essentially unperturbed, then either L or �L satisfies

the normalization (3).

Remark 4. There are many results which can be proved by first checking that they

are valid for the essentially unperturbed case and then view the general case as a

continuous deformation of the unperturbed case. For instance, let us show that

for any real a.n/ and b.n/ (with a.n/ ¤ 0 for all n) the zeros of the polynomials

v.N I�/ and v.N C 1I�/ interlace. In the case of a.n/ � ˙1 and b.n/ � 0 the

statement follows easily from (73) and (74). Now, given any a.n/ ¤ 0 and b.n/

consider the family of quantities a.nI t / ¤ 0 and b.nI t /, t 2 Œ0; 1� continuous in t ,

such that a.nI 0/ D sgnŒa.n/�, a.nI 1/ D a.n/, b.nI 0/ D 0, and b.nI 1/ D b.n/

(e.g., b.nI t / D tb.n/). For each t the zeros of v.N I�I t / and v.NC1I�I t / (where

v.nI�I t / denotes the solution of (1) when the coefficients of L are a.nI t / and

b.nI t /), such that v.0I�I t / D 0 and v.1I�I t / D 1) are real, being the Dirichlet

eigenvalues of a self-adjoint operator. Furthermore, as t moves continuously

from 0 to 1 no zero of v.N I�I t / can “cross” a zero of v.N C 1I�I t / due to

Remark 1. Hence, the relative position of the zeros of v.N I�I t / and v.NC1I�I t /
is independent of t . Since for t D 0 their zeros interlace, it follows that they also

interlace for t D 1.

3. Inverse spectral considerations

for the case of a discrete Schrödinger operator

In this section we consider certain inverse spectral problems for the discrete peri-

odic Schrödinger operator with a (complex) potential b.n/, namely the operator

.LSchrw/.n/ WD �w.nC 1/ � w.n� 1/C b.n/w.n/; n 2 Z: (84)

Proposition 2. For the case where L D LSchr the zeros of v.N I�/ (counting

multiplicities) together with the zeros of v.N C1I�/ determine the sequence b.n/.

Proof. As we have seen, the polynomial v.N I�/ has N � 1 zeros counting

multiplicities. Hence, from its zeros we also know N . Then, in view of (13)

we know
PN �1

j D1 b.j /. Likewise, from the zeros of v.N C 1I�/ we can recover
PN

j D1 b.n/. Hence, from the given data we can get b.N/. Having b.N/ we can
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use the difference equation (9), satisfied by v.nI�/, in order to recover v.N�1I�/.
Having now v.N I�/ and v.N � 1I�/ we can recover b.N � 1/ and v.N � 2I�/.
We continue in the same manner until we recover b.j / for all j D 1; : : : ; N . �

An essentially equivalent version of Proposition 2 has appeared in [20]. The

proposition can be viewed as a special case of a discrete counterpart of a general

result of Levitan and Gasymov [15], in the continuous case, which says that a

potential can be recovered from two spectra.

Let us, now, discuss a variance of the case of the above proposition. Suppose

that we know the zeros (counting multiplicities) of the polynomials v.N I�/ and

u.N C 1I�/. Then, as we have seen the polynomials v.N I�/ and u.N C 1I�/ are

known, while from (14) we get

u.N I�/v.N C 1I�/ D 1C v.N I�/u.N C 1I�/; (85)

hence the polynomial F.�/ WD u.N I�/v.N C1I�/ is known. Of course, degF D
2N � 2. Given F.�/ there are finitely many possibilities for its N -degree factor

v.N C 1I�/. However, in general, v.N C 1I�/ cannot be recovered uniquely from

F.�/ and one might suspect that, in general, it may not be possible to uniquely

recoverL from ¹v.N I�/; u.NC1I�/º. Actually, this possibility can really happen,

as it is demonstrated by the following (counter)example.

Example 1. Let us take N D 4 and consider the case a.n/ � �1 and b.n/ such

that

b.1/ D b.4/ D ˛ C �
p
2; b.2/ D b.3/ D ˛ � �

p
2

2
(86)

where ˛ is any fixed real (or complex) number and � 2 ¹�1; 1º. Then (11) and (13)

give

v.4I�/ D �u.5I�/ D ��3 C 3˛�2 �
�

3˛2 � 7

2

�

�C ˛3 � 7˛

2
: (87)

Hence, the sign � cannot be recovered from v.4I�/ and u.5I�/. In other words,

there are two different potentials of period N D 4 corresponding to the same

spectral data ¹v.4I�/; u.5I�/º.

Example 1 is, somehow, in contrast with [15].

We, now, wish to consider the following question. Suppose we are given a

polynomial

D.�/ D .�1/N�N C
N �1
X

kD0

ck�
k : (88)
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Is there anN -periodic operatorLSchr whose discrete Hill discriminant is the given

polynomial D.�/?

Let us first give a lemma of algebraic flavor.

Lemma 1. For k D 1; : : : ; N let Sk.x1; : : : ; xN / be the elementary symmetric

polynomial in the variables x1; : : : ; xN of degree k. Also, let pk.x1; : : : ; xN /,

k D 1; : : : ; N , be N given polynomials in x1; : : : ; xN such that degpk � k � 1.

Then, the cardinality of the set ƒ of the distinct solutions .x1; : : : ; xN / 2 C
N of

the system of N equations

Sk.x1; : : : ; xN / D pk.x1; : : : ; xN /; k D 1; : : : ; N; (89)

satisfies 1 � #.ƒ/ � NŠ.

