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Ergodic Schrödinger operators

in the infinite measure setting
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Abstract. We develop the basic theory of ergodic Schrödinger operators, which is well

known for ergodic probability measures, in the case of a base dynamics on an infinite mea-

sure space. This includes the almost sure constancy of the spectrum and the spectral type,

the definition and discussion of the density of states measure and the Lyapunov exponent,

as well as a version of the Pastur–Ishii theorem. We also give some counterexamples that

demonstrate that some results do not extend from the finite measure case to the infinite

measure case. These examples are based on some constructions in infinite ergodic theory

that may be of independent interest.
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1. Introduction

The subject of this paper are ergodic one-dimensional discrete Schrödinger oper-

ators; these are self-adjoint operators H! on `2.Z/ defined by

.H!u/n D un�1 C unC1 C f .T n.!//un; (1.1)

where T is an invertible ergodic map on a measure space .�;B; �/, f W� ! R is

bounded, and ! 2 �.

These operators have been the subject of much research in the setting where

� is a probability measure; see, for example, [5, 6, 8, 9, 14, 18] and references

therein.

The subject of this paper is to explore the infinite measure setting, where

�.�/ D 1 and� is �-finite. Infinite ergodic theory is an active area of research,

but the corresponding ergodic Schrödinger operators have not been discussed in

the literature from a global perspective.

Our work may be regarded as an initial step in the general analysis of such

operators. The potentials considered here are defined by the iteration of one

invertible map T , and hence by a Z-action. This setting arises, for example, in the

study [12] of Schrödinger operators with potentials generated by almost primitive

(but non-primitive) substitutions; see [22] for a discussion of the infinite invariant

measures arising in that context.

Potentials generated by higher rank group actions on infinite measure spaces

arise in a natural way in the analysis of quasi-periodic continuum Schrödinger

operators via Aubry duality, compare [10].

In the probability measure setting, the theory of ergodic Schrödinger operators

relies on two properties of ergodic maps:

(i) almost-sure constancy of invariant functions: if f W� ! R and f ı T D f

holds �-a.e., then there is a value c 2 R such that f D c �-a.e.;

(ii) Birkhoff’s theorem: if f 2 L1.�; �/ and �.�/ D 1, then for �-a.e. ! 2 �,

lim
n!1

1

n

n�1
X

kD0
f .T k!/ D

Z

f d�: (1.2)

If �.�/ D 1, then property (i) still holds. However, the asymptotics of Birkhoff

averages become much more complicated. There is Hopf’s ergodic theorem which

considers ratios of Birkhoff averages for two different L1 functions, but we have

not found it to be of use in this setting, partly since the functions we consider are

typically L1 but not L1. For our purposes, (ii) is replaced by the property
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(ii0) if f 2 L1.�; �/, �.�/ D 1, and � is �-finite, then for �-a.e. ! 2 �,

lim
n!1

1

n

n�1
X

kD0
f .T k!/ D 0 (1.3)

which is an easy consequence of Hopf’s ergodic theorem (see e.g. [1, Exer-

cise 2.2.1, p. 61]).

To fix terminology, given a measure space .�;B; �/ and a measurable trans-

formation T W� ! �, we will say that T is invertible if T is bijective and T �1 is

measurable, measure-preserving if �.T �1E/ D �.E/ for all E 2 B, ergodic if

T �1E D E implies �.E/ D 0 or �.� nE/ D 0, and non-singular if �.E/ D 0 if

and only if �.T �1E/ D 0. We will often assume in addition that the transforma-

tion T is conservative, which means there is no set W 2 B with �.W / > 0 such

that the sets ¹T �nW º1
nD0 are disjoint. It is known that an invertible ergodic non-

singular transformation of a non-atomic measure space is conservative, so this is

a natural assumption [1, Proposition 1.2.1].

We will begin with a discussion of non-convergence phenomena for Birkhoff

averages of L1 functions in Sections 2 and 3. Specifically, Section 2 constructs

an example with non-convergent Birkhoff averages, while Section 3 constructs

an example in which the Birkhoff averages behave differently in forward and

backward time. Section 4 establishes basic properties of ergodic Schrödinger

operators in the infinite measure setting. In the probability measure setting, the

density of states measure and the Lyapunov exponent have a central place in the

theory; their analogs are discussed in Sections 5 and 6, respectively. In particular

the material from Sections 2 and 3 is used there to show that some central results

known in the probability measure case do not extend to the infinite measure case.

2. Non-convergence of Birkhoff averages

In what follows, let .�;B; �/ be a �-finite measure space. Denote by

An.!; f; T / D 1

n

n�1
X

kD0
f .T k!/; n 2 N D ¹1; 2; : : :º;

the corresponding ergodic sums where T W� ! � is a B-measurable transforma-

tion and f is a real-valued B-measurable function.

In this section we prove the following result.
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Theorem 2.1. Let T W� ! � be a conservative, invertible, measure preserving
ergodic transformation on .�;B; �/. Then there exist a B-measurable function
f W� ! ¹0; 1º and two strictly increasing sequences ¹pkº and ¹qkº of positive
integers such that

lim
k!1

Apk
.!; f; T /D 1 and lim

k!1
Aqk

.!; f; T /D 0 (�-a.e. ! 2 �). (2.1)

In particular, we have

lim sup
n!1

An.!; f; T /D 1 and lim inf
n!1

An.!; f; T /D 0 (�-a.e. ! 2 �/:

We will need the following lemma.

Lemma 2.2. Let .�;B; �; T / be as above. Let g 2 L1.�; �/ be an integrable
function and let Y 2 B be a measurable subset of finite measure, 0 < �.Y / < 1.
Then, for every � > 0 and an integer M � 1, there exists an integer N D
ˆ.�; g; Y;M/ > M , such that

�.¹! 2 Y W jAN .!; g; T /j > �º/ < �:

The statement in the above lemma follows from the relation

lim
N!1

AN .!; g; T / D 0; for �-a.e. ! 2 �;

which in turn follows from Hopf’s ergodic theorem, as noted in the introduction.

For a measurable subset Y 2 B, denote by �Y the characteristic function of Y .

Clearly, �Y 2 L1.�; �/ if and only if �.Y / < 1.

Proof of Theorem 2.1. Select a set Y2B of finite positive measure, 0<�.Y /<1.

