
J. Spectr. Theory 11 (2021), 1043–1079
DOI 10.4171/JST/365

© 2021 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license.

Self-adjointness of two-dimensional Dirac operators

on corner domains
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Abstract. We investigate the self-adjointness of the two-dimensional Dirac operator D,
with quantum-dot and Lorentz-scalar ı-shell boundary conditions, on piecewise C 2 do-
mains (with finitely many corners). For both models, we prove the existence of a unique
self-adjoint realization whose domain is included in the Sobolev space H1=2, the formal
form domain of the free Dirac operator. The main part of our paper consists of a descrip-
tion of the domain of the adjoint operator D� in terms of the domain of D and the set of
harmonic functions that verify some mixed boundary conditions. Then, we give a detailed
study of the problem on an infinite sector, where explicit computations can be made: we
find the self-adjoint extensions for this case. The result is then translated to general domains
by a coordinate transformation.

Mathematics Subject Classification (2020). Primary: 81Q10; Secondary: 47N20, 47N50,
47B25.

Keywords. Dirac operator, quantum-dot, Lorentz-scalar ı-shell, boundary conditions, self-
adjoint operator, conformal map, corner domains.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1044
2 General considerations and proof of Theorem 1.6 . . . . . . . . . . . . 1049
3 Separation of variables on the wedge . . . . . . . . . . . . . . . . . . 1057
4 Curvilinear polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . 1064

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1069

A Some technical identities . . . . . . . . . . . . . . . . . . . . . . . . . 1069
B Properties of the angular operator . . . . . . . . . . . . . . . . . . . . 1071
C Straightening of a curvilinear wedge . . . . . . . . . . . . . . . . . . . 1075

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077

https://creativecommons.org/licenses/by/4.0/


1044 F. Pizzichillo and H. Van Den Bosch

1. Introduction

In this paper, we study the self-adjoint realizations of the two-dimensional Dirac
operator with boundary conditions on corner domains.

The free massless Dirac operator in R
2 is given by the differential expression

H WD �i
�

0 @x � i@y

@x C i@y 0

�

D �i� � r; (1.1)

where � D .�1; �2/ and the Pauli matrices are defined as

�1 D
�

0 1

1 0

�

; �2 D
�

0 �i
i 0

�

; �3 D
�

1 0

0 �1

�

:

The Dirac operator describes the evolution of a relativistic particle with spin 1
2
. It

also arises as an effective description of electronic excitations in materials with a
hexagonal lattice structure, such as graphene. The free operator in R2 can be seen
to be self-adjoint on D.H/ WD H 1.R2;C2/, since it is equivalent to multiplication
by � � k after Fourier transform. For more details, see for instance [26].

Let� � R
2 be a connected domain with † WD @�. Throughout, 
 is the trace

at †. We denote by n the outward normal and by t the tangent vector to † chosen
in such a way that .n; t/ is positively oriented. In this paper, we will study two
perturbations of the free Dirac operator related to the domain �.

The quantum-dot operator arises when the Dirac fermions are confined by a
termination of the lattice or by some type of potential. The best-known example of
these boundary conditions is the one known in different communities as infinite
mass, armchair, MIT-bag or chiral, as introduced in [8] for theoretical reasons,
or experimentally studied, for instance in [22]. In [24], it was shown that this
operator is the limit (in a suitable sense) of the free Dirac operators perturbed by
a mass term localized outside the domain� when this mass tends to infinity. The
quantum-dot operator DQ acts as H on the domain

D.DQ/ D ¹u 2 H 1.�;C2/WPQ
� 
u D 0º: (1.2)

Here, the boundary condition PQ
� is parameterized by � 2 Œ0; �/, and it is given

by

PQ
� 
u WD 1

2
.1� AQ

� /
u; AQ
� WD sin.�/� � t.s/C cos.�/�3: (1.3)

Throughout this paper we assume that � 2 .0; �/. The case � D 0 is known as
zig-zag boundary value conditions. Mathematically speaking, it is very different
from the other cases and we plan to study corners in this model in the future.
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The ı-shell interaction arises as a limiting case of the free Dirac operator
perturbed by a potential that is strongly localized on the curve †. Formally, one
can think of this perturbation as a potential that is a constant matrix times the
Dirac ı distribution on †. In order to make sense of this mathematically, it has
to be considered as a boundary value problem. The action of the ı-shell operator
on a function defined on the whole space can be seen as the direct sum of the
action of the free Hamiltonian on the restriction of the function on � and its
complement�c . Along the curve†, both functions are linked by a special type of
transmission condition given in (1.5). In dimension three, in [18, 17] it is shown
that this type of operator is exactly the limit of the operators with smooth potentials
that approximate a delta function on the surface. The case that we study here, is
the case where this potential takes the form of position-dependent mass term, or
formally mı†�3. We call this model the Lorentz-scalar ı-shell (as opposed to an
electrostatic delta-shell generated by V ı†1C2), since it is invariant under Lorentz
transformations. We study the Lorentz-scalar ı-shell operator DL, defined as the
action of H on pairs of spinors uC; u� defined in �C � � and �� � R

2 n x�,
with domain

D.DL/ D ¹.uC; u�/ 2 H 1.�C;C2/�H 1.��;C2/WPL
� .
uC; 
u�/ D 0º; (1.4)

where the boundary condition PL
� is parameterized by � 2 .�1; 1/, and defined

as the orthogonal projection on pairs of spinors satisfying

MC
� 
uC CM�

� 
u� D 0; M˙
� WD .˙i� � n C ��3/ : (1.5)

For the physical interpretation, 2� is the mass of the ı-shell. Throughout this
paper, we assume that � ¤ 0 since the case � D 0 coincides with the free Dirac
operator on R

2.
When � is a C 2 domain, both operators are self-adjoint. In other words, the

boundary value problem has an elliptic regularity property. For the quantum-dot
model, this was shown in [7]. The ı-shell interaction has been studied previously
in dimension three, but the 3-dimensional theory also applies in dimension 2. Self-
adjointness for 3-dimensional ı-shell interactions has been obtained in [12, 2, 3,
4, 20, 6, 5, 14], in increasingly general settings, and we refer to [19] for a review
on the topic.

In this paper we are interested in relaxing the smoothness hypothesis on the
domain: we consider domains with corners. This is justified by several reasons:
first the fact that for numerical approximation, smooth curves are approximated
by polygons. Second, from a mathematical point of view this turns out to be an
interesting question, and it goes beyond a mere generalization of the methods in



1046 F. Pizzichillo and H. Van Den Bosch

previous works. Indeed, if we compare the same problem for the Schrödinger
operator, we obtain that for convex corners the operator admits a one-parameter
family of self-adjoint extensions. Any element in this set is the norm resolvent
limit of a suitable sequence of Friedrichs–Dirichlet Laplacians with point interac-
tions, see [23]. Although we can expect the existence of a family of self-adjoint
extensions, they cannot correspond to point interactions, since the point interac-
tion for the Dirac operator is not well defined in dimension greater than one.

To our knowledge, boundary value problems on corner domains for the 2-di-
mensional Dirac operator have been treated in only two works. In [16], the case of
polygons has been treated for the MIT-bag model, a particular case of quantum-
dot boundary conditions. In the case where� is a sector, the authors prove that the
operator defined onH 1 is self-adjoint for opening angles in .0; �/ and it is not self-
adjoint for opening angles in .�; 2�/. In the latter case, it admits a one-parameter
family of self-adjoint extensions and among them, only one has domain included
in the Sobolev space H 1=2. In [9], the authors study the case of two-valley Dirac
operator on a wedge in R

2 with infinite mass boundary conditions, with an ad-
ditional sign flip at the vertex. They parameterize all its self-adjoint extensions,
proving that there exists no self-adjoint extension, which can be decomposed into
an orthogonal sum of two two-component operators. This property is related to
the valley-mixing effect.

