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The massless Dirac equation in two dimensions:

zero-energy obstructions and dispersive estimates

M. Burak Erdoğan,1 Michael Goldberg,2 and William R. Green3

Abstract. We investigateL1 ! L1 dispersive estimates for the massless two dimensional

Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies

the natural t�
1
2 decay rate, which may be improved to t�

1
2

� for any 0 �  < 3
2

at

the cost of spatial weights. We classify the structure of threshold obstructions as being

composed of a two dimensional space of p-wave resonances and a finite dimensional space

of eigenfunctions at zero energy. We show that, in the presence of a threshold resonance,

the Dirac evolution satisfies the natural decay rate except for a finite-rank piece. While in

the case of a threshold eigenvalue only, the natural decay rate is preserved. In both cases

we show that the decay rate may be improved at the cost of spatial weights.

Mathematics Subject Classification (2020). Primary: 35Q41; Secondary: 35L40, 47B15.

Keywords. Dirac operator, eigenvalue, dispersive estimate, resonance.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 936

2 Free Dirac dispersive estimates . . . . . . . . . . . . . . . . . . . . . . 940

3 Free resolvent expansions around zero energy . . . . . . . . . . . . . . 943

4 Small energy dispersive estimates when zero is regular . . . . . . . . . 947

5 Small energy resolvent expansion when zero is not regular . . . . . . . 956

6 Small energy dispersive estimates when zero is not regular . . . . . . . 963

7 Threshold characterization . . . . . . . . . . . . . . . . . . . . . . . . 966

8 High energy dispersive estimates . . . . . . . . . . . . . . . . . . . . . 969

9 Integral estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 975

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 976

1 M. Burak Erdoğan was partially supported by NSF grant DMS-1501041.

2 Michael Goldberg is supported by Simons Foundation Grant 281057.

3 William R. Green is supported by Simons Foundation Grant 511825.

https://creativecommons.org/licenses/by/4.0/


936 M. B. Erdoğan, M. Goldberg, and W. R. Green

1. Introduction

We consider the linear Dirac equation with a potential

i@t .x; t/ D .Dm C V.x// .x; t/;  .x; 0/ D  0.x/: (1)

Here the spatial variable x 2 R
2, and  .x; t/ 2 C

2. The free Dirac operator Dm

is defined by

Dm D �i˛ � r Cmˇ D �i

2
X

kD1

˛k@k Cmˇ (2)

where m � 0 is a constant, and the 2 � 2 Hermitian matrices ˛0 WD ˇ and j̨

satisfy

j̨˛k C ˛k j̨ D 2ıjk1C2; j; k 2 ¹0; 1; 2º: (3)

We consider the massless case, when m D 0. For concreteness, we use

ˇ D

�

1 0

0 �1

�

; ˛1 D

�

0 1

1 0

�

; ˛2 D

�

0 �i

i 0

�

: (4)

There is much interest in the massless case due to its connection to graphene,

see [26] for example. The Dirac equation was derived by Dirac as an attempt

to connect the theories of quantum mechanics and special relativity. Dirac’s

derivation allowed for a model that is first order in time, as required for quantum

mechanical interpretations while having a finite speed of propagation and allowing

for external fields in a relativistically invariant manner. For a broader introduction

to the Dirac equation, we refer the reader to the excellent text of Thaller, [33].

The following identity,1 which follows from (3),

.Dm � �1/.Dm C �1/ D .�i˛ � r Cmˇ � �1/.�i˛ � r Cmˇ C �1/

D .��Cm2 � �2/
(5)

allows us to formally define the free Dirac resolvent operatorR0.�/ D .Dm ��/�1

in terms of the free resolvent R0.�/ D .�� � �/�1 of the Schrödinger operator

for � in the resolvent set:

R0.�/ D .Dm C �/R0.�
2 �m2/: (6)

For the massless equation, when m D 0, we have

R0.�/ D .�i˛ � r C �/R0.�
2/ WD .D0 C �/R0.�

2/:

1 Here and throughout the paper, scalar operators such as �� C m2 � �2 are understood as

.�� C m2 � �2/1C2 . Similarly, we denote Lp.R2/ � Lp.R2/ as Lp.R2/.
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Much of the analysis in this paper will be based on properties ofR0.�/ as� ! 0. It

should be emphasized that while the Dirac and Schrödinger resolvents are closely

related by (6), the massless Dirac operator has very different behavior from the

massive Dirac or Schrödinger operators in the low energy regime. For example,

R0.0/ exists as a well-defined operator while R0.�
2/ has a logarithmic singularity

at the origin and the resolvent of a massive Dirac operator has a logarithmic

singularity at the threshold � D ˙m. These differences carry over into the low-

energy asymptotic structure of resolvents of D0 C V.x/, which is again distinct

from the threshold expansions for either Schrödinger or massive Dirac operators,

[20, 21].

Detailed asymptotic expansions for the resolvents of both D0 and its pertur-

bations are computed in Section 3. For certain choices of potential, the operator

D0 CV.x/ has an eigenvalue at zero. It is also possible for zero to be a non-regular

point of the spectrum without an eigenvalue present, a phenomenon known as a

resonance. We classify zero energy resonances and eigenvalues in terms of dis-

tributional solutions to H D 0 in Section 7. We say that zero energy is regular

if there are no distributional solutions to H D 0 with  2 L1.R2/, which

may also be characterized by the uniform boundedness of the perturbed resolvent

.D0 C V � �/�1 as � ! 0. We show that the classification of resonances for

the massless Dirac equation and their dynamical consequences do not follow the

same patterns as the Schrödinger equation.

Before stating the dynamical results, we introduce some notation that will be

used throughout the paper. The function �.�/ will denote a smooth, even cut-off

around the origin in R. That is, �.�/ D 1 if j�j < �1 and �.�/ D 0 if j�j > 2�1

for a sufficiently small, fixed constant �1 > 0. The complementary cut-off is

Q� D 1��. We use the notation hyi WD .1C jyj/
1
2 , and writeH WD D0 CV for the

perturbed Dirac operator. We also write jV.x/j . hxi�ˇ to indicate that the entries

of the potential all satisfy jVij .x/j . hxi�ˇ , 1 � i; j � 2, where A . B denotes

that there is an absolute constant C so that A � CB . We define the weighted

spaces L1; D ¹f W h�if 2 L1.R2/º, and L1;� D ¹f W h�i�f 2 L1.R2/º. Our

main results are the following small energy bounds:

Theorem 1.1. Assume that V is self-adjoint and jV.x/j . hxi�ˇ .

i) Assume that zero is regular. If ˇ > 2, then

ke�itH�.H/kL1!L1 . hti� 1
2 :

Further, for 0 �  < 3
2
, if ˇ > 2C 2 , then

ke�itH�.H/kL1;!L1;� . hti� 1
2

� :
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ii) If zero is not regular, then for fixed 0 �  < 1
2
,

ke�itHPac�.H/ � Ft kL1;!L1;� . hti� 1
2

� ;

provided that ˇ > 3C 2 . Here Ft is a finite-rank operator, which satisfies

the bounds supt kFtkL1!L1 . 1 and if jt j > 2 one has kFt kL1!L1 .

.log jt j/�1.

iii) If there is only an eigenvalue at zero, then Ft D 0.

We emphasize that our main results are the low energy bounds presented above.

We also provide an explicit construction of the operatorFt , see (70) below. For the

sake of completeness, we include the high energy result stated below. Throughout

the paper we use the notation a� to mean a � � for an arbitrarily small, but fixed

� > 0.

Theorem 1.2. Assuming V is self-adjoint, has continuous entries satisfying

jV.x/j . hxi�ˇ and there are no embedded eigenvalues in the real line. If ˇ > 2,

then

ke�itH Q�.H/hH i�2�kL1!L1 . hti� 1
2 :

Further, if 0 �  � 3
2

and ˇ > min.2C 2; 3/, we have

ke�itH Q�.H/hH i�2�kL1; !L1;� . hti� 1
2

� :

We note that the assumption of a lack of embedded eigenvalues is not needed

for our low energy results in Theorem 1.1, as the spectral properties in a neigh-

borhood of zero are dictated by the threshold behavior. The lack of embedded

eigenvalues has been established in the massive case, [10], and in the massless

case for a sufficiently small potential, [13].

We establish the dispersive bounds by employing the functional calculus for the

Dirac operator. For the class of potentials we consider, H is self-adjoint and the

spectrum of H coincides with the real line. Under these circumstances, see [31],

the Stone’s formula for spectral measures yields:

e�itHPac.H/f D
1

2�i

Z

R

e�it�ŒRC
V .�/ � R�

V .�/�f d� (7)

Here the perturbed resolvents are R˙
V .�/ D lim�!0C.D0 C V � .�˙ i�//�1, and

their difference provides the spectral measure. The operator Pac.H/ is needed

in the event that there is an eigenvalue at zero energy. We take advantage of the
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identity (6) to develop the spectral measure from Schrödinger resolvents. The

Schrödinger free resolvent

R˙
0 .�

2/ D lim
�!0C

.�� � .�2 ˙ i�//�1

and the perturbed Schrödinger resolvent operators

R˙
V .�

2/ D lim
�!0C

.��C V � .�2 ˙ i�//�1

are well defined as operators between weighted L2.R2/ spaces, see [2].

To the authors’ knowledge, this is the first study of dispersive estimates for

the two dimensional massless Dirac equation. A recent paper of Cacciafesta and

Seré [12] investigated local smoothing estimates for the massless Dirac equation

in dimensions two and three. The massive Dirac has been studied by the Erdoğan

and Green [21], with Toprak [22]. The three-dimensional massive Dirac equation

is more studied going back to the work of Boussaid [9], and D’Ancona and

Fanelli [15]. The evolution kernel for the free Dirac operator in three dimensions

was developed in [4] through the Feynman path integral. Levinson’s Theorem for

a massless three dimensional Dirac equation with spherical potential was studied

in [8] through a careful study of the Jost functions. Here it was noted that the

low energy behaves quite differently in the massive and massless cases. The

characterization of threshold obstructions and their effect on the dispersive bounds

have recently been studied by the Erdoğan, Green, and Toprak [23]. Much of the

work has roots in the study of other dispersive equations, notably the Schrödinger

[30, 32, 24, 19, 20, 16, 34] and wave [15, 28, 5] equations.

Our low energy results in Theorem 1.1 establish the natural time decay hti� 1
2

for the Dirac evolution while assuming less decay of the potential than has been

required in the massive case. The improvement comes from using a more delicate

argument based on Lipschitz continuity of the spectral measure, rather than direct

integration by parts in the Stone’s formula. A similar argument was used in [19].

In addition, this is the first result in which all the slow time decay caused

by a p-wave resonance is controlled in a finite rank term. Previous works on

the Schrödinger or wave equation, [30, 20, 28], did not observe this asymptotic

structure. Even in the weighted L2 setting, [30], finite rank leading order terms

had an error whose decay was only logarithmically better. The method we develop

for computing spectral measures here can recover an analogous result (finite

rank leading order, with polynomial decay of the remainder) for the Schrödinger

evolution as well.