Proof. The result follows from the very simple observation that the system (89)

does not have solutions at infinity.

Let us make the above statement precise. Consider the complex projective

space CP
N of (complex) dimension N . Recall that CPN is the projective com-

pactification of CN , which is constructed as follows. The points of CPN have ho-

mogeneous coordinates .�1; : : : ; �N ; �N C1/ ¤ .0; : : : ; 0; 0/ so that the set of coor-

dinates .��1; : : : ; ��N ; ��N C1/, � 2 Cn¹0º, represent the same point ofCPN . The

point of CPN with homogeneous coordinates .�1; : : : ; �N ; �N C1/ with �N C1 ¤ 0

can be identified with the point of CN with coordinates .�1=�N C1; : : : ; �N=�N C1/,

while the points of CPN with homogeneous coordinates .�1; : : : ; �N ; 0/ are the

so-called “points at infinity” and they do not correspond to points of CN .

We can, then, consider the “projectified” (89), namely the system (89) in CP
N ,

written in homogeneous coordinates:

Sk.�1; : : : ; �N / D pk.�1=�N C1; : : : ; �N =�N C1/�
k
N C1; k D 1; : : : ; N; (90)

so that the solutions of (90) with �N C1 ¤ 0 correspond to the solutions of (89) in

C
N , while the solutions of (90) with �N C1 D 0 are the solutions at infinity. Since

for each k D 1; : : : ; N the polynomial pk.x1; : : : ; xN / has degree � k � 1, we

must have that all the quantities pk.�1=�N C1; : : : ; �N=�N C1/�
k
N C1, k D 1; : : : ; N ,

vanish, if �N C1 D 0. Hence, if we set �N C1 D 0 in (90) we get

Sk.�1; : : : ; �N / D 0; k D 1; : : : ; N; (91)

and (91) implies easily that �1 D � � � D �N D 0, which is impossible by the

definition of homogeneous coordinates. Therefore, (90) cannot have solutions

at infinity and, consequently, ƒ is a compact subset of CN . But, then, by the

Noether’s Normalization Theorem [4] we can conclude thatƒmust be a finite set.

Thus, the proof is finished by invoking Bézout’s Theorem [28]. �
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We are now ready for the main result.

Theorem 1. Let c0; : : : ; cN �1 be given complex numbers. Then, there exist at least

one and at mostNŠ differentN -periodic potentials b.n/ for which the discrete Hill

discriminant of the corresponding operator LSchr (see (84)) is

�.�/ D .�1/N�N C
N �1
X

kD0

ck�
k : (92)

Proof. First, for typographical convenience let us write bn instead of b.n/ and,

also, introduce the notation

Q.n/ WD bn � �: (93)

Next, let �.n/ D �.nI�/ and 
.n/ D 
.nI�/ be the (unique) solutions of

.LSchrw/.n/ D �w.n/ satisfying the initial conditions (15), namely �.0/ D 1,

�.1/ D 0 and 
.0/ D 0, 
.1/ D 1 respectively. In view of (17), the Wronskian (or

Casoratian) of � and 
 is

W Œ�; 
� WD
ˇ

ˇ

ˇ

ˇ

�.n/ 
.n/

�.nC 1/ 
.nC 1/

ˇ

ˇ

ˇ

ˇ

� 1; (94)

and this implies that the discriminant of LSchr is (as we have already seen in (22))

�.�/ D �.N I�/C 
.N C 1I�/; (95)

By using the notation introduced above we can write the difference equation

satisfied by �.n/ and 
.n/ as

w.nC 1/ D Q.n/w.n/ �w.n� 1/; n 2 Z: (96)

It follows by easy induction that, for n � 2 the quantity �.nI�/ is a polynomial

in � of degree n � 2 (since �.2I�/ D �1), while 
.nI�/ is a polynomial in � of

degree n � 1 having the form


.n/ D Q.1/Q.2/ � � �Q.n� 1/ �
X

.j1;:::;jn�3/2Sn�3

Q.j1/ � � �Q.jn�3/

C
X

.j1;:::;jn�5/2Sn�5

Q.j1/ � � �Q.jn�5/ � � � � ;
(97)

where the Sk’s are certain sets of k-tuples of distinct integers between 1 and n.

For example,


.4/ D Q.1/Q.2/Q.3/ �Q.1/ �Q.3/
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and


.5/ D Q.1/Q.2/Q.3/Q.4/�Q.1/Q.2/ �Q.1/Q.4/ �Q.3/Q.4/C 1:

By using (97) in (95) (together with the fact that deg� �.nI�/ D n � 2) and then

in (21) we obtain

�.�/ D Q.1/Q.2/ � � �Q.N/ �
X

.j1;:::;jN�2/2TN�2

Q.j1/ � � �Q.jN �2/

C
X

.j1;:::;jN�4/2TN�4

Q.j1/ � � �Q.jN �4/ � � � � ;
(98)

where the Tk’s are certain sets of k-tuples of distinct integers between 1 and N .

Let us now assume that �.�/ is as in (92). Then, in view of (98) and (93) we

must have

cN �1 D .�1/N �1S1.b1; : : : ; bN /; (99)

cN �2 D .�1/NS2.b1; : : : ; bN /C P2.b1; : : : ; bN /; (100)

cN �3 D .�1/N �1S3.b1; : : : ; bN /C P3.b1; : : : ; bN /; (101)

:::

c0 D SN .b1; : : : ; bN /C PN .b1; : : : ; bN /; (102)

where Sk.b1; : : : ; bN /, k D 1; : : : ; N , are the elementary symmetric polynomials

in the variables b1; : : : ; bN of degree k, while Pk.b1; : : : ; bN /, k D 2; : : : ; N ,

are given polynomials in b1; : : : ; bN such that degPk � k � 1 (e.g., (23) implies

that P2.b1; : : : ; bN / � .�1/N �1N ). Therefore, we can apply Lemma 1 to the

system (99)–(102) and conclude that it has at least one and at most NŠ distinct

solutions .b1; : : : ; bN /. �

In §5 we give some examples of operators LSchr with a given discriminant.