Set Y0 D Y , N0 D 1 and construct inductively for k � 1:

Nk D ˆ.2�k ; �Yk�1
; Y; Nk�1/; Yk D

Nk�1
[

jD0
T j .Y /; (2.2)

and

Zk D ¹! 2 Y W jANk
.!; �Yk�1

; T /j > 2�kº: (2.3)

Note that we have inclusions Y D Y0 � Y1 � Y2 � � � � , and, by the ergodicity

of T , �.�n
S

k�0 Yk/ D 0. In view of Lemma 2.2,

�.Zk/ < 2
�k : (2.4)
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Define f 2 L1.�/ by the formula

f .!/ D
´

0 if ! 2 Y;
.1C .�1/k/=2 if ! 2 YknYk�1; k � 1:

(2.5)

Then we have

ANk
.!; �Yk�1

; T / � 2�k ; for ! 2 Y nZk;

and

¹T j!W 0 � j � Nk � 1º � Yk:

If k is odd, then f .!/ D 0 for ! 2 YknYk�1 and hence

0 � ANk
.!; f; T / � ANk

.!; �Yk�1
; T / � 2�k ; for ! 2 Y nZk; (2.6)

since f .!/ � �Yk�1
.!/ for ! 2 Yk.

Similarly, if k � 2 is even, then f .!/ D 1 for ! 2 YknYk�1 and hence

0 � ANk
.!; 1� f; T / � ANk

.!; �Yk�1
; T / � 2�k ; for ! 2 Y nZk;

since 1 � f .!/ � �Yk�1
.!/ for ! 2 Yk. It follows that

1 � ANk
.!; f; T / � 1 � 2�k; for ! 2 Y nZk : (2.7)

By the Borel–Cantelli lemma, the inequality (2.4) implies that �.W / D 0

where

W D lim supZk D
\

n�1

� 1
[

kDn
Zk

�

:

In view of the inequalities (2.6) and (2.7), we obtain

lim
k!1

AN2kC1
.!; f; T / D 0; lim

k!1
AN2k

.!; f; T / D 1; (2.8)

for all ! 2 Y nW .

Since �.Y nW / D �.Y / > 0 and T is ergodic, the relations (2.8) extend to

�-a.e. ! 2 �. One takes pk D N2k and qk D N2kC1 to complete the proof of

Theorem 2.1. �

3. Different behaviors for Birkhoff averages in forward and backward time

We describe an example of a conservative, invertible, measure preserving ergodic

transformation .�;B; �; T / and a B-measurable function f W� ! ¹0; 1º such that

lim sup
n!C1

An.!; f; T / D 1; (3.1)
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while

lim
n!C1

An.!; f; T
�1/ D 0; (3.2)

(both) for all ! 2 �.

We wish to thank Benjy Weiss for referring us to an old paper by Dowker

and Erdős [11], where similar examples are described (in a somewhat different

setting).

Set K D .0; 1� D R=Z to be the (left-open and right-closed) unit interval

naturally identified with the circle, let ˛ be any badly approximable irrational

number (i.e. one with bounded partial quotients), and denote by RWK ! K the

˛-rotation on K (determined by the identity R.x/ D x C ˛ .mod 1/).

One proceeds by setting

� D ¹.u;m/ 2 K � ZW 1 � m � h.u/º � R
2; (3.3)

where hWK ! R is defined by the formula

h.u/ WD 22
uC1

u

; u 2 K:

Next, one defines the function f W� ! R by the formula

f .u;m/ D

8

<

:

1 if m �
p

h.u/ D 22
1
u

;

0 otherwise,
(3.4)

and the map T W� ! � by the formula

T .u;m/ D
´

.u;mC 1/ if .u;mC 1/ 2 �;

.R.u/; 1/ otherwise:
(3.5)

In other words, .�; T / is the suspension Z-flow over the rotation .K;R/ with

the delay function Œh.u/�. Note that h is strictly decreasing and

min
u2K

h.u/ D h.1/ D 16:

Finally, consider the product of Lebesgue measure on R and counting measure

on Z, and let � denote the restriction of this measure to �. Since �.�/ D
R 1

0
Œh.t/� dt D 1, it follows that T is a conservative, invertible, measure pre-

serving ergodic transformation on the infinite measure space .�;B; �/ (see e.g.

[11, Section 1.2]).

For these choices of .�; T / and f , we shall validate both relations (3.1)

and (3.2) (in Subsections 3.2 and 3.4, respectively).
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3.1. Some notation. Let !0 D .u0; m0/ 2 � be fixed. Set

!k D .uk ; mk/ D T k!0; for all k 2 Z: (3.6)

It is enough to prove (3.1) and (3.2) for ! D !0, under the added assumption that

m0 D 1 (because .u; 1/ D T �.m�1/.u;m/ lies in the T -orbit of every .u;m/ 2 �).

Since the set

¹k 2 ZWuk�1 ¤ ukº � Z

contains 0 and is unbounded from both below and above, it could be uniquely

arranged into an infinite two-sided increasing sequence of integers t D .tn/n2Z,

with t0 D 0:

� � � < t�2 < t�1 < t0 D 0 < t1 < t2 < � � � :
The set of integers Z is partitioned into finite subsets

Vk D Œtk; tkC1/ \ Z; jVk j D tkC1 � tk D Œh.ˇk/� (3.7)

where

ˇk D utk D Rk.u0/: (3.8)

In fact, we have

un D utk D ˇk D Rk.u0/; for all n 2 Vk : (3.9)

Next we set

pk D Œh.ˇk/� D tkC1 � tk D jVk j; qk D Œ
p
pk �; fol all k 2 Z: (3.10)

Then the following pk-tuples of 0’s and 1’s coincide:

.f .!n//
tkC1�1
nDtk D ..1/qk

; .0/pk�qk
/ WD . 1; : : : ; 1

„ ƒ‚ …

qk times

; 0; : : : ; 0
„ ƒ‚ …

pk�qk times

/; for all k 2 Z:

(3.11)

Since t0 D 0, the second equality in (3.7) implies that

tn D
n
X

kD1
.tk � tk�1/ D

n�1
X

kD0
pk ; for all n � 0; (3.12a)

and

t�n D �
0
X

kD�nC1
.tk � tk�1/ (3.12b)

D �
�1
X

kD�n
pk (3.12c)

D �
n
X

kD1
p�k ; for all n 2 N:
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3.2. Proof of (3.1). Since ˛ is irrational, the sequence .ˇn/
1
nD0 is dense in

K D .0; 1� (see (3.8)), so it achieves its minimum infinitely many times. That

is, the set

S D ¹n � 2Wˇn D �nº D ¹n � 2W�n < �n�1º

is infinite where

�n D min
0�k�n

ˇk ; for all n 2 N:

Since ˛ is a badly approximable irrational, for all integers n � 1, the n C 1

points ˇk; k D 0; 1; 2; : : : ; n, are all different and they partition K D .0; 1�

(viewed as the unit circle) into subintervals of proportional lengths. By “propor-

tional lengths” we mean that the ratio of the lengths of any two such subintervals

is bounded by a constant c1 D c1.˛/ > 1, which is independent of n. This follows,

for example, from the three distance theorem, compare [3].

