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Abstract. Thompson’s partition of a cyclic subnormal operator into normal and completely

non-normal components is combined with a non-commutative calculus for hyponormal

operators for separating outliers from the cloud, in rather general point distributions in the

plane. The main result provides exact transformation formulas from the power moments of

the prescribed point distribution into the moments of the uniform mass carried by the cloud.

The proposed algorithm solely depends on the Hessenberg matrix associated to the original

data. The robustness of the algorithm is reflected by the insensitivity of the output under

trace class, or by a theorem of Voiculescu, under certain Hilbert–Schmidt class, additive

perturbations of the Hessenberg matrix.
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1. Introduction

The Lebesgue decomposition of a positive measure supported on the real line

or the circle and the spectral analysis of symmetric or unitary Hilbert space

linear operators cannot be dissociated. We take for granted nowadays operator

arguments and Hilbert space geometry features of scattering theory, dynamical

systems or approximation schemes, all generally reflecting the fine structure of

some underlying spectral measure.

The association of Lebesgue decomposition of measures in higher dimensions

with spectral analysis is much less studied and developed. It naturally appeared

in perturbation theory questions [40, 43, 28] and it also proved to be essential in

some elaborate classification results concerning classes of non-normal operators

[33, 20, 38]. In the present note we exploit such a classical, but not widely circu-

lated chapter of modern operator theory with the specific aim at bringing forward

an abstract tool with some statistical flavor, namely detecting “outliers” (that is the

https://creativecommons.org/licenses/by/4.0/
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discrete part) from the “cloud” (the continuous, or better, 2D-absolutely continu-

ous part) of a measure in the real plane. From the mathematical point of view the

“subnormal dissection” of planar measures we propose is more convoluted, and

hence more interesting. We are well aware of the ambiguity of terminology when

mentioning outliers [18].

The case of two dimensions is special, not last because two real coordinates

can be arranged into a single complex variable. Also the spectrum, broadly

understood as the tangible numerical support of a linear transform, is contained

in the complex plane, as well as its localized resolvents, usually interpreted as

generalized Cauchy transforms of innate data. This immediately leads to the

“black box” approach of restoring the whole from indirect measurements; we

tacitly adopt such a perspective, familiar in more applied sciences.

The mathematical construct we propose can be summarized as follows. A com-

pactly supported, positive measure � in the complex plane is given. The closure

of complex polynomials in the associated Lebesgue L2-space is a Hilbert space

whose inner product solely dependens on the real power moments of it. The mul-

tiplier S by the complex variable on this space is a cyclic subnormal operator

whose spectrum contains the support of the generating measure. A landmark re-

sult of Thomson [38] decomposes this subnormal operator into orthogonal matrix

blocks. One of these blocks, the normal component, gathers the point masses and

some singular parts of �. The other blocks are irreducible and fill with their spec-

trum some of the connected components of the complement of the support of �.

They provide a dissection of � into mutual disjoint essential parts. In order to

constructively identify these continuous components of � we convert the moment

data following a non-commutative calculus. Central to this step is Helton and

Howe formula which relates traces of commutators of non-commutative polyno-

mials in S and S� to the principal function of S , a spectral invariant proposed by

Pincus half a century ago [33, 12]. Trace class estimates in this situation go back

to Berger and Shaw [5] and Voiculescu [41]. Finally, the conditioned moments

are organized into an exponential transform which plays the role of “equilibrium

potential” of the possibly thickened, continuous part of �. The exponential trans-

form is a superharmonic function decreasing on the complement from the value

1 at infinity, to the value 0, and behaving close to the boundary of these compo-

nents as euclidean distance. See [15] for a recent survey of basic properties of the

exponential transform. All in all, putting aside technical ingredients, we offer to

the practitioner an algorithm for separating a simply connected cloud, or a union

of simply connected clouds, from scattered outliers, which can be points, non-

closed curves or even more complicated “thin” shapes; all in terms of moment
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data. The complex orthogonal polynomials and the associated Hessenberg matrix

representing S naturally enter into computations. A different non-commutative

perspective on outlier identification recently appeared in [4].

Omnipresent in our study, although not always explicit, are bounded point

evaluations and reproducing kernels associated to some functional Hilbert spaces.

For L2 spaces of polynomials of a prescribed degrees, these are the well known

Christoffel–Darboux kernels. In the classical one variable setting, the fine analysis

and in particular asymptotics of these kernels provide the main separation tool

between the 1D-absolute continuous part and singular part of a measure. In this

direction an informative account is Nevai’s eulogy of Geza Freud work [32].

The ultimate results, with far reaching consequences to approximation theory

and beyond, are due to Totik and collaborators [39, 30]. For a novel application

to ergodic theory see [21]. An operator point of view to the same topics, with

unexpected applications to spectral theory, was recently advocated by Simon

[36, 37, 35]. Not surprising, the multivariate analog of the Christoffel–Darboux

kernel analysis is only nowadays slowly developing [9, 8, 24, 23, 7]. On this

ground, potential benefits to the statistics of point distributions are emerging

[25, 7, 26].

The present note remains at the purely theoretical level, including a simple toy

example included in the last section. Computational and numerical aspects will

be addressed in a forthcoming article, with particular attention to a comparison

with some recent outlier separation methods proposed in [25, 7]. Having in mind

such a sequel and its potential wider audience prompted us to balance the text and

briefly comment a rather comprehensive bibliography.