These two papers strongly depend on the radial symmetry of the domain.
We generalize the results in [9, 16] to more general boundary conditions and
curvilinear polygons. Our main result, Theorem 1.2, states that for a general
bounded and piecewise C 2-regular domain � with finitely many corners, the
operatorsDL andDQ have a unique self-adjoint extension with domain contained
in H 1=2, the natural form domain of H . The Sobolev space H 1=2 is highly
significant in the framework of the Dirac operator and it appears naturally in
related models, such as the Coulomb interaction, see for instance [11] and the
references therein. Since functions in H 1=2 do not necessarily have boundary
traces, we need to introduce some definitions before stating this precisely. The
proofs in [16, 9] use an exact decomposition of the operator on the wedge in
angular momentum subspaces. This strategy could also work for the operator
under consideration here. However, we chose a different method that can be seen
as a Dirac analogue of the tools developed in [13] for the case of second-order
elliptic operators on corner domains. Indeed we characterize the domain of the
adjoint operator in terms of the operator defined on H 1 plus the set of C2-valued
harmonic functions that verify some mixed boundary condition, see Theorem 1.6
for more details. This fact holds independently of details about the domain and
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may generalize to other boundary conditions or the three-dimensional case. The
bottom line is that one has to obtain information about harmonic spinors near
corners to completely solve the problem.

Before stating our main theorem, following [13], we define precisely the class
of domains under consideration.

Definition 1.1. Let � � R
2 be a bounded and simply-connected domain and let

† D @�. We say that � is a curvilinear polygon of class C 2 if and only if for
every x 2 † there exists a neighbourhood V of x in R

2 and a mapping WV ! R
2

such that

(i)  is injective;

(ii)  and  �1 (defined on  .V /) are of class C 2;

(iii) denoting with  j the j -th component of  , � \ V is

(a) either ¹y 2 V W 2.y/ < 0º;
(b) ¹y 2 V W 1.y/ < 0 and  2.y/ < 0º;
(c) or ¹y 2 �W 1.y/ < 0 or  2.y/ < 0º.

For x 2 †, we say that x is a convex corner in case (b) and a non-convex corner

in case (c).

We use lowercase letters like u, v, . . . , to refer to spinors in L2.�;C2/ or pairs
of spinors inL2.�C;C2/�L2.��;C2/. When we have to distinguish components,

u D
�

u1

u2

�

; ui 2 L2.�;C/

in the first case, and

u D .uC; u�/ D
��

uC;1

uC;2

�

;

�

u�;1

u�;2

��

; u˙;i 2 L2.�˙;C/

in the second case.
From time to time, we omit the superscriptsQ and L for statements that apply

to bothDQ andDL. We define the maximal domain of the differential expression
H for a domain O � R

2, by

K.O/ WD ¹u 2 L2.O;C2/WHu 2 L2.O;C2/º:

Since D.�;C2/ � D.DQ/, the adjoint operator .DQ/� acts as H and one has
D..DQ/�/ � K.�/. Analogously D..DL/�/ � K.�C/ � K.��/. We can now
state our main result.
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Theorem 1.2. Let � be a bounded and simply connected curvilinear polygon

of class C 2. Let the operators DQ and DL be defined respectively as in (1.2)
and (1.4). The operatorsDQ and DL admit self-adjoint extensions D

Q
0 and DL

0

with domains

D.D
Q
0 / WD ¹u 2 H 1=2.�;C2/ \ K.�/WPQ

� 
u D 0º;

D.DL
0 / WD ¹u D .uC; u�/ 2 .H 1=2.�C;C2/ \ K.�C//

� .H 1=2.��;C2/ \ K.��//W
PL

� .
uC; 
u�/ D 0:º

Remark 1.3. The functions in K.�˙/ do not haveH 1 regularity and so, a priori,
the boundary conditions are ill-defined. Nevertheless, we will see in Lemma 2.3
that the boundary trace can be defined in a weaker sense. Also, away from the
corners, elements of D.DQ

0 / areH 1 and thus the boundary conditions hold in the
usual sense in any subset of † not containing corners.

Theorem 1.2 is a consequence of a more general result about the decomposi-
tion of the domains of the adjoint operators .DQ/� and .DL/�. We first define
the localized operators close to each corner and the spaces of solutions of the
corresponding adjoint problems.

Definition 1.4. Let � be a curvilinear polygon of class C 2 and let D be defined
as in (1.2) and (1.4). Let C be the finite set of the corners of† and let � > 0 small
enough such that for all distinct corners ci ; cj 2 C, B.ci ; 3�/ \ B.cj ; 3�/ D ;.
Then, for any c 2 C we define

NQ
� .c/ WD ¹u 2 K.� \ B.c; �//W

�u D 0 and PQ
� 
u D PQ

� 
.Hu/ D 0 on † \ B.c; �/º;

NL
� .c/ WD ¹u D .uC; u�/ 2 K.�C \ B.c; �//� K.�� \ B.c; �//W

�u D .�uC; �u�/ D 0 and PL
� 
u D PL

� 
.Hu/ D 0

on † \ B.c; �/º:

(1.6)

So, the spaces N�.c/ contain harmonic functions in a neighborhood of the corner
c satisfying some mixed boundary conditions. We will also need to extend these
functions to the entire domain. To this end, fix a radial cut-off � such that

� 2 C1.R2; Œ0; 1�/ and �.x/ D
´

1 for jxj < 1=3;
0 for jxj > 2=3:

(1.7)
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We define
N�.c/ WD

°

�
�x � c

�

�

uE .x/Wu 2 N�.c/
±

; (1.8)

where, for u defined in B.c; �/, uE denotes its extension by zero.

Remark 1.5. SinceH 2 acts as ��, if u 2 N�.c/ thenHu 2 K and the boundary
trace of Hu is well-defined in the generalized sense.

With these definitions, we can state the following theorem.

Theorem 1.6. Let � be a curvilinear polygon of class C 2 and let C be the finite

set of its corners. LetD be defined as in (1.2) and (1.4), and let N�.c/ be defined

as in (1.8). Then, we have a decomposition:

D.D�/ D D.D/C
X

c2C

N�.c/: (1.9)

The paper is organized as follows: we prove Theorem 1.6 in §2. In §3, we
use separation of variables to compute a basis of N�.c/ in the case of a wedge
with straight edges. This allows to obtain the complete description of self-adjoint
extensions for corners with straight edges. In §4, we obtain a unique self-adjoint
extension with domain D.D�/ \ H 1=2 for curvilinear polygons. Some of the
more technical and computational proofs are left for the appendices. Appendix A
groups some technical proofs needed in §2, Appendix B contains the explicit
computations of harmonic spinors in the straight wedge, and in Appendix C we
construct an explicit coordinate transformation and corresponding transformation
of spinors to translate results from the straight wedge to curvilinear polygons.

2. General considerations and proof of Theorem 1.6

In this section, we group some properties of the operators DQ and DL, their ad-
joints, and finally prove Theorem 1.6. We assume that� is a bounded curvilinear
polygon of class C 2.

We start with some identities that are well-known from the smooth case. In
order to simplify the computations, we rewrite the boundary conditions defined
respectively in (1.3) and (1.5). Throughout the paper, we use the canonical
identification R

2 � C: for any x 2 R
2, we will denote x WD x1 C ix2 2 C.