There is also much interest in the study of non-linear Dirac equations. See [25,

6, 14, 11] for example. There is a longer history in the study of spectral properties
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of Dirac operators. Limiting absorption principles for the Dirac operators have

been studied in [35, 27, 17, 13]. In particular, the recent work [17] of the

authors applies in all dimensions n � 2 for both massive and massless equations,

while the recent work of Carey et. al. [13] applies to massless equations. The

lack of embedded eigenvalues, singular continuous spectrum and other spectral

properties is well established, [7, 27, 3, 13, 10]. In particular, for the class of

potentials we consider, the Weyl criterion implies that �ac.H/ D �.D0/ D

.�1;1/. There are no embedded eigenvalues provided the potential is small,

see Theorem 3.15 in [13].

The paper is organized as follows. We begin by proving the natural dispersive

estimates for the free massless Dirac operation in Section 2. In Section 3 we

develop a variety of expansions for the free resolvent that will be needed to study

the spectral measure in (7). In Section 4 we prove Theorem 1.1 when zero energy

is regular. In Section 5 we establish more delicate expansions of the perturbed

resolvent around the threshold in the presence of resonances and/or eigenvalues

so that we may prove Theorem 1.1 when the threshold is not regular in Section 6.

In Section 7 we provide a characterization of the threshold obstructions that

relates them naturally to the various subspaces of L2 that arise in the resolvent

expansions. Section 8 provides the high energy estimates to prove Theorem 1.2.

Finally, Section 9 contains the various integral estimates needed throughout the

paper.

2. Free Dirac dispersive estimates

Due to the relationship between the massless free Dirac evolution and the free

wave equation, D2
0f D ��f , we can expect a natural time decay rate of size

jt j�
1
2 as one has in the wave equation (when m D 0) provided the initial data

has more than 3
2

weak derivatives in L1.R2/. In the case of Dirac equation, as

in Schrödinger equation, the time decay can be improved at the cost of spatial

weights.

Theorem 2.1. We have the estimate

ke�itD0hD0i� 3
2

�kL1!L1 . t�
1
2 :

Further, one has

khxi�e�itD0hD0i�2�hyi� kL1!L1 . hti� 1
2

� ;

for any 0 �  � 3
2
.
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The proof of this theorem is based on asymptotic expansions of the spectral

measure of the free Dirac operator, both at low energies and high energies. To best

utilize these expansions, we employ the notation

f .�/ D zO.g.�//

to denote
d j

d�j
f D O

� d j

d�j
g

�

; j D 0; 1; 2; 3; : : : :

The notation primarily refers to derivatives with respect to the spectral variable

� in the expansions for the integral kernel of the free resolvent operator. In the

context of (6), due to the gradient, we use the zO.g/ to refer to jx � yj as well. If

the derivative bounds hold only for the first k derivatives we write f D zOk.g/.

In addition, if we write f D zOk.1/, we mean that differentiation up to order k is

comparable to division by � and/or jx � yj. This notation applies to operators as

well as scalar functions; the meaning should be clear from the context.

Proof of Theorem 2.1. First note that in the free case the Stone’s formula, (7), is

e�itD0 D

Z

R

e�it�ŒRC
0 � R�

0 �.�/ d�: (8)

We consider the low energy first. Using (26), the formula ŒRC
0 �R�

0 �.�
2/.x; y/ D

i
2
J0.�jx � yj/, and the asymptotics for the Bessel functions, see [1, 32], we can

write the integral kernel of the difference of the resolvent operators as

ŒRC
0 � R�

0 �.�/.x; y/

D .�i˛ � r C �/ŒRC
0 �R�

0 �.�
2/.x; y/

D

8

ˆ

<

ˆ

:

i�

2
�
�2

4
˛ � .x � y/C zO2.�

3jx � yj2/ if j�jjx � yj � 1;

ei�jx�yj Q!C.�jx � yj/C e�i�jx�yj Q!�.�jx � yj/ if j�jjx � yj & 1;

(9)

where Q!˙.�jx � yj/ satisfies

Q!˙.�jx � yj/ D zO.j�j.1C j�jjx � yj/�
1
2 /:

Let �0.�/.x; y/ WD �.�/ŒRC
0 � R�

0 �.�/.x; y/. The formula (9) implies that

j�0.�/.x; y/j . j�j.1C j�jjx � yj/�
1
2 ; (10)

j@��0.�/.x; y/j . .1C j�jjx � yj/
1
2 ; (11)

j@2
��0.�/.x; y/j . jx � yj.1C j�jjx � yj/

1
2 : (12)
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Thus, using (10) and (11) we have

j�0.�1/.x; y/ � �0.�2/.x; y/j . j�1 � �2j
1
2 j�2j

1
2 ; (13)

for j�1j � j�2j . 1. To obtain this consider the case j�1 � �2j � j�2j and

the case j�1 � �2j � j�2j separately. In the former case the bound follows

from (10). In the latter case, the mean value theorem and (11) give the bound

j�1��2j.1Cj�2jjx�yj/
1
2 . Interpolating this with (10) and noting that j�1j � j�2j,

we obtain (13).

We also state two other bounds for �0 which will be useful in later sections.

The interpolation argument above also implies that

j�0.�1/.x; y/ � �0.�2/.x; y/j . j�1 � �2j
1
2

C j�2j
1
2

�hx � yi ; 0 �  �
1

2
:

(14)

Similarly, using (11) and (12) we obtain the bound

j@��0.�1/.x; y/ � @��0.�2/.x; y/j

. j�1 � �2j jx � yj .1C j�2jjx � yj/
1
2 ; 0 �  � 1:

(15)

Using the support of �.�/ in the definition of �0, it is easy to see that
ˇ

ˇ

ˇ

ˇ

Z

R

e�it��0.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. 1:

For jt j & 1, again using the support of �.�/ and (13), we have
ˇ

ˇ

ˇ

ˇ

Z

R

e�it��0.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

D
1

2

ˇ

ˇ

ˇ

ˇ

Z

R

e�it�.�0.�/.x; y/ � �0

�

� �
�

t

�

.x; y//d�

ˇ

ˇ

ˇ

ˇ

. jt j�
1
2

1
Z

�1

1 d� . jt j�
1
2 :

(16)

For the weighted bounds, after two integration by parts, we have
ˇ

ˇ

ˇ

ˇ

Z

R

e�it��0.�/.x; y/ d�
ˇ

ˇ

ˇ D
1

t2

ˇ

ˇ

ˇ

ˇ

Z

R

e�it�@2
��0.�/.x; y/ d�

ˇ

ˇ

ˇ .
1

t2
hxi

3
2 hyi

3
2 :

(17)

Interpolating these bounds we conclude for any  2
�

0; 3
2

�

that
ˇ

ˇ

ˇ

ˇ

Z

R

e�it��0.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. hti� 1
2

� hxihyi

hti

�

:
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For large energies, to prove the first claim it suffices to bound

sup
L�1

ˇ

ˇ

ˇ

ˇ

1
Z

�1

e�it��� 3
2

� Q�.�/�.�=L/ŒRC
0 � R�

0 �.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

: (18)

Noting that RC
0 � R�

0 D ŒD0 C ��J0.�jx � yj/ is comparable to �J0.�jx � yj/,

see (9) and [1]. Using Lemmas 3.2 and 5.3 in [28], we have the bounds

j(18)j .

8

ˆ

<

ˆ

:

t�
1
2 ;

hxi
1
2 hyi

1
2

t
3
2

C
1

t2
;

t > 2:

However these estimates rely on oscillation that may not be present when t is

small. To obtain a uniform bound for small times, the integrand must be absolutely

convergent. Given the growth of j!˙.�jx � yj/j . j�j, we need a multiplier that

decays like j�j�2� to conclude

sup
L�1

ˇ

ˇ

ˇ

ˇ

1
Z

�1

��2� Q�.�/�.�=L/ŒRC
0 � R�

0 �.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. 1

uniformly in x and y for small t . The additional powers of � correspond to extra

mollification in the x variable, using hD0i�2� instead of hD0i� 3
2 �. �

3. Free resolvent expansions around zero energy

In this section we study the behavior of the free Dirac resolvent more carefully by

using the properties of free Schrödinger resolventR0.�/ D .����/�1. Following

[32, 19, 20, 22], we have the following expansion for the Schrödinger resolvent.

These results have their roots in work of Jensen and Nenciu, [29].

Lemma 3.1. Let 0 < � � 1. For �jx � yj < 1, we have the expansions

R˙
0 .�

2/.x; y/ D g˙.�/CG0 C zO2.�
2jx � yj2 log.�jx � yj//

D g˙.�/CG0 C g˙
1 .�/G1 C �2G2

C zO3.�
4jx � yj4 log.�jx � yj//;

(19)

where (with  denoting Euler’s constant)

g˙.�/ D �
1

2�
.log.�=2/C /˙

i

4
; (20)
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g˙
1 .�/ D �

�2

4
g˙.�/ �

�2

8�
; (21)

G0f .x/ D �
1

2�

Z

R2

log jx � yjf .y/ dy; (22)

G1f .x/ D

Z

R2

jx � yj2f .y/ dy; (23)

G2f .x/ D
1

8�

Z

R2

jx � yj2 log jx � yjf .x/ dy: (24)

For �jx � yj & 1, we have

R˙
0 .�

2/.x; y/ D e˙i�jx�yj!˙.�jx � yj/; (25a)

j!
.j /
˙ .y/j . .1C jyj/�

1
2

�j ; j D 0; 1; 2; : : : : (25b)

Using (6) we have

R˙
0 .�/.x; y/ D Œ�i˛ � r C �I �R˙

0 .�
2/.x; y/ (26)

We write (for j�jjx � yj � 1)

R˙
0 .�/ D G0;0 C �g˙.�/G1;1 C �G1;0 C g˙

1 .�/G2;1 C �2G2;0

C zO2.�
3jx � yj2 log.�jx � yj//;

(27)

where

G0;0.x; y/ D R0.0/.x; y/ D �i˛ � rG0.x; y/ D
i˛ � .x � y/

2�jx � yj2
; (28)

G1;1.x; y/ D 1; (29)

G1;0.x; y/ D G0.x; y/ D �
1

2�
log jx � yj D .��/�1.x; y/; (30)

G2;1.x; y/ D �i˛ � rG1.x; y/ D �2i˛ � .x � y/; (31)

G2;0.x; y/ D �i˛ � rG2.x; y/ D �
i˛ � r.jx � yj2 log jx � yj/

8�
(32)

The subscripts indicate the powers of � and log� multiplying each operator

in (27).
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Lemma 3.2. We have

R˙
0 .�/.x; y/ D G0;0.x; y/CO.j�j.1C .j�jjx � yj/0�//

D O
�

�C
1

jx � yj

�

;
(33)

j@�R
˙
0 .�/.x; y/j . .j�jjx � yj/0� C .j�jjx � yj/

1
2 ; (34)

j@2
�R

˙
0 .�/.x; y/j . j�j�1.j�jjx � yj/0� C j�j

1
2 jx � yj

3
2 : (35)

Proof. The expansions follow from (27) when j�jjx � yj � 1. Recall that when

j�j jx � yj & 1, we have the representation

R˙
0 .�/.x; y/ D e˙i�jx�yj Q!˙.�jx � yj/;

where Q!˙.�jx � yj/ satisfies

Q!˙.�jx � yj/ D zO.j�j.1C j�jjx � yj/�
1
2 /: (36)

Also using (28), the error in (33) is bounded by

Q�.�jx � yj/.j�j
1
2 jx � yj�

1
2 C jx � yj�1/ . j�j:

The bounds (34) and (35) for j�j jx�yj & 1 follow similarly using the high energy

representation of R˙
0 above. �

As a corollary we have the following Lipschitz bounds. The 1
2
-Lipschitz bound

cannot be improved without growth in jx � yj, which leads to weights in the

dispersive bounds, due to the large �jx � yj term.