Finally, let us mention that one can follow the approach used for proving

Theorem 1 in order to show existence of operators LSchr whose certain associated

polynomial quantity, say u.N; �/ (see (10)), is of a given form.

4. Periodic Jacobi operators whose spectrum is a closed interval

We begin with some observations regarding the multiplier r.�/.

As we have already mentioned, since�.�/2�4 is a polynomial of even degree,

namely 2N , it follows that 1 is not a branch point of
p

�.�/2 � 4. Hence, in view
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of (36) we have that 1 is not a branch point of r.�/. Moreover, from (26) and (23)

we have that one of the branches of r.�/ satisfies

rj .�/ D .�1/N�N
h

1CO
�1

�

�i

as � ! 1; (103)

while, due to the first equation in (25) the other branch satisfies

rk.�/ D .�1/N��N
h

1CO
�1

�

�i

as � ! 1; (104)

where, ¹j; kº D ¹1; 2º.
Suppose r.�/ has no branch points in C. Then, �.�/2 � 4 is the square

of a polynomial, which in view of (26) implies that both r1.�/ and r2.�/ are

polynomials. However, this is impossible, e.g., due to (104). It follows that r.�/

must have at least one branch point in C. But, if r.�/ has exactly one branch point

� 2 C, then from (36) we get that Œ�.�/2 �4�=.���/ is the square of a polynomial,

which is impossible since its degree is odd, namely 2N � 1 (actually, by the same

argument we can deduce that the number of branch points of r.�/ cannot be odd).

Therefore r.�/ has at least two branch points in C.

The following theorem characterizes the spectrum of L in the case where r.�/

has exactly two branch points.

Theorem 2. Suppose that the multiplier r.�/ associated to (9) has exactly two

branch points �; � 2 C. Then, � and � are periodic or antiperiodic eigenvalues of

L satisfying
�� � �

4

�N

D ˙1 (105)

(in particular j� � � j D 4) and the spectrum of L is the line segment joining �

and � , namely

�.L/ D ¹� 2 CW� D �C .� � �/t; 0 � t � 1º: (106)

Proof. Since r.�/ has only two branch points �; � , it follows from (36) that it must

have the form

r.�/ D �.�/CQ0.�/
p

.� � �/.� � �/
2

; (107)

whereQ0.�/ is a polynomial of degree N � 1. Equation (107) can be also written

as

r1.�/; r2.�/ D �.�/˙Q0.�/
p

.� � �/.� � �/
2

: (108)
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Formula (107) suggests that it will be more convenient, instead of � to work with

the spectral parameter � where

� C ��1 WD 4� � 2.�C �/

� � �
; (109)

so that

.� � �/.�� �/ D .� � �/2
16

.� � ��1/2: (110)

Notice that formula (109) tells us that for every � 2 C n ¹�; �º we get exactly two

values of �, say �1 and �2 with �1�2 D 1 (hence �1; �2 ¤ 0), while for � D � we

only get � D 1 and for � D � we only get � D �1. Conversely, for every � 2 Cn¹0º
we get exactly one �.

Using (110) in (108) yields

r1.�/; r2.�/ D �.�/˙Q1.�/.� � ��1/

2
; where Q1.�/ WD � � �

4
Q0.�/:

(111)

Formula (111) implies that r1.�/ D R1.�/ and r2.�/ D R2.�/, where Rj .�/,

j D 1; 2, are rational functions. On the other hand, by recalling the first equality

in (25), namely r1.�/r2.�/ � 1, we know that the multipliers are different from 0

for every � 2 C, while, e.g., from (26) we know that they cannot have poles in C.

Since, in view of (109), � D 0 is the only value of � which does not correspond to

a complex number �, we can conclude that � D 0 is the only possible zero or pole

of Rj .�/, j D 1; 2, and, consequently, since R1.�/R2.�/ � 1, we must have

R1.�/; R2.�/ D c˙1�˙d or, equivalently, r1.�/; r2.�/ D c˙1�˙d ; (112)

for some complex constant c ¤ 0 and some integer d � 1 (remember that rj .�/,

j D 1; 2, cannot be constant).

We continue by recalling that, since � (and �) is a branch point of r.�/, the

equation (36) implies that r.�/ D ˙1 (and also r.�/ D ˙1). In particular, this

tells us that � and � are periodic or antiperiodic eigenvalue of L. On the other

hand, as we have already mentioned if � D �, then (109) gives that � D 1 (while

if � D � , then � D �1). Thus, by using this particular value of �, namely � D �,

in (112) we obtain

c D ˙1 (113)

and, consequently, c˙1 D c. Hence (112) becomes

r1.�/; r2.�/ D c�˙d : (114)
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Next, we consider asymptotics as � ! 1. From (109) we have

� � 4

� � �
� or ��1 � 4

� � � �: (115)

By using (115) in (114) we get

r1.�/; r2.�/ � c
� 4

� � � �
�˙d

as � ! 1: (116)

