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Efficiency and localisation

for the first Dirichlet eigenfunction
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Abstract. Bounds are obtained for the efficiency or mean to max ratio E.�/ for the

first Dirichlet eigenfunction (positive) for open, connected sets � with finite measure in

Euclidean space R
m. It is shown that (i) localisation implies vanishing efficiency, (ii) a

vanishing upper bound for the efficiency implies localisation, (iii) localisation occurs for

the first Dirichlet eigenfunctions for a wide class of elongating bounded, open, convex

and planar sets, (iv) if �n is any quadrilateral with perpendicular diagonals of lengths

1 and n respectively, then the sequence of first Dirichlet eigenfunctions localises and

E.�n/ D O.n�2=3 logn/. This disproves some claims in the literature. A key technical

tool is the Feynman–Kac formula.
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1. Introduction

Let � be a non-empty open set in Euclidean space R
m; m � 2; with boundary

@� and finite measure j�j. It is well known that the spectrum of the Dirichlet

Laplacian acting in L2.�/ is discrete and consists of an increasing sequence of

eigenvalues

�1.�/ � �2.�/ � � � � ;
accumulating at infinity. We denote a corresponding orthonormal basis of eigen-

functions by ¹uj;�; j 2 Nº,

��uj;� D �j .�/uj;�; uj;� 2 H 1
0 .�/:

If �.�/ WD �1.�/ has multiplicity 1, then u1;� is uniquely defined up to a sign.

This is the case if � is connected, for example. We then write and choose,

u� WD u1;� > 0.

https://creativecommons.org/licenses/by/4.0/
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The Rayleigh–Ritz variational principle asserts that

�.�/ D inf
'2H 1

0
.�/n¹0º

R

�
jr'j2

R

� '
2
: (1)

The efficiency or mean to max ratio of u� is defined by

E.�/ D ku�k1

j�jku�k1
; (2)

where k � kp; 1 � p � 1 denotes the standard Lp.�/ norm.

The study of E.�/ goes back to the pioneering results of [16, 19]. In Theo-

rem 3 of [16], it was shown that if � is bounded and convex then

E.�/ � 2

�
; (3)

with equality in (3) if� is a bounded interval in R. A non-linear version has been

proved in [9] for the p-Laplacian with 1 < p < 1. More general results have

been obtained in [6]. It follows from inequality (3) and the main theorem in that

paper that if � is a bounded region in R
m, then

E.�/ � E.B/
jBj
j�j

��.B/

�.�/

�m=2

;

where B is a ball in R
m.

Moreover, it was asserted in Table 1 in [16] that 2
�

is the limit of the efficiency

of a thinning annulus in R
m. The proof of this assertion (Theorem 11) will be

given in Section 4 below. There we will also compute the efficiency for the

equilateral triangle, the square, and the disc. These data support the conjectures

that (i) the efficiency of a bounded, convex planar set is maximised by the disc,

(ii) if Pn � R
2 is a regular n-gon then n 7! E.Pn/ is increasing. We note that

the efficiency for an arbitrarily long rectangle is .2=�/2 � 0:4053, whereas the

efficiency of a disc is approximately 0:4317.

Recently a connection has been established between localisation of eigenfunc-

tions and an effective potential such as the inverse of the torsion function (see [1]).

In a similar spirit, it has been shown in certain special cases, such as a bounded

interval in R or a square in R
2, that the eigenfunctions of the Schrödinger operator

of Anderson type localise (see [2] and [8]).

The first part of the definition below is very similar to the one in [11] (for-

mula (7.1) for p D 1).

Definition 1. Let .�n/ be a sequence of non-empty open sets in R
m with

j�nj < 1.
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(i) We say that a sequence .fn/ with fn 2 L2.�n/; n 2 N and kfnk2 D 1

localises if there exists a sequence of measurable sets An � �n such that

lim
n!1

jAnj
j�nj D 0; lim

n!1

Z

An

f 2
n D 1: (4)

(ii) We say that a sequence .fn/with fn 2 L1.�n/; fn � 0; kfnk1 > 0; n 2 N

has vanishing efficiency if

lim
n!1

kfnk1

j�njkfnk1
D 0:

We have the following elementary observations.

Lemma 2. If � is a non-empty open set with finite Lebesgue measure and if

kf k2 D 1; 0 < kf k1 < 1; with f � 0, then

(i) j�j�1kf k�2
1 � kf k1

j�jkf k1
� j�j�1=2kf k�1

1 ; (5)

(ii)
kf k1

j�jkf k1
� j�j�1kf k2

1: (6)

The proofs of (5) and (6) are immediate, since by Cauchy–Schwarz,

1 D kf k2 � kf k1kf k1 � kf k1j�j1=2:

Lemma 3. For n 2 N, let fn 2 L2.�n/ with kfnk2 D 1; fn � 0; and j�nj < 1.

Then .fn/ localises if and only if

lim
n!1

1

j�njkfnk2
1 D 0: (7)

By (6) we have that if .fn/ is localising then the mean to max ratio of fn

is vanishing as n ! 1. We were unable to prove that if .u�n
/ has vanishing

efficiency then .u�n
/ localises.