Corollary 3.3. For j�1j � j�2j . 1, we have

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�1 � �2j
1
2 j�2j

1
2

�.1C jx � yj0�/; (37)

and more generally

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j

. j�1 � �2j
1
2

C j�2j
1
2

��.jx � yj C jx � yj0�/; 0 �  <
1

2
:

(38)

Moreover for each 0 �  � 1, we have

j@�R
˙
0 .�1/.x; y/ � @�R

˙
0 .�2/.x; y/j

. j�1 � �2j j�1j��.jx � yj0� C jx � yj
1
2

C /; 0 �  � 1:
(39)
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Proof. Note that (37) follows from (38) with  D 0. When j�1 � �2j & j�2j,

the bound (38) follows from (33) since the leading term G0;0 cancels out. When

j�1 ��2j � j�2j, using the mean value theorem, (34), and noting that j�1j � j�2j,

we obtain

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�1 � �2j..j�2jjx � yj/0� C .j�2jjx � yj/
1
2 /:

Also note that when j�2jjx � yj & 1,

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�2j
1
2 jx � yj�

1
2 ;

and when j�2jjx � yj � 1 by (33)

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�2j.1C .�2jx � yj/0�/:

Interpolating these bounds, we obtain (38). The proof of (39) is similar using (34)

and (35). �

In the case when zero is not regular, see Definition 4.1 below, we will need a

further expansion of R˙
0 :

Lemma 3.4. We have the expansion for the kernel of the free resolvent

R˙
0 .�/.x; y/ D G0;0.x; y/C�g

˙.�/G1;1.x; y/C�G1;0.x; y/CE
˙
0 .�/.x; y/: (40)

Further, when j�j � 1, the error term satisfies

jE˙
0 .�/.x; y/j . j�j.j�jhx � yi/k ; 0 < k < 1:

Moreover, for 0 �  < 1
2

and j�1j � j�2j . 1, we have

jE˙
0 .�2/.x; y/�E

˙
0 .�1/.x; y/j . j�1 ��2j

1
2 C j�2j

1
2 �Ckhx�yik ;

1

2
� k < 1:

Proof. The first bound for the error term follows from (27) when j�jjx � yj � 1.

When j�jjx � yj & 1, it follows by writing

jE˙
0 .�/.x; y/j .

j�j

.1C j�jjx � yj/
1
2

C jx � yj�1 C j�jj log.j�jjx � yj/

. j�j.j�jhx � yi/k ;



The massless Dirac equation in two dimensions 947

provided that k > 0. Similarly, note that when j�jjx � yj � 1 we have

j@�E
˙
0 .�/.x; y/j . .j�jjx � yj/k; 0 < k < 1;

and for j�jjx � yj & 1 we have

j@�E
˙
0 .�/.x; y/j . .j�jjx � yj/

1
2 C j log.j�jjx � yj/ . .j�jhx � yi/k ; k �

1

2
:

Using these bounds with 1
2

� k < 1, we obtain the Lipschitz bound by

interpolating the trivial bound,

jŒE˙
0 .�1/ �E˙

0 .�2/.x; y/j . j�2j.j�2jhx � yi/k ;

with the bound we obtain using the mean value theorem:

jŒE˙
0 .�1/ � E˙

0 .�2/�.x; y/j . j�1 � �2j.j�2jhx � yi/k : �

4. Small energy dispersive estimates when zero is regular

As usual, see for example [32, 20, 21, 23, 22], we use the symmetric resolvent

identity to understand the low energy evolution. In the Dirac context the potentials

are matrix-valued, and we have the assumption that the matrix V WR2 ! C
2�2 is

self-adjoint. Hence, we may use the spectral theorem to write

V D B�

�

�1 0

0 �2

�

B

with �j 2 R. To employ the symmetric identity, with �j D j�j j
1
2 , we write

V D B�

�

�1 0

0 �2

�

U

�

�1 0

0 �2

�

B D v�Uv;

where

U D

�

sign.�1/ 0

0 sign.�2/

�

and v D

�

a b

c d

�

WD

�

�1 0

0 �2

�

B: (41)

Note that the entries of v are . hxi�ˇ=2, provided that the entries ofV are . hxi�ˇ .

Define the operators

M˙.�/ D U C vR˙
0 .�/v

�; (42)

and let

T WD U C vG0;0v
� D M˙.0/: (43)
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Definition 4.1. We make the following definitions that characterize zero energy

obstructions.

i) We define zero energy to be regular if T D M˙.0/ is invertible on L2.R2/.

ii) We say there is a resonance of the first kind at zero if T is not invertible on

L2, but S1vG1;1v
�S1 is invertible on S1L

2 where S1 is the Riesz projection

onto the kernel of T .

iii) We say there is a resonance of the second kind at zero if S1vG1;1v
�S1 is not

invertible.

iv) Let S2 be the Riesz projection onto the kernel of S1vG1;1v
�S1, then S1 � S2

has rank at most two and S1 � S2 ¤ 0 corresponds to the existence of

“p-wave” resonances at zero. S2 ¤ 0 corresponds to the existence of an

eigenvalue at zero. In contrast to the massive case, see [21], there are no “s-

wave” resonances in the massless case. See Section 7 below for a complete

characterization.

v) Noting that vG0;0v
� is compact and self-adjoint, T D U C vG0;0v

� is a

compact perturbation of U . Since the spectrum of U is in ¹˙1º, zero is an

isolated point of the spectrum of T and the kernel is finite dimensional. It

then follows that S1 is a finite rank projection, and since S2 � S1, so is S2.

We employ the following terminology from [32, 19, 20]:

Definition 4.2. We say an operator T WL2.R2/ ! L2.R2/ with kernel T .�; �/ is

absolutely bounded if the operator with kernel jT .�; �/j is bounded from L2.R2/ to

L2.R2/.

We note that Hilbert–Schmidt and finite-rank operators are absolutely bounded

operators. Recall that the Hilbert–Schmidt norm of an integral operator T with

integral kernel T .x; y/ is defined by

kT k2
HS D

Z

R4

jT .x; y/j2 dx dy:

We now concentrate on the case when zero is regular. The following expan-

sions for M˙.�/ around zero energy suffice in this case.

Lemma 4.3. Assume that jV.x/j . hxi�ˇ .

i) If ˇ > 2, then

M˙.�/ D T CO.�1�/: (44)
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ii) If ˇ > 2C 2 for some 0 �  < 1
2
, then for 0 < j�1j � j�2j . 1, we have

M˙.�1/ �M˙.�2/ D O.j�1 � �2j
1
2

C j�2j
1
2

��/: (45)

iii) If ˇ > 3, then

@�M
˙.�/ D O.�0�/: (46)

iv) If ˇ > 3C 2 for some 0 �  � 1, then for 0 < j�1j � j�2j . 1 , we have

@�M
˙.�1/ � @�M

˙.�2/ D O.j�1 � �2j j�1j��/: (47)

In all statements above the error terms are understood in the Hilbert–Schmidt

norm.

We note that the uniform L1 ! L1 bound requires only the bounds (44)

and (45) with  D 0, hence only requiring that the entries of V satisfy jV.x/j .

hxi�2�.

Proof. Using (42), (43), and (33), we have

ŒM˙.�/ � T �.x; y/ D v.x/.R˙
0 .�/ � G0;0/.x; y/v

�.y/

D O
�

j�j1� 1C jx � yj0�

hxi1Chyi1C

�

:

This yields (44). To obtain (45), we use (38):

ŒM˙.�1/ �M˙.�2/�.x; y/

D v.x/.R˙
0 .�1/ � R˙

0 .�2//.x; y/v
�.y/

D O
�

j�1 � �2j
1
2

C j�2j
1
2

�� jx � yj C jx � yj0�

hxi1CChyi1CC

�

D O
�

j�1 � �2j
1
2

C j�2j
1
2

�� 1C jx � yj0�

hxi1Chyi1C

�

:

This yields (45). Similarly, writing

@�M
˙.�/.x; y/ D v.x/@�R

˙
0 .�/.x; y/v

�.y/;

we note that (46) follows from (34), and (47) from (39). �

The following lemma establishes analogous bounds for .M˙.�//�1 when zero

is regular.
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Lemma 4.4. Assume that jV.x/j . hxi�ˇ and that zero is a regular point of the

spectrum. If ˇ > 2, then M˙.�/ is invertible with a uniformly bounded inverse

provided that 0 < j�j � 1.

i) If ˇ > 2C 2 for some 0 �  < 1
2
, then for 0 < j�1j � j�2j � 1, we have

.M˙.�1//
�1 � .M˙.�2//

�1 D O.j�1 � �2j
1
2

C j�2j
1
2

��/: (48)

ii) If ˇ > 3, then

@�.M
˙.�//�1 D O.�0�/: (49)

iii) If ˇ > 3C 2 for some 0 �  � 1, then for 0 < j�1j � j�2j � 1 , we have

@�.M
˙.�1//

�1 � @�.M
˙.�2//

�1 D O.j�1 � �2j j�1j��/: (50)

In all statements above the error terms are understood as absolutely bounded

operators.

Proof. When zero is regular, the operator T is invertible with an absolutely

bounded inverse. The absolute boundedness of this operator is shown in the

massive case in Lemma 7.1 in [21]. When m D 0 the proof is simpler and

can be proven as in the Schrödinger case, see Lemma 2.7 in [16]. Therefore, by

Lemma 4.3, M˙.�/ is invertible with a uniformly bounded inverse provided that

0 < j�j � 1 and jV.x/j . hxi�2�.

Using resolvent identity, the boundedness of .M˙/�1 and (45) we obtain (48):

.M˙.�1//
�1 � .M˙.�2//

�1 D .M˙.�2//
�1ŒM˙.�2/ �M˙.�1/�.M

˙.�1//
�1

D O.j�1 � �2j
1
2

C j�2j
1
2

��/:

To obtain (49), we use (46) and the identity

@�.M
˙.�//�1 D �.M˙.�//�1.@�M

˙.�//.M˙.�//�1:

Finally, (50) follows from (48), (46), and (49) after writing

@�.M
˙.�1//

�1 � @�.M
˙.�2//

�1

D Œ.M˙.�2//
�1 � .M˙.�1//

�1�.@�M
˙.�2//.M

˙.�2//
�1

C .M˙.�1//
�1Œ@�.M

˙.�2// � .@�M
˙.�1//�.M

˙.�2//
�1

C .M˙.�1//
�1.@�M

˙.�1//Œ.M
˙.�2//

�1 � .M˙.�1//
�1�: �
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We are now ready to prove the small energy assertions of Theorem 1.1 when

zero is regular by studying the small energy portion of the Stone’s formula, (7),

1
Z

�1

e�it��.�/ŒRC
V � R�

V �.�/.x; y/ d�:

In particular, we will prove the following family of bounds, which includes the

uniform bound when  D 0.

