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Invertibility issues

for a class of Wiener–Hopf plus Hankel operators
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Abstract. The invertibility of Wiener–Hopf plus Hankel operatorsW.a/CH.b/ acting on

the spaces Lp.RC/, 1 � p < 1 is studied. If a and b belong to a subalgebra of L1.R/

and satisfy the condition

a.t/a.�t / D b.t/b.�t /; t 2 R;

we establish necessary and also sufficient conditions for the operators W.a/CH.b/ to be

one-sided invertible, invertible or generalized invertible. Besides, efficient representations

for the corresponding inverses are given.
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1. Introduction

Let R� and R
C be, respectively, the subsets of all negative and all positive real

numbers and �E refer to the characteristic function of the subset E � R – i.e.

�E .t / WD
´

1 if t 2 E;
0 if t 2 R nE:

In what follows, we often identify the spaces Lp.RC/ and Lp.R�/, 1 � p � 1
with the subspaces �RCLp.R/ and �R�Lp.R/ of the space Lp.R/, which consist

of the functions vanishing on R� and RC, respectively.

1 The work of Victor D. Didenko was supported by the Special Project on High-Performance

Computing of the National Key R&D Program of China (Grant No. 2016YFB0200604), the

National Natural Science Foundation of China (Grant No. 11731006) and the Science Challenge
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Let F and F�1 be the direct and inverse Fourier transforms – i.e.

F'.�/ WD
1

Z

�1

ei�x'.x/ dx; F�1 .x/ WD 1

2�

1
Z

�1

e�i�x .�/ d�; x 2 R:

Consider the set L of functions cWR ! C such that c D Fk with k 2 L1.R/, and

let APW .R/ � L1.R/ be the set of functions aWR ! C having the representation

a.t/ D
X

j 2Z

aj e
iıj t ; t 2 R; (1)

with absolutely convergent series (1). It is assumed that ıj 2 R for all j 2 Z

and ıj ¤ ık if j ¤ k. Following [17, Chapter VII], we denote by G the Banach

algebra of all functions g D g.t/, t 2 R, such that

g D a C c; a 2 APW .R/; c 2 L;

a.t/ D
X

j 2Z

aj e
iıj t ; c.t / D .Fk/.t/; (2)

equipped with the norm

kg.t/k D
X

j 2Z

jaj j C
1

Z

�1

jk.t/j dt:

We also consider the subalgebra GC (G�) of the algebra G of functions (2) such

that all numbers ıj are non-negative (non-positive) and the functions c D Fk

such that k.t/ D 0 for all t � 0 (t � 0). The functions from GC and G� admit

holomorphic extensions respectively to the upper and lower half-planes and the

set GC \G� contains constant functions only.

Any function a 2 G generates an operator W 0.a/WLp.R/ ! Lp.R/ and

operators W.a/;H.a/WLp.RC/ ! Lp.RC/ defined by

W 0.a/ WD F�1aF';

W.a/ WD PW 0.a/;

H.a/ WD PW 0.a/QJ;

where P W f ! �RCf and Q WD I � P are the canonical projections on the

subspaces Lp.RC/ and Lp.R�/, correspondingly, and J WLp.R/ ! Lp.R/ is the

reflection operator defined by J' WD Q'. Here and in what follows, Q'.t/ WD '.�t /
for any ' 2 Lp.R/, p 2 Œ1;1�. The operator W.a/ is called the convolution on

the semi-axis R
C or the Wiener–Hopf operator, whereas H.a/ is referred to as
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the Hankel operator. It is well known [17] that for a 2 G all three operators are

bounded on the space Lp for any p 2 Œ1;1/.

The operators W 0 and W.a/ can be also represented as

W 0.a/'.t/D
1

X

j D�1

aj'.t � ıj /C
1

Z

�1

k.t � s/'.s/ ds; t 2 R;

W.a/'.t/D
1

X

j D�1

ajBıj
'.t/C

1
Z

0

k.t � s/'.s/ ds; t 2 R
C;

where

Bıj
'.t/D '.t � ıj / if ıj � 0;

Bıj
'.t/D

´

0; 0 � t � ıj ;

'.t � ıj /; t > ıj ;
if ıj > 0:

Moreover, for a D Fk the operator H.a/ acts as

H.a/'.t/ D
1

Z

0

k.t C s/'.s/ ds

and for a D eıt as

H.a/'.t/D
´

'.ı � t /; 0 � t � ı;

0; t > ı;
if ı > 0;

H.a/'.t/D 0; t 2 R
C; if ı � 0:

Let us now recall a few useful identities involving the operators mentioned. It is

easily seen that if a; b 2 G, then

W 0.ab/ D W 0.a/W 0.b/:

Wiener–Hopf operatorsW.a/ generally do not possess this property, but according

to [3, pp. 484, 485] we still have

W.ab/ D W.a/W.b/CH.a/H. Qb/;
H.ab/ D W.a/H.b/CH.a/W. Qb/:

(3)

Moreover, if b 2 G, c 2 GC and c 2 G�, then

W.abc/ D W.a/W.b/W.c/:
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The operators W.a/ are well studied. For various classes of generating func-

tions a, the conditions of Fredholmness or semi-Fredholmness of such opera-

tors can be efficiently written [3, 4, 6, 14, 15, 16, 17]. Moreover, Fredholm and

semi-Fredholm Wiener–Hopf operators are one-sided invertible, the correspond-

ing one-sided inverses are known and there is an efficient description of the kernels

and cokernels of W.a/, a 2 G.