Denote by �.�/ D sup¹min¹jx � yjW y 2 @�º; x 2 �º the inradius of �,

by diam.�/ D sup¹jx � yjW x 2 �; y 2 �º the diameter of �, and by w.�/ the

width of�. For a measurable setA in R
k with k < mwe denote its k-dimensional

Lebesgue measure by jAjk . The indicator function of a setA is denoted by 1A. We

define for � � 0, j� to be the first positive zero of the Bessel function J� .

Below we show that sets with small E.�/ have small inradius and large

diameter.
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Theorem 4. For all open, connected� � R
m with 0 < j�j < 1,

�.�/

j�j1=m
�

�ej 2
.m�2/=2

2�m

�1=2

E.�/1=m: (8)

If � is open, planar, bounded, and convex, then

diam.�/

j�j1=2
�

� �

ej 2
0

�1=2

E.�/�1=2: (9)

It is straightforward to construct sequences .�n/ for which .u�n
/ is localising

and, as a consequence of Lemma 3 and (6), have vanishing efficiency. For

example, let �n be the disjoint union of one disc B with radius 1 and 4n discs

with radii 1=2. All of the L2 mass of the first eigenfunction of �n is supported

on B , with jBj=j�nj D 1
nC1

, which tends to 0 as n ! 1.

Theorem 6 below together with Lemmas 2 and 3, imply localisation for a wide

class of sequences .u�n
/. We first introduce the necessary notation.

Definition 5. Points in R
m will be denoted by a Cartesian pair .x1; x

0/ with

x1 2 R; x0 2 R
m�1. If � is an open set in R

m, then we define

�.x1/ D ¹x0 2 R
m�1W .x1; x

0/ 2 �º:

If �.x1/ is open, bounded, and non-empty in R
m�1, then we denote its first

.m � 1/-dimensional Dirichlet eigenvalue by �.�.x1//. We also put

�0 D
[

x12R
�.x1/:

A set � � R
m is horn-shaped if it is open, connected, x1 > x2 > 0 implies

�.x1/ � �.x2/, and x1 < x2 < 0 implies �.x1/ � �.x2/.

Theorem 6. Let � � R
m be horn-shaped with j�j < 1 and j�0jm�1 < 1: If

� � �.�/,

�.�0/ � .m� 1/.� � �.�0//; (10)

and if

" 2 .0; j�j�.�0/m=2�; (11)
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then

1

j�j ku�k2
1 � 2"C 2j�0jm�1

j�j

ˇ

ˇ

ˇ

°

x1 2 RW �.�.x1=2// � �.�0/

2.� � �.�0//

� log."�1j�j�.�.x1=2//
m=2/

±ˇ

ˇ

ˇ

1

C 25=2j�0jm�1

j�j .� � �.�0//�1=2.log."�1j�j�.�0/m=2//1=2:

(12)

If � � R
2 is open, bounded and convex, then it is always possible to find an

isometry of � such that this isometric set is horn-shaped: let p and q be points

on @� such that jp � qj D w.�/, and p � q is perpendicular to the pair of

straight parallel lines tangent to @� at both p and q which define the width w.�/.

That such a pair p; q exists was shown for example in Theorem 1.5 in [5]. Let

Tp;q.�/ D ¹x � 1
2
.p C q/W x 2 �º be the translation of � which translates the

midpoint of p and q to the origin. Let ' be the angle between the positive x1 axis

and the unit vector .p � q/=jp � qj and let R' be rotation over an angle �
2

� '.

Then R'Tp;q.�/ is isometric with �, horn-shaped,

R'Tp;q.�/
0 D .�jp � qj=2; jp � qj=2/;

and

jR'Tp;q.�/
0j1 D w.�/: (13)

The points p and q need not be unique, and so this isometry need not be unique.

However, the construction above always gives (13). If ‡ is an ellipse with semi

axes a1 and a2 with a1 > a2 thenR'Tp;q.‡/ D
®

.x1; x2/W
�

x1

a1

�2 C
�

x2

a2

�2
< 1

¯

and

jR'Tp;q.‡/
0j1 D w.‡/: However, the ellipse z‡ D

®

.x1; x2/W
�

x1

a2

�2 C
�

x2

a1

�2
< 1

¯

is a horn-shaped isometry of ‡ with j z‡ 0j1 > w.‡/.

Corollary 7. Let � � R
2 be a convex horn-shaped set. If � � �.�/ and

�.�0/ � 1
2
�; then for " 2 .0; j�j�.�0//,

1

j�jku�k2
1 � 2"C 2j�0j1

j�j

ˇ

ˇ

ˇ

°

x1 2 RW j�0j21�.�.x1=2// � �2

2.j�0j21� � �2/

� log.4�2"�1j�0j�2
1 j�j/

±
ˇ

ˇ

ˇ

1

C 25=2j�0j21
j�j .j�0j21� � �2/�1=2.log.�2"�1j�0j�2

1 j�j//1=2:

(14)
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Example 8. If .an/; .bn/; n2N are sequences inR satisfying an 2 Œ0; 1�; bn 2 Œ0; n�;
and if �n is the quadrilateral with vertices

.0; an/; .0;�1C an/; .bn; 0/; .�nC bn; 0/;

then
1

j�nj ku�n
k2

1 D O.n�2=3 logn/; n ! 1; (15)

and .u�n
/ is localising.