Then, by comparing (116) with (103) and (104) we obtain

d D N and
�� � �

4

�N

D .�1/N c D ˙1: (117)

Finally, in view of (40), (109), and (114) we have that �.L/ is as in (106). �

Remark 5. (i) In the case whereN is an odd integer, formula (105) can be written,

without loss of generality (i.e. by interchanging the roles of � and �) in the slightly

simpler form
�� � �

4

�N

D 1 (118)

(ii) From (114) (recall that d D N ) and (109) we get

r.�/ D c
h2� � .�C �/C 2

p

.� � �/.� � �/
� � �

iN

; (119)

verifying, e.g., that r.�/ D c and r.�/ D .�1/N c, where c D ˙1 as in the proof

of Theorem 2. Therefore, if N is even, then � and � are both periodic or both

antiperiodic eigenvalues of L, while if N is odd, then one of the �, � is a periodic

eigenvalues of L, while the other is an antiperiodic eigenvalues. Furthermore, by

using (119) in (25) we get

c�.�/ D
h2� � .�C �/C 2

p

.� � �/.� � �/
� � �

iN

C
h2� � .�C �/ � 2

p

.� � �/.� � �/
� � �

iN

:

(120)

Since by (117) we have .�� �/N D .�1/N4N c, formula (120) can be also written

as

.�1/N�.�/ D
h2� � .�C �/C 2

p

.� � �/.� � �/
4

iN

C
h2� � .�C �/ � 2

p

.� � �/.� � �/
4

iN

:

(121)
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From (121) we get

.�1/N�.�/ D
h

�N � N.�C �/

2
�N �1

C .2N � 3/N.�2 C �2/C 2.2N � 1/N��

16
�N �2 C � � �

i

(122)

and by comparing (122) with (23) we obtain (recalling (7))

B0 D 1

N

N
X

j D1

b.j / D �C �

2
(123)

and

X

1�j <k�N

b.j /b.k/ �
N

X

j D1

a.j /2 D .2N � 3/N.�2 C �2/C 2.2N � 1/N��
16

; (124)

where, of course, � and � must satisfy (105).

We continue with a converse of Theorem 2.

Theorem 3. Suppose that the spectrum �.L/ is a simple piecewise smooth arc in

the complex plane joining two (distinct) numbers � and � . Then � and � are the

only branch points of the multiplier r.�/. Consequently, due to Theorem 1, � and

� must satisfy (105) and �.L/ must be the line segment joining them, as displayed

in (106).

Proof. By the spectral characterization given in (40) we have that

� 2 �.L/ () jr1.�/j D 1; (125)

since, in view of (25) we have jr.�/j D 1 if and only if jr1.�/j D 1.

Now, let �? 2 C be a branch point of r.�/. Then, as we have already seen

r.�?/ D ˙1 and �? 2 �.L/. Suppose �? ¤ �; � . Then, there is an " > 0 such

that the intersection ˇ WD �.L/ \ D.�?I "/, where D.�?I "/ is the closed disk of

radius " centered at �?, is a subarc of �.L/ whose endpoints lie on the boundary

of D.�?I "/. In other words D.�?I "/ n ˇ has two components (i.e. ˇ separates

D.�?I "/ in two pieces).

The expansion of r1.�/ about � D �? has the form

r1.�/ D ˙1C .� � �?/
1=2

1
X

mD0

cm.� � �?/
m; (126)
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where cm cannot vanish for allm � 0. Formula (126) implies that the image of the

arc ˇ under the map r1.�/must be a piecewise smooth curve forming a right angle

at r1.�?/, hence it cannot be a subset of the unit circle, and this is in contradiction

with (125). Therefore, it is impossible to have �? ¤ �; � . Hence, the only possible

branch points of r.�/ are � and � . Since r.�/must have at least two branch points,

it follows that they have to be precisely � and � . �

Let us mention that we believe that the continuous versions of Theorems 2

and 3 are also valid, and that the proofs should follow the same philosophy as

their discrete counterparts (some perhaps “harmless” differences are that instead

of polynomials we have entire functions of order � 1=2, � D 1 or � D 1, etc).

Remark 1. From Theorems 2 and 3 it follows that if the multiplier r.�/ associated

to (9) has exactly two branch points �; � or if the spectrum �.L/ of L is a simple

piecewise smooth arc in the complex plane joining two complex numbers � and � ,

then there is an $ with $2N D 1 such that

�.$L� � � 2/ D Œ�2; 2�: (127)

Also, if �.L/ D Œ�2; 2�, then by Theorem 2 the only branch points of r.�/ are

� D �2 and � D 2. Hence (119) together with the asymptotic formulas (103)

and (104) yield that

r.�/ D
h��C

p
�2 � 4
2

iN

D Qr.�/; (128)

where (recall (80)) Qr.�/ is the Floquet multiplier of the unperturbed case. Con-

sequently, the Hill discriminant �.�/ of L must be equal to the unperturbed dis-

criminant, namely (in view of (78))

�.�/ D z�N .�/ D zN C z�N D
���C

p
�2 � 4
2

�N

C
��� �

p
�2 � 4
2

�N

:

(129)

Example 2. (i) If N D 2, a.n/ D i.�1/n, and b.n/ D 2.�1/n, then �.L/ D
Œ�2; 2�.

(ii) If N D 4, a.n/ D .1 C i/in=
p
2, and b.n/ D .�1/n

p
2, then, again,

�.L/ D Œ�2; 2�.