Acknowledgement. We are indebted to the referee for pertinent and constrictive

comments which greatly improved an earlier version of the manuscript.

2. Preliminaries

We collect in the present section some known facts about the structure of two

related classes of close to normal operators.

2.1. Thomson’s partition of a measure. Let H be a separable, complex Hilbert

space. A linear bounded operator S 2 L.H/ is called subnormal if there exists a

larger Hilbert space H � K and a normal operator N 2 L.K/, such that N leaves

invariant H and N jH D S . Subnormal operators are well studied, mainly with

function theory tools, as the quintessential example is offered by multiplication
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by the complex variable on a Hilbert space of analytic functions. A subnormal

operator S is called irreducible if it cannot be decomposed into a direct sum

S D S1 ˚ S2 of non-trivial operators. Under a canonical minimality condition

one proves that the spectrum of the normal extension is contained in the spectrum

of the original operator:

�.N / � �.S/;

the difference consisting in filling entire bounded “holes” of the complement, that

is every U � C n �.N / bounded and connected satisfies either U \ �.S/ D ;
or U � �.S/: The authoritative monograph [13] accurately exposes the basics of

subnormal operator theory. In the sequel we freely use some standard terminology

(essential spectrum, index, reproducing kernel, trace, ...) well explained there in

a unifying context.

A cyclic subnormal operator is necessarily of the following type. Let � be

a compactly supported, positive Borel measure on the complex plane C. The

multiplier S� D Mz acting on the closure P 2.�/ of polynomials in Lebesgue

space L2.�/ is obviously subnormal (the minimal normal extension is N D Mz

acting on L2.�/) and has the constant function 1 as a cyclic vector. If the measure

� is not finitely atomic, then one can speak without ambiguity of the basis of

P 2.�/ formed by the orthonormal polynomials

Pn.z/ D 
nzn C � � � 2 CŒz�; n � 0;

where 
n > 0 and

hPk ; Pj i2;� D ıjk; j; k � 0:

The spectrum of N is equal to the closed support of �, while the spectrum of S�

contains supp.�/ plus some “holes” of its complement.

Theorem 2.1 (Thomson). Let � be a positive Borel measure, compactly supported

on C. There exists a Borel partition �0; �1; : : : of the closed support of � with the

following properties:

(1) P 2.�/ D L2.�0/ ˚ P 2.�1/ ˚ P 2.�2/ ˚ � � � , where �j D �j�j
; j � 0I

(2) every operator S�j
; j � 1; is irreducible with spectral picture

�.S�j
/ n �ess.S�j

/ D Gj ;

simply connected, and

supp �j � Gj ; j � 1I
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(3) if �0 D 0, then any element f 2 P 2.�/ which vanishes Œ��-a.e. on G D
S

j Gj is identically zero.

The proof appeared in [38], even for Lp spaces, 1 � p < 1: Note that only

one summand in the decomposition of P 2.�/ is a full Lebesgue L2-space. The

immediate relevance of Thomson’s Theorem for the general theory of subnormal

operators was already discussed in [13] (published almost simultaneously with the

original article). We confine to comment briefly the statement.

The operator S�0
D Mz 2 L.L2.�0// is the normal component of S�. If S�

is not normal, then at least one of the summands S�j
; j � 1; is non-trivial. There

can be finitely many, or at most countably many such irreducible summands. The

spectral picture described in part 2) of the theorem means that the adjoint of every

operator S�j
admits a continuum of eigenvalues of multiplicity one, labelled by

the simply connected open set Gj :

� 2 Gj H) Œker.S�j
� �/ D 0; dim ker.S�

�j
� N�/ D 1�;

and the range of S�j
�� is closed. Moreover, the corresponding eigenvectors span

P 2.�j /, to the extent that this functional Hilbert space possesses a reproducing

kernel. To be more specific, for every � 2 Gj the corresponding point evaluation

is bounded as a linear functional on P 2.�j /, and hence on P 2.�/:

ƒ�j .�/ WD inf¹kpk2
�j

I p 2 CŒz�; p.�/ D 1º > 0:

Above ƒ� .�/ is the Christoffel function associated to the measure � and point �.

This means that the support of �j must disconnect the simply connected open set

Gj from the interior points of its complement. We will depict some examples in

a subsequent section.

An array of function theoretic results, some providing answers to long standing

open questions, stream from Thompson’s partition of a measure and the structure

of a cyclic subnormal operator, cf. Chapter VIII of [13]. An elaborate analysis

of the limiting values of elements of P 2.�/ on the boundary of each chamber Gj

is pursued in [2], with applications to the structure of invariant subspaces of the

operator blocks Sj .

2.2. Hyponormal operators. A general subnormal operator S 2 L.H/ satisfies

the commutator inequality

ŒS�; S� � 0:

Indeed, denoting by N 2 L.K/ the normal extension of S and P W N ! H the

orthogonal projection, one finds for an arbitrary vector x 2 H :

hŒS�; S�x; xi D kSxk2�kS�xk2 D kNxk2�kPN �xk2 � kNxk2�kN �xk2 D 0:
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A linear bounded operator T 2 L.H/ subject to the constraint ŒT �; T � � 0

is called hyponormal. Simple examples of weighted shifts or singular integral

transforms show that not all hyponormal operators are subnormal. As a matter

of fact, the spectral analysis of hyponormal operators is quite different than the

complex function theory approach to subnormal operators. See for details [29].