Example 9. Let Rn � R
2 be the rhombus with vertices

�n

2
; 0

�

;
�

� n

2
; 0

�

;
�

0;
1

2

�

;
�

0;�1
2

�

;

and let �n be an open subset of Rn which contains the open triangle Tn with

vertices
�n

2
; 0

�

;
�

0;
1

2

�

;
�

0;�1
2

�

:

Then �n satisfies (15) and .u�n
/ is localising.

It follows by scaling properties of both u� and j�j that if � is open and

connected with j�j < 1 and if ˛ > 0, then

E.˛�/ D E.�/;

where ˛� is a homothety of � by a factor ˛. Similarly,

1

j˛�njku˛�n
k2

1 D 1

j�njku�n
k2

1:

Example 9 then implies that a sequence of suitable translations, rotations and

hometheties of sectors .Sn.r//; with

Sn.r/ WD ¹.�; �/W 0 < � < r; 0 < � < �=nº

satisfies
1

jSn.r/j
kuSn.r/k2

1 D O.n�2=3 log n/; n ! 1;

and .uSn.r// localises as n ! 1. This could have been obtained directly using

separation of variables, Kapteyn’s inequality, and extensive computations involv-

ing Bessel functions. See [14] for similar computations.
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Example 10. If 1 � ˛ < 1, m D 2; 3; : : : and

�n;˛ D ¹.x1; x
0/ 2 R

mW .2n�1jx1j/˛ C jx0j˛ < 1º; n 2 N;

then

1

j�n;˛jku�n;˛
k2

1 D O.n�2=.˛C2/.logn/max¹1=˛;1=2º/; n ! 1; (16)

and .u�n;˛
/ is localising.

Theorem 11. If R > 0; " > 0 and

�R;RC" D ¹x 2 R
mWR < jxj < RC "º;

then

lim
"#0

"2�.�R;RC"/ D �2; (17)

and

lim
"#0

E.�R;RC"/ D 2

�
: (18)

If 4 � R
2 is an equilateral triangle, then

E.4/ D 2

�
p
3
: (19)

If � � R
2 is a rectangle, then

E.�/ D 4

�2
: (20)

If B � R
2 is a disc, then

E.B/ � 0:6782
2

�
: (21)

Inequalities (6.9) in [11] and (4.7) in [15] state that for � open, bounded,

planar, and convex,

u�.x/ � min¹jx � yjW y 2 @�º�.�/
1=2

j�j ku�k1; (22)

and both papers refer to [16] for details. However, no such inequality can be found

in [16]. Inequality (22) would, by first maximising its right-hand side over all

x 2 �, and subsequently its left-hand side over all x 2 �, imply that

ku�k1 � �.�/
�.�/1=2

j�j ku�k1: (23)
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Since the Dirichlet eigenvalues are monotone in the domain and� contains a disc

of radius �.�/,

�.�/ � j 2
0

�.�/2
:

This, by (2) and (23), implies that for a bounded, planar convex set �,

E.�/ � j�1
0 : (24)

Inequality (23) was also quoted in formula (2.24) in [10]. However, (23) and (24)

cannot hold true. Example 8 above implies that limn!1E.�n/ D 0 for a col-

lection of sequences of convex quadrilaterals .�n/. This collection includes a

sequence of rhombi with vertices
�

n
2
; 0

�

;
�

� n
2
; 0

�

;
�

0; 1
2

�

;
�

0;�1
2

�

. This contra-

dicts (24).

This paper is organised as follows. The proofs of Lemma 3 and Theorem 4

are deferred to Section 2 below. The proofs of Theorem 6, Corollary 7, and

Examples 8, 9, and 10 will be given in Section 3. The proof of Theorem 11 will

be given in Section 4.

2. Proofs of Lemma 3 and Theorem 4

Proof of Lemma 3. First suppose (7) holds. That is if

an D 1

j�njkfnk2
1; (25)

then

lim
n!1

an D 0: (26)

Let ˛ > 0 and define

Bn;˛ D ¹x 2 �nW fn.x/ > ˛º:

It follows that
Z

�nnBn;˛

f 2
n � ˛2j�n n Bn;˛j;

and
Z

Bn;˛

f 2
n � 1 � ˛2j�n n Bn;˛j � 1 � ˛2j�nj:

Furthermore,
Z

Bn;˛

fn � ˛jBn;˛j: (27)
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It follows by (25) and (27) that

jBn;˛j � ˛�1

Z

Bn;˛

fn � ˛�1

Z

�n

fn � ˛�1a1=2
n j�nj1=2:

We now choose

˛ D a1=4
n j�nj�1=2;

and conclude that

Z

B
n;a

1=4
n j�nj�1=2

f 2
n � 1 � a1=2

n ;
jB

n;a
1=4
n j�nj�1=2j
j�nj � a1=4

n :

Set An D B
n;a

1=4
n j�nj�1=2 . Then An satisfies (4) by (26).