Consider now the Wiener–Hopf plus Hankel operators W.a; b/WLp.RC/ !
Lp.RC/ formally defined by

W.a; b/ D W.a/CH.b/; a; b 2 L1.R/: (4)

The study of such operators is much more involved. Nevertheless, Fredholm

properties of (4) can be established either directly or by passing to a Wiener–Hopf

operator with a matrix symbol. Thus Roch et al. [20] studied the Fredholmness

of Wiener–Hopf plus Hankel operators with piecewise continuous generating

functions, acting onLp-spaces,p 2 Œ1;1/. Another approach, called equivalence

after extension, has been applied to operators with generating functions from

a variety of classes. Nevertheless, in spite of a vast amount of publications,

this method is mainly applied to the operators of a special form, namely, to the

operators W.a; a/ D W.a/ C H.a/ acting on the L2-space. It turns out that

the Fredholmness, one-sided invertibility and invertibility of such operators are

equivalent to the corresponding properties of the Wiener–Hopf operatorW.a Qa�1/,

so that they can be studied. However, even if an operator W.a; a/ is invertible, the

corresponding inverse is not given (see, e.g. [5, Corollary 2.2] for typical results

obtained by the method mentioned). If a ¤ b, then hardly verifiable assumptions

concerning the factorization of auxiliary matrix-functions are used. To study the

Wiener–Hopf plus Hankel operators of the form I C H.b/, another method has

been employed in [18, 19], where the essential spectrum and the index of such

operators are determined.

On the other hand, recently the Wiener–Hopf plus Hankel operators (4) have

been studied under the assumption that the generating functions a and b satisfy

the condition

a Qa D b Qb: (5)

In particular, if a; b 2 G, then the Coburn-Simonenko Theorem for some classes

of operators W.a; b/ is established [7], and an efficient description of the space

kerW.a; b/ is obtained [12]. The aim of this work is to find conditions for

one-sided invertibility, invertibility and generalized invertibility of the operators

W.a; b/ and to provide efficient representations for the corresponding inverses

when generating functions a and b satisfy the condition (5). Similar problems for



Invertibility issues 851

Toeplitz plus Hankel operators have been recently discussed in [1, 2, 8, 9, 10, 11].

The situation with Wiener–Hopf plus Hankel operators has some special features.

The main problem is that the operators here can also be semi-Fredholm – i.e. in

general, they may have infinite kernels and co-kernels. This creates additional

difficulties. Therefore, in some cases, the results obtained are not as complete as

for Fredholm Toeplitz plus Hankel operators.

This paper is organized as follows. Section 2 contains known results on

properties of Wiener–Hopf operators, Wiener–Hopf factorization of functions

g 2 G such that g.t/g.�t / D 1, t 2 R and the description of the kernels of

Wiener–Hopf plus Hankel operators W.a/ C H.b/, the generating functions of

which satisfy the condition (5). In Section 3, we establish necessary conditions

for one-sided invertibility of the operators W.a; b/. Section 4 provides sufficient

conditions for one-sided invertibility and presents efficient representations for

the corresponding inverses. In Section 5, we construct generalized inverses for

Wiener–Hopf plus Hankel operators. The invertibility conditions presented in

Section 6 are supported by simple examples.

2. Auxiliary results

Let us recall the properties of Wiener–Hopf and Wiener–Hopf plus Hankel oper-

ators with generating functions from the algebra G. It was shown in [17] that for

invertible functions g the operatorsW.g/ are one-sided invertible. More precisely,

if a 2 APW , c 2 L and g D a C c is invertible in G, then the element a is also

invertible in G. Therefore, the numbers

�.g/ WD lim
l!1

1

2l
Œarg a.t/�l

�l ; n.g/ WD 1

2�
Œarg.1C a�1.t /c.t/�1tD�1; (6)

are correctly defined. Moreover, the function g admits a factorization of the form

g.t/ D g�.t /e
i�t

� t � i
t C i

�n

gC.t /; �1 < t < 1; (7)

where g˙1
C

2 GC, g˙1
� 2 G�, � D �.g/ and n D n.g/.

Let �1 < � < 1 be a real number. On the space Lp.RC/ we consider the

operator U� defined by

.U�'/.t/ WD
´

'.t � �/ if max.�; 0/ < t;

0 if 0 � t � max.�; 0/:
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It is easily seen that for any � � 0, the operator U� is left invertible and U�� is

one of its left-inverses. Moreover, U� D W.eit�/ and I �U�U�� is the projection

operator,

..I � U�U��/'/.t/ WD
´

'.t/ if 0 < t < �;

0 if � < t < 1:

We also consider operators V and V .�1/ defined by

.V'/.t/ WD '.t/ � 2
t

Z

0

es�t'.s/ ds; .V .�1/'/.t/ WD '.t/ � 2
1

Z

t

et�s'.s/ ds:

Set V .m/ D V m if m � 0 and V .�m/ D .V .�1//�m if m < 0. It is known that if

m 2 N, then V .�m/V .m/ D I , so that form > 0 the operatorPm WD I�V .m/V .�m/

is a projection [17, Chapter 7].

The factorization (7) is used to construct one-sided inverses for the Wiener–

Hopf operators W.g/.

Theorem 2.1 ([17]). If g D aC c 2 G, a 2 APW ; c 2 L, then the operatorW.g/

is one-sided invertible in Lp.RC/, 1 � p < 1 if and only if g is invertible in G.

Moreover, if g 2 G is invertible in G and � WD �.g/, n WD n.g/, then

(i) If � > 0 and n � 0, then the operatorW.g/ is left invertible and

W �1
l .g/ D W.g�1

C /V .�n/U��W.g
�1
� / (8)

is one of its left-inverses.

(ii) If � > 0 and n < 0, then the operator W.a/ is left invertible and one of its

left-inverses is

W �1
l .g/ D W.g�1

C /.I � U��P�nU�/
�1U��V

�nW.g�1
� /; (9)

where

.I � U��P�nU�/
�1 D

1
X

j D0

.U��P�nU�/
j ; (10)

and the series in the right-hand side of (10) is uniformly convergent.

(iii) If � < 0 and n � 0, then the operatorW.a/ is right invertible and

W �1
r .g/ D W.g�1

C /V �nU��W.g
�1
� / (11)

is one of its right-inverses.
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(iv) If � < 0 and n > 0, then the operator W.a/ is right invertible and one of its

right-inverses is

W �1
r .g/ D W.g�1

C /V .�n/U��.I � U�PnU��/
�1W.g�1

� /: (12)

(v) If � D 0 and n � 0 .n � 0/, then the operator W.g/ is right (left) invertible

and one of the corresponding inverses has the form

W �1
r=l .g/ D W.g�1

C /V .�n/W.g�1
� /; (13)

Let us point out that there is also an efficient description of the kernels of the

operators W.g/, but the structure of kerW.g/ depends on the indices �.g/ and

n.g/ and will be considered later on.