Of particular interest are hyponormal operators with trace-class self-commu-

tators. They are modeled by singular integrals (with Cauchy kernel singularity)

on Lebesgue space on the real line. Early on, starting from such functional mod-

els Pincus [33] has identified a spectral invariant called the principal function.

A decade of astounding discoveries led to the following trace formula, which

can also be taken as a definition of the principal function. Let T 2 L.H/ be a

hyponormal operator with trace-class self-commutator. There exists a function

gT 2 L1
comp.C; d A/ with compact support, satisfying

TrŒp.T; T �/; q.T; T �/� D 1

�

Z

C

�@p

@ Nz
@q

@z
� @q

@ Nz
@p

@z

�

gT .z/ d A.z/: (1)

Above p; q 2 CŒz; Nz� are polynomials, and the order of factors T , T � in the func-

tional calculus p.T; T �/ does not affect the trace, due to relation (6). Originally,

Carey and Pincus have defined gT via a multiplicative commutator determinant,

in its turn inspired by the perturbation determinant in the 1D theory of the phase

shift. The trace formula above appeared in the works of Helton and Howe [20].

Proofs and historical details can be found in the monograph [29]. Important for

our note is the observation that, for an irreducible hyponormal, but not normal

operator T , the support of the principal function coincides with its spectrum:

supp gT D �.T /: (2)

For a proof see p. 243 of [29].

To give a sense of the principal function, for a point � disjoint of the essential

spectrum of T one finds the Fredholm index formula:

gT .�/ D � ind.T � �/ D dim ker.T � � N�/ � dim ker.T � �/: (3)

The principal function enjoys a series of functoriality properties which are inher-

ited from its curvature type definition (1).

Another relevant theorem due to Carey and Pincus [12] asserts that the princi-

pal function of a subnormal operator is integer valued.

One step further, we narrow our focus to hyponormal operators with rank-one

self-commutator. This class of operators represents in many respects the two-

dimensional analogue of rank-one perturbations of self-adjoint operators. In par-

ticular, the phase-shift of a rank-one self-adjoint perturbation is replaced in this
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context by the principal function. Without aiming at completeness, we extract

below a couple of observations from the rich phenomenology of hyponormal op-

erators with rank-one self-commutator. Details covering technical aspects touched

below and additional bibliographical comments can be found in the recent lecture

notes [15].

The foundation stone is Pincus’ bijective correspondence between “shade func-

tions” g 2 L1
comp.C; d A/; 0 � g � 1; and irreducible hyponormal operators

T 2 L.H/ with rank one self-commutator:

ŒT �; T � D �h�; �i; � ¤ 0:

The explicit formula linking the two classes is

detŒ.T � w/.T � � Nz/.T � w/�1.T � � Nz/�1�

D 1 � h.T � � Nz/�1�; .T � � Nw/�1�i

D exp
��1

�

Z

C

g.�/ d A.�/

.� � w/. N� � Nz/

�

:

(4)

Above z; w are originally outside the spectrum of T , equal to the support of g, but

the second identity can be extended to the whole C
2. As a matter of fact this is

the multiplicative analog, and equivalent, of Helton and Howe additive formula,

identifying g with the principal function gT of T .

The only irreducible subnormal operator with rank-one self-commutator is the

unilateral shift S D Sz, acting on the Hardy space of the unit disk D. The self-

commutator ŒS�; S� is the projection 1˝1 on the constant functions. The principal

function of S coincides with the characteristic function of the disk, and the above

formulas read as

1 � 1

w Nz D 1 � h.S� � Nz/�1
1; .S� � Nw/�1

1i

D exp

��1

�

Z

D

d A.�/

.� � w/. N� � Nz/

�

; jzj; jwj > 1:

We will soon return to this basic example.

3. Main result

We combine Thompson’s Theorem and the theory of the principal function with

the specific aim at finding the power moments of the characteristic function of

the support of the non-normal component in Thompson’s decomposition of the

multiplier by the complex variable.
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Theorem 3.1. Let � D �0 C �1 C �2 C : : : be Thompson’s partition of a

positive measure � with compact support on C. Let S D S� be the corresponding

subnormal operator with irreducible parts having spectrum �.S�j
/ D Gj ; j � 1:

For every pair of non-negative integers k; ` the following trace exists and

equals a moment integral:

TrŒ.S�/kC1; S`C1� D .k C 1/.` C 1/

�

X

j

Z

Gj

Nzkz` d A.z/: (5)

Proof. The subnormal operator S D S� is hyponormal and cyclic. A theorem

due to Berger and Shaw [5] asserts that the self-commutator of S is trace class:

TrŒS�; S� < 1: (6)

Due to non-negativity TrŒS�; S� D 0 if and only if S is normal.