Next suppose (4) holds. Let " 2 .0; 1/ be arbitrary. There exists N" 2 N such

that both
Z

�nnAn

f 2
n < ";

and jAnj=j�nj < ". So for n � N",

1

j�njkfnk2
1 D 1

j�nj

� Z

An

fn C
Z

�nnAn

fn

�2

� 2

j�nj

�� Z

An

fn

�2

C
� Z

�nnAn

fn

�2�

� 2

j�nj

�

jAnj C j�n n Anj
Z

�nnAn

f 2
n

�

� 2
� jAnj

j�nj C "
�

� 4":

This concludes the proof since " 2 .0; 1/ was arbitrary. �

Proof of Theorem 4. By Lemma 3.1 in [7] we have, taking into account that the

estimates there are for the Dirichlet Laplacian with an extra factor 1
2
, that

ku�k2
1 �

� e

2�m

�m=2

�.�/m=2: (28)
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Since � contains a ball with inradius �.�/, we have by domain monotonicity

�.�/ �
j 2

.m�2/=2

�.�/2
: (29)

By (28) and (29),

ku�k�2
1 �

� 2�m

ej 2
.m�2/=2

�m=2

�.�/m;

and (8) follows by (5). By [13] we have that for planar convex sets, j�j �
2 diam.�/�.�/. This, together with (8), implies (9). �

3. Proofs of Theorem 6, Corollary 7, and Examples 8, 9, 10

To prove Theorem 6 we proceed via a number of lemmas.

Lemma 12. If � is an open set with j�j < 1 and if ku�k2 D 1, then for any

" > 0,
1

j�jku�k2
1 � 2"2j�j C 2

j�j j¹x 2 �Wu�.x/ > "ºj: (30)

Proof. Let

�" D ¹x 2 �Wu� � "º:
We have by Cauchy–Schwarz that

1

j�jku�k2
1 D 1

j�j

� Z

�"

u� C
Z

�n�"

u�

�2

� 2

j�j

�� Z

�"

u�

�2

C
� Z

�n�"

u�

�2�

� 2

j�j

�

"2j�"j2 C j� n�"j
Z

�n�"

u2
�

�

� 2"2j�j C 2

j�j j¹x 2 �Wu�.x/ > "ºj: �

For a non-empty open set � � R
m, we denote by p�.x; yI t /; x 2 �; y 2 �;

t > 0 its Dirichlet heat kernel.

Lemma 13. If � is an open set in R
m with 0 < j�j < 1, then

p�.x; xI t / �
� e

2�m

�m=2

�.�/m=2e�t�.�/; t � m

2�.�/
: (31)
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Proof. Since j�j < 1, p�.x; yI t / has an L2.�/ eigenfunction expansion given

by

1
X

j D1

e�t�j .�/u2
j;�.x/ D p�.x; xI t /: (32)

It follows from (32) that for ˛ 2 Œ0; 1/,

p�.x; xI t / D
1

X

j D1

e�.˛C1�˛/t�j .�/u2
j;�.x/

� e�˛t�.�/

1
X

j D1

e�.1�˛/t�j .�/u2
j;�.x/

D e�˛t�.�/p�.x; xI .1� ˛/t/
� e�˛t�.�/pRm.x; xI .1� ˛/t/

D e�˛t�.�/.4�.1� ˛/t/�m=2;

(33)

where we have used monotonicity of the Dirichlet heat kernel. For t � m=.2�.�//

we choose ˛ as to optimise the right-hand side of (33). This yields,

˛ D 1� m

2t�.�/
;

which in turn gives (31). �

The main idea in the proof of Theorem 6 is to use Brownian motion techniques

to achieve an efficient way of separation of variables for horn-shaped domains.

These have been used extensively elsewhere. See for example [3] and Lemma 7

in [4]. If �.x1/ is open and non-empty then, following Definition 5, we denote

corresponding Dirichlet heat kernel by ��.x1/.x
0; y0I t /; x0 2 �.x1/; y

0 2 �.x1/;

t > 0. We also put �.;/ D 1; �;.x0; y0I t / D 0.

Lemma 14. Let � be a horn-shaped set in R
m. If x1 2 R; x0 2 �.x1/, then

p�.x; xI t / � .4�t/�1=2��.x1=2/.x
0; x0I t /C .4�t/�1=2e�x2

1
=.4t/��0.x0; x0I t /:

(34)

Proof. The proof relies on the Feynman–Kac formula ([17]). We have that for any

non-empty open set� in R
m,

p�.x; yI t / D .4�t/�m=2e�jx�yj2=.4t/
P

�

[

0���t

x.�/ � �W x.0/ D x; x.t/ D y
�

;

(35)
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where ¹x.�/; 0 � � � tº is a Brownian bridge on R
m. The term

P

�

[

0���t

x.�/ � �W x.0/Dx; x.t/Dy
�

in (35) is the conditional probability that the Brownian bridge stays in �, condi-

tioned with x.0/D x, x.t/D y. We write x.�/D .x1.�/; x
0.�// with x1.0/D x1,

x1.t /Dy1; x
0.0/Dx0; x0.t /Dy0; where ¹x1.�/; 0 � � � tº, and ¹x0.�/; 0��� tº

are independent Brownian bridges.