As far as the Wiener–Hopf plus Hankel operatorsW.a; b/ WD W.a/CH.b/ are

concerned, here we always assume that the generating functions a; b belong to G

and satisfy the matching condition (5). In this case, the duo .a; b/ is referred to as a

matching pair. Moreover, in what follows, we will only consider the matching pairs

.a; b/with the element a invertible inG. Notice that if W.a; b/ is semi-Fredholm,

then a is invertible in G and the matching condition yields the invertibility of b

in G.

Let us introduce another pair .c; d/ with the elements c and d defined by

c WD ab�1 D Qa�1 Qb; d WD a Qb�1 D Qa�1b:

This duo is called the subordinated pair for .a; b/. The functions c and d possess

a number of remarkable properties – e.g. c Qc D 1 D d Qd . Following [7], any

function g 2 L1.R/ satisfying the condition g Qg D 1 is called matching function.

In passing note that if .c; d/ is the subordinated pair for a matching pair .a; b/,

then . Nd; Nc/ is the subordinated pair for the matching pair . Na; NQb/, which defines the

adjoint operator

W
�.a; b/ D W. Na/CH.

NQb/ (14)

for the operator W.a; b/.

The next proposition comprises results from [7, 12]. For the reader’s conve-

nience, they are reformulated in a form suitable for subsequent presentation.

Proposition 2.2. Assume that g 2 G is a matching function – i.e. g Qg D 1. Then

(i) Under the condition g�.1/ D 1, the factors gC and g� in the factoriza-

tion (7) are uniquely defined – viz. the factorization takes the form

g.t/ D .� .g/ Qg�1
C .t //ei�t

� t � i
t C i

�n

gC.t /; (15)
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where � D �.g/; n D n.g/, � .g/ D .�1/ng.0/, Qg˙1
C
.t / 2 G� and g�.t / D

� .g/ Qg�1
C
.t /. The number � .g/ takes on only the values 1 and �1 and is

called the factorization signature.

(ii) If � < 0 or if � D 0 and n < 0, then W.g/ is right-invertible and the

operators P˙
g ,

P˙
g WD .1=2/.I ˙ JQBW 0.g/P /W kerW.g/ �! kerW.g/;

considered on the kernel of the operator W.g/ are complementary projec-

tions.

(iii) If .c; d/ is the subordinated pair for a matching pair .a; b/ 2 G � G such

that the operatorW.c/ is right-invertible andW �1
r .c/ is any right-inverse of

W.c/, then

'C D 'C.a; b/ WD 1

2
.W �1

r .c/W. Qa�1/ � JQW 0.c/PW �1
r .c/W. Qa�1//

C 1

2
JQW 0. Qa�1/;

is an injective operator from kerW.d/ into ker.W.a/CH.b//.

(iv) If .c; d/ is the subordinated pair for the matching pair .a; b/, then

(a) if the operator W.c/WLp.RC/ ! Lp.RC/, 1 < p < 1 is right-invert-

ible, then

ker.W.a/CH.b// D 'C.im PC

d
/u im P�

c I (16)

(b) if the operator W.d/WLp.RC/ ! Lp.RC/, 1 < p < 1 is left-invert-

ible, then

coker.W.a/CH.b// D 'C.im PC

Nc /u im P�
Nd
; (17)

where the operator 'C in (17) is defined by the matching pair . Na; NQb/.

(v) Letƒj be the normalized Laguerre polynomials and the functions j , j 2ZC,

be defined by

 j .t / WD
´p

2e�tƒj .2t/; if t > 0;

0; if t < 0;
j D 0; 1; : : : : (18)

Then for � D 0 and n < 0, the following systems B˙.g/ of functions

W.g�1
C
/ j form bases in the spaces im P˙

g :



Invertibility issues 855

(a) if n D �2m, m 2 N, then

B˙.g/ D ¹W.g�1
C / . m�k�1 � � .g/ mCk/ W k D 0; 1; : : : ; m � 1º;

and

dim im P˙
g D mI (19)

(b) if n D �2m � 1, m 2 ZC, then

B˙.g/ D ¹W.g�1
C /. mCk � � .g/ m�k/W k D 0; 1; : : : ; mº n ¹0º;

and

dim im P˙
g D mC 1� � .g/

2
: (20)

Remark 2.3. If � < 0, the corresponding spaces im P˙
g are also described in [12].

However, these representations are not used in what follows so that they are not

included to the above proposition.

3. Necessary conditions for one-sided invertibility

From now on we always assume without mentioning it specifically that the gen-

erating functions a and b constitute a matching pair. Moreover, let us also recall

that if an operatorW.a/CH.b/, a; b 2 G acting in the spaceLp.RC/, p 2 .1;1/

is Fredholm or semi-Fredholm, then the generating function a is invertible in G.

Therefore, the elements c and d of the subordinated pair .c; d/ are also invert-

ible in G and the Wiener–Hopf operators W.c/ and W.d/ are Fredholm or semi-

Fredholm. Let �1 WD �.c/, n1 WD n.c/, �2 WD �.d/, and n2 WD n.d/ be the

corresponding indices (6) of the functions c and d . We start with necessary con-

ditions for one-sided invertibility of the operatorsW.a/CH.b/ in the case where

at least one of the indices �1, �2 is not equal to zero. The situation �1 D �2 D 0

will be considered later on.