Consider an irreducible component Sj D S�j
; j � 1; of S . According to the

index formula (3), gSj
.�/ D 1 for every � 2 Gj . Moreover, Thompson’s Theorem

yields �.Sj / D Gj , and on the other hand �.Sj / D supp gSj
: A theorem due to

Carey and Pincus asserts that the principal function of a subnormal operator is

integer valued [12]. Hence

gSj
D �Gj

:

Thus, for a fixed integer j � 1 Helton and Howe formula reads

TrŒ.S�
j /kC1; S`C1

j � D .k C 1/.` C 1/

�

Z

Gj

Nzkz` d A.z/; k; ` � 0:

Since S is a direct sum of these irreducible operators and S0 does not contribute

to the trace of commutators, the statement is proved. �

A different proof of Berger-Shaw Theorem is due to Voiculescu [41], where

the modulus of quasi-triangularity and other perturbation theory concepts enter

into discussion.

By exploiting another feature of the principal function, namely Berger’s cyclic

multiplicity inequality

gT � mult.T /;

see [6], we derive the following notable property of the open chambers Gj .

Corollary 3.2. In the conditions of Thompson’s Theorem, the area measure of

every intersection Gj \ Gk ; j ¤ k; is zero.
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Proof. Indeed,

gS D gS1
C gS2

C � � � � 1

and

gS � 1; d A-a.e.

While gSj
D �Gj

; j � 1: �

4. Shape reconstruction

In this section we focus on the special nature of the power moments derived from

the commutator formula (5) by sketching some known reconstruction algorithms.

The specific nature of the generating measure of the new moments (absolutely

continuous, with a bounded weight with respect to Lebesgue 2D measure) sim-

plifies and enhances the reconstruction and approximation procedures.

4.1. In our specific situation of a positive measure � carrying its Thompson’s

partition, we face, returning to the notation of the preceding section, a character-

istic function

g D gS�
D

X

j

�Gj
:

Its moments appear in relation (5),

ak` D
Z

C

�k N�`g.�/ d A.�/; k; l � 0;

and will be organized in the exponential of a formal generating series

Eg.w; z/ D exp
h�1

�

1
X

k;`D0

ak`

wkC1 Nz`C1

i

:

This is of course the power expansion at infinity of the double Cauchy integral

appearing in (4). In general we define

Eg .w; z/ D exp
��1

�

Z

C

g.�/ d A.�/

.� � w/. N� � Nz/

�

; z; w 2 C; z ¤ w:

We recall a few of the properties of the exponential transform Eg :

(a) the function Eg can be extended by continuity to C
2 by assuming the value

Eg.z; z/ D 0 whenever
R

C

g.�/ d A.�/

j��zj2
D 1I
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(b) the function Eg .w; z/ is analytic in w 2 C n supp.g/ and antianalytic in

z 2 C n supp.g/;

(c) the kernel 1 � Eg.w; z/ is positive semi-definite in C
2;

(d) the behavior at infinity contains as a first term the Cauchy transform of g:

Eg.w; z/ D 1

Nz

h�1

�

Z

C

g.�/ d A.�/

� � w

i

C O
� 1

jzj2
�

; jzj ! 1:

The case of a characteristic function g D �� of a bounded domain � is

particularly relevant for our note. In this case we simply write E� instead of Eg ,

and we record the following properties (all proved and well commented in [15]).

(i) The equation
@E�.w; z/

@ Nw D E�.w; z/

Nw � Nz
holds for z 2 � and w 2 C n �.

(ii) The function E�.w; z/ extends analytically/antianalytically from .C n x�/2

across real analytic arcs of the boundary of �.

(iii) Assume @� is piecewise smooth. Then z 7! E�.z; z/ is a superharmonic

function on the complement of �, with value 1 at infinity, vanishing on x�
and satisfying

E�.z; z/ � dist.z; @�/

for z 2 C n x� close to @�.

A Riemann-Hilbert factorization also characterizes E�, see [15]. The feature

which turns the exponential transform into a suitable shape reconstruction from

moments tool is its rationality on a class of domains which approximate in Haus-

dorff distance any planar domain. More specifically, a bounded open set U of

the complex plane is called a quadrature domain for analytic functions if there

is a distribution of finite support � in U (combination of point masses and their

derivatives), such that
Z

U

f d A D �.f /; f 2 L1
a.U; d A/;

where L1
a.U; d A/ stands for the space of analytic functions in U which are in-

tegrable. The order of a quadrature domain is the number of nodes, counting

multiplicity, in the above cubature formula. A quadrature domain has always a

real algebraic boundary, even irreducible if U is connected. The simplest exam-

ple is of course a disk. Any simply connected quadrature domain is a conformal
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image of the disk by a rational function. The term was coined by Aharonov and

Shapiro for specific function theory purposes, but soon it was realized that quadra-

ture domains are relevant in fluid mechanics, geophysics, integrable systems and

operator theory. An informative and accessible survey is [17].