For � > 0 and x1 < �; y1 < �, we have by the reflection principle,

p.�1;�/.x1; y1I t / D 1

.4�t/1=2
.e�.x1�y1/2=.4t/ � e�.2��x1�y1/2=.4t//:

By (35), for x1 < �; y1 < �;

P.max
0���t

x1.�/ � �W x1.0/ D x1; x1.t / D y1/ D 1� e�.��x1/.��y1/=t :

For x1 D y1 D 0; � > 0; we have

P.max
0���t

x1.�/ � �W x1.0/ D x1.t / D 0/ D 1 � e��2=t :

We arrive at the well-known formula for the density of the maximum of a one-

dimensional Brownian bridge,

P.max
0���t

x1.�/ 2 d�W x1.0/ D x1.t / D 0/ D 2�

t
e��2=t

1Œ0;1/.�/d�: (36)

We first consider the case x1 > 0. By (35) and (36),

p�.x; xI t / D .4�t/�m=2
P

�

[

0���t

x.�/ � �W x.0/ D x.t/ D x
�

� .4�t/�m=2

x1=2
Z

0

d�
2�

t
e��2=t

P

�

[

0���t

x0.�/ � �.x1 � �/W

x0.0/ D x0.t / D x0
�

C .4�t/�m=2

1
Z

x1=2

d�
2�

t
e��2=t

P

�

[

0���t

x0.�/ � �0W

x0.0/ D x0.t / D x0
�
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� .4�t/�1=2

x1=2
Z

0

d�
2�

t
e��2=t��.x1=2/.x

0; x0I t /

C .4�t/�1=2

1
Z

x1=2

d�
2�

t
e��2=t��0.x0; x0I t /

� .4�t/�1=2��.x1=2/.x
0; x0I t /C .4�t/�1=2e�x2

1
=.4t/��0.x0; x0I t /;

(37)

where we have used that �.x1 � �/ � �0 for � � x1=2 in the third line, and that

�.x1 � �/ � �.x1=2/ for � 2 Œ0; x1=2/ in the fourth line. We next consider the

case x1 < 0. By (35) and (36),

p�.x; xI t / D .4�t/�m=2
P

�

[

0���t

x.�/ � �W x.0/ D x.t/ D x
�

� .4�t/�m=2

jx1j=2
Z

0

d�
2�

t
e��2=t

P

�

[

0���t

x0.�/ � �.x1 C �/W

x0.0/ D x0.t / D x0
�

C .4�t/�m=2

1
Z

jx1j=2

d�
2�

t
e��2=t

P

�

[

0���t

x0.�/ � �0W

x0.0/ D x0.t / D x0
�

� .4�t/�1=2

jx1j=2
Z

0

d�
2�

t
e��2=t��.x1=2/.x

0; x0I t /

C .4�t/�1=2

1
Z

jx1j=2

d�
2�

t
e��2=t��0.x0; x0I t /

� .4�t/�1=2��.x1=2/.x
0; x0I t /C .4�t/�1=2e�x2

1
=.4t/��0.x0; x0I t /;

(38)

where we have used that �.x1 C �/ � �0 for � � jx1j=2 in the third line, and

that �.x1 C �/ � �.x1=2/ for � 2 Œ0; jx1j=2/ in the fourth line. Combining (37)

and (38) gives (34). �
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Proof of Theorem 6. We apply Lemma 13 to the .m�1/-dimensional heat kernels

��.x1=2/ and ��0 respectively, and obtain that for

t � m � 1
2�.�0/

(39)

both

��.x1=2/.x
0; x0I t / �

� e

2�.m� 1/

�.m�1/=2

�.�.x1=2//
.m�1/=2e�t�.�.x1=2//;

(40)

and

��0.x0x0I t / �
� e

2�.m� 1/

�.m�1/=2

�.�0/.m�1/=2e�t�.�0/: (41)

Indeed, (39) implies

t � m � 1
2�.�.x1=2//

by domain monotonicity. For t satisfying (39),

.4�t/�1=2 � .�.�0/=.2�.m � 1///1=2; (42)

and we obtain, by Lemma 14, (40), (41), and (42), that for t satisfying (39),

p�.x; xI t / � e�1=2
� e

2�.m� 1/

�m=2

.�.�.x1=2//
m=2e�t�.�.x1=2//

C �.�0/m=2e�x2
1

=.4t/�t�.�0//:

(43)