Theorem 3.1. Let a; b 2 G and the operatorW.a/CH.b/ be one-sided invertible

in Lp.RC/ and at least one of the indices �1 or �2 is not equal to zero. Then,

(i) either �1�2 � 0 or �1 > 0 and �2 < 0;

(ii) if �1 D 0 and �2 > 0, then n1 > �1, or n1 D �1 and � .c/ D �1;

(iii) if �1 < 0 and �2 D 0, then n2 < 1, or n2 D 1 and � .d/ D �1.
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Proof. (i) Assume that �1�2 < 0. If �1 < 0 and �2 > 0, then the operator W.c/

is right invertible whereas W.d/ is left invertible. Moreover, the kernel of the

operator W.c/ and cokernel of W.d/ are infinite-dimensional [17] and so are

the spaces im P�
c and im P�

Nd
[12, Theorems 2.4 and 2.5]. Taking into account

Proposition 2.2(iv), we obtain that ker.W.a/ C H.b// ¤ ¹0º and coker.W.a/ C
H.b// ¤ ¹0º, hence the operator W.a/CH.b/ is not one-sided invertible.

(ii) Let �2 > 0. By Proposition 2.2(iv), the operator W.a/CH.b/ has a non-

zero cokernel. If, in addition, n1 < �1 or n1 D 1 and � .c/ D 1, then (19) and (20)

show that in both cases, im P�
c ¤ ¹0º. Therefore, according to (16), the operator

W.a/CH.b/ also has a non-trivial kernel and is not one-sided invertible.

Assertion (iii) can be proved analogously. �

Let us briefly discuss the case where �1 > 0 and �2 < 0. As was men-

tioned in [12], in this situation it is not clear whether the corresponding Wiener–

Hopf operator is even normally solvable. Nevertheless, the kernel and cokernel

of W.a/CH.b/ can still be described. This allows to establish necessary condi-

tions of one-sided invertibility. However, they are not as transparent as before and,

in addition to the relations between the indices �1; �2; n1; n2, the corresponding

conditions can include information about the factors in the Wiener–Hopf factor-

izations of the subordinated functions c and d . We consider one of possible cases.

Theorem 3.2. Let �1 > 0, �2 < 0, n1 D n2 D 0 and let N
p
� , � > 0 denote the set

of functions f 2 Lp.RC/ such that f .t/ D 0 for t 2 .0; �/.

(i) If the operatorW.a/CH.b/WLp.RC/ ! Lp.RC/, 1 < p < 1 is invertible

from the left, then

'C.PC

d
/ \ N

p

�1=2
D ¹0º; (21)

where 'C D 'C.ae�i�1t=2; bei�1t=2/.

(ii) If the operatorW.a/CH.b/WLp.RC/ ! Lp.RC/, 1 < p < 1 is invertible

from the right, then

'C.PC

Nc / \ N
p

��2=2
D ¹0º; (22)

where 'C D 'C. Naei�2t=2;
NQbe�i�2t=2/.

Proof. Let �1 > 0, �2 < 0, n1 D n2 D 0 and W.a/ C H.b/ be a left-invertible

operator. It can be represented in the form

W.a/CH.b/ D .W.ae�i�1t=2/CH.bei�1t=2//W.ei�1t=2/: (23)
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Direct computations show that .ae�i�1t=2; bei�1t=2/ is a matching pair with the

subordinated pair .c1; d1/ D .ce�i�1t ; d /. Since �.c1/ D 0, n.c1/ D n1 D 0,

the kernel of the operator W.c1/ is trivial. Consequently, kerP�
c1

D ¹0º and the

relation (16) yields

ker.W.ae�i�1t=2/CH.bei�1t=2// D 'C.im PC

d
/

with the operator 'C D 'C.ae�i�1t=2; bei�1t=2/. Therefore, taking into ac-

count (23), we obtain

ker.W.a/CH.b// D ¹� D W.e�i�1t=2/uWu 2 'C.PC

d
/ \ imW.ei�1t=2/º:

If the operatorW.a/CH.b/ is left invertible, its kernel consists of the zero element

only. However, since imW.ei�1t=2/ D N
p

�1=2
and

kerW.e�i�1t=2/ \ .'C.PC

d
/ \ N

p

�1=2
/ D ¹0º;

the assumption

'C.PC

d
/ \ N

p

�1=2
¤ ¹0º

yields the non-triviality of the kernel of W.a/CH.b/, so that (21) holds.

The second assertion in Theorem 3.2 comes from the first one by passing to

the adjoint operator (see (14)). �

Remark 3.3. Theorem 3.2 raises an interesting question: Do there exist invertible

operators W.a/CH.b/, such that

dim cokerW.c/ D dim kerW.d/ D 1‹

If �.c/ D �.d/ D 0, we conjecture that for any prescribed natural number N one

can find invertible operators W.a/CH.b/ for which

ind jW.c/j > N; ind jW.d/j > N: (24)

Note that the set of Toeplitz plus Hankel operators possesses the property (24) – cf.

[13], but for Wiener–Hopf plus Hankel operators, this problem requires a separate

study.

Remark 3.4. Although the description of the spaces im PC

d
and im PC

Nc is avail-

able [12], the verification of the conditions (21)–(22) is not trivial. It depends on

the properties of Wiener–Hopf operators constituting the operator 'C and may

require a lot of effort.
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Remark 3.5. If �1 > 0, �2 < 0 but n1 ¤ 0 or/and n2 ¤ 0, the necessary

conditions of one-sided invertibility have the same form (21) and (22) but the

representation (23), spacesN
p
� and operators 'C should be redefined accordingly.

We now consider the situation when both indices �1 and �2 vanish. Let us start

with an auxiliary result.

Lemma 3.6. If .a; b/ 2 G � G is a matching pair with the subordinated pair

.c; d/, then for the factorization signatures of the functions c and d the equation

� .c/ D � .d/ (25)

holds and the indices n1 and n2 are simultaneously odd or even.

Proof. Let n.a/ and n.b/ be the corresponding indices (6) for the functions a and

b, respectively. Then

n1 D n.c/ D n.ab�1/ D n.a/ � n.b/; n2 D n.d/ D n.a Qb�1/ D n.a/C n.b/:

(26)

Therefore,

� .c/D .�1/n.a/�n.b/c.0/ D .�1/n.a/�n.b/a.0/b�1.0/;

� .d/D .�1/n.a/Cn.b/d.0/D .�1/n.a/Cn.b/a.0/ Qb�1.0/;

and since b.0/ D Qb.0/ and the numbers n.a/ � n.b/ and n.a/C n.b/ are simulta-

neously odd or even, the equation (25) follows.