Quadrature domains can be exactly reconstructed from moments via formal

algebraic manipulations of the exponential transform. Namely, let d be a fixed

integer and let .ak`/d
k;`D0

; be a hermitian matrix of potential moments of a “shade

function” g.z/; 0 � g � 1. Consider the truncated exponential transform

F.w; z/ D exp
h�1

�

d
X

k;`D0

ak`

wkC1 Nz`C1

i

D 1 �
1

X

m;nD0

bmn

wmC1 NznC1
:

A necessary and sufficient condition that .ak`/d
k;`D0

represent the moments of a

quadrature domain of order d is

det.bmn/d
m;nD0 D 0;

or equivalently the existence of a monic polynomial P.z/ of degree d and a

rational function of the form

Rd .w; z/ D 1 �
Pd�1

m;nD0 cmnwm Nzn

P.w/P.z/
;

such that, at infinity

F.w; z/ � Rd .w; z/ D O
� 1

wdC1 Nzd
;

1

wd NzdC1

�

:

The reader will recognize above a typical 2D Padé approximation scheme. More-

over, for any shade function g, the exponential transform Eg coincides with E�,

where � is a quadrature domain if and only if

Eg .w; z/ D 1 �
Pd�1

m;nD0 cmnwm Nzn

P.w/P.z/
; jzj; jwj � 1:

In this case the zeros of P coincide with the quadrature nodes, while the numerator

is the irreducible defining polynomial of the boundary of �:

@� �
°

z 2 CW
d�1
X

m;nD0

cmnzm Nzn D jP.z/j2
±

:

The above Padé approximation procedure was proposed for the reconstruction

of planar shapes in [14] and it is also fully explained in [15].
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4.2. One can approximate unions of simply connected domains with smooth

boundary without going through the costly non-linear exponential transform. This

time one can invoke simply the Christoffel–Darboux kernel and its behavior inside,

outside or on the boundary of the set. The necessary estimates for this approach

appear in [16], while a refinement of the method, for non-simply connected sets

(an “archipelago of islands with lakes”) appears in [34]. We indicate only one

typical result. Specifically, if � is such an archipelago, and Pn.z/ denote the

associated complex orthogonal polynomials, then Christoffel’s function

ƒ�
n .�/ D inf¹kpk2

2;�; p 2 CŒz�; deg.p/ � n; p.�/ D 1º;

satisfies p
� dist.z; @�/ �

q

ƒ�
n .z/ � C dist.z; @�/

for z 2 �, close to @� and C is a positive constant. Moreover,

ƒ�
n .�/ D O

� 1

n

�

; � 2 @�:

In the exterior of x�; Christoffel’s function decays exponentially to zero. On ana-

lytic boundaries one has sharp estimates, complemented by some computational

analysis and graphical experiments, see again [16, 34].

4.3. Finally, if it is a priori given that the boundary of an open set � is given

by a single real polynomial q of degree d , and � is its sublevel set, then Stokes

Theorem (of geometric measure theory) allows one to identify q from all power

moments of � of degree less than or equal to 3d . The additional assumption that �

is convex drops this bound to 2d . For details see [27]. The same idea is generalized

there to the reconstruction of algebraic domains carrying an exponential weight.

5. Exclusion of outliers

In this section we provide a few instances of Function Theory flavor which sup-

port the Algorithm we propose. A more constructive matrix analysis approach

reformulates our approximation scheme.

5.1. Function theory examples. We start this section with a few examples,

validating, or showing the limits, of the ideal separation of “outliers” from the

“cloud” we propose. Thompson’s decomposition of a positive Boreal measure in

2D strongly uncouples (in orthogonal Hilbert space directions) the normal part

of the multiplier by the complex variable from its pure subnormal part. This
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will be the first step in our scheme. On simple examples, that is a cloud of

uniform area mass versus finitely many atoms, the partition we propose will do as

expected. However, on more sophisticated measures, the decomposition might be

counterintuitive.

Example 5.1. Two measures supported by the unit circle T produce the same

essential spectrum, yet their Thompson’s partition is very different. Specifically,

let d � denote arc length, and

� D
1

X

kD1

1

2k
ızk

;

where .zk/ is an everywhere dense sequence on T.

The operator Sd � is pure subnormal; this is the unilateral shift acting on Hardy

space of the disk. The spectrum is the closure of the unit disk,

�.Sd � / D xD;

the essential spectrum is the boundary

�ess.Sd � / D T;

and the principal function is the characteristic function of the disk. The associated

exponential transform is

ED.w; z/ D exp
h�1

�

Z

D

d A.�/

.� � w/. N� � Nz/

i

D 1 � 1

w Nz ; jzj; jwj > 1;

and indeed z D 0 is the quadrature node of D and 1 � z Nz D 0 is the equation

defining the boundary.

On the other hand, S� is a diagonalizable operator, hence normal, with spec-

trum filling a continuum. In particular its essential spectrum coincides with the

spectrum

�.S�/ D �ess.S�/ D T:

As a matter of fact, � can be any singular measure with respect to arc length, and

closed support equal to the full circle. Indeed, the celebrated Szegö’s Theorem

asserts that P 2.�/ D L2.�/ for every measure � supported by the unit circle and

singular with respect to Lebesgue measure, see for instance Corollary III.12.9

in [13].
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Example 5.2. We remain in the closed unit disk, and consider after Kriete [22] a

measure � which inside the disk is rotationally invariant

�jD D G.r/r d � d �

while on the boundary has the form

�jT D w d � C �s ;

where G; w are positive, continuous weights and �s is singular with respect to arc

length. In general, L2.�s/ is a direct summand of P 2.�/, but whether L2.w d �/

is also a direct summand of P 2.�/ is a challenging question, touching delicate

harmonic analysis chapters; a sufficient condition depending on the growth of the

function G and the behavior of the boundary weight w. Without entering into

details, we mention that there exists an example (attributed by Kriete to Vol’berg)

with G.r/ D 1; r 2 Œ0; 1/; and weight w.�/ necessarily satisfying

�
Z

��

log w.�/ d� D �1;

so that

P 2.�D d A C w d �/ D L2
a.D/ ˚ L2.w d �/:

Above L2
a.D; d A/ D P 2.�D d A/ is the Bergman space of the unit disk, that is the

space of analytic functions in � which are square summable on �.