It follows that �n � c1

nC1 <
c1

n
, and that, for all 0 � k � n such that ˇk ¤ �n,

we have �n

ˇk��n
� c1 and hence ˇk

�n
� 1Cc1

c1
. Set c2 D 1Cc1

c1
> 1 to be a new

constant.

Then, for the above constants c1; c2 > 1,

1 < c2 � ˇk

ˇn
; ˇn <

c1

n
; for all n 2 S and 0 � k � n � 1; (3.13)

because ˇn D �n, for all n 2 S .

The following estimate for all n 2 S follows from (3.12a), (3.13), and the fact

that h is decreasing:

tn D
n�1
X

kD0
Œh.ˇk/� �

n�1
X

kD0
h.c2ˇn/ D n h.c2ˇn/ <

c1

ˇn
h.c2ˇn/ D c1

�n
h.c2�n/:

Observe that qn D Œ
p

h.ˇn/� D Œ
p

h.�n/� for n 2 S (see (3.10)) and that

lim
n2S
n!1

tn

qn
D 0; (3.14)

because lim
n!1

�n D 0 and lim
x!0C

c1 h.c2x/

x
p
h.x/

D 0 (here the assumption c2 > 1 is

used).

In order to prove (3.1), it is enough to show that

lim
n2S

n!C1

AtnCqn
.!0; f; T / D 1 (3.15)
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because An.!0; f; T / � 1 for all n 2 N. We start by splitting the sum

AtnCqn
.!0; f; T / D 1

tn C qn

tnCqn�1
X

kD0
f .T k!0/

D 1

tn C qn

�� tn�1
X

kD0
C
tnCqn�1
X

kDtn

�

f .T k!0/
�

D S1 C S2

tn C qn
;

where

0 � S1 D
tn�1
X

kD0
f .T k!0/ � tn

and, for n 2 S ,

S2 D
tnCqn�1
X

kDtn

f .T k!0/ D
tnCqn�1
X

kDtn

1 D qn

(in view of the definition of f and since qn D Œ
p

h.ˇn/�, for n 2 S ). It follows

from (3.14) that

0 � lim sup
n2S

n!C1

S1

tn C qn
� lim sup

n2S
n!C1

tn

tn C qn
D 0

and that

lim
n2S

n!C1

S2

tn C qn
D lim

n2S
n!C1

qn

tn C qn
D 1;

whence (3.15) follows. This completes the proof of (3.1).

3.3. More notation and estimates. We assume the conventions and notation

introduced above, in particular (3.6), (3.7), and (3.12). We also set new sequences

V 0
k D �V�k; t 0k D �t�k; p0

k D p�k; q0
k D q�k; for all k 2 Z:

Then we have

� � � < t 0�2 < t 0�1 < t 00 D 0 < t 01 < t
0
2 < � � � ;

and

V 0
k D .t 0k�1; t

0
k� \ Z D Œt 0k�1 C 1; t 0k�\ Z:
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Thus (see (3.10))

jV 0
kj D jV�k j D Œh.ˇ�k/� D p�k D p0

k ; for all k 2 Z: (3.16)

Proposition 3.1. For all k 2 Z, we have

.f .!�t 0
k
/; f .!�.t 0

k
�1//; : : : ; f .!�.t 0

k�1
C1/// D .1/q0

k
.0/p0

k
�q0

k
:

Proof. The verification is straightforward:

.f .!�t 0
k
/; f .!�.t 0

k
�1//; : : : ; f .!�.t 0

k�1
C1///

D .f .!t�k
/; f .!t�kC1/; : : : ; f .!t�.k�1/�1//

D .f .!n//
t�.k�1/�1
nDt�k

(3.11)D .1/q0
k
.0/p0

k
�q0

k
: �

Proposition 3.2. For all k 2 Z, we have
X

n2V 0
k

f .!�n/ D q0
k :

Proof. This follows from Proposition 3.1. �

3.4. Proof of (3.2). Denote

an D 1

n

n
X

kD1
f .!�k/; n � 1: (3.17)

where !k D T k!0 D .uk; mk/ for k 2 Z.

In order to prove (3.2), it is enough to show that

lim
n!C1

an D 0: (3.18)

Lemma 3.3. For integers n � t 01, we have 0 < an < 1.

Proof. This follows from (3.17) because f is ¹0; 1º-valued and f .!�1/ D 0while

f .!�t 0
1
/ D 1 (in view of Proposition 3.1 with k D 1). �

Lemma 3.4. Assume that for some k � 2 we have n 2 V 0
k

D .t 0
k�1; t

0
k
� \ Z. Then

an � max.at 0
k�1

; at 0
k
/:
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Proof. The identity .nC 1/.anC1 � an/ D f .!�.nC1// � an (which holds for all

n � 1) and Lemma 3.3 imply the inequalities

´

anC1 > an; if f .!�.nC1// D 1;

anC1 < an; if f .!�.nC1// D 0;
for n � t 01:

By Proposition 3.1, we obtain the inequalities

at 0
k
> at 0

k
�1 > at 0

k
�2 > � � � > at 0

k
�q0

k

D at 0
k

�q0
k
< at 0

k
�q0

k
�1 < � � � < at 0

k�1
C1 < at 0

k�1
;

whence the claim of Lemma 3.4 follows. �

We conclude from Lemma 3.4 that in order to establish the limit (3.18), it

suffices to do it only over the subsequence .t 0
k
/, i.e. to prove that

lim
k!C1

at 0
k

D 0: (3.19)

We have

at 0
k

D 1

t 0
k

t 0
kX

iD1
f .!�i /:

Since Œ1; t 0
k
� \ N can be partitioned into the disjoint union

Œ1; t 0k� \ N D
k
[

jD1
V 0
j ;

and since jV 0
j j D p0

j and
X

n2V 0
j

f .!�n/ D q0
j

(see (3.16) and Proposition 3.2, respectively), we obtain

at 0
k

D
Pk
jD1 q

0
j

Pk
jD1 p

0
j

:

(Recall that p0
j D p�j D Œh.R�j .u0//� � 16 and q0

j D
�q

p0
j

�

�
q

p0
j � 4,

see (3.16), (3.9), and (3.10)).