Moreover, using the relations (26) again, we obtain

n1 C n2 D 2n.a/;

so that n1 has the same evenness as n2. �

We start with the left invertibility of the operators W.a; b/.

Theorem 3.7. If a; b 2 G, �1 D �2 D 0, n2 � n1 and the operatorW.a/CH.b/

is invertible from the left, then the index n1 satisfies the inequality

n1 � �1

and if n1 D �1, then � .c/ D �1 and n2 > n1.
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Proof. If n1 < �1, the operator W.c/ is right invertible. By Proposition 2.2(v),

the image of the projection P�
c contains non-zero elements, and by (16) so is

ker.W.a/CH.b//. This contradicts the left invertibility of the operator W.a/C
H.b/, hence n1 � �1.

Assume now that n1 D �1 and � .c/ D 1. Using (16) and Proposition 2.2(v)

again, we note that im P�
c ¤ ¹0º, so that the operator W.a/ C H.b/ has a non-

trivial kernel and, therefore, it is not left-invertible. Hence � .c/ D �1. Assuming,

in addition, that n2 D �1 and ker.W.a/CH.b// D ¹0º, we obtain

� .c/ D �1; � .d/ D 1;

which is not possible by Lemma 3.6. Hence, n2 > n1. �

Theorem 3.8. If a; b 2 G, �1 D �2 D 0, n1 > n2 and the operatorW.a/CH.b/

is invertible from the left, then the inequality

n1 � 1

holds. Moreover, the index n2 is either non-negative or n2 < 0 and n1 � �n2.

Proof. If n1 � 0, then n2 � �2 – cf. Lemma 3.6, and W.a/C H.b/ has a non-

trivial kernel, which contradicts the left-invertibility of this operator. On the other

hand, if 1 � n1 and 0 � n2, then W.a/ C H.b/ is clearly left-invertible, so we

proceed with the case n2 < 0. By Lemma 3.6, both numbers n1 and n2 are either

even or odd. In both cases the proof of the fact that the indices n1 and n2 satisfy the

inequality n1 � n2 is similar, but each situation should be examined separately.

Here we only analyse the case where n1 and n2 are odd numbers. Considering

indW.c/ WD k1 D �n1 we chose k1 2 Z such that

2k1 C k1 D 1:

Then, according to [12, Theorem 3.2], we have

ker.W.a/CH.b//

D
°

W
�� t � i

t C i

��k1
�

uW

u 2
°1C � .c/

2
W.c�1

C /¹C 0º u 'C.im PC

d
/
±

\ imW
�� t � i

t C i

�k1
�±

;

(27)

where the operator 'C D 'C.a1; b1/ is defined by the matching pair

.a1; b1/ D
�

a.t/
� t � i

t C i

��k1

; b.t /
� t � i
t C i

�k1
�
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and cC is the plus factor in the Wiener–Hopf factorization (15) of the function c.

The function 0 is defined in (18) and using another representation of the Laguerre

polynomials – cf. [12, eq. (2.5)], one can show that

imW
�� t � i
t C i

�k1
�

D clos spanLp.RC/¹ k1
;  k1C1; : : : º:

Thus if a function

u 2 imW
�� t � i
t C i

�k1
�

is expanded in a Fourier series of the Laguerre polynomials  j ; j D 0; 1; : : : , its

first k1 Fourier-Laguerre coefficients are equal to zero. If we now assume that the

dimension of the subspace

S.c; d/ WD
°1C � .c/

2
W.c�1

C /¹C 0º u 'C.im PC

d
/
±

is greater than k1, then there is a non-zero function u0 2 S.c; d/, the first k1

Fourier-Laguerre coefficients of which vanish. Hence, (27) shows that the kernel

ofW.a/CH.b/ contains a non-zero element. This contradicts the left invertibility

of the operator W.a/CH.b/. Therefore,

k1 � dimS.c; d/; (28)

and taking into account eq. (20), we rewrite the inequality (28) as

k1 � 1C � .c/

2
C k2; (29)

where

k2 D r C 1 � � .d/

2

and �n2 D 2rC 1. Since k1 D .1� k1/=2 D .1Cn1/=2, the inequality (29) takes

the form

1C n1

2
� 1C � .c/

2
C �n2 � 1

2
C 1� � .d/

2
or

n1 � �n2 C � .c/ � � .d/:

Since � .c/ D � .d/ by Lemma 3.6, the proof is completed. �
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Theorems 3.7, 3.8 provide necessary conditions for the left invertibility of the

operators W.a; b/ D W.a/CH.b/. Passing to right-invertible operators, one can

recall the simple fact that the operator W.a; b/ is right-invertible if and only if the

adjoint operator W�.a; b/ is left invertible. Relation (14) shows that

W
�.a; b/ D W. Na; NQb/:

We note that . Na; NQb/ is also a matching pair with the subordinated pair .c1; d1/ D
. Nd; Nc/, so that

�.c1/ D �. Nd/ D ��2; �.d1/ D �. Nc/ D ��1;

n.c1/ D n. Nd/ D �n2; n.d1/ D n. Nc/ D �n1;

� .c1/ D � .d/; � .d1/ D � .c/:

Now Theorems 3.7 and 3.8 can be used to write the necessary conditions for

the right invertibility of the operators W.a/ C H.b/. Let us just formulate the

corresponding results.

Theorem 3.9. Let a; b 2 G, �1 D �2 D 0, n1 � n2 and the operatorW.a/CH.b/
be invertible from the right. Then

n2 � 1

and if n2 D 1, then � .d/ D �1 and n1 < n2.

Theorem 3.10. Let a; b 2 G, �1 D �2 D 0, n1 > n2 and the operatorW.a/CH.b/
be invertible from the right. Then the inequality

n2 � �1

holds. Moreover, the index n1 is either non-positive or n1 � �n2.