In particular, with this notation n D n1 C in2 and t D t1 C it2, where n is the
outward unit normal and t D .�n2; n1/ is the tangent vector with our choice of
orientation.
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For the quantum-dot model, PQ
�

�


u1

u2

�

D 0 if and only if


u2 D Bt
u1; where B WD sin �

1� cos�
:

So we can use equivalently

D.DQ/ D ¹u 2 H 1.�;C2/W 
u2 D Bt
u1º: (2.1)

From (2.1), the operatorDQ depends on a parameter B > 0. We use the notation
DQ;B to stress this dependence. Setting

MB WD
�

B�1=2 0

0 B1=2

�

;

we have that
DQ;B D MBD

Q;1MB :

Since the matrix MB is Hermitian and invertible, the problem of the self-
adjointness for the operatorDQ;B is equivalent to the problem of self-adjointness
for the operator DQ;1. For this reason, from now on we only assume that B D 1

or equivalently � D �=2. This kind of boundary condition is called infinite-mass

boundary condition. Finally, for the sake of clarity, we identify PQ D P
Q

�=2
.

For the Lorentz-scalar ı-shell, by using the identity i� �n �3 D � �t , we obtain
that MC

� 
uC CM�
� 
u� D 0 if and only if


u� D �.M�
� /

�1MC
� 
uC D cosh.˛/
uC � sinh.˛/� �t 
uC;

where

tanh.˛/ D 2�

1C �2
:

Again, we will mainly use this characterization of the domain

D.DL/ D ¹.uC; u�/ 2 H 1.�C;C2/ �H 1.��;C2/W

u� D .cosh.˛/ � sinh.˛/� �t /
uCº:

(2.2)

Next, we list some useful identities. For smooth u; v, they follow from the
divergence theorem and identities of the Pauli matrices. They follow for general
u; v by an approximation argument that requires some extra care in the case of
limited boundary regularity. We provide a detailed proof in Appendix A.

Lemma 2.1. Let O be a piecewise C 1 domain, nO the outward normal. Let

� be a curvilinear polygon of class C 2 with boundary †. We define, almost

everywhere on †, � � t � @tn, which equals the piecewise continuous curvature

of the boundary, up to a sign depending on the orientation.
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(i) For all u; v 2 H 1.O/ ,

hu;HviL2.O/ � hHu; viL2.O/ D i

Z

@O

h� � nOu; viC2 I (2.3)

(ii) for all u; v 2 H 1.O/,

hHu;HviL2.O/ D hru;rviL2.O/ C
Z

@O

hu; i�3@tOvi
C2 I (2.4)

(iii) for all u; v 2 D.DQ/,

hDQu;DQviL2.�/ D hru;rviL2.�/ C
Z

†

�

2
hu; viC2 I (2.5)

(iv) for all u; v 2 D.DL/,

hDLu;DLviL2.�C/�L2.��/

D hru;rviL2.�C/�L2.��/ � sinh.˛/
Z

†

� hu�; � �t vCiC2 :
(2.6)

With these identities, we check that the operators defined previously are sym-
metric.

Proposition 2.2. The operators DQ and DL, defined in (1.2) and (1.4) respec-

tively, are symmetric and closed.

Proof. Tanks to (2.3), the operator DQ is symmetric if
Z

†

h� � n†u; viC2 D 0; for all u; v 2 DQ:

Let u; v 2 D.DQ/, then PQ
u D PQ
v D 0, where PQ is defined in (1.3) for
� D �=2. Since � � n† anti-commutes with both �3 and � � t†, it anti-commutes
with AQ and so

PQ
� � n† D � � n†.1� PQ/:

Since PQ is a hermitian matrix on C
2, we conclude that

0 D hPQ
u; � � n†
viC2 D h� � n†
u; .1� PQ/
viC2 D h� � n†
u; 
viC2 :

Thus DQ is symmetric.
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Let us analyseDL. Thanks to (2.3) we have that DL is symmetric if and only
if
Z

†

h� � n†
uC; 
vCiC2 � h� � n†
u�; 
v�iC2 D 0; for all u; v 2 D.DL/:

Since � � n† anti-commutes with �3 we have that

.M˙
� /

� D M�
� ; .M˙

� /
�1 D .�2 � 1/�1M˙

� ; M˙
� � � n† D �� � n†M

�
� :

Using these properties, the boundary condition can be rewritten as

u�.x/ D �.M�
� /

�1MC
� uC.x/ D .1 � �2/�1M�

�M
C
� uC.x/; x 2 †;

and the same holds for v. Thus, we compute

h
u�; � � n†
v�iC2 D .1 � �2/�2hM�
�M

C
� 
uC; � � n†M

�
�M

C
� 
vCiC2

D .1 � �2/�2h
uC;M
�
�M

C
� � � n†M

�
�M

C
� 
vCiC2

D .1 � �2/�2h
uC; � � n†M
C
� M

�
�M

�
�M

C
� 
vCiC2

D h
uC; � � n†
vCiC2 :

Therefore, the boundary term vanishes and DL is symmetric.
Finally, to obtain the closedness of DQ, we start from (2.5). There exists a

constant C† > 0, depending only on the curvature of †, such that

kuk2
H 1.�/

� kDQuk2
L2.�/

C kuk2
L2.�/

C C†k
uk2
L2.†/

� kDQuk2
L2.�/

C kuk2
L2.�/

C C†kukH 1.�/kukL2.�/

� kDQuk2
L2.�/

C .1C ��1C†/kuk2
L2.�/

C �C†kuk2
H 1.�/

:

Thus, taking � sufficiently small, we find a constant C such that

kukH 1.�/ � C.kDQukL2.�/ C kukL2.�//: (2.7)

Let .un/n � D.DQ/ be a Cauchy sequence in the graph norm forDQ. Then (2.7)
implies that .un/n is a Cauchy sequence in H 1.�;C2/ and so there exists u 2
H 1.�;C2/ such that un ! u inH 1. Since the boundary trace map 
 is continuous
from D.DQ/ to H 1=2.†/ , we have that 
un ! 
u, and so 
u verifies the
quantum-dot boundary conditions. Thus,DQ is closed.

The proof for DL is analogous. We start this time from (2.6) to conclude that
there exists a constant such that there exists C† > 0 only depending on † such
that

kuk2
H 1.�C/�H 1.��/

� kDLuk2
L2.�C/�L2.��/

C kuk2
L2.�C/�L2.��/

C C†k
uk2
L2.†/

:
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This expression can be bounded in a completely analogous way to obtain

kuCkH 1.�C/ C ku�kH 1.��/ � C.kDLuk2
L2.�C/�L2.��/

C kuk2
L2.�C/�L2.��/

/:

(2.8)
Reasoning as before, we conclude that DL is closed. �

Now, we move on to study D.D�/. Since test functions are included in
the domain of D, its adjoint D� acts, in distribution sense, as the differential
expression H . Therefore, the domain of the adjoint is included in the maximal
domain K of the elliptic differential expression H . Spinors in the maximal
domain have boundary traces, as is the case for functions in the maximal domain
of second-order elliptic operators, see e.g., [13, Section 1.5.3]. Furthermore,
functions in the domain of the adjoint satisfy boundary conditions in a weak sense.

Lemma 2.3. Let O be a curvilinear polygon of class C 1. The operator

� �n 
 WH 1.O;C2/ �! L2.@O;C2/

extends to a bounded operator

T WK.O/ �! H�1=2.@O;C2/:

We defer the proof of Lemma 2.3 to Appendix A. We are ready now to give a
first characterization of D.D�/.