Proposition 4.5. Fix 0 �  < 3
2

and assume that jV.x/j . hxi�2�2�. If zero is

regular, then we have the bound

ˇ

ˇ

ˇ

ˇ

1
Z

�1

e�it��.�/ŒRC
V � R�

V �.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. hxi hyi hti� 1
2

� : (51)

In [21], the authors studied the solution operator as an operator H1 ! BMO

because the operator G0;0 is not bounded from L1 ! L2 or from L2 ! L1.

Simple use of iterated resolvent identity was not enough to deal with this problem

in the massive case since one relies on the orthogonality properties of the most

singular terms in the expansion of the operator M˙.�/�1 D .U C vR˙
0 .�/v

�/�1

to get uniform estimates in x; y. In [22], this problem was overcome by selectively

using the iterated resolvent identity forM˙.�/�1 only for certain terms arising in

the expansion.

Since we do not rely on orthogonality arguments here, we need only use the

iterated symmetric resolvent identity:

R˙
V D R˙

0 � R˙
0 V R˙

0 C R˙
0 V R˙

0 V R˙
0 � R˙

0 V R˙
0 v

�M�1
˙ vR˙

0 V R˙
0 : (52)

We consider the contribution of the first three summands in (52) to the Stone’s

formula.

Lemma 4.6. Let �˙ D R˙
0 � R˙

0 V R˙
0 C R˙

0 V R˙
0 V R˙

0 . Then provided that

jV.x/j . hxi�2�2� for some 0 �  < 3
2
, then we have the bound

ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/Œ�C � ���.�/.x; y/d�

ˇ

ˇ

ˇ

ˇ

. hxi hyi hti� 1
2

� :

Proof. The contribution of the first term is the free evolution which was dealt with

above in Theorem 2.1. We note the following useful algebraic identity

M
Y

kD0

AC
k

�

M
Y

kD0

A�
k D

M
X

`D0

�

`�1
Y

kD0

A�
k

�

.AC
`

� A�
` /

�

M
Y

kD`C1

AC
k

�

; (53)
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It suffices to consider the contribution of the following to the integral

z� WD �0V RC
0 C �0V RC

0 VR
C
0 C R�

0 V�0V RC
0 ;

where�0.�/ D �.�/.RC
0 .�/�R�

0 .�//:The remaining terms have similar structure

with differences �0 on the right instead of the left.

Using the bounds (10) and (33), and noting Lemma 9.2, we see that the kernel

of z� is bounded in �; x; y and it is supported in j�j . 1. Therefore, we restrict our

attention to the case jt j > 1.

We start with the case 0 �  < 1
2
. Using the Lipschitz bounds (14), (38), and

the pointwise bounds (10), (33), Lemmas 9.2 and 9.3 we see that for j�j j . 1,

j D 1; 2,

jz�.�1/.x; y/ � z�.�2/.x; y/j . j�1 � �2j
1
2

Chxi hyi :

Therefore, as in (16), we have

Z

R

e�it� z�.�/.x; y/d� D
1

2

Z

j�j.1

e�it�
h

z�.�/.x; y/ � z�
�

� �
�

t

�

.x; y/
i

d�

D O.jt j�
1
2

� /hxi hyi :

The case 1
2

�  < 3
2

is similar after an integration by parts. That is, we need to

bound
Z

R

e�it� z�.�/.x; y/d� D
1

it

Z

R

e�it�@�
z�.�/.x; y/d�

To do this, we need Lipschitz bounds on @�
z�. Writing

@�
z� D @�.�0V RC

0 /C @�.�0V RC
0 V RC

0 /C @�.R
�
0 V�0VR

C
0 / WD �1 C �2 C �3;

we seek to bound �j .�1/� �j .�2/ for j D 1; 2; 3. We consider �1, the others are

similar. Note that

�1.�1/ � �1.�2/ D Œ@��0.�1/ � @��0.�2/�V RC
0 .�1/

C @��0.�2/V ŒR
C
0 .�1/ � RC

0 .�2/�

C Œ�0.�1/ � �0.�2/�V @�R
C
0 .�1/

C �0.�2/V Œ@�R
C
0 .�1/ � @�R

C
0 .�2/�:

(54)
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Let 0 2 Œ0; 1/ be such that  D 0C 1
2

and using (15) and (39) (for consistency,

we take j�1j � j�2j),

j@��0.�1/.x; y/ � @��0.�2/.x; y/j

. j�1 � �2j0 jx � yj0.1C j�2jjx � yj/
1
2

. j�1 � �2j0hxi hyi ;

j@�R
˙
0 .�1/.x; y/ � @�R

˙
0 .�2/.x; y/j

. j�1 � �2j0 j�1j�0�.jx � yj0� C jx � yj
1
2

C0/

. j�1 � �2j0 j�1j�0�hxi hyi .1C jx � yj0�/:

In addition using (14) with  D 1
2

we have

j�0.�1/.x; y/ � �0.�2/.x; y/j . j�1 � �2jhx � yi
1
2 . j�1 � �2j0hxi

1
2 hyi

1
2 :

Where the last bound follows since j�1 ��2j < 1 and 0 < 1. Similarly, using (38)

with  D 1
2
� we obtain

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�1 � �2j0hxi
1
2 hyi

1
2 .1C jx � yj0�/;

Finally by (10) and (33), we have

j�0.�/.x; y/j . 1; jR˙
0 .�/.x; y/j . .1C jx � yj�1/:

Putting this all together and using Lemma 9.2, we see that

jŒ�1.�1/ � �1.�2/�.x; y/j

. j�1 � �2j0 j�1j�1Chxi hyi

Z

R2

hy1i�2�.1C jy � y1j�1/dy1

. j�1 � �2j0 j�1j�1Chxi hyi :

Similarly, using Lemmas 9.3 and 9.4, we see that �2 and �3 satisfy the same

estimate. Thus
Z

R

e�it� z�.�/.x; y/d�

D
1

it

Z

R

e�it�@�
z�.�/.x; y/d�

D
1

2it

Z

j�j.1

e�it�
h

@�
z�.�/.x; y/ � @�

z�
�

� �
�

t

�

.x; y/
i

d�

D O.jt j�1�0/hxi hyi

D O.jt j�
1
2

� /hxi hyi : �
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The lemma below takes care of the contribution of M�1 term for 0 �  < 1
2
.

In contrast to the massive case [21, 22] or Schrödinger [19], for the massless Dirac

bound, the argument employed here does not require any cancellation between the

“+” and “-” terms in the Stone’s formula, (7).

Lemma 4.7. Fix 0 �  < 1
2
. Assume that jV.x/j . hxi�2�2�. Let T .�/ be an

absolutely bounded operator satisfying ( for j�j; j�1j; j�2j . 1 with j�1j � j�2j)

kjT .�/jkL2!L2 . j�j�1C;

kjT .�1/ � T .�2/jkL2!L2 . j�1j�1Cj�1 � �2j
1
2

C :

Then

ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/ŒR˙
0 V R˙

0 v
�T vR˙

0 VR
˙
0 �.�/.x; y/d�

ˇ

ˇ

ˇ

ˇ

. hti� 1
2

� hxi hyi :

Note that the hypothesis is satisfied by the mean value theorem if T .�/ D
zO1.�

� 1
2

C/ as an absolutely bounded operator. That is to say, jT .�/j . �� 1
2

C

and j@�T .�/j . �� 3
2

C. Also note that when zero is regular M�1 satisfies the

hypothesis provided that jV.x/j . hxi�2�2�, see Lemma 4.4.

Proof. Dropping ˙ signs, let zR WD vR0V R0. Using the support of �.�/ as well

as the bounds (33) and (38) for the free resolvent and the integral estimates in

Lemmas 9.4 and 9.3 we have (provided that jV.x/j . hxi�2�2�, 0 �  < 1
2
)

j zR.�/.y1; y/j . .1C jy1 � yj0�/hy1i�1� (55)

j zR.�1/.y1; y/ � zR.�2/.y1; y/j . j�1 � �2j
1
2

C j�2j
1
2

��hyi hy1i�1�: (56)

Note that (55) and Lemma 9.2 imply that L2
y1

norm of zR.�/.y1; y/ is bounded

uniformly in y and �, while (56) implies that the L2
y1

norm of zR.�1/.y1; y/ �

zR.�2/.y1; y/ is bounded by hyi j�1 � �2j
1
2

C .

Using these bounds and the hypothesis for T , using (53) we see that (with

� WD R˙
0 V R˙

0 v
�T vR˙

0 V R˙
0 )

j�.�1/.x; y/ � �.�2/.x; y/j

. hxi hyi j�1 � �2j
1
2

C j�1j�1C; j�j j � 1; j D 1; 2:
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We use (33) and (38) for the free resolvent terms. Therefore, by applying the

Lipschitz argument as in (16) and the proof of Lemma 4.6, we bound the integral

by

hti� 1
2

�hxi hyi

1
Z

�1

�

min
�

j�j;
ˇ

ˇ

ˇ� �
�

t

ˇ

ˇ

ˇ

���1C

d� . hti� 1
2

�hxi hyi : �

For 1
2

�  < 3
2
, we have the following lemma which we state only for M�1.

We dropped ˙ signs since we will not rely on any cancellation between ˙ terms.

Lemma 4.8. Fix 1
2

�  < 3
2
. Assume that jV.x/j . hxi�2�2�. Then

ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/ŒR0V R0v
�M�1vR0V R0�.�/.x; y/d�

ˇ

ˇ

ˇ

ˇ

. hti� 1
2

�hxi hyi :

Proof. We only need consider the case jt j > 1. Let 0 D  � 1
2
. After an

integration by parts, and ignoring the case when the derivative hits the cutoff �, it

suffices to prove that

ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/@�ŒR0V R0v
�M�1vR0V R0�.�/.x; y/d�

ˇ

ˇ

ˇ

ˇ

. jt j�0hxi hyi :

Let zR WD vR0VR0 as in the proof of Lemma 4.7. Since jV.x/j . hxi�2�2�, the

bound (55) is valid. Using (56) with  D 0 � 1
2

for 0 2 .1
2
; 1/ and with  D 0

for 0 2 .0; 1
2
�, we have

j zR.�1/.y1; y/ � zR.�2/.y1; y/j . j�1 � �2j0.1C hyi0� 1
2 /hy1i�1�

Using (33), (34), and integral estimate Lemma 9.3 (with  D 1
2
), we have

j@�
zR.�/.y1; y/j . j�j0�hyi

1
2 hy1i�1�: (57)

Finally we need a Lipschitz bound for @�
zR. First note that using (38) with

 D 0 � 1
2

for 0 2 .1
2
; 1/ and with  D 0 for 0 2 .0; 1

2
�, we have

jR˙
0 .�1/.x; y/ � R˙

0 .�2/.x; y/j . j�1 � �2j0.1C hx � yi0� 1
2 C jx � yj0�/:

Moreover, recalling (39), and taking j�1j � j�2j as usual, we have

j@�R
˙
0 .�1/.x; y/ � @�R

˙
0 .�2/.x; y/j

. j�1 � �2j0 j�1j�0�.jx � yj0� C jx � yj /:
(58)
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Using these, (33), and (34), we obtain

j@�
zR.�1/.y1; y/ � @�

zR.�2/.y1; y/j

. j�1 � �2j0 j�1j�0�

�

Z

R2

hy1i�1��.jy1 � y2j�1 C jy1 � y2j /hy2i�2�2�

� .jy2 � yj�1 C jy2 � yj /dy2

. j�1 � �2j0 j�1j�0�hyi .1C jy1 � yj0�/hy1i�1�:

Where the spatial integral is bounded by noting that jx � yj � hxi hyi and

using Lemma 9.3. Using these pointwise bounds we have

k zR.�/.y1; y/kL2
y1

. 1; k@�
zR.�/.y1; y/kL2

y1

. j�j0�hyi ;

k zR.�1/.y1; y/ � zR.�2/.y1; y/kL2
y1

. j�1 � �2j0hyi ;

k@�
zR.�1/.y1; y/ � @�

zR.�2/.y1; y/kL2
y1

. j�1 � �2j0 j�1j�0�hyi :

Finally note that by Lemma 4.4, M�1 satisfies similar bounds (without x; y

dependence) as an absolutely bounded operator. Therefore, letting

� D @�ŒR0VR0v
�M�1vR0VR0�;

we see that

j�.�1/.x; y/ � �.�2/.x; y/j . j�1 � �2j0 j�1j�0�:

This finishes the proof using the Lipschitz argument as in (16) and the proof of

Lemmas 4.6 and 4.7. �

We now prove Proposition 4.5.