Bounding the left-hand side of (32) from below by e�t�u�.x/
2 we find by (43)

that if (39) holds, then

u�.x/
2 � e�1=2

� e

2�.m � 1/

�m=2

.�.�.x1=2//
m=2e�t.�.�.x1=2//��/

C �.�0/m=2e�x2
1

=.4t/�t.�.�0/��//:

It follows that if (39) holds, then

¹u2
�.x/ � "2º

�
°

x 2 �W e�1=2
� e

2�.m � 1/

�m=2

�.�.x1=2//
m=2e�t.�.�.x1=2//��/ � "2

2

±

[
°

x 2 �W e�1=2
� e

2�.m� 1/

�m=2

�.�0/m=2e�x2
1

=.4t/�t.�.�0/��/ � "2

2

±
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D
°

x 2 �W 21=2e�1=4
� e

2�.m � 1/
�m=4

�.�.x1=2//
m=4e�t.�.�.x1=2//��/=2 � "

±

[
°

x 2 �W 21=2e�1=4
� e

2�.m� 1/

�m=4

�.�0/m=4e�x2
1

=.8t/�t.�.�0/��/=2 � "
±

WD A1 [ A2; (44)

with obvious notation. We choose

t D .2.� � �.�0///�1;

and let

" 2 .0; �.�0/m=4�:

Then the constraint on t in (39) is satisfied for all� satisfying (10). For the above

choice of t we have

A1 �
°

x 2 �W �.�.x1=2// � �.�0/

4.� � �.�0//
< log."�1�.�.x1=2//

m=4/
±

;

jA1j � j�0jm�1

ˇ

ˇ

ˇ

°

x1 2 RW �.�.x1=2// � �.�0/

4.� � �.�0//
< log."�1�.�.x1=2//

m=4/
±
ˇ

ˇ

ˇ

1
;

(45)

A2 � ¹x 2 �W x2
1.� � �.�0// < 4 log."�1�.�0/m=4/º;

and

jA2j � 4j�0jm�1.� � �.�0//�1=2.log."�1�.�0/m=4//1=2: (46)

By (30), (44), (45), and (46), we obtain

1

j�j ku�k2
1 � 2"2j�j C 2j�0jm�1

j�j

ˇ

ˇ

ˇ

°

x1 2 RW �.�.x1=2// � �.�0/

4.� � �.�0//

< log."�1�.�.x1=2//
m=4/

±ˇ

ˇ

ˇ

1

C 8j�0jm�1

j�j .� � �.�0//�1=2.log."�1�.�0/m=4//1=2:

Substitution of "2j�j D "0 and deleting the 0 yields (12) for all " satisfying (11).

�

Proof of Corollary 7. Let

x1.�/
C WD sup¹x1W�.x1/ ¤ ;º < 1; x1.�/

� WD inf¹x1W�.x1/ ¤ ;º > �1:
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Let xC
� ; x

�
� be points of @� with x1 coordinates x1.�/

C and x1.�/
� respectively.

By convexity � contains triangles with bases �0 and vertices xC
� and x�

� respec-

tively. Hence for any x D .x1; x
0/ 2 �, 1

2
x1.�/

� � x1=2 � 1
2
x1.�/

C; and

�.x1=2/ contains a line segment with length at least 1
2
j�0j1. So

�.�.x1=2// � 4�.�0/ D 4�2

j�0j21
:

This, together with (12) for m D 2, proves (14). �

P. Kröger observed that one can get upper bounds for the first Dirichlet eigen-

value of the circular sector Sn.r/with radius r and opening angle �=n, which have

the correct leading term by choosing an optimal rectangle inside the sector [14].

Similar observations were used in the proof of Theorem 1.5 in [5] and also in the

proof of Theorem 1.3 in [12].

Proof of Example 8. Theorem 1.5 in [5] implies the existence of a constant c1<1
such that

�.�n/ � �2 C c1n
�2=3; n 2 N: (47)

We note that �n is horn-shaped with respect to the coordinate system which

defines it in Example 8. Note that j�0
nj1 D 1. Straightforward computations

show,

�.�n.x1//D �2
�

1� x1

bn

��2

; 0 < x1 < bn;

�.�n.x1//D �2
�

1� jx1j
n � bn

��2

; bn � n < x1 < 0;

�.�n.x1=2//� �2
�

1C x1

bn

�

; 0 < x1 < bn; (48)

�.�n.x1=2//� �2
�

1C jx1j
n � bn

�

; bn � n < x1 < 0; (49)

and

j�nj D n

2
: (50)

By (47) we see that (10) holds for all

n � N� WD min¹n 2 NW n2=3 � ��2c1º:

We obtain by Corollary 7 and (47)–(50) that for

� D �2 C c1n
�2=3; (51)
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2j�0
nj1

j�nj

ˇ

ˇ

ˇ

°

x1 2 RW j�0
nj21�.�n.x1=2// � �2

2.j�0
nj21� � �2/

� log.4�2"�1j�0
nj�2

1 j�nj/
±ˇ

ˇ

ˇ

1

� 8��2c1n
�2=3 log.2�2"�1n/:

(52)

The third term in the right-hand side of (12) equals by (51),

27=2

n2=3
c

�1=2
1 .log.2�1�2"�1n//1=2: (53)