4. Sufficient conditions of one-sided invertibility

and formulas for one-sided inverses

Our next goal is to establish sufficient conditions for one-sided invertibility of

the operators W.a/ C H.b/. In fact, many necessary conditions above are also

sufficient ones.



862 V. D. Didenko and B. Silbermann

Theorem 4.1. Let a; b 2 G and the indices �1; �2; n1 and n2 satisfy any of the

following conditions:

(i) �1 < 0 and �2 < 0;

(ii) �1 > 0, �2 < 0, n1 D n2 D 0, the operator W.a/ C H.b/ is normally

solvable, has a complementable kernel, and satisfies the condition (22).

(iii) �1 < 0, �2 D 0 and n2 < 1 or n2 D 1 and � .d/ D �1;

(iv) �1 D 0, n1 � 0 and �2 < 0;

(v) �1 D 0 and �2 D 0

(a) n1 � 0, n2 � 0,

(b) n1 � 0, n2 D 1 and � .d/ D �1.

Then the operator W.a/ C H.b/WLp.RC/ ! Lp.RC/, 1 < p < 1 is right

invertible.

Proof. The claim follows from the representation (41) below, the factorization

W.V.a; b// D
�

�W.d/ 0

0 I

��

0 �I
I W. Qa�1/

��

�W.c/ 0

0 I

�

;

and consequent application of Proposition 2.2. �

Sufficient conditions for the left invertibility of the operatorsW.a/CH.b/ can

be obtained from Theorem 4.1 by passing to the adjoint operators and we leave it

to the reader.

In the remaining part of this section we deal with the construction of right

inverses for the operatorsW.a/CH.b/. Recall that one-sided inverses of Wiener–

Hopf operators can be easily determined from the Wiener–Hopf factorizations of

the corresponding generating functions – cf. Theorem 2.1. However, finding the

inverses for Wiener–Hopf plus Hankel operators is a much more difficult problem

and to the best of our knowledge, so far there was no efficient representation of

the corresponding inverses even for the simplest pairs of generating functions.

Now we want to establish formulas for the left and right inverses of the operators

W.a/CH.b/ in the case of matching generating functions.

Let us assume that the operators W.c/ and W.d/ are invertible from the same

side. This condition is not necessary for the one-sided invertibility and note that

the corresponding inverses can be also constructed even if the condition mentioned

is not satisfied.
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Theorem 4.2. Let .a; b/ 2 G�G be a matching pair such that the operatorsW.c/

and W.d/ are invertible from the right. Then the operator W.a/C H.b/ is also

right invertible and one of its right inverses has the form

B WD .I �H. Qc//A CH.a�1/W �1
r .d/; (30)

where A D W �1
r .c/W. Qa�1/W �1

r .d/.

Proof. The proof of this result uses equations (3). Consider the product .W.a/C
H.b//B ,

.W.a/CH.b//B

D .W.a/CH.b//.I �H. Qc//A C .W.a/CH.b//H.a�1/W �1
r .d/:

(31)

It follows from (3) that

H.b/H. Qc/ D W.bc/ �W.b/W.c/ D W.a/ �W.b/W.c/;
W.a/H. Qc/ D H.a Qc/�H.a/W.c/ D H.b/ �H.a/W.c/:

Therefore, the first product in the right-hand side of (31) can be rewritten as

.W.a/CH.b//.I �H. Qc/A D .W.b/W.c/CH.a/W.c//A

D .W.b/CH.a//W.c/A

D .W.b/CH.a//W.c/W �1
r .c/W. Qa�1/W �1

r .d/

D W.b/W. Qa�1/W �1
r .d/CH.a/W. Qa�1/W �1

r .d/:

(32)

Analogously,

W.a/H.a�1/ D H.aa�1/ �H.a/W. Qa�1/ D �H.a/W. Qa�1/;

H.b/H.a�1/ D W.b Qa�1/ �W.b/W. Qa�1/ D W.d/ �W.b/W. Qa�1/;

and the second product in the right-hand side of (31) has the form

.W.a/CH.b//H.a�1/W �1
r .d/

D �H.a/W. Qa�1/W �1
r .d/CW.d/W �1

r .d/ �W.b/W. Qa�1/W �1
r .d/

D I �H.a/W. Qa�1/W �1
r .d/ �W.b/W. Qa�1/W �1

r .d/:

(33)

Combining (32) and (33), one obtains

.W.a/CH.b//B D I;

hence B is a right inverse for the Wiener–Hopf plus Hankel operator W.a/ C
H.b/. �
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Corollary 4.3. Let a; b 2 G and the indices �1; �2; n1 and n2 satisfy one of the

following conditions:

(i) �1 < 0 and �2 < 0;

(ii) �1 < 0, �2 D 0 and n2 � 0;

(iii) �1 D 0, n1 � 0 and �2 < 0.

ThenW.a/CH.b/ is invertible from the right and one of its right inverses can be

constructed by formula (30).

Example 4.4. Let us consider the operator

W.�1; �2/ D W.ei�1t /CH.ei�2t /; t 2 R; (34)

where �1 and �2 are real numbers such that

�1 � �2 � 0; (35)

�1 C �2 � 0: (36)

In passing note that the conditions (35)–(36) are equivalent to the inequality

�1 � �j�2j;

so that �1 � 0. Consider now the generating functions a.t/ D ei�1t and b.t/ D
ei�2t . They satisfy the matching conditions (5), namely,

a.t/a.�t / D b.t/b.�t / D 1:

The elements c and d of the subordinated pair for the matching pair .ei�1t ; ei�2t /

are

c.t/ D ei.�1��2/t ; d.t/ D ei.�1C�2/t :

Taking into account the conditions (35)–(36), we observe that the corresponding

Wiener–Hopf operators W.c/, W.d/ are right invertible and have infinite dimen-

sional kernels. In order to construct a right inverse of the operator (34) one can use

Theorem 4.2. Let us recall some simple properties of Wiener–Hopf and Hankel

operators with exponential generating function. Thus for the generating function

a.t/ D ei�t one has:

(i) if � � 0, then the operator W.ei�t/ is right invertible and one of its right

inverses is

W �1
r .ei�t/ D W.e�i�t/I
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(ii) if � � 0, then the operatorW.ei�t/ is left invertible and one of its left inverses

is

W �1
l .ei�t/ D W.e�i�t/I

(iii) if � < 0, then H.ei�t/ D 0.