Proposition 2.4. Let DQ be the quantum-dot operator defined as in (1.2). Then

D..DQ/�/ D ¹u 2 K.�/WPQ
� � �nT u D 0º; (2.9)

where the boundary conditions hold in the sense that, for all f 2 H 1=2.†;C2/

such that P
Q
� f 2 H 1=2.†;C2/, we have

T uŒ.1 � PQ
� /f � D 0:

Let DL be the Lorentz-scalar ı-shell operator defined as in (1.4). Then

D..DL/�/ D ¹u D .uC; u�/ 2 K.�C/ � K.��/WPL
� T u D 0º; (2.10)

where the boundary conditions hold in the sense that, for all fC and f� in

H 1=2.†;C2/ such that M˙
� f˙ 2 H 1=2.†;C2/, we have

T uCŒM
�
� f

C�C T u�ŒM
C
� f�� D 0:
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Remark 2.5. If v 2 D..D/�/ is supported away from the corners, multiplication
of T v by � �n and PQ

� makes sense and the boundary conditions hold in the usual
sense.

Remark 2.6. Let C be the set of corner points of @O. If f and PQ
� f are in

H 1=2.@O/, then f vanishes on C in the sense that it can be written as a H 1=2-
limit of functions with compact support in @O n C.

Proof of Proposition 2.4. Since H 1
0 .�;C

2/ � D.DQ/, for v 2 D..DQ/�/ we
have

.DQ/�v D Hv;

which implies that D..DQ/�/ � K.�/.
Set

D
� WD ¹u 2 K.�/WPQ

� � �nT u D 0º;
and let us prove first that D� � D..DQ/�/. Let v 2 D�, then for all u 2 D.DQ/,

u D .1� P

Q
� /
u 2 H 1=2.†/. By (A.1),

˝

DQu; v
˛

L2.�/
� hu;HviL2.�/ D 0;

so v 2 D..DQ/�/.
For the opposite inclusion, let v 2 D..DQ/�/ and f 2 H 1=2.†;C2/ such that

PQf 2 H 1=2.†;C2/. Then u � �.1 � PQ/f 2 D.DQ/, where the morphism
�WH 1=2.†;C2/ 7! H 1.�;C2/ is a bounded extension operator, and therefore,

T vŒ.1� PQ
� /f � D ihv;DQuiL2.�/ � ih.DQ/�v; uiL2.�/ D 0:

The proof (2.10) is completely analogous. �

The next lemma is the final ingredient for the proof of Theorem 1.6. Its goal
is to study localized versions of the operators that we are considering, near each
corner. The main advantage of the localized setting, is that we can use the compact
embedding of L2 in H 1.

Lemma 2.7. For � > 0 small enough and for every c 2 C let N�.c/ be defined as

in (1.6). DefineD
Q
�;c and DL

�;c as the action of H on the domains

D.DQ
�;c/ WD ¹u 2 H 1.�\ B.c; �/;C2/WuE 2 D.DQ/ºI

D.DL
�;c/ WD ¹u D .uC; u�/ 2 H 1.�C \ B.c; �/;C2/

�H 1.�� \ B.ci ; �/;C
2/W

uE 2 D.DL/ºI

(2.11)

and let D�
�;c be its adjoint. Then
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(i) D�;c is closed and symmetric;

(ii) Ran.D�;c/ is closed and Ker.D�;c/ D ¹0º;
(iii) Ker..D�

�;c/
2/ D N�.c/.

Proof. Let us analyse DQ
�;c. For all u 2 D.D

Q
�;c/, the extension by zero uE is in

D.DQ/. Thanks to this it is easy to see thatDQ
�;c is symmetric. By applying (2.7)

to uE , we find that a constant such that

kukH 1.�\B.c;�// � C.kDQ
�;cukL2.�\B.c;�// C kukL2.�\B.c;�///: (2.12)

Let .un/n � D.D
Q
�;c/ be a Cauchy sequence in the graph norm for DQ

�;c.
Then (2.12) implies that .uE

n /n is a Cauchy sequence in H 1.�;C2/ and so there
exists u 2 H 1.�;C2/ such that uE

n ! u in H 1 and supp.u/ � B.c; �/. Since
the boundary trace map 
 is continuous from D.D

Q
�;c/ to H 1=2.†/ , we have that


un ! 
u, and so 
u verifies the quantum-dot boundary conditions. Thus, DQ
�;c

is closed.
Next, since D.D

Q
�;c/ is compactly embedded in L2.�;C2/ andDQ

�;c is closed,
thanks to (2.12), and the Peetre characterization theorem for semi-Fredholm op-
erators (see for instance [25, Theorem 2.42]) we conclude that DQ

�;c is semi-
Fredholm, i.e., DQ

�;c has closed range and a finite dimensional kernel. Let us now
prove that Ker.DQ

�;c/ D ¹0º. Assume that u is an eigenfunction of DQ
�;c with

eigenvalue � 2 R. Then we have uE 2 D.DQ/ and may apply (2.3). Since DQ

anti-commutes with �3, we obtain

2� hu; �3uiL2.�\B.c;�// D hDQuE ; �3u
E iL2.�/ � hu;DQ�3uiL2.�/

D �i
Z

†

huE ; � �n �3u
E iC2

D
Z

†

huE ; � �t uE iC2 ;

where in the last line we used

i� �n �3 D � �t : (2.13)

Using the boundary condition PQ
u D 0, with PQ defined in (1.3) for � D �=2,
finally gives

2�huE ; �3u
E iL2.�/ D

Z

†

huE ; � �t uE iC2 D 1

2

Z

†

huE ; ¹� �t ; 1ºuE iC2

D huE ; ¹� �t ; AQ

�=2
ºuE iC2 D

Z

†

huE ; uE iC2 :

(2.14)
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If � D 0, we conclude that u 2 KerDQ
�;c implies that 
u D 0. In addition, the

components of u are (anti-)holomorphic in the interior of�, which implies u � 0.

We move on to the localized Lorentz scalar operator DL
�;c. Again, it is sym-

metric and thanks to (2.6), there exists C† > 0 only depending on † such that to
obtain

kuk2
H 1.�C\B.c;�//�H 1.��\B.c;�//

� kDLuE k2
L2.�C/�L2.��/

C kuE k2
L2.�C/�L2.��/

C C†k
uE k2
L2.†/

This expression can be bounded in a completely analogous way to obtain

kuCkH 1.�C\B.c;�// C ku�kH 1.��\B.c;�//

� C.kDQ
�;cukL2.�C/�L2.��/ C kukL2.�C/�L2.��//:

(2.15)

Reasoning as before, we conclude that DL
c;� is closed and semi-Fredholm.

Now if u is an eigenfunction forDL
c;� with eigenvalue �, we apply the previous

identity to uC and u� separately to obtain

2�huE ; �3u
E iL2.�C/�L2.��/ D

Z

†

huE
C; � �t uCiC2 � huE

� ; � �t u�iC2 :

The boundary conditions give

Z

†

huE
C; � �t uE

CiC2

� h.cosh.˛/ � sinh.˛/� �t / uE
C; � �t .cosh.˛/ � sinh.˛/� �t /uE

CiC2

D
Z

†

huE
C; � �t .1� cosh2.˛/ � sinh2.˛//uE

CiC2

C huE
C; 2 sinh.˛/ cosh.˛/uE

CiC2

D 2 sinh.˛/
Z

†

huE
C; .� sinh.˛/� �t C cosh.˛//uE

CiC2 :

Since cosh.˛/ > jsinh.˛/j, the matrix � sinh.˛/� �t Ccosh.˛/ is positive definite.
As before we deduce that if � D 0, the traces must vanish, which implies again
uC D u� D 0.