By the Cauchy–Schwarz (or Jensen) inequality, we have

� k
X

jD1
q0
j

�2

� k

k
X

jD1
.q0
j /
2 � k

k
X

jD1
p0
j
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whence

.at 0
k
/2 D

 Pk
jD1 q

0
j

Pk
jD1 p

0
j

!2

� k
Pk
jD1 p

0
j

:

It remains to prove that

lim
k!C1

Pk
jD1 p

0
j

k
D C1

because then (3.19) and hence (3.2) follow. But

Pk
jD1 p

0
j

k
D
Pk
jD1Œh.R

�j .u0//�

k

is just the k-th ergodic average of the positive function Œh.u/� for the irrational

rotation R�1 evaluated at u0. Therefore

lim
k!C1

Pk
jD1 p

0
j

k
D

1Z

0

Œh.u/�du D C1;

completing the proof of (3.2).

4. Basic consequences of ergodicity

Throughout the remainder of the paper, let .�;B; �/ denote a �-finite measure

space with �.�/ D 1, T W� ! � a conservative, invertible, ergodic, measure-

preserving transformation, and f W� ! R bounded and measurable. For each

! 2 �, H! D � C V! is defined by (1.1). Throughout, S W `2.Z/ ! `2.Z/ will

denote the left shift S W ın 7! ın�1.

Lemma 4.1. If hWR ! C is a locally bounded Borel function, then the family
¹h.H!/º!2� is weakly measurable in the sense that

I
�; 

h
.!/ WD h�; h.H!/ i

defines a measurable function � ! C for all �;  2 `2.Z/.

Proof. Let K D Œ�2 � kf k1; 2 C kf k1�. Since �.H!/ � K for �-a.e. !, it

suffices to prove the theorem for bounded Borel functions K ! C. Let A denote

the set of bounded Borel functions hWK ! C such that I
�; 

h
.!/ is a measurable

function � ! C for all �;  2 `2.Z/. It is clear that A is a vector subspace of all

bounded Borel functions and that it contains the constant function h � 1. We will

now prove some additional properties of A.
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Step 1. A contains the function h.x/ D x. Measurability of f; T , and T �1

imply that

I
�; 

h
.!/ D h�;� i C

X

k2Z
�k kf .T

k!/

is a measurable function of !.

Step 2. If g; h 2 A, then gh 2 A. This follows from

h�; g.H!/h.H!/ i D
X

n2Z
h�; g.H!/ınihın; h.H!/ i

because products and pointwise limits of measurable functions are measurable.

Step 3. If gn 2 A for all n 2 N, gn are uniformly bounded, and gn ! g

pointwise, then g 2 A. If gn are uniformly bounded and converge to g pointwise,

then gn.H!/
s�! g.H!/ by [20, Theorem 3.1], so I

�; 
gn

converge pointwise to

I
�; 
g . As the pointwise limit of measurable functions, I

�; 
g is measurable.

Step 4. C.K/ � A. Since A is an algebra and contains the functions 1 and x, it

contains all polynomials. Since it is closed under uniform limits, by Weierstrass’

theorem A contains all continuous functions.

Step 5. The set E of Borel sets B � K such that �B 2 A is a � -algebra. It is

clear that ; 2 E. Since �B 2 A implies �KnB D 1 � �B 2 A, E is closed under

taking complements. IfB1; B2 2 E, thenB1\B2 2 E because �B1\B2
D �B1

�B2
.

Thus, E is closed under finite intersections and therefore finite unions. Finally,

�S1
nD1Bn

D limN!1 �SN
nD1Bn

implies that E is closed under countable unions.

Step 6. �B 2 A for all Borel sets B � K . For any closed F � K, the character-

istic function �F is the limit of continuous functions max.1 � ndist.x; F /; 0/ as

n ! 1, by Step 4, �F 2 A. Thus, the �-algebra E contains all closed sets, so it

contains B, the Borel �-algebra.

Step 7. h 2 A for all bounded Borel functions h W K ! C. The set A contains

all simple functions as linear combinations of characteristic functions. Since every

bounded Borel function can be uniformly approximated by simple functions, A

contains all bounded Borel functions. �

Lemma 4.2. Let .�;B; �/ be as above, and suppose that T is ergodic, invertible,
and conservative. Suppose further that ¹P!º!2� is a weakly measurable family of
orthogonal projections such thatPT! D SP!S

�. Then Tr.P!/ D dim.range.P!//

is �-almost surely constant – moreover, the � almost sure value of Tr.P!/ must
be either 0 or 1.
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Proof. By weak measurability, hın; P!ıni is a measurable function of ! 2 � for

each n 2 Z, so Q.!/ WD Tr.P!/ is a measurable function of !. Moreover, Q is

T -invariant, since

Q.T!/ D
X

n2Z
hın; PT!ıni

D
X

n2Z
hın; SP!S�ıni

D
X

n2Z
hınC1; P!ınC1i

D Q.!/:

Thus, by ergodicity of T , there exists some c 2 Œ0;1� such that Q.!/ D c for

�-almost every !. To conclude the proof, we note that Q � 0, so it suffices to

show that c > 0 implies c D 1. To that end, assume that c > 0 and consider

f W� ! R defined by

f .!/ D hı0; P!ı0i: (4.1)

Notice that f is nonnegative and that

f .T n!/ D hı0; PTn!ı0i D hı0; SnP!.S�/nı0i D hın; P!ıni; (4.2)

so f need not be T -invariant. However, f cannot vanish almost everywhere, for,

if f .!/ D 0 for �-almost every !, then by taking a countable intersection of sets

of full �-measure, we would have a full-measure set of ! with f .T n!/ D 0 for

all n 2 Z and hence

Q.!/ D
X

n2Z
f .T n!/ D 0

for all such!, i.e. c D 0. In particular, since f does not vanish almost everywhere,

we may choose ı > 0 and�1 � �with �.�1/ > 0 and f .!/ � 2ı for all ! 2 �1.
By removing a set of �-measure zero from �1, we may assume without loss that

Q.!/ D c for all ! 2 �1 as well. By Poincaré recurrence ([1, Theorem 1.1.5]),

we may throw out yet another set of measure zero to get

lim inf
n!1

jf .!/ � f .T n!/j D 0

for all ! 2 �1. Thus, to every ! 2 �1 there corresponds a sequence nj D
nj .!/ ! 1 with

f .T nj!/ � ı (4.3)

for all j . Evidently then,

Q.!/ D
X

n2Z
f .T n!/ D 1 (4.4)

for all ! 2 �1. Therefore, c D 1, as claimed. �
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Notice that Lemma 4.2 need not hold if T is dissipative. Indeed, consider

� D Z endowed with counting measure and T W n 7! n � 1. For n 2 Z, let Pn

denote orthogonal projection onto the one-dimensional subspace spanned by ın.