Therefore,

W �1
r .c/ D W.e�i.�1��2/t /; W �1

r .d/ D W.e�i.�1C�2/t /:

Thus the operator (34) is subject to Theorem 4.2. In order to write the cor-

responding right inverse of W.a/ C H.b/, we first determine the operator A.

Simple computations show that

A D W.e�i.�1��2/t /W.e�i�2t /:

Therefore the right inverse (30) for the operator (34) has the form

.W.ei�1t /CH.ei�2t //�1
r D .I �H.e�i.�1��2/t //W.e�i.�1��2/t /W.e�i�2t /

CH.e�i�1t /W.e�i.�1C�2/t /:

Moreover, using formulas (3), one obtains

H.e�i.�1��2/t /W.e�i.�1��2/t / D 0; H.e�i�1t /W.e�i.�1C�2/t / D W.e�i�1t /;

and the operator .W.ei�1t /CH.ei�2t //�1
r can be finally written as

.W.ei�1t /CH.ei�2t //�1
r D H.e�i�1t /W.e�i.�1C�2/t /CW.e�i�1t /:

We now construct a left inverse for the operator W.a/CH.b/.

Theorem 4.5. Let .a; b/ 2 G�G be a matching pair such that the operatorsW.c/

andW.d/ are invertible from the left. Then the operator W.a; b/ D W.a/CH.b/

is also left-invertible and one of its left-inverses has the form

Wl .a; b/ D C.I �H. Qd//CW �1
l .c/H. Qa�1/; (37)

where C D W �1
l
.c/W. Qa�1/W �1

l
.d/.

Proof. Recalling that the adjoint operator W�.a; b/ to the operatorW.a/CH.b/

can be identified with the operator

W
�.a; b/ D W.a1/CH.b1/; a1 D Na; b1 D NQb;
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we note that .a1; b1/ is a matching pair with the subordinated pair .c1; d1/ D
. Nd; Nc/. SinceW.c1/ D W. Nd/ andW.d1/ D W. Nc/ are invertible from the right, the

operator W�.a; b/ is also right-invertible by Theorem 4.2 and according to (30),

one of its right inverses can be written as

.W�.a; b//�1
r D .I �H. Qc1/A1 CH.a�1

1 /W �1
r .d1/

D .I �H.
NQd/A1 CH. Na�1/W �1

r . Nc/;
(38)

where

A1 D W �1
r .c1/W. Qa�1

1 /W �1
r .d1/ D W �1

r . Nd/W. NQa�1/W �1
r . Nc/: (39)

The left inverse to the operator W.a; b/ can be now obtained by computing the

adjoint operator for the operator .W�.a; b//�1
r . Since for any right-invertible

operator A one has

.A�1
r /� D .A�/�1

l ;

we can use the relations

W �.g/ D W. Ng/; H�.g/ D H. NQg/; g 2 G;

to obtain the representation (37) from (38)-(39). �

5. Generalized invertibility of Wiener–Hopf plus Hankel operators

An operator A is called generalized invertible if there exists an operator A�1
g ,

referred to as a generalized inverse for A, such that

AA�1
g A D A:

If A�1
g is a generalized inverse for the operator A and the equation

Ax D y (40)

is solvable, then the element x0 D A�1
g y is a solution of equation (40).

Our next task is to determine generalized inverses for Wiener–Hopf plus Han-

kel operatorsW.a/CH.b/ if the generating functions a and b constitute a match-

ing pair. For this we recall some useful formulas connecting Wiener–Hopf plus

Hankel operators and matrix Wiener–Hopf operators. According to [7, eq. (2.4)],

the diagonal operator diag.W.a/CH.b/CQ;W.a/�H.b/CQ/ can be repre-

sented in the form
�

W.a/CH.b/CQ 0

0 W.a/ �H.b/CQ

�

D JA1A2.W.V .a; b//C Q/CJ�1;

(41)
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where the operators A1; A2, J, C D C.a; b/, and V D V.a; b/ are defined by

A1 WD diag.I; I /� diag.P;Q/W 0

�

a b
Qb Qa

�

diag.Q; P /;

A2 WD diag.I; I /C PW 0.V .a; b//Q;

J WD 1

2

�

I J

I �J

�

C.a; b/ WD
�

I 0

W 0. Qb/ W 0. Qa/

�

;

V .a; b/ WD
�

a � b Qb Qa�1 b Qa�1

� Qb Qa�1 Qa�1

�

;

and

P WD diag.P; P /; Q WD diag.Q;Q/ :

Using the notation

B WD W.V.a; b//C Q; (42)

R WD diag.W.a/CH.b/;W.a/�H.b//; R WD R C Q;

we write the equation (41) as

R D JA1A2BCJ�1 : (43)

Considering the operator R and taking into account the equation (43) and the

invertibility of the operators J; C; A1 and A2, we write

R�1
g D JC�1B�1

g A�1
2 A�1

1 J�1:

Observe that R�1
g is diagonal since so is the operator R. Thus

R�1
g D diag.F�1

g ;K�1
g /;

and it is clear that the diagonal elements F�1
g and K�1

g have the form

F�1
g D F �1

g CQ; K�1
g D K�1

g CQ;

where F �1
g ; K�1

g WLp.RC/ ! Lp.RC/ are generalized inverses for the operators

W.a/CH.b/ and W.a/�H.b/, respectively.

In this section we construct a generalized inverse for the operatorW.a/CH.b/
provided that the operator B is generalized invertible and a generalized inverse of
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B can be represented in a special form. The following theorem has been proved

in [10] in the case of Toeplitz plus Hankel operators. For Wiener–Hopf plus

Hankel operators the proof literally repeats all constructions there and is omitted

here.