4.1. Examples of discrete Schrödinger operators with spectrum is the inter-

val Œ�2; 2�. Suppose L becomes the discrete Schrödinger operator LSchr of (84)

and its spectrum is the closed interval Œ�2; 2�. Then, by Remark 1 we know that
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its discriminant is given by (129). We can, therefore, apply Theorem 1 and con-

clude that there is at least one and at most NŠ such operators. Each of these op-

erators is determined by its potential .b1; : : : ; bN /, which in turn is a solution of

the system (99)–(102) (see also (98)), where cj D Qcj , j D 0; : : : ; N � 1 are the

coefficients of z�N .�/.

Recall that from the discussion presented in §2.1 it follows that if .b1; : : : ; bN /

is a solution of the system (99)–(102), namely if b.n/ D bn, n D 1; : : : ; N , is a

potential whose spectrum is Œ�2; 2�, then the same is true for its “cyclic permuta-

tions” .b2; b3; : : : ; bN ; b1/, .b3; b4; : : : ; bN ; b1; b2/, etc. Also, since the coefficients

Qcj , j D 0; : : : ; N �1, as well as the coefficients of the system (99)–(102) are ratio-

nal, it follows that if .b1; : : : ; bN / is a solution, then so is . Nb1; : : : ; NbN / (where the

bar denotes complex conjugation) and, furthermore all b1; : : : ; bN are algebraic

numbers.

Example 3. (i) For N D 2 (so that z�2.�/ D �2 � 2) and N D 3 (so that z�3.�/ D
��3 C 3�) it is easy to check that the only (complex) solution of (99)–(102) is the

zero solution, namely b.n/ � 0.

(ii) ForN D 4 (so that z�4.�/ D �4 �4�2 C2) the system (99)–(102) becomes

b1 C b2 C b3 C b4 D 0;

b1b2 C b1b3 C b1b4 C b2b3 C b2b4 C b3b4 D 0;

b1b2b3 C b1b2b4 C b1b3b4 C b2b3b4 D 0;

b1b2b3b4 D b1b2 C b2b3 C b3b4 C b4b1:

It follows that b1, b2, b3, and b4 are the roots of the equation x4 C ˛ D 0, where

˛ D b1b2 C b2b3 C b3b4 C b4b1: (130)

Writing b1; b2; b3; b4 D ˙.1˙ i/˛1=4=
p
2 and substituting in (130) yields ˛ D 0

or ˛ D 4. From the value ˛ D 0 we only get the obvious solution b.n/ � 0,

whereas the value ˛ D 4 yields a total of eight distinct solutions:

2

6

6

6

4

b1

b2

b3

b4

3

7

7

7

5

D

2

6

6

6

4

1C i

1 � i
�1C i

�1 � i

3

7

7

7

5

;

2

6

6

6

4

�1� i
1C i

1 � i
�1C i

3

7

7

7

5

;

2

6

6

6

4

�1C i

�1� i
1C i

1� i

3

7

7

7

5

;

2

6

6

6

4

1� i

�1C i

�1� i
1C i

3

7

7

7

5

(131)
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and
2

6

6

6

4

b1

b2

b3

b4

3

7

7

7

5

D

2

6

6

6

4

1 � i
1C i

�1� i

�1C i

3

7

7

7

5

;

2

6

6

6

4

�1C i

1 � i
1C i

�1 � i

3

7

7

7

5

;

2

6

6

6

4

�1 � i
�1C i

1 � i
1C i

3

7

7

7

5

;

2

6

6

6

4

1C i

�1� i
�1C i

1 � i

3

7

7

7

5

:

(132)

Notice that the last three solutions in (131) are the cyclic permutations of the

first solution, while the four solutions in (132) are the complex conjugates of the

solutions in (131). The first solution in (131) corresponds to the potential

b.n/ D �1C i

2
in � i.�1/n � 1� i

2
.�i/n;

while (see §2.2) the other seven solutions correspond to the shifts of this potential,

namely b1.n/, b2.n/, and b3.n/, and to the complex conjugates of those four

potentials (changing b.n/ to b].n/ D b.�n/ does not produce any new solutions).

All these eight potentials, as well as the trivial potential b.n/ � 0 have spectrum

Œ�2; 2�. Thus, there are only nine distinct solutions, while 4Š D 24.

(iii) For N D 5 (so that z�5.�/ D ��5 C 5�3 � 5�) the system (99)–(102)

becomes

S1.b1; b2; b3; b4; b5/ D 0;

S2.b1; b2; b3; b4; b5/ D 0;

S3.b1; b2; b3; b4; b5/ D 0;

S4.b1; b2; b3; b4; b5/ D b1b2 C b2b3 C b3b4 C b4b5 C b5b1;

S5.b1; b2; b3; b4; b5/ D b1b2b3 C b2b3b4 C b3b4b5 C b4b5b1 C b5b1b2:

We can find some (nontrivial) solutions by looking for solutions such that bj D 0

for some j , say b5 D 0. Then, the system becomes

S1.b1; b2; b3; b4/ D S2.b1; b2; b3; b4/ D S3.b1; b2; b3; b4/ D 0;

b1b2b3b4 D b1b2 C b2b3 C b3b4;

b1b2b3 C b2b3b4 D 0:

(although we have five equations with four unknowns, as we will see the resulting

system has nine distinct solutions). If b2b3 D 0, then we must have bj D 0 for all

j D 1; : : : ; 5. Thus, let us assume b2b3 ¤ 0. In this case the last equation of the

system can be simplified as

b1 C b4 D 0:
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As in the case (ii) it follows that b1, b2, b3, and b4 are the roots of the equation

x4 C ˛ D 0, where

˛ D b1b2 C b2b3 C b3b4: (133)