In such a case, our splitting schema will separate the area measure in the disk

from the boundary component w d � .

Speaking about the Bergman space of a simply connected domain �, classical

results of Carleman (1923), then later Markushevich and Farrell (1934) prove that

L2
a.�; d A/ D P 2.�� d A/;

for a Jordan domain, respectively for a Carathéodory domain. In this situation,

Thompson’s partition has obviously only one chamber, equal to �, and no nor-

mal part. By definition, � is a Carathéodory domain if its boundary equals the

boundary of the unbounded connected component of the complement of its clo-

sure. For example, a Carathéodory domain does not have internal slits. The early

survey [31] is invaluable for information on the contributions of the Russian and

Armenian schools to this very topics.

Asking the same completeness of polynomials in Bergman space beyond

Carathéodory domains turns out to be very challenging, and interesting. It is not
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our aim to enter into inherent technical details. We confine to record a recent

outstanding observation of Akeroyd [1] stating that there exists a slit � joining

an internal point to a boundary point of the unit disk, so that L2
a.D n �; d A/ D

P 2.�Dn� d A/: In general, this is not the case, the relative geometry of the curve �

inside D altering the completeness of polynomials . See [10] for an authoritative

text, containing definitive results.

Example 5.3. To get closer to the aim of this note, we have to mention the

weighted Bergman space case also. Let � be a simply connected domain and

wW � ! .0; 1/ a continuous weight. We denote by L2
a.�; w d A/ the space of

analytic functions in � which are square summable with respect to the measure

w d A on �. Early theorems of Hedberg [19] assert that

L2
a.�; w d A/ D P 2.��w d A/;

if either w.z/ D jf .z/j, where f is an analytic function in � subject to the growth

condition
Z

�

.jf j�ı C jf j1Cı/ d A < 1;

for some ı > 0, or

L2
a.D; .w ı �/ d A/ D P 2.�D.w ı �/ d A/;

where �WD ! � is a conformal mapping. For instance a positive weight w making

the pull-back on the disk w ı� rotationally invariant is appropriate for polynomial

density in the weighted Bergman space. In other terms w is constant on the level

sets of the inner Green function of �. See [11] for complementary results and

history of this completeness problem.

5.2. The algorithm. After this lengthy and still sketchy preparation for a pos-

sible delimitation of the mathematical meaning of a “cloud,” we are ready to put

forward the announced algorithm.

Algorithm for separation of outliers from a cloud. Let � D ��w d A C � be a

positive measure, where � is a bounded simply connected domain, w is a positive

continuous weight on � and � be a positive measure of compact support. We

impose Thompson’s decomposition

P 2.�/ D P 2.��w d A/ ˚ L2.�/: (7)
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The given data are the power moments

sk` D
Z

C

zk Nz` d �.z/; k; ` � 0;

all assumed finite.

(1) Compute the associated complex orthogonal polynomials Pk.z/; k � 0; and

the corresponding truncated Christoffel–Darboux kernel

K
�

d
.w; z/ D

d
X

j D0

Pj .w/ NPj .z/; d � 0:

(2) For every pair of integers k; ` � 0 compute the trace of commutator

TrŒ.S�/kC1; S`C1�

D
1

X

j D0

lim
d!1

Z

C

�

z`C1 NzkC1jpj .z/j2 � z`C1pj .z/

Z

C

K
�

d
.z; �/ N�kC1pj .�/d �.�/

�

d �.z/

D
1

X

j D0

lim
d!1

Z

C�C

K
�

d
.z; �/z`C1pj .z/

Œ NzkC1pj .z/ � N�kC1pj .�/�d �.�/d �.z/:

(3) The moments of the “cloud” carrying uniform mass equal to one are

ak` D
Z

�

zk Nz` d A.z/ D �

.k C 1/.` C 1/
TrŒ.S�/kC1; S`C1�; k; ` � 0:

(4) Use one of the reconstruction of shapes from moments procedures (outlined

in Section 4) to approximate, or find exactly �.

The limits above, that is the trace of the commutator, exist by Berger and

Shaw Theorem. The fact that Thompson’s decomposition has only one open

chamber follows from the fact that polynomials are integrable with respect to the

measure ��w d A and the weight w is continuous and positive. Indeed, under these

assumptions, every point of � (assumed connected) is a bounded point evaluation

for P 2.��w d A/.
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Notice that step (2) solely depends on the moments of the measure �. The

hypotheses in the algorithm can obviously be relaxed, allowing for instance a

union of disjoint simply connected domains and an array of singular measures

� (with respect to area) whose support does not disconnect the plane. However,

in such a context, the necessary decomposition (7) is not always easy to establish.

We provide a criterion assuring the validity of (7).