Finally, the proof of (iii) follows from the same reasoning as the proof of
Proposition 2.4 and the fact that H 2 D ��. �

With these preliminaries, we can prove Theorem 1.6.
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Proof of Theorem 1.6. Fix c 2 C and � > 0 small enough. We write ��;c.x/ D
�..x � c/=�/. As we have established in Proposition 2.2, D.D/ � D.D�/. Let us
prove that N�.c/ � D.D�/. We will denote O D � or O D �C ��� depending
on the quantum-dot or Lorentz scalar case. Let ��;cu

E 2 N�.c/ with u 2 N�.c/,
and v 2 D.D/. Since N�.c/ � D.D�

�;c/ by definition, we find

hDv; ��;cu
E iL2.O/ D hD��;cv; u

EiL2.O/ � hv; i.� � r��;c/u
E iL2.O/

D hD�;c.��;cv/; uiL2.O\B.c;�/ C hi.� � r��;c/v; uiL2.O\B.c;�/

D hv; ��;cD
�
�;cuiL2.O\B.c;�/ C hi.� � r��;c/v; uiL2.O\B.c;�/

� hv;D�.��;cu
E /iL2.O/:

Now, we move on to the opposite inclusion. Fix w 2 D.D�/ and fix a corner
c and � > 0. We will show that we can decompose ��;cw D QwE C ��;cu

E , with
Qw 2 D.D�;c/ and u 2 N�.c/. Let wR be the restriction of w to B.c; �/. Then,
wR 2 D.D�

�;c/ and D�
�;cw

R D .D�w/R. By Lemma 2.7, D�1
�;c W Ran.D�;c/ !

D.D�;c/ is well-defined and bounded and Ran.D�;c/ is a closed subspace of
L2. We decompose D�

�;cw
R by projecting on this subspace and its orthogonal:

D�
�;cw

R D D�;c Qw C v, with v 2 Ran.D�;c/
? D Ker.D�

�;c/. We set u WD w � Qw
and claim that u 2 Ker..D�

�;c/
2/. Indeed, since bothwR and Qw belong to D.D�

�;c/,
we have u 2 D.D�

�;c/. In addition, we have

Hu D Hw �H Qw D v 2 Ker.D�
�;c/;

so u 2 Ker..D�
�;c/

2/ D N�.c/. Thus, we have obtained the required decomposi-
tion for ��;cw. If there is more than one corner, we repeat the previous argument
with .1 � ��;c/w. Iterating the argument for each corner, we are left with a de-
composition

w D
X

c2C

. QwE
c C ��;cu

E
c /C

�

Y

c2C

.1� ��;c/
�

u:

The last term is localized away from all the corners and so it is inH 1 by the results
for smooth domains, see [20, 7]. �

3. Separation of variables on the wedge

In this section, we study N�.c/ for the case that � \ B.c; �/ coincides with a
truncated wedge with opening angle !. We first give some definitions and state
the results. In §3.1, we obtain a precise description of N�.c/. In §3.2, we use
this description to classify self-adjoint extensions for domains with straight edges
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close to the corners. At the end of this subsection, we also discuss the behaviour
of these extensions under charge conjugation. Without loss of generality, we can
pick coordinates such that c is located at the origin. In standard polar coordinates
.r; �/ defined by

r WD
q

x2
1 C x2

2 ; � WD sign.x2/ arccos
�x1

r

�

;

the neighborhood of the corner coincides with the wedgeW! , defined as

�\B.0; �/ D W! \B.0; �/; W! WD ¹.r; �/ 2 C
2W r > 0; 0 < � < !º: (3.1)

In order to express the Dirac operators in polar coordinates, we define

er WD
�x1

r
;
x2

r

�

; e� WD
�

� x2

r
;
x1

r

�

:

Furthermore, we abbreviate @r D er � r and @� D e� � r, and obtain

H D �i.� �er @r C r�1
� �e� @� / D �i� �er .@r C ir�1�3@� /; (3.2)

where in the last equality we use (2.13).
We will need the following functions in order to state our results.

Definition 3.1. Let ! 2 .0; 2�/ n ¹�º, and ˛ ¤ 0.

� Quantum-dot: for all k 2 Z, define f Q

k
W Œ0; !� ! C

2 as follows

f
Q

k
.�/ D 1p

2!

 

ei�
Q

k
�

e�i�
Q

k
�

!

; �
Q

k
D .2k C 1/

�

2!
� 1=2:

� Lorentz–Scalar: for all k 2 Z set f L
k

D .f L
k;C
; f L

k;�
/W Œ0; !� ! C

4 with

f L
k;C.�/ WD ck

�

.�L
k
e�i!=2.�L

k
C1=2//ei�L

k
�

.iei!=2.�L
k

C1=2//e�i�L
k

�

�

;

f L
k;�.�/ WD ck

�

e�2i��L
k Aei�L

k
�

e�2i��L
k Be�i�L

k
�

�

;

where

A WD �L
k cosh.˛/e�i!=2.�L

k
C1=2/ � i sinh.˛/ei!=2.�L

k
C1=2/;

B WD ��L
k sinh.˛/e�i!=2.�L

k
C1=2/ C i cosh.˛/ei!=2.�L

k
C1=2/;
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�L
k

are the solutions to the transcendental equation

jtanh.˛/j � 2j�j
1C �2

D
jcos.�.�L

k
C 1=2//j

jsin..� � !/.�L
k

C 1=2//j
;

counted in such a way that �L
0 is the unique solution in .�1=2; 0/ and such

that ��L
k

� 1 D �L
�k�1

, and

�L
k WD sign.˛ sin..� � !/.�L

k C 1=2///;

cL
k WD ei�L

k
�=4Œ2 cosh.˛/.cosh.˛/ � sinh.˛/�L

k sin.!.�L
k C 1=2///��1=2:

Finally let

uk.r; �/ WD �.r=�/r�kfk.�/: (3.3)

where � is the cut-off function defined in (1.7).

With all definitions in place, we can give a precise description of N�.0/.

Theorem 3.2. Let! 2 .0; 2�/n¹�º,� as in (3.1). LetN�.0/ be defined as in (1.8)
and uk be defined as in Definition 3.1. Then

N�.0/ā.N�.0/ \H 1/ D span¹ukW�k 2 .�1; 0�º:

For ! < � (a convex corner), there are none of the �Q

k
’s in .�1; 0�, while for

! > � , we have only �Q
0 and �Q

�1 in .�1; 0�. In the Lorentz–Scalar case, �L
0 and

�L
�1 lie in .�1; 0�, regardless of the value of !. Thanks to this and combining

Theorem 1.6 and Theorem 3.2 we directly have the following results:

Proposition 3.3. Let ! 2 .0; 2�/ n ¹�º, let � be a piecewise C 2 domain with a

single, straight corner of opening !, that is � verifies (3.1). Let DQ and DL be

defined respectively as in (2.1) and (2.2) and let uk be defined as in Definition 3.1.

Then the following properties hold true.

(i) Quantum-dot. For 0 < ! < � ,

D..DQ/�/ D D.DQ/I

for � < ! < 2�:

D..DQ/�/ D D.DQ/C span.uQ
0 ; u

Q
�1/:
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(ii) Lorentz–Scalar. For ! ¤ �:

D..DL/�/ D D.DL/C span.uL
0 ; u

L
�1/:

3.1. Proof of Theorem 3.2. In order to prove Theorem 3.2, we need the follow-
ing lemma. The rather computational proof can be found in Appendix B.