Writing b1; b2; b3; b4 D ˙.1˙ i/˛1=4=
p
2 and substituting in (133) yields ˛ D 0,

˛ D 3C4i , or ˛ D 3�4i . From the value ˛ D 0 we only get the obvious solution

b.n/ � 0. The value ˛ D 3C 4i yields the solutions:

2

6

6

6

6

6

4

b1

b2

b3

b4

b5

3

7

7

7

7

7

5

D

2

6

6

6

6

6

4

.1C i/�

.1 � i/�
�.1 � i/�
�.1C i/�

0

3

7

7

7

7

7

5

;

2

6

6

6

6

6

4

.1� i/�
�.1C i/�

.1C i/�

�.1� i/�
0

3

7

7

7

7

7

5

;

2

6

6

6

6

6

4

�.1 � i/�
.1C i/�

�.1C i/�

.1 � i/�
0

3

7

7

7

7

7

5

;

2

6

6

6

6

6

4

�.1C i/�

�.1� i/�
.1� i/�
.1C i/�

0

3

7

7

7

7

7

5

;

(134)

where

� WD
pp

5C 2

2
C

pp
5� 2

2
i: (135)

From the value ˛ D 3 � 4i we get another set of four solutions, which are the

complex conjugates of the solutions given in (134).

An amusing observation is that these eight solutions can be also expressed as

b1 D ˙ 1p
�

˙ i
p

�; b2 D ˙ib1; b3 D �b2; b4 D �b1; b5 D 0

(for all eight different choices of the plus=minus signs), where � is the golden

ratio, i.e.

� D 1C
p
5

2
:

Finally, the cyclic permutations of the solutions in (134) and their complex conju-

gates produce a set of thirty two new solutions. The transformation b.n/ ! b.�n/
does not yield any new solutions. Thus we have found a total of forty distinct so-

lutions, plus the obvious (trivial) solution b.n/ � 0. Here we do not claim that

we have found all the distinct solutions (since 5Š D 120, it is possible that more

solutions exist).
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4.2. The general operator. We now consider again the more general Jacobi

operator L as introduced in (1). We are interested in the case where the spectrum

�.L/ is a simple piecewise smooth arc in the complex plane joining the numbers

� and � . Then, by Theorem 2 and Remark 1 we can assume, essentially without

loss of generality that �.L/ D Œ�2; 2�.
The following theorem is the discrete analog of a result of V. Guillemin and

A. Uribe [13].

Theorem 4. Suppose that �.L/ D Œ�2; 2�. Then, the eigenvalues of LjP2N
,

where P2N is the vector space of 2N -periodic sequences as introduced in (55),

or, equivalently, the eigenvalues of the matrix L2N of (57), are the numbers given

in (83), namely

�k D Q�k D �2 cos
��k

N

�

; k D 0; 1; : : : ; N: (136)

Furthermore, for k D 1; : : : ; N � 1, either there are two linearly independent

eigenfunctions (in P2N ) corresponding to the eigenvalue �k or there is a two-

dimensional generalized eigenspace (subspace ofP2N ) ofLjP2N
associated to �k.

Proof. From Remark 1 we have that if �.L/ D Œ�2; 2�, then r.�/ D Qr.�/, where

Qr.�/ is the Floquet multiplier of the unperturbed case given by (80). In particular,

r.�/ D ˙1 (i.e. r1.�/ D r2.�/ D ˙1) if and only if � D �k for some �k

of (136) and, hence, the Floquet solutions of (9) which are either N -periodic or

N -antiperiodic are the solutions �.nI�k/, k D 0; 1; : : : ; N , with �k as in (136).

Now, as we have already seen in §2.1, a 2N -periodic solution of (9) is nec-

essarily an N -periodic or N -antiperiodic Floquet solution and vice versa. There-

fore, the eigenfunctions of LjP2N
(in P2N ) are precisely the N -periodic and N -

antiperiodic Floquet solutions and the spectrum of the operator LjP2N
(whose

matrix is L2N ) is given by (136).

Next, let � D �k for some k D 1; : : : ; N � 1. If there are two linearly indepen-

dent Floquet solutions �1.nI�k/ and �2.nI�k/, then they are both 2N -periodic

and hence LjP2N
has two linearly independent eigenfunctions (in P2N ).

Now, fix a�k , k D 1; : : : ; N�1, and suppose there is only one Floquet solution,

say �.nI�k/ corresponding to �k, normalized so that

�.0I�k/ D 1 (137)

(formula (39) shows how to construct �.nI�k/; if �.0I�k/ D 0 formula (39)

fails, but then, instead of (137) we can normalize �.nI�k/ so that �.1I�k/ D 1).
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As we have seen (recall (27)), in this case there is a solution g.n/ of (9), linearly

independent of �.nI�k/, satisfying

.Sg/.n/ D g.nCN/ D r.�k/g.n/C �.nI�k/ for all n 2 Z; (138)

where r.�k/ D ˙1.
Let us point out that, although �k is not a branch point of r.�/, the Floquet

matrix S.�/ has a Jordan anomaly at � D �k; in particular �1.nI�k/ D �2.nI�k/.

We say that S.�/ has a pathology of the second kind over �k (this terminology

was introduced in [19]).