Proof of Proposition 4.5. Using the expansion (52), we see that the first terms

are controlled by Lemma 4.6. Then it remains only to control the tail of the

Born series, with the operators M˙.�/�1. By the expansion for M˙.�/�1 in

Lemma 4.4, we see that Lemma 4.7 suffices to establish the desired bound for

0 �  < 1
2
. The case 1

2
�  < 3

2
is established in Lemma 4.8. �

5. Small energy resolvent expansion when zero is not regular

We now consider the case when zero is not a regular point of the spectrum. We

first provide the necessary expansions to develop the spectral measure when there
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are eigenvalues and/or resonances at zero energy, then establish the dispersive

estimates. We re-emphasize here that this is the first result, to our knowledge, in

which the contribution of a “p-wave” resonance is controlled in a finite-rank term.

Previous results in the Schrödinger (or wave equation) context, [30, 20, 28], have

not achieved this. Even in the weighted L2 setting, [30], any finite rank pieces

had an error whose decay was only logarithmically better. This argument can be

modified to apply to the Schrödinger evolution as well.

With S1 being the Riesz projection onto the kernel of T , define .T CS1/
�1 WD

T1. One can see that S1T1 D T1S1 D S1. Then, we have the following variations

of Lemma 4.3 and Lemma 4.4.

Lemma 5.1. Assume that jV.x/j . hxi�ˇ . If ˇ > 2 C 2k for some 0 < k < 1,

then

M˙.�/ D T C �g˙.�/vG1;1v
� C �vG1;0v

� CE˙
1 .�/;

where

kE˙
1 .�/kHS . j�j1Ck :

Moreover, for fixed 0 �  < 1
2

and 1
2

� k < 1, if ˇ > 2 C 2k, then ( for

j�1j � j�2j . 1)

kE˙
1 .�1/ � E˙

1 .�2/kHS . j�1 � �2j
1
2

C j�2j
1
2

�Ck:

Proof. The lemma immediately follows from the bounds in Lemma 3.4 noting

that E˙
1 .�/ D vE˙

0 .�/v
�. �

Lemma 5.2. Assume that jV.x/j . hxi�ˇ and that zero is not a regular point of

the spectrum.

i) If ˇ > 2 C 2k for some 0 < k < 1, then M˙.�/ C S1 is invertible with a

uniformly bounded inverse provided that 0 < j�j � 1, and we have

.M˙.�/C S1/
�1 D T1 � �g˙.�/T1vG1;1v

�T1 � �T1vG1;0v
�T1 CE˙

2 .�/;

(59)

where

E˙
2 .�/ D O.j�j1Ck/:

ii) If ˇ > 2C 2 for some 0 �  < 1
2
, then for 0 < j�1j � j�2j � 1, we have

.M˙.�1/CS1/
�1 � .M˙.�2/CS1/

�1 D O.j�1 ��2j
1
2

C j�2j
1
2

��/: (60)

Moreover, for fixed 0 �  < 1
2

and 1
2

� k < 1, if ˇ > 2 C 2k, then ( for

j�1j � j�2j � 1)

E˙
2 .�1/ �E˙

2 .�2/ D O.j�1 � �2j
1
2

C j�2j
1
2

�Ck/: (61)

All bounds above are understood in the sense of absolutely bounded operators.
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Proof. The first assertion follows from the invertibility of T C S1, (44) and a

Neumann Series computation. Recalling that T1 D .TCS1/
�1, the expansion (59)

follows from Lemma 5.1 noting that

.M˙.�/C S1/
�1 D ŒT C S1 C �g˙.�/vG1;1v

� C �vG1;0v
� CE˙

1 .�/�
�1

D ŒI C �g˙.�/T1vG1;1v
� C �vT1G1;0v

� C T1E
˙
1 .�/�

�1T1

D T1 � �g˙.�/T1vG1;1v
�T1 � �vT1G1;0v

�T1 � T1E
˙
1 .�/T1

C

1
X

j D2

.�1/j�jT1;

where � D �g˙.�/T1vG1;1v
� C �vT1G1;0v

� C T1E
˙
1 .�/ D O.j�j1�/. Therefore

(since k < 1),

E˙
2 .�/ D �T1E

˙
1 .�/T1 C

1
X

j D2

.�1/j�jT1 D O.j�j1Ck/:

The proof of (60) is identical to the proof of (48). Finally (61) follows from the

Lipschitz bound for E˙
1 in Lemma 5.1, the bound � D O.j�j1�/, and by noting

that the first two terms in the definition of � satisfies the Lipschitz bound

j�1 � �2j
1
2

C j�2j
1
2

��: �

To invert M˙.�/ D U C vR˙
0 .�

2/v, for small �, we use the following lemma

(see Lemma 2.1 in [29]) repeatedly.

Lemma 5.3. LetM be a closed operator on a Hilbert spaceH and S a projection.

Suppose M C S has a bounded inverse. Then M has a bounded inverse if and

only if

B WD S � S.M C S/�1S

has a bounded inverse in SH, and in this case

M�1 D .M C S/�1 C .M C S/�1SB�1S.M C S/�1:

We apply this lemma withM D M˙.�/ andS D S1. The fact thatM˙.�/CS1

has a bounded inverse in L2.R2/ follows from Lemma 5.2. We also need to prove

that

B˙ D S1 � S1.M
˙.�/C S1/

�1S1 (62)
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has a bounded inverse in S1L
2.R2/. We have, using (59) and the fact that

S1T1 D S1,

B˙.�/ D S1 � S1.M
˙.�/C S1/

�1S1

D S1 � S1ŒT1 � �g˙.�/T1vG1;1v
�T1 � �T1vG1;0v

�T1 CE˙
2 .�/�S1

D �g˙.�/S1vG1;1v
�S1 C �S1vG1;0v

�S1 � S1E
˙
2 .�/S1:

We write

B˙.�/ D �A˙.�/ � S1E
˙
2 .�/S1; (63)

A˙.�/ D S1v.g
˙.�/G1;1 C G1;0/v

�S1: (64)

The remainder of this section is devoted to inverting A˙.�/ in a neighborhood of

zero under different spectral assumptions.

Proposition 5.4. Assume that jV.x/j . hxi�2�. For sufficiently small �, the

operators A˙.�/ are invertible on S1L
2. Further,

A˙.�/�1 D ŒS2vG1;0v
�S2�

�1 C zO1..log�/�1/;

as an operator on S1L
2. Morever

AC.�/�1 � A�.�/�1 D zO1..log�/�2/:

Furthermore, if S1 D S2, we have

A˙.�/�1 D ŒS2vG1;0v
�S2�

�1;

which is independent of � and the choice of sign.

We note that these operators are finite rank on L2 since S1L
2 is a finite-

dimensional subspace.

Proof. We begin by writing the projection S1 D Q ˚ S2 where Q is orthogonal

to S2. We note that by Lemmas 7.2 and 7.5, Q corresponds to a projection onto

the p-wave resonance space. By Corollary 7.3, Q has rank at most two. We first

note that when Q D 0, the statement follows (64) and the orthogonality property

that S2vG1;1 D 0. The invertibility of the resulting operator is guaranteed by

Lemma 7.6. The following lemma implies the proposition when S2 D 0.

Lemma 5.5. When Q ¤ 0, the operator QA˙.�/Q is invertible for sufficiently

small �. Further,

.QA˙.�/Q/�1 D zO1..log�/�1/;

as an operator on QL2. Morever

.QAC.�/Q/�1 � .QA�.�/Q/�1 D zO1..log�/�2/:
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Proof. We begin by showing thatQA˙.�/Q is invertible onQL2. In the case that

Q has rank one, then using (64) we can see thatQA˙.�/Q is a scalar of the form

.c1g
˙.�/C c2/Q; c1 2 R n ¹0º:

Which, by (20), suffices to show our desired results.

We now consider the case when Q has rank two. We may select an orthonor-

mal basis for QL2, ¹�1; �2º. We claim that G1;1v
��1 and G1;1v

��2 are linearly

independent. Assume they are not, and let  j D �G0;0v
��j , j D 1; 2. Then for

some c,

 1 � c 2 D G0;0v
�.c�2 � �1/ D

�

G0;0 �
i˛ � x

2�hxi2
G1;1

�

v�.c�2 � �1/ 2 L2

by the proof of Lemma 7.1. By Lemma 7.2,  .x/ D �i˛�x
2�hxi2 G1;1v

�� C �2 with

�2 2 L2. Hence ¹�1; �2º can only span a one-dimensional subspace ofQL2. This

proves our claim.

We now write with respect to the basis ¹�1; �2º:

QA˙.�/Q D g˙.�/

"

jG1;1v
��1j2 hG1;1v

��1;G1;1v
��2iC2

hG1;1v��1;G1;1v��2iC2 jG1;1v
��2j2

#

C A1;

where A1 is a 2�2matrix of constants given by the contributions of �ivG1;0v
��j .

Since G1;1v
��1 and G1;1v

��2 are linearly independent, the first matrix above is

invertible, and hence, for sufficiently small �, QA˙.�/Q is invertible. Moreover

the entries of its inverse are rational functions in log.�/, and the degree of the

denominator is at least one more than the degree of the numerator. In particular,

they are of the form zO1.
1

log.�/
/.