Proposition 5.4. Let � D ��w d A C � be a positive measure, where � is a

bounded simply connected domain with smooth boundary and w is a positive

continuous weight on �. Suppose � is a positive measure of compact support,

so that the complement of x� [ supp.�/ is path connected in the complex plane

and P 2.�/ D L2.�/.

If �. x�/ D 0; then decomposition (7) holds true.

Proof. Let �WC ! R be a defining function for the boundary of �:

� D ¹z 2 C; �.z/ < 0º; rw� ¤ 0; w 2 @�:

For � > 0 sufficiently small the domain

�� D ¹z 2 C; �.z/ < �º

is still simply connected with smooth boundary and @�� is a deformation retract

of �� n �. Thus the complement of the compact set K� D x� [ Œsupp.�/ n ��� is

still path connected. Denote by �� the characteristic function of K�.

Let h 2 L2.�/. In view of Runge Theorem, the function ��h can be approxi-

mated in L2.�/ by a sequence of polynomials. Since �. x�/ D 0, letting � tend to

zero we obtain a sequence of polynomials qn 2 CŒz� satisfying

lim
n

kh � qnk2;� D 0;

and

lim
n

kqnk2;��w d A D 0:

Thus the sequence .qn/ is Cauchy in the space P 2.�/. Its limit is an element

H 2 P 2.�/ which is equal to the function h when restricted to the support of the

measure � and it is identically zero in the domain �. Moreover, the definition of H

as an element of L2.�/ D L2.��w d A/ ˚ L2.�/ is independent of the sequence

of approximants .qn/.

In conclusion the space L2.�/ is a direct summand of P 2.�/. �
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Variations of the above proof are immediate. For instance allowing � to be a

union of simply connected domains whose closures are mutually disjoint and � to

be a measure supported on a finite union of closed arcs or points, disjoint of x�,

so that the complement of x� [ supp.�/ is connected.

5.3. Matrix analysis interpretation. An interpretation of the algorithm in terms

of the associated Hessenberg matrix is at hand without additional complications.

We provide one observation in this direction, with numerical matrix analysis

flavor. To be more specific, write, in the conditions and notation adopted in the

algorithm

zpk.z/ D
kC1
X

nD0

hnkpn.z/; k � 0:

The Hessenberg matrix .hnk/1
n;kD0

has only the first sub-diagonal non-zero and

it represents the subnormal operator S D S� with respect to the orthonormal

basis .pk/1
kD0

.

Fix an integer j � 0. Then

hS�Spj ; pj i D kSpj k2 D
j C1
X

nD0

jhnj j2;

while

hSS�pj ; pj i D kS�pj k2 D
1

X

kD0

jhS�pj ; pkij2 D
1

X

kD0

jhjkj2:

Hence

TrŒS�; S� D
1

X

j D0

1
X

kD0

.jhkj j2 � jhjk j2/:

In view of Helton and Howe formula we infer:

Proposition 5.5. Let .hkj / denote Hessenberg’s matrix associated to the complex

orthogonal polynomials in P 2.�/. If the measure � satisfies the conditions in the

Algorithm, then the area of the “cloud” � can be recovered from the identity

Area.�/ D �

1
X

j D0

1
X

kD0

.jhkj j2 � jhjk j2/:

Similarly one can derive a formula for the center of mass of �:

Z

�

z d A.z/ D �

2

1
X

j D0

X

`�kC1

h`k.hkj h j̀ � hj`hjk/:
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The alert reader will recognize that the ordering of terms and summation in

Proposition 5.5 is crucial. For instance, if

1
X

j;kD0

jhjk j2 < 1;

that is S is a Hilbert–Schmidt operator, then Area.�/ D 0. Recall also that

TrŒA; B� D 0 for any trace-class operator A and bounded operator B . Con-

sequently a trace class perturbation of the Hessenberg matrix S will not affect

step (2) in the Algorithm, and hence the transformed moments .ak`/. Even more,

a theorem of Voiculescu [42] implies the same invariance of traces of commu-

tators (appearing in step (2)) by any Hilbert–Schmidt perturbation of S subject

to ŒS�; S� being trace-class. We put together these observations in the following

statement.

Proposition 5.6. In the conditions of the Algorithm, let zS D S CK be an additive

perturbation of Hessenberg’s matrix S . If K is trace-class, or Hilbert–Schmidt

and Tr jŒ zS�; zS�j < 1, then the output is unchanged:

TrŒ.S�/kC1; S`C1� D TrŒ. zS�
/kC1; zS`C1

�; k; ` � 0:

More details about an asymptotic triangularization with respect to the Hilbert–

Schmidt class of the operator S� (fulfilling the constraints of the Algorithm) can

be found in [42].

6. Final comments

We illustrate the algorithm of this article by a simple toy example built on the Beta

distribution. The cloud will be the unit disk and outliers will be distributed on two

concentric circles of a larger radius. We pass to polar coordinates z D reit with

r � 0 and t 2 Œ��; ��: Let ˛; ˇ be positive constants defining the rotationally

invariant weight

w.z/ D r˛�1.1 � r/ˇ�1:

The moments are

uk` D
Z

D

zk Nz`w.z/ d A.z/

D 2�ık`

1
Z

0

r2kC1r˛�1.1 � r/ˇ�1 d �
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D 2�ık`B.2k C ˛ C 1; ˇ/

D 2�ık`

�.2k C ˛ C 1/�.ˇ/

�.˛ C ˇ C 2k C 1/
; k; ` � 0:

See for instance [3] for the closed form of the Beta integral.