To continue we consider the system

L�.nI�/ D ��.nI�/; �.nCN I�/ D r.�/�.nI�/; � 2 C; (139)

where �.nI�/ is as in (39). Differentiating (139) with respect to � yields

L��.nI�/ D ���.nI�/C�.nI�/; ��.nCN I�/ D r.�/��.nI�/Cr 0.�/�.nI�/;
(140)

where the subscript � indicates derivative with respect to �. If we fix � D �k and

set (for typographical convenience)

h.n/ WD �1�.nI�k/; (141)

then (140) becomes

.Lh/.n/ D �kh.n/C�.nI�k/; h.nCN/ D r.�k/h.n/Cr 0
1.�k/�.nI�k/; (142)

where r 0
1.�k/ D Qr 0.�/ D ˙.N i=2/ sin.�k=N/ and the sign depends on the branch

of r.�k/; in fact, r 0
2.�k/ D �r 0

1.�k/). Finally, if we set

w.n/ WD h.n/ � r 0
1.�k/g.n/; (143)

then, in view of (138) and (142) (recall that Lg D �kg) we obtain

.Lw/.n/ D �kw.n/C �.nI�k/; w.nCN/ D r.�k/w.n/ D ˙w.n/: (144)

It follows that w.n/ 2 P2N and .LjP2N
� �k/

2w.n/ D 0. Hence ¹�.nI�k/; w.n/º
is a generalized eigenspace of LjP2N

associated to �k. Since the total dimension

of the eigenspaces (pure or generalized), for k D 1; : : : ; N � 1, is 2.N � 1/ D
2N � 2 and we have two more eigenvalues of LjP2N

, namely � D � D �2 and

� D �N D 2, we already have covered the 2N -dimensional space P2N . Hence,

the eigenspaces of � D � D �2 and � D �N D 2 are one-dimensional, while to

each �k, k D 1; : : : ; N � 1, corresponds a two dimensional (pure or generalized)

eigenspace. �
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Remark 6. A side product of Theorem 4 is that if �.L/ D Œ�2; 2�, then for

� D �2 and � D 2 there is only one Floquet solution and consequently the Floquet

matrices S.�2/ and S.2/ have a Jordan anomaly (at the same time, r.�/ has a

branch point at � D ˙2; recall, also, that r.�2/ D 1 and r.2/ D .�1/N ).

Example 4. Regarding the case N D 4, in the unperturbed case the matrix L8

of (57) is similar to the diagonal matrix diagŒ�2;�
p
2;�

p
2; 0; 0;

p
2;

p
2; 2�. As

for the eight cases presented in the formulas (131) and (132) of Example 3(ii), the

associated matrix L8 is similar to the Jordan canonical matrix
2

6

6

6

6

6

6

6

6

6

6

6

6

4

�2 0 0 0 0 0 0 0

0 �
p

2 1 0 0 0 0 0

0 0 �
p

2 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0
p

2 1 0

0 0 0 0 0 0
p

2 0

0 0 0 0 0 0 0 2

3

7

7

7

7

7

7

7

7

7

7

7

7

5

: (145)

Finally, we present a Borg-type theorem for the general operator L with com-

plex coefficients.

Theorem 2. Suppose that �.L/ D Œ�2; 2� and that the matrix L2N of (57) is

diagonalizable (i.e. it has 2N linearly independent pure eigenvectors). Then

(i) if N is odd, we must have b.n/ � 0 and a.n/2 � 1, i.e. L is an essentially

unperturbed operator (recall Definition 2);

(ii) if N is even, say N D 2M , then b.n/ � 0 and a.n/2 D 1 C .�1/ns, where

s2 D 1� e2k�i=M for some k 2 ¹0; 1; : : : ;M � 1º.

Proof. Setting � D �2 and � D 2 in formulas (123) and (124) of Remark 5 yields

NB0 D
N

X

j D1

b.j / D 0 (146)

and
X

1�j <k�N

b.j /b.k/ �
N

X

j D1

a.j /2 D �N; (147)

respectively. Furthermore, from Remark 1 we know that the assumption �.L/ D
Œ�2; 2� implies that the Hill discriminant ofL is z�N .�/ of (78) and, consequently,

the periodic=antiperiodic eigenvalues of L are �k D Q�k given by (83).
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Since L2N is diagonalizable, Theorem 4 implies that to each �k D Q�k,

k D 1; : : : ; N � 1, correspond two linearly independent Floquet solutions (i.e. we

have coexistence), say �1.nI�k/ and �2.nI�k/, which are both periodic or both

antiperiodic. It follows that for each �k, k D 1; : : : ; N � 1, there is a (nontrivial)

linear combination

�.nI�k/ D c1.�k/�2.nI�k/C c2.�k/�2.nI�k/ (148)

such that (since �.nI�k/ is either periodic or antiperiodic),

�.0I�k/ D �.N I�k/ D 0: (149)

Therefore, the (distinct) numbers Q�k , k D 1; : : : ; N � 1, are Dirichlet eigenvalues

of L and, since there are at most N � 1 distinct Dirichlet eigenvalues (being the

zeros of �.bI�/) we must have that the Dirichlet spectrum of L is ¹ Q�1; : : : ; Q�N �1º.
Thus, the trace formula (67) becomes

Q�1 C � � � C Q�N �1 D B0N � b.0/: (150)

However, from (146) we know that B0 D 0, while it is easy to check (e.g.,

from (83)) that Q�1 C � � � C Q�N �1 D 0. Hence (150) yields

b.0/ D 0: (151)

We now look at the “shifted” operator Ll , where l 2 ¹1; : : : ; N º, and its asso-

ciated operator Ll (of course, LN D L). As we have discussed in §2.2 the

Floquet solutions corresponding to Ll are exactly the shifted Floquet solutions

corresponding to L, while Ll and L have the same Floquet multiplier r.�/. Thus

�.Ll / D �.Ll / D Œ�2; 2� and furthermoreLl
2N is diagonalizable. Therefore (151)

holds for Ll , namely

b.l/ D bl .0/ D 0; for all l D 1; : : : ; N; (152)

which means that b.n/ � 0.