The final claim follows from the resolvent identity and (20), since .AC�A�/.�/

is independent of �. 4

We now consider the case when both Q;S2 ¤ 0. We employ the Feshbach

formula, see for example Lemma 2.3 in [29]. If A.�/ D
�

a11 a12
a21 a22

�

, the invertibility

ofA.�/ follows if both a22 is invertible and a WD .a11�a12a
�1
22 a21/

�1 exists. Then,

A.�/�1 D

"

a �aa12a
�1
22

�a�1
22 a21a a�1

22 a21aa12a
�1
22 C a�1

22

#

: (65)

In our case a22 D S2vG1;0v
�S2 which is invertible by Lemma 7.6. Moreover,

a D .QA˙.�/Q �QvG1;0v
�S2.S2vG1;0v

�S2/
�1S2vG1;0v

�Q/�1

exists for sufficiently small � since QA˙.�/Q is invertible by Lemma 5.5, while

the second summand is a � independent 2 � 2 matrix. �
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Lemma 5.6. Assume that jV.x/j . hxi�ˇ and that zero is not a regular point of

the spectrum. If ˇ > 2C 2k for some 0 < k < 1, then for 0 < j�j � 1, we have

B˙.�/
�1 D

1

�
A˙.�/�1 CE˙

3 .�/;

where E˙
3 .�/ D O.j�j�1Ck/ as an absolutely bounded operator.

Moreover, for fixed 0 �  < 1
2

and 1
2

� k < 1, if ˇ > 2 C 2k, then ( for

j�1j � j�2j � 1)

E˙
3 .�1/ �E˙

3 .�2/ D O.j�1 � �2j
1
2 C j�1j�

3
2 �Ck/: (66)

Proof. Using (63), Proposition 5.4, and Lemma 5.2, we have

B˙.�/
�1 D

1

�
ŒI �

1

�
A˙.�/�1S1E

˙
2 .�/S1�

�1A˙.�/�1

D
1

�
A˙.�/�1 C

1

�

1
X

j D1

� 1

�
A˙.�/�1S1E

˙
2 .�/S1

�j

A˙.�/�1:

The series converges since A˙.�/�1 D O.1/ and E˙
2 .�/ D O.j�j1Ck/ by

Proposition 5.4 and Lemma 5.2 respectively. Moreover,

E˙
3 .�/ D

1

�

1
X

j D1

� 1

�
A˙.�/�1S1E

˙
2 .�/S1

�j

A˙.�/�1 D O.j�j�1Ck/:

This also implies the Lipschitz bound when j�1 ��2j & j�2j. The Lipschitz bound

when j�1 � �2j � j�2j � j�1j follows by noting that in this case

A˙.�1/
�1 �A˙.�2/

�1 D O.j�1 ��2jj�1j�1/ D O.j�1 ��2j
1
2

C j�1j�
1
2

� /; (67)

j��2
2 � ��2

1 j . j�1 � �2j
1
2

C j�1j�
5
2

� ;

and by using the bounds in Lemma 5.2 for E˙
2 .�/. �

We are now ready to obtain a suitable expansion for M˙.�/�1 when zero is

not regular. Note that Proposition 5.4 and its proof gives detailed expansions for

A˙.�/�1, in particular, the projection Q corresponds to the contribution of p-

wave resonances and the operator ŒS2vG1;0v
�S2�

�1 to the threshold eigenspace,

see Lemma 7.7 below.

Lemma 5.7. Under the hypothesis of Lemma 5.6, for 0 < j�j � 1, we have

M˙.�/�1 D
1

�
S1A

˙.�/�1S1 CE˙
4 .�/;

where E˙
4 .�/ satisfies the same bounds as E˙

3 .�/ in Lemma 5.6.
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Proof. Using Lemma 5.3 with M D M˙.�/ and S D S1, and recalling that

T1S1 D S1T1 D S1, writing .M˙.�/C S1/
�1 D Œ.M˙.�/C S1/

�1 � T1�C T1,

we have

M˙.�/�1 D .M˙.�/C S1/
�1 C .M˙.�/C S1/

�1S1B
�1
˙ S1.M

˙.�/C S1/
�1

D S1B
�1
˙ S1 C .M˙.�/C S1/

�1

C Œ.M˙.�/C S1/
�1 � T1�S1B

�1
˙ S1.M

˙.�/C S1/
�1

C S1B
�1
˙ S1Œ.M

˙.�/C S1/
�1 � T1�:

Using Lemma 5.6, we have

M˙.�/�1 D
1

�
S1A

˙.�/�1S1 CE˙
4 .�/;

where

E˙
4 .�/ D S1E

˙
3 .�/S1 C .M˙.�/C S1/

�1

C Œ.M˙.�/C S1/
�1 � T1�S1B

�1
˙ S1.M

˙.�/C S1/
�1

C S1B
�1
˙ S1Œ.M

˙.�/C S1/
�1 � T1�:

Since by Lemma 5.2 the operator .M˙.�/CS1/
�1 satisfies better Lipschitz bounds

than E˙
3 .�/, and since the last two terms are similar, we concentrate on the term

Œ.M˙.�/C S1/
�1 � T1�S1B

�1
˙ S1.M

˙.�/C S1/
�1:

By Lemma 5.2, specifically(59), we have .M˙.�/C S1/
�1 D O.1/, Combining

this with (20) we see that .M˙.�/ C S1/
�1 � T1 D O.j�j1�/. Also noting that

B�1
˙ D O.j�j�1/ by Lemma 5.6, we have

Œ.M˙.�/C S1/
�1 � T1�S1B

�1
˙ S1.M

˙.�/C S1/
�1

D O.j�j0�/ D O.j�j�1Ck/; 0 < k < 1:

The Lipschitz bound follows by using the bounds above and in addition the bounds

in Lemma 5.2 for .M˙.�/C S1/
�1, and by noting that

B˙.�1/
�1 � B˙.�2/

�1 D
1

�1

A˙.�1/
�1 �

1

�2

A˙.�2/
�1 CE˙

3 .�1/ �E˙
3 .�2/:

The contribution ofE˙
3 is controlled by the bound in Lemma 5.6, specifically (66).

For the contribution of the remaining terms, we note

1

�1

A˙.�1/
�1�

1

�2

A˙.�2/
�1 D

� 1

�1

�
1

�2

�

A˙.�1/
�1�

1

�2

.A˙.�2/
�1�A˙.�1/

�1/:

Then (67) suffices to control the second term, while the first term is controlled by

using .A˙.�//�1 D O.1/ by Proposition 5.4 and the simple bound

j��1
1 � ��1

2 j . j�1 � �2j
1
2

C j�1j�
3
2

� : �
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6. Small energy dispersive estimates when zero is not regular

In this section we study the small energy portion of the Stone’s formula, (7), when

zero is not regular:

1
Z

�1

e�it��.�/ŒRC
V � R�

V �.�/.x; y/ d�:

In particular, we prove the following result.

Proposition 6.1. Fix 0 �  < 1
2
. Assume that jV.x/j . hxi�ˇ�. If zero is not

regular and ˇ > 3C 2 , there is a finite-rank operator Ft with

sup
x;y

ˇ

ˇ

ˇ

ˇ

1
Z

�1

e�it��.�/ŒRC
V � R�

V �.�/.x; y/ d�� Ft .x; y/

ˇ

ˇ

ˇ

ˇ

. hti� 1
2 � hxi hyi ;

(68)

where supt;x;y jFt .x; y/j . 1, and if jt j > 2, supx;y jFt .x; y/j . .log jt j/�1.

Furthermore, if there is an eigenvalue only at zero, the bound (68) remains valid

with Ft D 0.

In fact, when zero is not regular we explicitly construct the finite rank operator

Ft , see (70) below.

Proof of Proposition 6.1. Recall (52). As in the regular case, Lemma 4.6 suffices

to control the first few terms arising in (52), hence we turn our attention to the tail.

Recall that by Lemma 5.7 we have

M˙.�/�1 D
1

�
S1A

˙.�/�1S1 CE˙
4 .�/:

The contribution of the second term in the Stone’s formula is taken care of by

Lemma 4.7 by taking k D 1
2

C C in the error bounds for E˙
4 .�/. This requires

that ˇ > 3C 2 .

It remains to consider the contribution of

1

�
R˙

0 VR
˙
0 v

�S1A
˙.�/�1S1vR

˙
0 V R˙

0 :

If we replace at least one of the free resolvents with R˙
0 � G0;0, we obtain

further � smallness which allows us to obtain the desired hti� 1
2 bound with minor
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modifications of the proof of Lemma 4.7. In particular, we note that

1

�
R˙

0 V R˙
0 v

�S1A
˙.�/�1S1vR

˙
0 V R˙

0

D
1

�
R˙

0 V G0;0v
�S1A

˙.�/�1S1vR
˙
0 V R˙

0

C
1

�
R˙

0 V.R
˙
0 � G0;0/v

�S1A
˙.�/�1S1vR

˙
0 V R˙

0 :

Further,

1

�
R˙

0 V G0;0v
�S1A

˙.�/�1S1vR
˙
0 V R˙

0

D
1

�
R˙

0 V G0;0v
�S1A

˙.�/�1S1vG0;0VR
˙
0

C
1

�
R˙

0 V G0;0v
�S1A

˙.�/�1S1v.R
˙
0 � G0;0/V R˙

0 :

Iterating this process, we may write

1

�
R˙

0 V R˙
0 v

�S1A
˙.�/�1S1vR

˙
0 V R˙

0

D
1

�
G0;0V G0;0v

�S1A
˙.�/�1S1vG0;0V G0;0 C Ex;y.�/:

(69)

We first consider the contribution of the first term to the Stone’s formula. When

there is a p-wave resonance at zero, when S1 � S2 ¤ 0, using Proposition 5.4, the

˙ difference easily yields a finite rank term with logarithmic decay in time since

Z

R

e�it��.�/ zO1

� 1

� log2 �

�

d�

satisfies the desired bound by Lemma 9.1.

So when there is a “p-wave” resonance at zero, we can explicitly construct the

operator Ft by

Ft WD

1
Z

�1

e�it��.�/G0;0V G0;0v
�S1

�AC.�/�1 � A�.�/�1

�

�

S1vG0;0V G0;0 d�:

(70)

In the eigenvalue only case, when S1 D S2 ¤ 0, by Proposition 5.4 the leading

term in (69) disappears by ˙ cancellation since A˙.�/�1 is independent of the

choice of sign in this case. Therefore Ft D 0.

For the terms in Ex;y.�/, we have the following variant of Lemma 4.7 (we drop

the ˙ signs since we do not rely on cancellation):



The massless Dirac equation in two dimensions 965

Lemma 6.2. Fix 0 �  < 1
2
. Assume that jV.x/j . hxi�2�2�. Let T .�/ be an

absolutely bounded operator satisfying ( for j�j; j�1j; j�2j . 1 with j�1j � j�2j)

kjT .�/jkL2!L2 . j�j�1;

kjT .�1/ � T .�2/jkL2!L2 . j�1j�
3
2

� j�1 � �2j
1
2

C :

Then
ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/ŒR1V R2v
�T vR3V R4�.�/.x; y/d�

ˇ

ˇ

ˇ

ˇ

. hti� 1
2

� hxi hyi ;

where Rj D R0, G0;0, or R0 � G0;0, j D 1; 2; 3; 4; and at least one of them is

R0 � G0;0.

Note that the hypothesis is satisfied by the mean value theorem if T .�/ D
zO1.�

�1/ as an absolutely bounded operator, in particular when T .�/D 1
�
A˙.�/�1.