Lemma 3.4. Let ¹fk.�/ºk2Z and ¹�kºk2Z be defined as in Definition 3.1 and

define the angular operatorsD
Q
ang and DL

ang as the action of �i�3@� on

D.DQ
ang/ WD ¹f 2 H 1.Œ0; !�;C2/W f2.0/ D f1.0/; f2.!/ D �ei!f1.!/º;

D.DL
ang/ WD

²

.f C; f �/ 2 H 1.Œ0; !�;C2/ �H 1.Œ!; 2��;C2/W

f�.2�/ D
�

cosh.˛/ � sinh.˛/
� sinh.˛/ cosh.˛/

�

fC.0/;

f�.!/ D
�

cosh.˛/ e�i! sinh.˛/
ei! sinh.˛/ cosh.˛/

�

fC.!/

³

;

respectively, in the Hilbert spaces:

H
Q WD .L2.Œ0; !�;C2/I h�; �iL2/;

H
L WD .L2.Œ0; !�;C2/ � L2.Œ!; 2��;C2/I h�; �iL2/:

Then Dang is a self-adjoint operator with an orthonormal basis of eigenfunctions

¹fkºk2Z and eigenvalues �k . Moreover, for any k 2 Z

� �er fk D f�k�1: (3.4)

We can now prove Theorem 3.2

Proof of Theorem 3.2. Take u 2 N�.0/. It has a decomposition in angular eigen-
functions

u.r; �/ D
X

k2Z

hk.r/fk.�/ with .hk/k2Z 2 `2.Z; L2.RC; r dr//:

Thanks to Lemma 3.4, �u D 0 reduces to

h00
k.r/C r�1h0

k.r/ � r�2�2
kh.r/ D 0:

The solution of this equation is hk.r/ D akr
�k C bkr

��k with some coefficients
ak ; bk in C. Since u 2 L2, we have ak D 0 if �k � �1 and bk D 0 if �k � 1.
Therefore, we obtain

u.r; �/ D
X

�k>�1

akr
�kfk.�/C

X

�k<1

bkr
��kfk.�/:
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We also know that Hu D D�
�;0u is in L2. By construction,

H.h.r/fk.�// D �i� �er .@r �Dang/.h.r/fk.�//

D �i.h0.r/ � �kr
�1h.r//f�k�1.�/;

(3.5)

where in the last line we used (3.4). So we obtain

Hu.r; �/ D
X

�k<1

.2i�k/bkr
��k�1f�k�1.�/: (3.6)

In order to be square integrable close to the origin, we need bk D 0 for all values
of k with �k > 0. Therefore, we have obtained a decomposition

u.r; �/ D
X

�k2.�1;0/

akr
�kfk.�/C

X

�k�0

akr
�kfk.�/C

X

�k�0

bkr
��kfk.�/:

Individual terms in each of the last two series are inH 1, but we still need to show
that the same holds true for the sum. We write

v D
X

�k�0

akr
�kfk.�/; w D

X

�k�0

bkr
��kfk.�/

and treat each of them separately. Forw, we use the orthonormality of the angular
functions to write (with the understanding that both sides may equal C1)

krwk2
L2 D k@rwk2

L2 C kr�1Dangwk2
L2

D
X

�k�0

jbk j22�2
kkr��k�1fk.�/k2

L2

D 1=2
X

�k�0

kHr��k�1fk.�/k2
L2 D 1=2kHuk2

L2 ;

where the last line follows from (3.6). SinceHu is square integrable andHv D 0,
this shows that w 2 H 1. Now for v, we use the fact that u is in H 1 when local-
ized away from the corner and from @B.0; �/, by the result for smooth domains.
Restricting to the Lorentz scalar case for simplicity of notation, we have that

krvk2
L2.�\B.0;2�=3/nB.0;�=3//

D
X

�k>0

jak j22�2
kkr�k�1f

Q

k
.�/k2

L2.�\B.0;2�=3/nB.0;�=3//

D
X

�k>0

jak j22�2
k.2�k/

�1..2�=3/2�k � .�=3/2�k /

� 1=C
X

�k>0

jakj22�2
k.2�k/

�1.2�=3/2�k

D 1=Ckrvk2
L2.�\B.0;2�=3//

:
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Here, 1=C � 1 � .1=2/� with � the smallest positive �k. This is sufficient to
conclude, since supp.��;0/ � B.0; 2�=3/. �

3.2. Characterization of self-adjoint extensions of D
Q and D

L. We can now
describe all self-adjoint extensions ofDQ andDL for domains with straight edges
in a neighborhood of each corner. For simplicity, we state the theorem for domains
with a single corner, but the generalization is straightforward.

Theorem 3.5. Let ! 2 .0; 2�/ n ¹�º, � as in (3.1). Let DQ and DL be defined

respectively as in (2.1) and (2.2) and let uk be defined as in Definition 3.1. Then

the following properties hold true.

(i) Quantum-dot. For 0<!<� , DQ is self-adjoint. For � <! < 2� , DQ ad-

mits infinite self-adjoint extensions, and they all belong to the one-parameter fam-

ily ¹DQ
� º�2Œ0;�/ with domains

D.DQ
� / D D.DQ/C span.cos.�/uQ

0 C i sin.�/uQ
�1/: (3.7)

(ii) Lorentz–Scalar. DL has infinite self-adjoint extensions, and they all belong

to the one-parameter family ¹DL
� º�2Œ0;�/ with domains

D.DL
� / D D.DL/C span.cos.�/uL

0 C i sin.�/uL
�1/: (3.8)

Proof. If 0 < ! < � , then DQ is self-adjoint thanks to Proposition 3.3.
Since the approach is the same, now we analyse at the same time the quantum-

dot operator in the case that � < ! < 2� , and the Lorentz-scalar operator.
Let u 2 D.D�/. Then, by Proposition 3.3, u D Qu C c0u0 C c�1u�1, with

Qu 2 D.D/ and c0; c�1 2 C. Since u0; u�1 2 D.D�/ and due to the symmetry of
D we have that

hD�u; uiL2 � hu;D�uiL2

D hc0D
�u0 C c�1D

�u�1; c0u0 C c�1u�1iL2

� hc0u0 C c�1u�1; c0D
�u0 C c�1D

�u�1iL2 :

Thanks to (3.5), we have that

D�uk.r; �/ D � i
�
�0.r=�/r�kf�k�1.�/; for k D 0; 1: (3.9)

Due to the orthonormality of f0 and f1, and since �.0/ D 1, one has

hD�uk ; uli D
´

0 if k D l;

i=2 if k ¤ l;
for k; l D 0;�1: (3.10)
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Thanks to this, we can conclude that

hD�u; uiL2 � hu;D�uiL2 D 2i Re.c0c�1/: (3.11)

Let now zD be a non-trivial symmetric extension ofD, that isD ¨ zD. From (3.11),
if u 2 D. zD/, then Re.c0c�1/ D 0. Following for instance [10, Lemma 3.2], we
conclude that there exists � 2 Œ0; �/ such that c0 D c cos.�/ and c1 D c sin.�/
for an appropriate c 2 C. This means that the operator D� defined in (3.7) is
symmetric, and that if zD is a non-trivial symmetric extension ofD, then zD D D�

for a certain � 2 Œ0; �/.
Let us prove that D� is self-adjoint. By construction

D ¨ D� � D�
� � D�:

Let v D Qv C c0u0 C c�1u�1 2 D.D�
� / and take u D .cos �u0 C i sin �u�1/ 2

D.D� /, with Qv 2 D.D/ and c0; c�1 2 C. Reasoning as before and thanks to (3.10)
we have that

0 D hD�
� v; uiL2 � hv;D�uiL2 D i=2.�i Nc0 sin � C Nc�1 cos �/;

that directly implies that c0 D c cos � and c�1 D ic sin � for an appropriate c 2 C.
Then v 2 D.D� /, and so D� is self-adjoint. �

For the cases where there are infinitely many self-adjoint extensions, we always
have �0 2 .�1=2; 0/ and ��1 2 .�1;�1=2/. Therefore, u0 is inH 1=2, while u�1 is
not (see for instance [13, Theorem 1.4.5.3] for a proof of this). Thus, the restriction
ofD� toH 1=2 coincides withD�D0, and we have proven Theorem 1.2 for the case
of corners with straight edges. With our notation, D0 is the self-adjoint extension
of D with the most regular domain. An other criterion to select an extension is
invariance under charge conjugation, as proposed in [16].