Let R; � > 1 and �; � 2 .0; �/. For a continuous function � in the plane we

define the measure � as

Z

� d � D
�

Z

��

�.Reit/ d t C �.�ei�/ C �.�e�i�/:

The moments are

vk` D 2RkC` sin.k � `/�

k � `
C 2�kCl cos.k � `/�; k; ` � 0:

In case k D ` we define
sin.k � `/�

k � `

ˇ

ˇ

ˇ

kD`
D �:

The space P 2.�Dw d A/ has the monomials as an orthogonal basis and each

complex number of the open unit disk is a bounded point evaluation. On the other

hand, the support of the measure � is disjoint of the closed unit disk and it does not

disconnect the plane. Thus, the measure � D �Dw d A C � fulfills the conditions

in the statement of the Algorithm. The moments of � are

sk` D 2�ık`B.2kC˛C1; ˇ/C2RkC` sin.k � `/�

k � `
C2�kCl cos.k�`/�; k; ` � 0:

These moments depend on six independent parameters ˛; ˇ; R; �; �; � .

Normally at this point we should run the algorithm, that is compute succes-

sively traces of commutators of the multiplier S� and its adjoint. Since we know

from the beginning Thompson’s decomposition of the measure � we infer on the-

oretical grounds that the moments of the cloud (endowed with Lebesgue measure)

are

ak` D
Z

D

zk Nz` d A.z/ D ık`

�

k C 1
; k; ` � 0:

Note that these moments are independent of the six parameters. As a matter of

fact we only need the first three moments a00; a01; a11 to determine indeed that

the cloud is the unit disk.
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To be more precise, with the notation and conventions introduced in Sec-

tion 4.1, a10 D a01 D 0 and the truncated formal exponential transform yields

exp
h

� 1

z Nw � 1

2z2 Nw2

i

D
�

1 � 1

z Nw C 1

2z2 Nw2

��

1 � 1

2z2 Nw2

�

C O
� 1

w3
;

1

Nz3

�

D 1 � 1

z Nw C 0

z Nw2
C 1

z2 Nw C 0

z2 Nw2
C O

� 1

w3
;

1

Nz3

�

D z Nw � 1

z Nw C O
� 1

w3
;

1

Nz3

�

:

We find b00 D 1; b01 D b10 D b11 D 0: From the vanishing determinant

b00b11 � b10b01 D 0 we deduce that the cloud is a quadrature domain of order

1 with algebraic boundary given by the equation

1 � z Nz D 0

and the only quadrature node at z D 0.

Without adding cumbersome formulas to the initial data above, we note that

replacing the unit disk by

jz � cj2 � M 2; c 2 C; M > 0;

leads at the final step of identification to the following formal computations. The

initial moments are

a00 D �M 2;

a01 D
Z

jz�cj�M

z d A.z/ D �Mc D a10;

a11 D
Z

jz�cj�M

jzj2 d A.z/ D 2�

M
Z

0

.jcj2 C r2/r d � D �M 2jcj2 C �
M 4

2
:

The truncated exponential transforms is

exp
h

� M 2

z Nw � M 2 Nc
z Nw2

� M 2c

z2 Nw �
M 2jcj2 C M 4

2

z2 Nw2

i

D 1 � M 2

z Nw � M 2 Nc
z Nw2

� M 2c

z2 Nw � M 2jcj2
z2 Nw2

C O
� 1

w3
;

1

Nz3

�

:

We infer

b00 D M 2; b10 D M 2c; b01 D M 2 Nc; b11 D M 2jcj2:
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The vanishing determinant b00b11 � b10b01 D 0 and the linear dependence of the

columns of the matrix .bk`/1
k;`D0

identify the monic factor P.z/ D z � c in the

denominator P.z/P.w/ of the rational approximant of the full exponential trans-

form. Finally, as in the one dimensional diagonal Padé approximation scheme,

one finds

.z � c/. Nw � Nc/
h

1 � M 2

z Nw � M 2 Nc
z Nw2

� M 2c

z2 Nw � M 2jcj2
z2 Nw2

i

D .z � c/.0 Nw � Nc/ � M 2 C O
� 1

z2
;

1

Nw2

�

:

We deduce from here that the equation of the generating shape possessing mo-

ments a00; a10; a01; a11 is necessarily the disk of equation jz � cj2 � M 2.

We refer to [14] for details about the exact reconstruction algorithm of quad-

rature domains and to [15] for the associated Padé approximation scheme.

In the above toy example the Hessenberg matrix S� associated to the original

measure depending on all parameters has more structure: it is a weighted shift

perturbed by some simple Toeplitz matrices. This observation would simplify the

direct computations of the traces of commutators of monomials in S� and S�
�.

For a general measure the multiplier S� is not a structured matrix, hence some

approximation procedure is required to be incorporated and combined with the

trace formulas. The qualitative aspects of this process, complemented by some

real data experiments, will be addressed in a forthcoming article.
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