Proof. Let zR WD vR3VR4. Since each R0, G0;0, and R0 � G0;0 satisfies the

bounds (33) and (38), the operator zR satisfies the bounds (55) and (56) in the

proof of Lemma 4.7. In particular, the L2
y1

norm of zR.�/.y1; y/ is bounded

in y and �, and the L2
y1

norm of zR.�1/.y1; y/ � zR.�2/.y1; y/ is bounded by

hyi j�1 � �2j
1
2

C j�2j
1
2

��.

If R3 or R4 is equal to R0 � G0;0. Then, by (33),

R0.x; y/ � G0;0.x; y/ D O.j�j1�.1C jx � yj0�/:

Therefore zR satisfies the following improved pointwise bound

j zR.�/.y1; y/j . j�j1�.1C jy1 � yj0�/hy1i�1�: (71)

In particular, the L2
y1

norm of zR.�/.y1; y/ is bounded by j�j1�.

Using these bounds and the hypothesis for T , we see that

j�.�/.x; y/j . j�j0�;

with � WD R1VR2v
�T vR3VR4. This implies the uniform bound when t is small.

Also using this in the case j�1 � �2j & j�2j we obtain

j�.�1/ � �.�2/j . j�1 � �2j
1
2

C j�1j�
1
2

��

When j�1 � �2j � j�2j � j�1j; we estimate Œ�.�1/ � �.�2/�.x; y/ by

j�1j1�j�1j�
3
2

� j�1 � �2j
1
2

C C j�1 � �2j
1
2

C j�1j
1
2

��hxi hyi j�1j�1

. j�1 � �2j
1
2

C j�1j�
1
2

��hxi hyi :
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The first summand above corresponds to the case when the difference is on T

and the second summand corresponds to the remaining cases. Combining these

bounds for 0 �  < 1
2

we have

jŒ�.�1/ � �.�2/�.x; y/j . hxi hyi j�1 � �2j
1
2

C j�1j�1C; j�j j � 1; j D 1; 2:

Therefore, by applying the Lipschitz argument as in (16), we bound the integral

by hti� 1
2

� hxi hyi : 4

This finishes the proof of Proposition 6.1. �

7. Threshold characterization

The characterization of the threshold is similar to the characterization for the

massive case in [21]. See [23] for the three dimensional threshold characterization.

These results have roots in the characterizations for Schrödinger operators may be

found in [24, 20, 16].

Lemma 7.1. Assume that jV.x/j . hxi�ˇ for some ˇ > 2. If � 2 ker.T /, then

� D Uv with  a distributional solution to H D 0 and  2 Lp.R2/ for all

p > 2.

Proof. Take � 2 ker.T /, � 2 L2. Then

0 D T� D U� C vG0;0v
�� D 0 H) � D �UvG0;0v

��:

Define  WD �G0;0v
��, then � D Uv . Now, withH D D0 CV D �i˛ � r CV ,

H D .�i˛ � r C V / D �i˛ � r C v�Uv D i˛ � r.G0;0v
��/C v��

Here, recalling (28) and (3), we have

i˛ � r.G0;0v
��/ D i˛ � r.�i˛ � rG0v

��/ D �.��/�1v�� D �v��

distributionally. So,

H D i˛ � r.G0;0v
��/C v�� D �v�� C v�� D 0:

That is, if � 2 ker.T / we have H D 0. Now, to show that  2 Lp, we have

 D �G0;0v
�� with � 2 L2. We can bound jG0;0.x; y/j . jx � yj�1 to employ a

fractional integral operator argument. So that,

k kq D kG0;0v
��kq .









Z

R2

hyi�1�

jx � yj
j�.y/j dy









q

. k�k2
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for 2 < q < 1. Furthermore, since � D Uv we have  D �G0;0V , and

j j � jG0;0V j .

Z

R2

hyi�2�

jx � yj
j .y/j dy . k k3kjx � �j�1h�i�2�k 3

2
. 1:

Thus,  2 Lp for all p > 2. �

Lemma 7.2. Assume that jV.x/j . hxi�ˇ for some ˇ > 2. If � D Uv 2 S1L
2

then

 .x/ D
�i˛ � x

2�hxi2
G1;1v

�� C �2

where �2 2 L2 \ L1.

Proof. By the last lemma, we have  2 L1. We recall that  D �G0;0v
�� and

the kernel of G1;1 is 1, so

 .x/ D �
i

2�

Z

R2

˛ � .x � y/

jx � yj2
v�.y/�.y/ dy

D �
i

2�

Z

R2

h˛ � .x � y/

jx � yj2
�
˛ � x

hxi2

i

v�.y/�.y/ dy �
i˛ � x

2�hxi2
G1;1v

��:

The first term is in L2 (see Lemma 7.3 in [21]). Combining this with  2 L1

finishes the proof. We note that the assumption that ˇ > 2 suffices here, the

logarithmic terms in the massive case considered in [21] required further decay of

the potential. These terms do not occur in the massless case, specifically we need

only (68) in [21] for which ˇ > 2 is sufficient. �

Corollary 7.3. The rank of S1 is at most two plus the dimension of the eigenspace

at zero.

We note that the at most two dimensional space of resonances correspond to

the p-wave resonances in the massive Dirac, [21], and Schrödinger [20] operators.

We again note that there are no “s-wave” resonances in the massless case.

Lemma 7.4. Assume that jV.x/j . hxi�ˇ for some ˇ > 2. If H D 0 with

 2 L2 C \p2.2;1�L
p, then � D Uv 2 S1L

2, i.e. T� D 0.

Proof. Using H D 0, we have i˛ � r D V D v��. We first show that

 D �G0;0v
��. Since � D Uv 2 L2, we have that v�� 2 L1. Recalling (28),

G0;0 D �i˛ � rG0, so

�i˛ � rŒ C G0;0v
��� D �i˛ � r C�G0v

�� D v�� � v�� D 0:
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Thus,

�i˛ � rŒ C G0;0v
��� D 0 H)  C G0;0v

�� D .c1; c2/
T :

Since  2 L2 C \p2.2;1�L
p and G0;0v

�� 2 Lp for all p > 2 by the proof of

Lemma 7.1, we have .c1; c2/
T 2 L2 C \p2.2;1�L

p. Therefore, c1 D c2 D 0, and

 D �G0;0v
�� as desired.

Next, to show T� D 0, we note that U� D U 2v D v . Also recalling that

T D U C vG0;0v
� and  D �G0;0v

��, we have

T� D U� C vG0;0v
�� D v � v D 0: �

Recall that S2 is the projection onto the kernel of S1vG1;1v
�S1. We have the

following classification for S2L
2:

Lemma 7.5. Assume that jV.x/j . hxi�ˇ for some ˇ > 2. Fix � D Uv 2 S1L
2.

Then � 2 S2L
2 if and only if  2 L2.

Proof. By Lemma 7.2,  2 L2 if and only if G1;1v
�� D 0, which is equivalent to

� being in the kernel of S1vG1;1v
�S1. �

We now prove that S2vG1;0v
�S2 is always invertible on S2L

2.

Lemma 7.6. Assume that jV.x/j . hxi�ˇ for some ˇ > 2. For � 2 S2L
2, we

have the identity

hG0;0v
��;G0;0v

��i D hv��;G1;0v
��i: (72)

Furthermore, the kernel of S2vG1;0v
�S2 is trivial.

Proof. First note that by Lemma 7.5, we have  D �G0;0v
�� 2 L2. On the

Fourier side,

hG0;0v
��;G0;0v

��i D

Z

R2

1

j�j4

��

0 N�

� 0

�

bv��;

�

0 N�

� 0

�

bv��

�

C2

d�

D

Z

R2

1

j�j2
hbv��;bv��iC2 d�:

Using the expansion

R0.��
2/ D g.�/G1;1 CG0 CO.�0Cjx � yj0C/
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and G1;1v
�� D 0, we have

hv��;G1;0v
��i D hv��;G0v

��i D lim
�!0

hv��;R0.��
2/v��i

D lim
�!0

Z

R2

1

j�j2 C �2
hbv��;bv��iC2 d� D

Z

R2

1

j�j2
hbv��;bv��iC2 d�

by monotone convergence theorem. This implies the identity (72).

Take � in the kernel of S2vG1;0v
�S2, then by the identity (72),

k k2
L2 D hG0;0v

��;G0;0v
��i D 0:

Thus,  D 0 and � D Uv D 0. �

Lemma 7.7. The projection onto the zero energy eigenspace is

P0 D G0;0vS2ŒS2vG1;0v
�S2�

�1S2v
�G0;0:

The proof follows along the lines of Lemma 7.10 in [21]. For the sake of

brevity, we omit the proof.

8. High energy dispersive estimates

We now provide a proof of Theorem 1.2, the high energy dispersive estimate. The

theorem follows from

Proposition 8.1. Under the hypotheses of Theorem 1.2, we have the bound

sup
x;y

ˇ

ˇ

ˇ

ˇ

Z

R

e�it���2� Q�.�/ŒRC
V � R�

V �.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. hti� 1
2 ; (73)

provided jV.x/j . hxi�2�. Furthermore, for 0 �  � 3
2

we have

ˇ

ˇ

ˇ

ˇ

Z

R

e�it���2� Q�.�/ŒRC
V � R�

V �.�/.x; y/ d�

ˇ

ˇ

ˇ

ˇ

. hxi hyi hti� 1
2

� ;

provided jV.x/j . hxi�ˇ for some ˇ > min.2C 2; 3/:

We employ the resolvent identity twice to write

R˙
V .�/ D R˙

0 .�/ � R˙
0 .�/VR

˙
0 .�/C R˙

0 .�/VR
˙
V .�/VR

˙
0 .�/: (74)

By virtue of Theorem 2.1, we need only bound the second and third summands.
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Lemma 8.2. The contribution of the second term in (74) to (73) satisfies the decay

bounds in Proposition 8.1.

Proof. We write the free resolvents as

R˙
0 .�/.x; y/ D R˙

L .�jx � yj/C R˙
H .�jx � yj/;

where

R˙
L .�jx � yj/ D �.�jx � yj/R˙

0 .�jx � yj/

and

R˙
H .�jx � yj/ D Q�.�jx � yj/R˙

0 .�jx � yj/:

We consider the contributions of terms with at least one instance of R˙
H , such as

Z

R

Z

R2

e�it���2� Q�.�/ŒR˙
L .�jx � x1j/C R˙

H .�jx � x1j/�

� V.x1/R
˙
H .�jx1 � yj/ dx1d�;

(75)

and the two terms with only the low-energy part of the resolvents,

Z

R

Z

R2

e�it���2� Q�.�/ŒRC
L .�jx � x1j/RC

L .�jx1 � yj/

� R�
L.�jx � x1j/R�

L.�jx1 � yj/�V .x1/ dx1d�:

That is, we need only use the “+/-” on the “low-low” term. We consider the “low-

low” term first. By symmetry, we need only consider

Z

R

Z

R2

e�it���2� Q�.�/ŒRC
L .�jx � x1j/ � R�

L.�jx � x1j/�

� V.x1/R
�
L.�jx1 � yj/ dx1d�:

(76)

From (9) and the support condition �jx � x1j � 1, we see that

j@k
�ŒR

C
L .�jx � x1j/ � R�

L.�jx � x1j/�j . �1�k ; k D 0; 1; 2:

While from Lemma 3.2 and the support condition, we see that

jR˙
L .�jx1 � yj/j .