In the model that we consider here, the anti-unitary operator of charge conju-
gation is given by

Cu WD �1 Nu: (3.12)

When dealing with 4-spinors, charge conjugation is related to the particle-antipar-
ticle interpretation of the Dirac field, see [26, Section 1.4.6]. In our model, it is just
a composition of time reversal (complex conjugation) and parity transformation
(swapping spinor components).

The charge conjugation operator anti-commutes with the free Dirac operator
in R2 and also with its perturbation by mass terms of the form m.x/�3, where
m can be any real function. Since the quantum dot operator for B D 1 and the
Lorentz scalar delta-shell operator are limits of operators of this type, it is natural
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to expect that they are invariant as well. Indeed, a short computation suffices to
verify that CD.D/ D D.D/.

In Proposition B.1, we show that, with our choice of phase factor, Cuk D uk .
Thus,

C.D.D�// D D.�/C span.cos.�/u0 � i sin.�/u�1/ D D.D�� /:

So we conclude that CD� D �D��C . This means that D0 and D�=2 are the only
extensions that anti-commute with charge conjugation.

4. Curvilinear polygons

In this section, we deduce Theorem 1.2 from Theorem 3.5. We first check that the
operators with domains in H 1=2 are symmetric. In order to simplify the notation
further, we assume that � has a single corner centred at the origin. The case of
several corners is again just a matter of extra notation.

Lemma 4.1. The operatorsDL
0 andD

Q
0 , as defined in Theorem 1.2 are symmetric.

Proof. The proof is identical for the Lorentz scalar and quantum-dot case. We give
it here for the latter case, since the notation is more concise. Fix u; v 2 D.D

Q
0 /.

By the result for smooth domains, u and v are in H 1.� n B.0; r// for all r > 0.
We apply (2.3) from Lemma 2.1 to conclude that

hu;HviL2.�nB.0;r// � hHu; viL2.�nB.0;r//

D �i
Z

†nB.0;r/

hu; � � n�viC2 � i
Z

�\@B.0;r/

hu; � � erviC2 :

The first term vanishes because of the boundary conditions, that hold in the
classical sense away from the corner. In order to estimate the second term, we
average the identity over r 2 Œs; 2s�. This gives

1

s

2s
Z

s

ˇ

ˇ

ˇ

ˇ

Z

�\@B.0;r/

hu; � � erviC2

ˇ

ˇ

ˇ

ˇ

dr

� 1

s

Z

�\B.0;2s/nB.0;s/

jujjvj

� 1

s
kukL4.�\B.0;2s//kvkL4.�\B.0;2s//j� \ B.0; 2s//j1=2

� CkukL4.�\B.0;2s//kvkL4.�\B.0;2s//:
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The final bound tends to zero as s ! 0, since u; v 2 L4.�/ by the Sobolev
embedding H 1=2.�/ � L4.�/. �

This reduces the problem of self-adjointness to the issue of showing that
the domain of the adjoint operator stays in H 1=2. We know already that the
domain of the adjoint is included in the maximal domain, so away from the
corners, elements in the domain of the adjoint are evenH 1. Close to the corners,
we have to transform coordinates to straighten the boundary. In general, this
transformation sets up a unitary equivalence between the Dirac operator on the
curvilinear wedge and the Dirac operator plus a perturbation on the straight wedge.
The unbounded part of this perturbation consists of derivatives of the first order,
multiplied by a function that measures the difference between the Jacobian matrix
of the coordinate transformation and the identity matrix. In the case of smooth
boundaries, this perturbation is irrelevant by the elliptic regularity of the Dirac
operator on the half-space.

Here, elliptic regularity does no longer hold, so we need a to work a little bit
more.

For the quantum-dot case, we can avoid issues by using bounded conformal
transformation to send the interior of the domain to a subset of the wedge. This
conformal transformation maps the maximal domain to the maximal domain on
the wedge, where the classification from Theorem 3.5 remains valid. This allows
for a classification of self-adjoint extensions for the quantum-dot operator as well.
For the sake of brevity, we have stated Theorem 1.2 for the extension with domain
in H 1=2, and give a single proof that applies to both the Quantum-Dot and the
Lorentz-scalar model.

The case of the Lorentz scalar operator is more delicate, because it is not, in
general, possible to find a conformal transformation that maps both the interior and
the exterior of the curvilinear domain to the interior and exterior of the wedge. On
the other hand, it is always possible to find a C 2 coordinate transformation that
achieves this, but in this case, we have to treat the perturbation terms carefully. We
choose a coordinate transformation with the perturbation of the Jacobian matrix
of order r , with r the distance to the corner. Combined with the H 1=2 regularity
in the whole domain, this gives us precisely what is needed to conclude. The
perturbation terms are finite and symmetric on the image of the original domain,
which allows to conclude that the image of the original domain is included in
D.DL

0 / on the wedge. By using the decomposition of spinors in this domain
in a H 1 part and a multiple of uL

0 , we conclude that the perturbation terms are
relatively bounded with respect to the full operator, with a relative bound that can
be made smaller by taking a smaller neighbourhood of the corner. Note that this



1066 F. Pizzichillo and H. Van Den Bosch

strategy does not give a classification of self-adjoint extensions, it only proves the
existence of a single extension with the domain in H 1=2.

We write DL;�
0 and DL;W!

0 to distinguish the operators DL
0 acting on � and

W! respectively. A first technical step is to construct a coordinate transformation
that maps the curved boundary inside this boundary to a straight boundary. An
explicit example is given in Appendix C. Having this transformation at hand,
we also have to transform spinors so that the transplanted functions satisfy the
boundary conditions on the new domain. This is achieved by means of point-wise
multiplication by a matrix that, at the boundary points, equals ei�3
=2, where 

is the angle measuring the rotation to pass from the tangent vector to the curved
boundary to the tangent vector at the boundary of the wedge. We denote this
transformation by U . The map U can be chosen to be unitary. Again, details of
this transformation can be found in Appendix C.

The result of this rather technical construction is to set up a unitary equivalence
betweenDL;�

0 (after restriction to a neighbourhood of the corner), and an operator
in the wedge, that decomposes as

UD
L;�
0 U � D H C

X

j D1;2

Lj .x/@j CM.x/; (4.1)

with Lj and M defined in (C.1). The matrices Lj depend on the difference
between the Jacobian matrix of the coordinate transformation and the identity. The
matrixM is a multiplication operator containing first and second derivatives of the
functions giving the transformation. By the C 2 regularity of the boundary, M is
bounded, and the transformation can be chosen to tend linearly to the identity when
approaching the origin. A priori, the expressionH C

P

j Lj .x/@j has to be taken

in distribution sense, where only the sum of both is well-defined on UD.D
L;�
0 /.