It is easy to see that

SPnS
� D Pn�1 D PTn;

but Tr.Pn/ D 1 for all n 2 Z.

Theorem 4.3. There exists a compact set † � R such that �.H!/ D † for
�-almost every ! 2 �.

Proof. For �1 < p < q < 1, Lemma 4.1 implies that .�.p;q/.H!//!2� is a

weakly measurable family of projections. Let dp;q denote the almost sure value of

Tr.�.p;q/.H!//, which is either 0 or 1 by Lemma 4.2. Next, let �p;q denote the

(full measure) set of ! 2 � for which Tr.�.p;q/.H!// D dp;q and define

�0 WD
\

p<q;p;q2Q
�p;q ;

which is a set of full measure. Now, for all !; Q! 2 �0, we claim that �.H!/ D
�.H Q!/. To see this, assume E 2 R n �.H!/. Then we can choose p < q rational

with E 2 .p; q/ � R n �.H!/. One then has

0 D Tr.�.p;q/.H!// D dp;q D Tr.�.p;q/.H Q!//;

which implies that E 2 R n �.H Q!/. By symmetry, we are done. �

Corollary 4.4. For all E 2 R, one has �.¹!WE 2 �p.H!/º/ D 0.

Proof. Since the space of sequences uWZ ! C with

un�1 C unC1 C V!.n/un

is two-dimensional, it follows that

Tr.�¹Eº.H!// D dim.ker.H! �E// � 2 < 1

for all !. By Lemma 4.2, the almost sure value of Tr.�¹Eº.H!//must be zero, i.e.

E is �-almost surely not an eigenvalue of H! . �

Corollary 4.5. One has �.¹!W �disc.H!/ ¤ ;º/ D 0.
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Proof. Suppose �disc.H!/ ¤ ;. Given E 2 �disc.H!/, there exist rational

numbers p < q such that .p; q/\ �.H!/ D ¹Eº, so

Tr.�.p;q/.H!// D dim.ker.H! � E// D 1:

In particular, following the notation in the proof of Theorem 4.3, ! … �p;q , so

! … �0. �

The arguments given in [6] and [21] generalize without modification to estab-

lish �-almost everywhere constancy of the spectral decomposition into absolutely

continuous, singular continuous and pure point parts.

Theorem 4.6. There exist compact sets †ac; †sc; †pp � R so that for �-almost
every ! 2 �, one has ��.H!/ D †� for � 2 ¹ac; sc; ppº.

Proof. Let Pac
! ;P

sc
! , and P

pp
! denote projection onto the absolutely continuous,

singular continuous, and pure point subspaces corresponding toH! , respectively.

By following the argument in Theorem 4.3, it clearly suffices to prove weak

measurability of these three families of projections. If Pc
! denotes projection onto

the continuous subspace of H! , we have

h�;Pc
! i D lim

N!1
lim
T!1

1

T

TZ

0

h�; eitH! .1� �Œ�N;N�/e�itH! i; (4.5)

by [21, Equation (5.20)]. If Ps
! denotes projection onto the singular subspace

of H! , then

h�;Ps
! i D inf

ı>0
sup
I2I

jI j<ı

h�; �I .H!/ i; (4.6)

where I denotes the collection of intervals in R with rational endpoints. This

follows from [21, Lemma B.6]. Since P
c
! D P

ac
! C P

sc
! and P

s
! D P

sc
! C P

pp
! , we

are done. �

5. The density of states

In this section, we explore possible notions of the density of states for an ergodic

family .H!/!2�.
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5.1. Ergodic averages of spectral measures. When the underlying measure �

is a probability measure, one can view the density of states as the �-average of the

ı0 spectral measures of the family H! , i.e.
Z

R

g.E/ dk.E/ D
Z

�

hı0; g.H!/ı0i d�.!/: (5.1)

By Cauchy–Schwarz, the integrand on the right hand side is bounded and hence

is L1 with respect to �. In the case when � is an infinite measure and � is �-

finite, we clearly need to treat convergence issues with more care. One way to

work around this is to exhaust� by subsets of finite �-measure and then attempt

to understand the natural restrictions of (5.1) to these subsets. More precisely, let

F denote the collection of measurable subsets F � � having finite �-measure.

For each F 2 F, define a probability measure dkF by
Z

g.E/ dkF .E/ D 1

�.F /

Z

F

hı0; g.H!/ı0i d�.!/ (5.2)

for each continuous function g having compact support. Obviously, dkF is

absolutely continuous with respect to dkF
0

whenever F � F 0, since

kF
0

.B/ D �.F /

�.F 0/
kF .B/C 1

�.F 0/

Z

F 0nF

hı0; �B.H!/ı0i d�.!/: (5.3)

Theorem 5.1. Let † denote the almost sure spectrum of the operators H! from
Theorem 4.3. One then has

[

F 2F
supp.dkF / D †: (5.4)

Proof. For notational ease, let S denote the left hand side of (5.4). To prove the

inclusion “�”, suppose that E0 2 R n †. We may then choose a continuous,

nonnegative function g for which g.E0/ D 1 and gj† � 0. One then has

g.H!/ D 0 for � almost every ! 2 � by the spectral theorem. From this, it

follows that
Z

g.E/ dkF .E/ D 1

�.F /

Z

F

hı0; g.H!/ı0i d�.!/ D 0

for all F 2 F. Thus, for all F , one has E0 … supp.dkF /, so
[

F 2F
supp.dkF / � †;
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which then implies S � †, since† is closed. Conversely, given E0 2 R nS , pick

a continuous nonnegative function g with g.E0/ D 1 such that g vanishes on S .

For each F 2 F, we get

0 D
Z

g.E/ dkF .E/ D 1

�.F /

Z

F

hı0; g.H!/ı0i d�.!/: (5.5)

By �-finiteness, � enjoys a countable exhaustion F1 � F2 � � � � by members of

F. Using (5.5), for each n, hı0; g.H!/ı0i vanishes for �-almost every ! 2 Fn.

Thus, the same inner product vanishes for �-almost every ! 2 �. Lastly, note

that
Z

F

hı0; g.H!/ı0i d�.!/ D
Z

F

hSı1; g.H!/Sı1i d�.!/

D
Z

T�1.F /

hı1; g.H!/ı1i d�.!/;

so, by the same argument as before, hı1; g.H!/ı1i D 0 for �-almost every ! 2 �.