We find for n � N� and " 2 .0; 2�1�2n�, by (52), (53), and (12),

1

j�njku�n
k2

1 � 2"C 8��2c1n
�2=3 log.2�2"�1n/

C 27=2c
�1=2
1 n�2=3.log.2�1�2"�1n//1=2:

(54)

Choosing " D n�2=3 gives that the right-hand side of (54) is O.n�2=3 log n/: This

implies localisation by Lemma 3, and (15) follows by (6) and (54) for that choice

of ". �

Proof of Example 9. By choosing an optimal rectangle in Tn one shows, similarly

to (47), the existence of c3 < 1 such that �.Tn/ � �2 C c3n
�2=3. By domain

monotonicity of the Dirichlet eigenvalues and (51),

�.Rn/ � �.�n/ � �.Tn/ � �2 C c3n
�2=3: (55)

Furthermore,
n

4
D jTnj � j�nj � jRnj D n

2
; �.R0

n/ D �2; jR0
nj1 D 1:

By domain monotonicity of the Dirichlet heat kernels, we have for � � �.�n/,

e�t�u�n
.x/2 � e�t�.�n/u�n

.x/2

� p�n
.x; xI t /

� pRn
.x; xI t /

� .4�t/�1=2�Rn.x1=2/.x
0; x0I t /

C .4�t/�1=2e�x2
1

=.4t/�R0
n
.x0; x0I t /:

Adapting the proof of Theorem 6 from (40) onwards, and adapting Corollary 7,

gives for all n sufficiently large, � � �.�n/, and " � �2n
4

,

1

j�njku�n
k2

1 � 2"C 2jR0
nj1

j�nj

ˇ

ˇ

ˇ

°

x1 2 RW jR0
nj21�.Rn.x1=2// � �2

2.jR0
nj21� � �2/

� log.4�2"�1jR0
nj�2

1 j�nj/
±ˇ

ˇ

ˇ

1

C 25=2jR0
nj21

j�nj .jR0
nj21� � �2/�1=2.log.�2"�1jR0

nj�2
1 j�nj//1=2
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� 2"C 8

n

ˇ

ˇ

ˇ

°

x1 2 RW �.R
0
n.x1=2// � �2

2.� � �2/
� log.2�2"�1n/

±ˇ

ˇ

ˇ

1

C 29=2

n
.� � �2/�1=2.log.2�1�2"�1n//1=2;

where we have used (55). We now choose � D �2 Cc3n
�2=3 and use (48) and (49)

with bn D n
2
. This gives

1

j�njku�n
k2

1 � 2"C 16��2c3n
�2=3 log.2�2"�1n/

C 29=2c
�1=2
3 n�2=3.log.2�1�2"�1n//1=2:

We choose " D n�2=3 which gives (15). This proves localisation by Lemma 3. �

Proof of Example 10. Theorem 1.5 in [5] implies the existence of a constant

c.˛/ 2 .1;1/ such that

�.�n;˛/ � j 2
.m�2/=2 C c.˛/n�2˛=.˛C2/; n 2 N; (56)

where �.¹x0 2 R
m�1W jx0j < 1º/ D j 2

.m�2/=2
. For �n

2
< x1 <

n
2
; �.x1/ is an

.m � 1/-dimensional disc with radius .1� .2jx1j=n/˛/1=˛: Hence,

�.�.x1=2// D j 2
.m�3/=2.1� .n�1jx1j/˛/�2=˛

� j 2
.m�3/=2.1C 2˛�1.n�1jx1j/˛/; (57)

and

j�0
n;˛j1 D j¹x0 2 R

m�1W jx0j < 1ºjm�1 D !m�1; j�n;˛j D !mn=2; (58)

and!m is the measure of the ball with radius 1 inR
m. For " 2 .0; 2�1!mj

m
.m�3/=2

n�,

n sufficiently large, and � D j 2
.m�2/=2

C c.˛/n�2˛=.˛C2/ � �.�n;˛/, we have

4
!m�1

!mn

ˇ

ˇ

ˇ

°

x1 2 RW
�.�n;˛.x1=2// � j 2

.m�3/=2

2.� � j 2
.m�3/=2

/
� log.2jm

.m�3/=2!m"
�1n/

±ˇ

ˇ

ˇ

1

� 4!m�1

!m

.˛c.˛/=j 2
.m�3/=2/

1=˛n�2=.˛C2/.log.2jm
.m�3/=2!m"

�1n//1=˛:

(59)

Similarly we find for " 2 .0; 2�1!mj
m
.m�3/=2

n� and all n sufficiently large,

27=2!m�1

!mn
.� � j 2

.m�3/=2/
�1=2.log.�2"�1n//1=2

� 27=2c.˛/�1=2n�2=.˛C2/.log.jm
.m�3/=2!m"

�1n=2//1=2:

(60)

Choosing " D n�2=.˛C2/ gives (16) by Corollary 7, and (56)–(60). Lemma 3

and (16) imply localisation. �
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4. Proof of Theorem 11