1

jx1 � yj
;

j@�R
˙
L .�jx1 � yj/j .

1

.�jx1 � yj/0C
;

j@2
�R

˙
L .�jx1 � yj/j .

1

�.�jx1 � yj/0C
;
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which implies that

j(76)j .

Z

R

Z

R2

��1� Q�.�/
jV.x1/j

jx1 � yj
dx1d�:

We can see that the integral is bounded uniformly in x and y by Lemma 9.2. For

jt j > 1, by a single integration by parts, one has

j(76)j .
1

jt j

Z

R

Z

R2

��2� Q�.�/jV.x1/j
� 1

jx1 � yj
C

�

.�jx � x1j/0C

�

dx1d� .
1

jt j
:

There are no boundary terms due to the cut-off. While integrating by parts twice

yields

j(76)j .
1

t2

Z

R

��2� Q�.�/jV.x1/j
1

�jx1 � yj
dx1d� .

1

t2
:

We now turn to the contribution of (75), which necessitates spatial weights for

faster time decay. We have to control two terms. We first look at the “low-high”

interaction:
Z

R

Z

R2

e�it�˙i�jx1�yj��2� Q�.�/R˙
L .�jx � x1j/V .x1/ Q!˙.�jx1 � yj/ dx1d�: (77)

Using (36), we see that

j(77)j .

Z

R

Z

R2

�� 3
2

� Q�.�/
jV.x1/j

jx � x1jjx1 � yj
1
2

dx1d� . 1:

The spatial integral is bounded by Lemma 9.2 with k D 1 and ` D 1
2
.

For t > 1, without loss of generality we work with the “+” case. We consider

two subcases based on the size of t � jx1 � yj. In the case that jt � jx1 � yjj � t
2
,

we have that jx1 � yj & t . Using (36) we have j Q!˙.�jx1 � yj/j . �
1
2 t�

1
2 . Then,

j(77)j . t�
1
2

Z

R

Z

R2

�� 3
2

� Q�.�/
jV.x1/j

jx � x1j
dx1d� . t�

1
2 :

Here the spatial integrals are controlled by Lemma 9.2. At the cost of spatial

weights, one may attain faster time decay. Furthermore, since jx1 � yj & t , for

 > 0 we have

1 .
jx1 � yj

t
.

hx1i hyi

t
:
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Thus,

j(77)j . t�
1
2

Z

R

Z

R2

�� 3
2

� Q�.�/
jV.x1/j

jx � x1j
dx1d�

. t�
1
2

� hyi

Z

R

Z

R2

�� 3
2

� Q�.�/
jV.x1/jhx1i

jx � x1j
dx1d� . t�

1
2

�hyi :

Provided V decays sufficiently, Lemma 9.2 controls the spatial integrals.

On the other hand, if jt � jx1 � yjj � t
2

we integrate by parts twice. There are

no boundary terms due to the support of the cut-off, and we see

j(77)j .
1

.t � jx1 � yj/2

�

Z

R

Z

R2

j@2
�Œ�

�2� Q�.�/R˙
L .�jx � x1j/V .x1/ Q!˙.�jx1 � yj/�j dx1d�

.
1

t2

Z

R

Z

R2

�� 3
2 � Q�.�/

jV.x1/j

jx1 � xjjy � x1j
1
2

dx1d� .
1

t2
:

The final term to consider is the “high-high” interaction in (75).

Z

R

Z

R2

e�it�˙i�.jx�x1jCjx1�yj/��2� Q�.�/ Q!˙.�jx � x1j/

� V.x1/!˙.�jx1 � yj/ dx1d�
(78)

We consider the “+” case. The integral is bounded in t as before. For t > 1,

first we consider when jt � jx � x1j � jx1 � yjj � t
2
. In this case we have that

max¹jx � x1j; jx1 � yjº & t . The analysis then proceeds as in the bounds for (77)

in the analogous case.

Finally, if jt � jx � x1j � jx1 � yjj � t
2

we may integrate by parts twice to

obtain

j(78)j .
1

.t � jx � x1j � jx1 � yj/2

�

Z

R

Z

R2

j@2
�Œ�

�2� Q!˙.�jx � x1j/V .x1/!˙.�jx1 � yj/�j dx1d�

.
1

t2

Z

R

Z

R2

��3� jV.x1/j

jx � x1j
1
2 jx1 � yj

1
2

dx1d� . t�2:

This finishes the proof. �
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Lemma 8.3. The contribution of the third term in (74) to (73) satisfies the decay

bounds in Proposition 8.1.

Proof. We drop the ˙ signs since one can not use the ˙ cancellation in this case,

and we consider only the “+” case.

Under the hypotheses of Theorem 1.2, we have the limiting absorption princi-

ple

sup
�>0

k@k
�R

˙
V .�/kL2;�Ck!L2;���k . 1; � >

1

2
; k D 0; 1; 2;

see [17]. The main obstacle at the moment is that R0.�/.x; �/ is not locally in L2

due to the 1
jx��j

singularity in RL. We write

R0V RV VR0 D RLV RV VRL CRHVRV V RL CRLV RV VRH CRHV RV VRH :

Now, using the resolvent identity on RV for terms involving RL we have

R0V RV V R0 D RLV ŒR0 � R0V R0 C R0V RV V R0�V RL

C RHV ŒR0 � RV V R0�V RL

C RLV ŒR0 � R0V RV �V RH

C RHV RV V RH :

(79)

The summands that do not contain RV follow roughly the same argument as in the

previous lemma. Cancellation between terms (as in (76)) is not needed even at low

energy because the iterated integral
’

R4
V.x1/V.x2/

jx�x1jjx1�x2jjx2�yj
dx1dx2 is bounded

uniformly in x and y.

We consider first the contribution of the final term in (79):

Z

R

e�it� Q�.�/

�2C
RHV RV V RH .�/.x; y/ d�

D

Z

R5

e�i�.t�jy�x1j�jx2�xj/ Q�.�/

�2C
!˙.�jx � x1j/ŒV RV V �.x1; x2/

� !˙.�jx2 � yj/ dx1dx2d�:

(80)

The boundedness of this integral follows from the bound in (36):

j(80)j .

Z

R

Q�.�/

�2C
k!C.�jx � �j/V .�/k

L
2; 1

2
C

kRV k
L

2; 1
2

C
!L

2;� 1
2

�

� k!C.�j � �yj/V .�/k
L

2; 1
2

C
d�

.

Z

R

Q�.�/

�1C
d� . 1:
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To show the time decay, we do an analysis as in the proof of the “high-high” term

in Lemma 8.2. Let  1;  2 be a partition of unity such that  1.z/ C  2.z/ D 1

with  2 supported on jzj & 1 and  1 on jzj � 1. Using (36) we see that

k 2.jx � x1j=t/!C.�jx � x1j/V .x1/k
L

2; 1
2

C

x1

. �
1
2 t�

1
2

k!C.�jx2 � yj/V .x2/k
L

2; 1
2

C

x2

. �
1
2 :

Also using the limiting absorption principle, we estimate (80) in this case by

t�
1
2

Z

R

Q�.�/

�1C
d� . t�

1
2 :

To obtain the faster decay, note that for any  � 0,

k 2.jx � x1j=t/!C.�jx � x1j/V .x1/k
L

2; 1
2

C

x1

. k 2.jx � x1j=t/
� jx � x1j

t

�

!C.�jx � x1j/V .x1/k
L

2; 1
2

C

x1

. �
1
2 hxi t�

1
2 � :

The case  1.jx � x1j=t/ 2.jx2 � yj=t/ is treated similarly. It remains to consider

the contribution of  1.jx � x1j=t/ 1.jx2 � yj=t/, which implies that

t � jx � x1j � jx2 � yj �
t

2
:

Therefore, we can integrate by parts twice to obtain (with !1.�; t; jx � x1j/ WD

 1.jx � x1j=t/!C.�jx � x1j/)

j(80)j .
1

t2

Z

R

ˇ

ˇ

ˇ

ˇ

Z

R4

@2
�

� Q�.�/

�2C
!1.�; t; jx � x1j/ŒV RV V �.x1; x2/

� !1.�; t; jx2 � yj/
�

dx1 dx2

ˇ

ˇ

ˇ

ˇ

d�

.
1

t2

Z

R

��1� Q�.�/

2
X

`D0







V.x1/hx1i� 1
2

C`C

jx � x1j
1
2







L2
x1

k@`
�RV k

L
2; 1

2
C`C

!L
2;� 1

2
�`�

�






V.x2/hx2i� 1
2

C`C

jx2 � yj
1
2







L2
x2

d� .
1

t2
:

We turn now to a “low-low” interaction term in (79):
Z

R

e�it���2� Q�.�/RLV R0V RV V R0V RL.�/ d� (81)
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For the inner resolvents we use the following bounds for � & 1, which are not

sharp but suffice for our purposes

j@k
�R0.�/.x; y/j . �

1
2

� 1

jx � yj
C jx � yjk� 1

2

�

; k D 0; 1; 2

The boundedness and time decay follows from the limiting absorption principle

and the observation that

k@k
�RLV R0V.x; �/k

L
2; 1

2
C

. �
1
2 :

The remaining terms in (79) can be treated similarly. �

9. Integral estimates

Finally, we provide proof of the integral estimates that are used throughout the

paper. We first provide the time decay estimate.

Lemma 9.1. We have the bound

ˇ

ˇ

ˇ

ˇ

Z

R

e�it��.�/ zO1

�

1

� log2 �

�

d�

ˇ

ˇ

ˇ

ˇ

.

´

1 for all t;

.log jt j/�1 for jt j > 2:

Proof. The boundedness of the integral follows from the integrability of the term

.� log2 �/�1 on the support of �. The large jt j decay follows by dividing the

integral into j�j < jt j�1 and integrating by parts when j�j � jt j�1, see Lemma 3.2

in [16]. �

Now, we catalog the spatial integral estimates we use. The first bound is a

special case of Lemma 6.3 in [18].

Lemma 9.2. For 0 � k; ` < 2, ˇ > 0 so that k C `C ˇ � 2 and k C ` ¤ 2,

Z

R2

hx1i�ˇ�

jx � x1jk jx1 � yj`
dx1 .

� 1

jx � yj

�max¹0;kC`�2º

:

We also state the following corollaries:

Lemma 9.3. For any  � 0, we have
Z

R2

.jx � y1j0� C hx � y1i /hy1i�2�2�.jy1 � yj C jy1 � yj�1/dy1

. hxi hyi :
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Lemma 9.4. The following integral bound holds

Z

R2

.1C jy1 � y2j�1/hy2i�2�.1C jy2 � yj�1/dy2 . .1C jy1 � yj0�/:

Proof. The proof follows using Lemma 9.2 provided we show

Z

R2

hy2i�2�

jy1 � y2jjy2 � yj
dy2 . 1C jy1 � yj0�:

We note that

1

jy1 � y2jjy2 � yj
.

1

jy1 � y2jjy2 � yj1C
C

1

jy1 � y2jjy2 � yj1�
;

and Lemma 9.2 finishes the proof. �
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