Since ¹ı0; ı1º is a cyclic pair forH! , g.H!/ D 0 for � almost every! 2 �, which

implies E0 … †. �

Consider an exhaustion F1 � F2 � � � � of � by sets of finite measure, and

abbreviate dkl D dkFl . By general measure theory, there exists some weakly

convergent subsequence dklj . One may hope that the sequence dkl itself might

be weakly convergent, but this is not the case.

Theorem 5.2. In general, the measures dkl need not have a weak limit dk as
l ! 1.

Proof. To see this, it suffices to construct an example for which the first moments

Z

E dkl .E/

fail to converge as l ! 1.

Take � D R endowed with Lebesgue measure and an invertible, measure-

preserving, ergodic, conservative transformation T , and put Fl D Œ�l; l � for

l 2 ZC. Next, choose a sequence .an/ 2 ¹0; 1ºZC such that the Cesarò averages

sl D a1 C � � � C al

l



Ergodic Schrödinger operator 891

fail to converge as l ! 1. It is not hard to see that we may construct a bounded,

continuous function f so that

�lZ

�l�1

f .x/ dx D
lC1Z

l

f .x/ dx D al :

With this setup, define the family of Schrödinger operators .Hx/x2R as usual, and

observe that
Z

E dkl .E/ D 1

�.Fl /

Z

Fl

hı0; H!ı0i d�.!/

D 1

2l

Z

Œ�l;l�

f .x/ dx

D sl ;

which fails to converge by construction. In particular, dkl is not weakly conver-

gent. �

The example above generalizes readily. Assume given .�;B; �/ which is �-

finite with �.�/ D 1, and an exhaustion F1 � � � � of � by sets of finite measure

such that �.FnnFn�1/ > 0 for n > 1. We can then choose a sequence an so that

the weighted Cesarò averages sl D a1C���Cal

�.Fl /
fail to converge. With the convention

F0 D ;, the choice

f D
1
X

jD1

aj

�.Fj n Fj�1/
�Fj nFj �1

produces an example for which the spatial density of states cutoffs do not converge

weakly.

5.2. Thermodynamic limit of finite truncations. In the finite-measure case,

we can also view the density of states as a weak� limit of averages of spectral

measures or the weak� limit of uniform measures placed on the spectra of finite

cutoffs. More precisely, given N 2 N, let PN;CW `2.Z/ ! `2.¹0; : : : ; N � 1º/
and PN;�W `2.Z/ ! `2.¹�N; : : : ;�1º/ denote the canonical projections. Then,

for ! 2 � and N 2 ZC, define probability measures dk˙
!;N and d Qk˙

!;N on R via
Z

g.E/ dk˙
!;N .E/ D 1

N
Tr.PN;˙g.H!/P

�
N;˙/;

Z

g.E/ d Qk˙
!;N .E/ D 1

N
Tr.g.PN;˙H!P

�
N;˙//;
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for each continuous function g. For later use, we point out that taking g.E/ � E,

we have

Z

E dkC
!;N .E/ D

Z

E d QkC
!;N .E/ D 1

N

N�1
X

nD0
f .T n!/ D AN .!; f; T /; (5.6)

Z

E dk�
!;N .E/ D

Z

E d Qk�
!;N .E/ D 1

N

�1
X

nD�N
f .T n!/

D AN .!; f ı T �1; T �1/:

(5.7)

Theorem 5.3. There exists �� � � of full �-measure such that, for every
continuous function g, there exist constants xI˙.g/ and

x
I˙.g/ such that

x
I˙.g/ D lim inf

N!1

Z

g dk˙
!;N (5.8)

D lim inf
N!1

Z

g d Qk˙
!;N ; (5.9)

xI˙.g/ D lim sup
N!1

Z

g dk˙
!;N (5.10)

D lim sup
N!1

Z

g d Qk˙
!;N : (5.11)

for all ! 2 ��.

Proof. First, notice that

Z

g.E/ dkC
!;NC1.E/ D 1

N C 1

N
X

jD0
hıj ; g.H!/ıj i

D N

N C 1

1

N

N
X

jD1
hıj ; g.H!/ıj i C 1

N C 1
hı0; g.H!/ı0i

D N

N C 1

1

N

N�1
X

jD0
hıj ; g.HT!/ıj i C 1

N C 1
hı0; g.H!/ı0i

D N

N C 1

Z

g.E/ dkC
T!;N .E/C 1

N C 1
hı0; g.H!/ı0i:

Taking lim inf and lim sup of both sides proves that lim inf
R

g dkC
!;N and

lim sup
R

g dkC
!;N are T -invariant functions of !. A similar argument shows that

this holds with � replacing C. Thus, we find a full-measure set�g and constants

x
I˙.g/, xI˙.g/ so that (5.8) and (5.10) hold true for ! 2 �g .
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Next, letP denote the collection of all polynomials having rational coefficients,

and�� D
T

p2P�p. Uniformly approximating a continuous function g by p 2 P

on K WD Œ�2 � kf k1; 2 C kf k1�, we observe (5.8) and (5.10) hold for all

continuous g and all ! 2 ��.

Next, consider p 2 P and ! 2 ��. By an explicit calculation, one has
ˇ
ˇ
ˇ
ˇ

Z

p dk˙
!;N �

Z

p d Qk˙
!;N

ˇ
ˇ
ˇ
ˇ

D O.1=N/;

where the implicit constant depends on p but not on N . Thus, (5.9) and (5.11)

hold for p 2 P. Passing to general g via uniform approximation concludes the

proof. �

Theorem 2.1 shows us that Theorem 5.3 is optimal in the sense that we cannot

expect the “upper” and “lower” density of states limits to agree. To see this, assume

given .�;B; �; T / ergodic, conservative, invertible, and �-finite with�.�/ D 1,

and choose a measurable function f W� ! ¹0; 1º as in Theorem 2.1. Define

V!.n/ D f .T n!/ andH! D �CV! as usual. Then, with g.E/ � E, Theorem 2.1

and (5.6) imply

x
IC.g/ D 0 ¤ 1 D xIC.g/:

Additionally, choosing f as in Section 3 (3.1) and (3.2) imply

xI�.g/ D
x
I�.g/ D 0 ¤ 1 D xIC.g/;

so the behavior on the left and right half-lines may not be the same.