We continue by noticing that if b.n/ � 0, then formula (147) becomes

N
X

j D1

a.j /2 D N: (153)

Now, the numbers Q�1; : : : ; Q�N �1 (being the Dirichlet eigenvalues of L) are the

zeros of the polynomial v.N I�/. Hence formulas (13) and (83) imply

�
N �2
X

j D1

a.j /2 D
X

1�j <k�N �1

Q�j
Q�k D �.N � 2/: (154)
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Thus, by using (154) in (153) we get

a.N � 1/2 C a.N/2 D 2: (155)

In the very special case N D 2, formula (155) becomes a.1/2 C a.2/2 D 2, while

the normalization (3) implies a.1/2a.2/2 D 1. Therefore, a.1/2 D a.2/2 D 1.

From now on we assume N � 3. Then, by considering the “shifted” operator

Ll in place of L, l D 1; : : : ; N , we can conclude from (155) that

a.l/2 C a.l C 1/2 D 2 for all l D 1; : : : ; N (156)

(with a.N C 1/ D a.1/). Observe that (156) is a simple linear system of

N equations in N unknowns, namely in a.1/2; : : : ; a.N /2. By inspection, one

solution of (156) is

a.1/2 D a.2/2 D � � � D a.N/2 D 1 i.e. a.n/2 � 1: (157)

To find the other solutions of (156) (if there are any) we need to solve the associated

homogeneous system

xl C xlC1 D 0; l D 1; : : : ; N � 1; and xN C x1 D 0: (158)

Suppose x1 D s. Then x2 D �s, x3 D s, : : :, xN D .1/N �1s and, finally,

x1 D .1/N s. Thus, if N is odd, then we must have s D .1/N s D �s and,

consequently s D 0, which implies that the only solution of the homogeneous

system (158) is the trivial solution and, therefore, (156) implies that a.n/2 � 1.

It remains to examine the case of N D 2M . Here, the general solution of the

homogeneous system (158) is xl D .1/l�1s, l D 1; : : : ; N , s 2 C. It follows that

the general solution of (156) is

a.l/2 D 1C .1/l�1s; l D 1; : : : ; N: (159)

We, also, have the normalization condition (3) which implies

N
Y

lD1

a.l/2 D 1: (160)

Substituting (159) in (160) yields (recall that N D 2M )

.1� s2/M D 1; (161)

which tells us that 1 � s2 D �, equivalently s2 D 1 � �, where � is an M -th root

of 1. �
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Notice that in the case where N D 2M the theorem implies that a.nC 2/2 D
a.n/2 for all n 2 Z.

Theorem 2 has a nice corollary.

Corollary 1. If a.n/ and b.n/ are real-valued (equivalently, if L is self-adjoint)

and �.L/ D Œ�2; 2�, then b.n/ � 0 and a.n/2 � 1, i.e. L is an essentially

unperturbed operator.

Proof. For real-valued a.n/ and b.n/ the matrix L2N of (57) is real symmetric

and hence diagonalizable. Therefore, the corollary follows immediately from

Theorem 2 since, even in the case N D 2M , the assumption that a.n/ is real

forces s to be 0 (if s2 is real, then s2 D 0 or s2 D 2; however, the latter cannot

happen since it would make a.n/2 strictly negative for certain values of n). �

Corollary 1 is essentially not new (see [5] or [11]).

5. Epilogue – Some remarks on the Toda flow

Suppose that the coefficients a.n/ and b.n/ of the operator L depend on a param-

eter t and that there is an operator B forming a Lax pair with L, namely L and B

satisfy the equation

Lt D ŒB; L� WD BL� LB; (162)

where, as usual, the subscript t denotes derivative with respect to t . Then, as it is

well known, the family of operators L D L.t/, t 2 C, is isospectral, in the sense

that the l2.Z/-spectrum �.L/ is independent of t . Actually, the discriminant�.�/

of L is independent of t .

One famous case of such an isospectral flow is the Toda flow, which is obtained

by taking ([3] and [8])

.Bw/.n/ WD a.n/w.nC 1/ � a.n� 1/w.n� 1/
D anw.nC 1/ � an�1w.n� 1/; n 2 Z:

(163)

In this case (162) can be written equivalently as [3]

Œan.t /
2�0 D 2an.t /

2ŒbnC1.t /� bn.t /�; b0
n.t / D 2Œan.t /

2 � an�1.t /
2�; (164)

where the prime denotes derivative with respect to t .

Let us consider the case �.L/ D Œ�2; 2�, namely (recall Remark 1) �.�/ D
z�N .�/. Then, the Dirichlet eigenvalues �1; : : : ; �N �1 of L (see §2.3) satisfy the
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evolution equations [3]

�0
j D �2

q

z�N .�j /2 � 4

N �1
Y

kD1;

k¤j

.�j � �k/
�1; j D 1; : : : ; N � 1; (165)

where z�N .�/ is given by (78).

One expects that there exist quantities similar to the “reflection coefficients”

appearing in [12] for the continuous periodic Schrödinger operator H with

�.H/ D Œ0;1/, which determine L and whose evolution under the Toda flow

is very simple.
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