Theorem 5.1. Let .a; b/ be a matching pair with the subordinated pair .c; d/.

Assume that the operatorB of (42) is generalized invertible and has a generalized

inverse B�1
g of the form

B�1
g D

�

A B

D 0

�

C Q; (44)

where A;B and D are operators acting in the space Lp.RC/. ThenW.a/CH.b/

is generalized invertible and the operator G,

G WD �H. Qc/.A.I �H.d// � BH. Qa�1//CH.a�1/D.I �H.d//CW.a�1/;

(45)

is a generalized inverse for the operatorW.a/CH.b/.

Lemma 5.2. Let .a; b/ 2 G�G be a matching pair such that one of the following

conditions holds:

(i) the operatorsW.c/ and W.d/ are right invertible;

(ii) the operatorsW.c/ and W.d/ are left invertible;

(iii) W.c/ and W.d/ are, respectively, left and right invertible operators.

Then the operator B of (42) is generalized invertible and it has a generalized

inverse of the form (44).

Proof. For a matching pair .a; b/ the operator W.V.a; b// has the form

W.V.a; b// D
�

0 W.d/

�W.c/ W. Qa�1/

�

:

Assume for definiteness that both operators W.c/ and W.d/ are right invertible.

Then the operator W.V.a; b// is also right invertible and it is easily seen that one

of its right inverses is given by the formula

B�1
g D

�

W �1
r .c/W. Qa�1/W �1

r .d/ �W �1
r .c/

W �1
r .d/ 0

�

C Q;

where W �1
r .c/ and W �1

r .d/ are right-inverses of the operators W.c/ and W.d/,

correspondingly. Thus in this case, condition (44) is satisfied with the operators

A D W �1
r .c/W. Qa�1/W �1

r .d/; B D �W �1
r .c/; D D W �1

r .d/: (46)
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The other cases are considered analogously. Thus if both operators W.c/ and

W.d/ are left invertible, then B is left invertible with a left-inverse having the

form (44), where

A D W �1
l .c/W. Qa�1/W �1

l .d/; B D �W �1
l .c/; D D W �1

l .d/; (47)

and if W.c/ is left-invertible andW.d/ is right invertible, then the corresponding

operators A, B and D in (44) are

A D W �1
r .c/W. Qa�1/W �1

l .d/; B D �W �1
r .c/; D D W �1

l .d/; (48)

which completes the proof. �

Combining Theorem 5.1 and Lemma 5.2 one obtains the following result.

Theorem 5.3. Let operators W.c/ and W.d/ satisfy one of the assumptions

of Lemma 5.2 and A;B, and D be the operators defined by one of the rela-

tions (46)–(48). Then the operatorW.a/CH.b/ is generalized invertible and (45)

is one of its generalized inverses.

Remark 5.4. We note that in cases (i) and (ii), the operator W.a/ C H.b/ is

one-sided invertible and the formulas for the corresponding inverses obtained in

Section 4 are simpler than the representation (45).

6. Invertibility of Wiener–Hopf plus Hankel operators

The results of the previous sections can now be used to establish various invertibil-

ity conditions for the operators W.a/CH.b/ and write down the corresponding

inverses. Let us formulate one of such results and provide a few examples.

Corollary 6.1. Let .a; b/, a; b 2 G be a matching pair such that the operators

W.c/ and W.d/ are invertible. Then the operatorW.a/CH.b/ is invertible and

.W.a/CH.b//�1 D .I�H. Qc//W �1.c/W. Qa�1/W �1.d/CH.a�1/W �1.d/: (49)

Proof. If the operatorsW.c/ andW.d/ are invertible, then relations (2.7) and (2.4)

of [7] show that the operatorsW.a/CH.b/ is invertible and the result follows from

Theorem 4.2. �

Let us point out that this is a very surprising result. There is a vast literature

devoted to the study of the Fredholmness and one-sided invertibility of Wiener–

Hopf plus Hankel operators in the situation where generating functions satisfy
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the relation b D a or Qb D a. Of course, such generating functions constitute a

matching pair. The other case studied is a.t/ D 1 for all t 2 R and b D b.t/ is a

specific matching function. However, to the best of our knowledge, so far there are

no efficient representations for the inverse operators. On the other hand, for a wide

class of generating functions g the inverse operators W �1.g/ can be constructed.

Therefore, formula (49) is an efficient tool in constructing the inverse operators

.W.a/CH.b//�1 in the case where a and b constitute a matching generating pair.

Example 6.2. Let us consider the operatorsW.a/CH.b/ in the case where a D b.

In this situation c.t/ D 1 and d.t/ D a.t/ Qa�1.t /. Hence,H. Qc/ D 0,W.c/ D I and

if the operatorW.d/ is invertible, then the operatorW.a/CH.a/ is also invertible

and

.W.a/CH.a//�1 D .W. Qa�1/CH.a�1//W �1.a Qa�1/:

Example 6.3. Let b D Qa. Then c.t/ D a.t/ Qa�1.t / and d.t/ D 1. Hence, if the

operator W.c/ is invertible, then the operatorW.a/CH.a/ is also invertible and

.W.a/CH. Qa//�1 D .I �H. Qaa�1//W �1.a Qa�1/W. Qa�1/CH.a�1/:

Example 6.4. Let a.t/ D 1 and b.t/b.�t / D 1 for all t 2 R. In this situation,

c.t/ D Qb.t/, d.t/ D b.t/ and if the operator W.b/ is invertible, then

.I CH.b//�1 D .I �H.b//W �1. Qb/W �1.b/:

Conclusion

For matching generating functions a; b 2 G, the invertibility of the operators

W.a/ C H.b/ can be described in terms of indices � and n of the subordinated

functions c and d . Moreover, the corresponding inverses can be represented using

only auxiliary Wiener–Hopf and Hankel operators along with the corresponding

inverses of scalar Wiener–Hopf operators. This approach is efficient and can be

realised as soon as the Wiener–Hopf factorization of the functions c and d is

available — cf. (8)–(13).
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