6. The Lyapunov exponents

As before, let .�;B; �/ be a measure space, and T a non-singular invertible

ergodic map. Throughout this section, we will also assume that T is conservative.

Assume that f andH! are defined as above. Let us define the one-step transfer

matrix

A.E; !/ D
�
E � f .!/ �1

1 0

�

and the n-step transfer matrix

A.E; n; !/ D

8

ˆ̂
<

ˆ
:̂

A.E; T n�1!/ � � �A.E; !/ if n > 0;

I if n D 0;

A.E; T �jnj!/�1 � � �A.E; T �1!/�1 if n < 0:
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In this section we explore the growth of norms of transfer matrices and its relation

to the spectral properties of H! .

Theorem 6.1. For any E 2 C, there exist finite numbers xL˙.E/,
x
L˙.E/, called

upper and lower Lyapunov exponents, such that for �-a.e. !,

lim sup
n!˙1

1

jnj logkA.E; n; !/k D xL˙.E/; (6.1)

lim inf
n!˙1

1

jnj logkA.E; n; !/k D
x
L˙.E/: (6.2)

Proof. Denote

fn.!/ D logkA.E; n; !/k (6.3)

and

Nf ˙.!/ D lim sup
n!˙1

1

jnjfn.!/; (6.4)

N
f ˙.!/ D lim inf

n!˙1

1

jnjfn.!/: (6.5)

We prove that Nf ˙.!/ and
N
f ˙.!/ are �-a.e. constant.

Sub-multiplicativity of the matrix norm implies that for m; n � 0,

fmCn.!/ � fm.!/C fn.T
m!/:

In particular, with m D 1, this implies

fnC1.!/

n
� f1.!/

n
C fn.T!/

n

and taking the lim inf as n ! C1, we conclude

N
f C.!/ �

N
f C.T!/

Thus, for any 
 2 R, the set

B
 D ¹!W
N
f C.!/ < 
º

obeys T �1B
 � B
 . Since T is conservative and ergodic, this implies that

�.B
 / D 0 or �.Bc
 / D 0. Thus, there is a constant c such that
N
f C.!/ D c

for �-a.e. !. This constant is precisely
x
LC.E/.

The proof for the other three constants is analogous. �
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Obviously,
x
LC.E/ � xLC.E/ and

x
L�.E/ � xL�.E/. But there are also

inequalities between Lyapunov exponents at C1 and those at �1.

Proposition 6.2. Both lower Lyapunov exponents are smaller or equal than both
upper Lyapunov exponents, i.e.

x
L�.E/ � xLC.E/;

x
LC.E/ � xL�.E/:

Proof. Use the same notation as in the proof of the previous theorem. Notice that

for n > 0,

f�n.!/ D fn.T
�n!/: (6.6)

Let ı <
x
LC.E/. Then for �-a.e. every !, the inequality fn.!/=n � ı holds

for finitely many positive values of n. Thus, denoting

An D ¹!W fn.!/=n > ıº

we have

�
�

� n
[

m�1

\

n�m
An

�

D 0

so for some value of m � 1, the setW D
T

n�mAn obeys

�.W / > 0:

Since T is invertible and ergodic, by [1, Proposition 1.2.2], for �-a.e. !, ! is in

T nW for infinitely many values of n, so by (6.6), f�n.!/=n > ı for infinitely

many values of n. Thus, xL�.E/ > ı.
Since this holds for any ı <

x
LC.E/, we have shown xL�.E/ �

x
LC.E/. The

other inequality is analogous. �

However, the upper and lower Lyapunov exponents are not necessarily equal.

To see this, we will rely on the construction in Section 2 and the avalanche

principle. The avalanche principle was introduced by Goldstein–Schlag [13]; we

will use a strengthened version due to Bourgain–Jitomirskaya [4].

Lemma 6.3 ([4, Lemma 5]). Let� be sufficiently large,N D3s, andA1; : : : ; AN 2
SL.2;R/ such that kAj k � � and

ˇ
ˇlogkAjk C logkAjC1k � logkAjC1Aj k

ˇ
ˇ < 1

2
log�:

Then

ˇ
ˇ
ˇ log








1
Y

jDN
Aj






C

N�1
X

jD2
logkAjk �

N�1
X

jD2
logkAjC1Aj k

ˇ
ˇ
ˇ < C1

N

�
;

where C1 is an absolute constant.
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Note that if all the all conditions of the above lemma hold and

ˇ
ˇlogkAjk C logkAjC1k � logkAjC1Ajk

ˇ
ˇ < 


for some 
 � 1
2

log�, then the above inequalities imply

log







1
Y

jDN
Aj






 �

N�1
X

jD2
logkAjC1k � .N � 2/
 � C1

N

�
; (6.7)

which is the form we will use below.

Proposition 6.4. For large enough M > 0, there exist bounded sampling func-
tions f W� ! R such that xLC.E/ >

x
LC.E/ when jEj > M .

Proof. Let us follow the construction in Theorem 2.1, noting that we can force

all the numbers Nk in that construction to be powers of 3. We pick a sampling

function f such that the potential takes two possible values, v1 and v2, and that

�-almost surely,

lim sup
s!1

1

3s
j¹j 2 ZW 1 � j � 3s ; f .T j!/ D v1ºj D 1;

lim inf
s!1

1

3s
j¹j 2 ZW 1 � j � 3s ; f .T j!/ D v1ºj D 0:

Then, for every E, !-almost surely, denoting A.x/ D
�
x �1
1 0

�

,

lim sup
s!1

1

3s

3s
X

jD1
logkA.E; T j!/k D max

i
logkA.E � vi/k;

lim inf
s!1

1

3s

3s
X

jD1
logkA.E; T j!/k D min

i
logkA.E � vi /k:

Sub-multiplicativity of matrix norms guarantees that

x
LC.E/ � lim inf

s!1
1

3s
log kA.E; 3s; !/k � min

i
logkA.E � vi/k:

If the avalanche principle is applicable to A.E; j; !/ with a suitable choice of �,

(6.7) implies that

xLC.E/ � lim sup
s!1

1

3s
log kA.E; 3s ; !/k � max

i
logkA.E � vi/k � C1

�
� 
:
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Thus, xLC.E/ >
x
LC.E/ will follow from

max
i

logkA.E � vi /k � min
i

logkA.E � vi/k >
C1

�
C 
: (6.8)