Proof of Theorem 11. Choosing '.x/ D sin.�.jxj�R/="/ as a test function in (1),

we have that

�.�R;RC"/ � �2

"2

R RC"

R cos2.�.r �R/="/rm�1dr
R RC"

R
sin2.�.r � R/="/rm�1dr

� �2

"2

�RC "

R

�m�1
R RC"

R
cos2.�.r �R/="/dr

R RC"

R
sin2.�.r �R/="/dr

D �2

"2

�RC "

R

�m�1

:

(61)

On the other hand, since the first Dirichlet eigenfunction of �R;RC" is radial,

u�R;RC"
.x/ WD u.r/, we have

�.�R;RC"/ D
R RC"

R u0.r/2rm�1dr
R RC"

R u.r/2rm�1dr

�
� R

RC "

�m�1
R RC"

R u0.r/2dr
R RC"

R
u.r/2dr

�
� R

RC "

�m�1

min
v2H 1

0
.R;RC"/n¹0º

R RC"

R
v0.r/2dr

R RC"

R
v.r/2dr

D �2

"2

� R

RC "

�m�1

;

(62)

and (17) follows from (61) and (62).

To prove (18) we consider the radial solution  ".jxj/ D u".x/ of

��u�R;RC"
D �.�R;RC"/u�R;RC"

;

with zero boundary condition and k "k1 D 1. The function  " satisfies

 00
" C m � 1

r
 0

" C �" " D 0 in .R;RC "/;

with boundary condition  ".R/ D  ".RC "/ D 0 and normalisation k "k1 D 1,

where �" D �.�R;RC"/. Define

�".t / D  ".RC "t/; t 2 .0; 1/:
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Then �" satisfies
8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

�00
" C .m � 1/"

RC "t
�0

" C "2�"�" D 0 in .0; 1/;

�".0/ D �".1/ D 0;

k�"k1 D 1:

(63)

Integrating between the maximum point tm of � and t 2 .0; 1/, we get that

j�0
".t /j D

ˇ

ˇ

ˇ

ˇ

t
Z

tm

� .m � 1/"�0
".t /

RC "t
C "2�"�".t /

�

dt

ˇ

ˇ

ˇ

ˇ

� .m � 1/
�2"

R
C "2�"

�

: (64)

Hence �"; �
0
" are equibounded in .0; 1/ and, by the Arzelà–Ascoli theorem, �"

converges uniformly, as " ! 0C, to a continuous function �.t/ in .0; 1/. From (63)

and (64), we also obtain equiboundedness of the second derivatives �00
" . Hence �"

converges uniformly to � in C 1. Moreover, we obtain uniform convergence of the

second derivatives �00
" . Passing to the limit in the equation, we infer that � satisfies

8

ˆ

ˆ

<

ˆ

ˆ

:

�00 C �2� D 0 in .0; 1/;

�.0/ D �.1/ D 0;

k�k1 D 1:

Hence �.t/ D sin.�t/ and

lim
"#0

Z

Œ0;1�

�".t /dt D
Z

Œ0;1�

�.t/dt D 2

�
: (65)

So we obtain

E.�R;RC"/ D j�R;RC"j�1

Z

�R;RC"

 " �
� R

R C "

�m�1
Z

Œ0;1�

�".t /dt;

and, by (65),

lim inf
"#0

E.�R;RC"/ � 2

�
:

Similarly we have

E.�R;RC"/ �
�RC "

R

�m�1
Z

Œ0;1�

�".t /dt;

and, by (65),

lim sup
"#0

E.�R;RC"/ � 2

�
:
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To prove (19) we consider an equilateral triangle 4 with vertices at

.0; 0/; .1; 0/;
�1

2
;
1

2

p
3
�

:

The first Dirichlet eigenfunction is given by (formula (2.1) in [18]),

u4.x1; x2/ D sin
�4�x2p

3

�

� sin
�

2�
�

x1 C x2p
3

��

C sin
�

2�
�

x1 � x2p
3

��

:

We find that j4j D
p

3
4

,

ku4k1 D u.1=2;
p
3=6/ D 3

p
3

2
;

and

ku4k1 D
Z

4

u.x1; x2/dx1 dx2 D 9

4�
p
3
:

This proves (19).

The efficiency of an interval is given by 2
�

. Formula (20) follows by separation

of variables. More generally if �1 and �2 are open and connected sets in R
m1

and R
m2 , respectively, and with finite measures j�1jm1

and j�2jm2
respectively,

then

E.�1 ��2/ D E.�1/E.�2/;

where �1 ��2 is the Cartesian product in R
m1Cm2 .

To prove (21) we let B D ¹x 2 R
2W jxj < 1º. Then

uB.r; �/ D J0.j0r/; 0 � r < 1; 0 < � � 2�;

and

kuBk1 D
Z

Œ0;1�

dr r

Z

Œ0;2�/

d� J0.j0r/ � 0:215882.2�/:

Since kuBk1 D J0.0/ D 1, we have that

E.B/ � 0:6782
2

�
: �
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