Thus, it suffices to show that there is a suitable choice of v1; v2 such that, for

all large enough E, there are choices of �, 
 such that the avalanche principle is

applicable and (6.8) holds. We will now show that this is true if we choose

v1 D ı D 2C1; v2 D �ı; � D E � ı; 
 D 4

.E � ı/2 :

For large enough E, it is then obvious that


 <
1

2
log�;

ı

1CE C ı
>
C1

�
C 
:

We will now need some norm estimates. Let

g.x/ D 1

2
log

�

1C x2

2
C
r

x2 C x4

4

�

:

If A 2 SL.2;R/ and Tr.A�A/ D 2C x2 for some x 2 R, then

logkAk D g.x/;

since kAk2 is the larger eigenvalue of A�A and eigenvalues of A�A are the

solutions of�2�.2Cx2/�C1 D 0. It is straightforward to compute Tr.A.x/�A.x//
and Tr.A.y/�A.x/�A.x/A.y// to see

logkA.x/k D g.x/;

logkA.x/A.y/k D g.
p

x2y2 C .x � y/2/:

For x > 0,

g.x/ D 1

2
log

�

1C x2

2
C
r

x2 C x4

4

�

� 1

2
log

�

1C x2

2
C x2

2

�

� 1

2
log.x2/

D log x;

which implies that

logkA.E ˙ ı/k � log�:
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In the opposite direction, for x > 0, we use
p

1C 4=x2 � 1C 2=x2 to estimate

g.x/ � log x D 1

2
log

� 1

x2
C 1

2
C 1

2

r

1C 4

x2

�

� 1

2
log

�

1C 2

x2

�

� 1

x2
:

For 1 � x � y, using this inequality three times and noting
p

x2y2 C .x � y/2 � x;

we get

jg.x/C g.y/ � g.
p

x2y2 C .x � y/2/j � 3

x2
C 1

2
log

x2y2 C .x � y/2

x2y2
� 4

x2

where, for the last step, we used log
�

1C .x�y/2
x2y2

�

� .x�y/2
x2y2 � 1

x2 . Thus, for large

enough E and x; y 2 ¹E � ı; E C ıº,

jlogkA.x/k C logkA.y/k � logkA.x/A.y/kj < 
:

For x > 0,

g0.x/ D 1

2

x C 2xCx3

2

q

x2C x4

4

1C x2

2
C
q

x2 C x4

4

� 1

2

x C 1

1C x2

2
C x C x2

2

� 1

2.1C x/

so, by the mean value theorem,

g.x C ı/ � g.x � ı/ � ı

1C x C ı

for x > ı. In particular,

g.E C ı/ � g.E � ı/ >
C1

�
C 
:

By these estimates, the avalanche principle is applicable and, by the estimates

above, xLC.E/ >
x
L�.E/ for all large enoughE. Note that g is an even function so

the above discussion applies with minimal modifications to the case of negative

E with large enough jEj. This completes the proof. �

Proposition 6.5. There exists a conservative, invertible, measure preserving er-
godic transformation .�;B; �; T /, a sampling function f W� ! R and M > 0

such that
xLC.E/ > xL�.E/

when E > M , and
xLC.E/ < xL�.E/

when E < �M .
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Proof. We start with the ergodic system and function f constructed in Section 3.

We rescale f so that it takes two possible values, v1 D ı and v2 D �ı, such that

for almost every !,

lim sup
N!1

1

N
j¹j 2 ZW 1 � j � N; f .T j!/ D ıºj D 1;

lim
N!1

1

N
j¹j 2 ZW 1 � j � N; f .T �j!/ D ıºj D 0:

The first of these inequalities implies

lim sup
s!1

1

3s
j¹j 2 ZW 1 � j � 3s; f .T j!/ D ıºj � 1

3
: (6.9)

From here, we use the same approach as in the previous proof: the avalanche

principle is used to prove that different asymptotics of Birkhoff averages imply

different asymptotics of the subadditive logs of matrix norms. If we choose

ı D 6C1; � D E � ı; 
 D 4

.E � ı/2
;

(the extra factor of 3 for ı comes from the factor of 3 in (6.9)), since then


 <
1

2
log�;

ı

1CE C ı
> 3

�C1

�
C 


�

and we prove as in the previous proof that

xLC.E/ � 1

3
g.E C ı/C 2

3
g.E � ı/ � C1

�
� 
 > g.E � ı/ � xL�.E/: �

An analogous argument proves the analogous proposition for lower Lyapunov

exponents:

Proposition 6.6. There exists a conservative, invertible, measure preserving er-
godic transformation .�;B; �; T /, a sampling function f W� ! R and M > 0

such that

x
LC.E/ >

x
L�.E/

when E > M , and

x
LC.E/ <

x
L�.E/

when E < �M .

The following is the extension of the Ishii–Pashtur theorem to the infinite

measure setting.
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Theorem 6.7. †ac � ¹E 2 RW xLC.E/ D 0 or xL�.E/ D 0º
ess
:

Proof. Denote

Z D ¹E 2 RW xLC.E/ D 0 or xL�.E/ D 0º:

For every E 2 R n Z,

Nf �.E; !/ > 0 and Nf C.E; !/ > 0 (6.10)

holds for a.e. ! 2 �. Since fn.E; !/ are measurable functions, so are
N
f ˙.E; !/

and Nf ˙.E; !/; thus, the set

¹.E; !/ 2 R ��W (6.10) holdsº

is measurable. Thus, by Fubini’s theorem, for �-a.e. ! 2 �, there is a setB! with

jB! j D 0 such that (6.10) holds for all E 2 .R n Z/ n B! .

By a result of Last–Simon [17, Theorem 3.10], for a.e. E w.r.t. the absolutely

continuous part of the spectral measure of H! , we have for at least one choice of

the ˙ sign,

lim sup
N!1

1

N log2N

N
X

nD1
kA.E;˙n; !/k2 < 1 (6.11)

(the theorem of Last–Simon is stated for half-line operators, but that implies the

whole line result using standard arguments).

However, it is easy to see that Nf ˙.E; !/ > 0 implies that the corresponding

lim sup in (6.11) is C1. Thus, P
.ac/
! ..RnZ/nB!/ D 0, and jB!j D 0 then implies

P
.ac/
! .R n Z/ D 0

for �-a.e. !. Thus, �ac.H!/ � xZess for �-a.e. !, which completes the proof. �

Conspicuously absent from our discussion here is a version of Kotani theory

(see, e.g., [7, 15, 19] for some papers on Kotani theory in the finite measure case)

or some hints as to why no natural analogue exists. We regard results in this

direction for the infinite measure case as very interesting.
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