What we use in the following, is that

kLj .x/kC2!C2 � C jxj; C > 0: (4.2)

We first check that UDL;�
0 U �, given by the differential expression (4.1), is well-

defined on D.D
L;W!

0 /

Lemma 4.2. Let � be a corner domain and assume the corner is at the origin.

Assume that u 2 D.D
L;�
0 / with support in B.0; R/, where R > 0 is sufficiently

small such that the origin is the only corner in suppu. Then

kjxjru.x/kL2 � 1:

Proof. First, we note that

kjxjru.x/kL2 � krjxju.x/kL2 C kuk2
L2 ;
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where the second term is clearly finite. Since u is H 1 away from the origin, we
may use (2.4) and (2.6) from Lemma 2.1 to write, for any r > 0,

Z

R2nB.0;r/

jrjxju.x/j2 dx

D
Z

R2nB.0;r/

jDL.jxju.x//j2 dx �
Z

†nB.0;r/

�jsj2 huC; �3uCiC2 .s/ ds

C
Z

@B.0;r/\�

r2 huC; i�3@�uCiC2 .r; �/ d�

C
Z

@B.0;r/n�

r2 hu�; i�3@�u�iC2 .r; �/ d�:

Since DL.jxju.x// D jxjDLu C jxj�1
� �x u, the first term is bounded indepen-

dently of r . The second term is bounded as well, by using the representation of
the boundary traces given in the proof of Lemma 2.3. Indeed, from (A.1), T is
bounded from H s.�/ to H s�1=2.�/ for all s � 1, and thus, uC 2 H 1=2.�;C2/

has boundary traces in L2.†;C2/.
In order to estimate the contribution from the boundary of B.0; r/, we average

over r 2 .0; t / and write

1

t

t
Z

0

Z

@B.0;r/\�

r2juCjj@�uCj.r; �/ d� dr �
Z

B.0;t/\�

juCjj@�uCj.r; �/r d� dr � kuCk2
H 1=2 :

The same argument works for u�. Putting everything together, we have shown
that, for all t > 0,

1

t

t
Z

0

krjxju.x/k2
L2.R2nB.0;r/

dr � C.kDL
0 jxju.x/kL2 C kukH 1=2/:

Since krjxju.x/k2
L2.R2nB.0;r/

increases as r decreases, this shows that the limit at
zero is finite. �

The previous lemma shows that U maps D.D
L;�
0 / unitarily into D.D

L;W!

0 /.
We can now use Theorem 3.5 to conclude that u 2 D.D

L;�
0 / decomposes as

u D v C c0U
�1uL

0

for some v 2 H 1 and c0 2 C. This decomposition also allows to show that the
second term in (4.1) is relatively bounded with respect to the first one.
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Lemma 4.3. Let u 2 D.D
L;W!

0 /. Then we have









X

j

Lj .x/@ju.x/









L2
� C. sup

x2supp u
jxj/kDL;W!

0 ukL2 C 2C kukL2 ; with C > 0:

Proof. By Theorem 3.2, any u 2 D.D
L;W!

0 / has a decomposition u D v C
c1u

L
0 with v 2 H 1. The key point is that the entries of jxjuL

0 .x/ behaves as

r�L
0

C1=2e˙i.�L
0

�1=2/� and therefore, jxju.x/ is in H 1. In addition, u satisfies
boundary conditions, so jxju 2 D.DL/. Now, we use (4.2) and (2.6) with � D 0

to bound









X

j D1;2

Lj @ju









L2
� CkjxjrukL2 � Ckr.jxju/kL2 C CkukL2

� CkDLjxjukL2 C CkukL2

� CkjxjDL
0 ukL2 C 2CkukL2 : �

Proof of Theorem 1.2. We start by localizing the Dirac operator with an IMS-
type formula. Fix a cutoff � as in (1.7). For � > 0 small enough, we write
��.x/ D �.x/=�. Then

H D ��H�� C
q

1 � �2
�H

p

1� �2: (4.3)

After replacing H by DL;�
0 in (4.3), the second addend describes a self-adjoint

operator, since the corner does not belong to the support of 1� �2
� .

We now focus on the first addend. Since we are considering only functions that
are localized close to the corner, we can assume that� D W! outside a sufficiently
large neighbourhood of the origin. Let U be the unitary transformation defined
in §C; by (4.1), (4.2) and Lemma 4.2, we have UD.D

L;�
0 / D D.D

L;W!

0 /. In
particular, from (4.2) we have that

U��D
L;�
0 �U � D Q��D

L;W!

0
Q� C Q��

X

j D1;2

Lj@l
Q�� C Q��M Q��; (4.4)

with Q�� D �� ı S�1 and S the coordinate transformation defined in §C. The last

two terms of the right-hand-side of (4.4) are symmetric on D.D
L;W!j

0 / since both
D

L;�
0 and DL;W!

0 are symmetric. In addition,

k Q��Lj @j Q��ukL2 � kLj@j Q�2
�uk C Ckr��kL1kukL2

� C. sup
x2supp �

jxj/k Q�DL;W!

0
Q��ukL2 C 2Ckr��kL1kukL2 ;

where in the last line, we used Lemma 4.3. So we have that
P

j
Q��Lj@j Q�� C

Q��M Q�� is relatively bounded with respect to Q��D
L;W!

0
Q��. Choosing � sufficiently
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small, the relative bound can be made smaller than 1 and so, by the Kato–Rellich
theorem, see [15, Theorem 4.3 in Chapter V] for instance, we conclude that
��D

L;�
0 �� is unitarily equivalent to a self-adjoint operator. �

Appendices

A. Some technical identities

We prove some technical results from §2. We start with Lemma 2.1.

Proof of Lemma 2.1. The identity (2.3) follows from the divergence theorem. For
u; v 2 H 2.O;C2/, identity (2.4) follows from writing

hHu;HviC2 D
X

j;k

h�j @ju; �k@kviC2

D
X

j

h�j @ju; �j@j viC2 C
X

j ¤k

h�j @ju; �k@kviC2

DW I C II :

Then I D hru;rviL2.O/, because the matrices �j are symmetric and �2
j D 1. For

the second term, since �1�2 D ��2�1 D i�3, by the divergence theorem we have
that

II D
X

j ¤k

Z

O

h@ju; �j�k@kviC2

D
Z

O

h@1u; i�3@2viC2 �
Z

O

h@2u; i�3@1viC2

D
Z

@O

hu; i�3.n1@2 � n2@1/viC2 :

Finally, in dimension two:

.n1@2 � n2@1/ D t � r;

that gives the required identity for u; v 2 H 2.O;C2/. By density, it extends to
u; v 2 H 1.O;C2/, upon interpreting the boundary term as the pairing between
u 2 H 1=2.@O;C2/ and �3@tv 2 H�1=2.@O;C2/.

Identity (2.5) is just (2.4) restricted to functions satisfying boundary condi-
tions, which allows to rewrite the boundary term in a convenient form. Recall that
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� is defined as a piecewise continuous function on †. Since we are treating the
case B D 1 (infinite mass), for functions f; g 2 C 1.†;C2/ that satisfy infinite
mass boundary conditions

f D � �t f; g D � �t g;

we have, point-wise away from the corners,

hf; i�3@tgiC2 D 1

2
h� �t f; i�3@tgiC2 C 1

2
hf; i�3@t.� �t g/iC2

D 1

2
h� �t f; i@t�3giC2 C 1

2
hf; i�3� �t @tgiC2 � �

2
hf; i�3� �ngiC2

D 1

2
hf; i¹� �t ; �3ºgiC2 C �

2
hf; � �t giC2

D �

2
hf; giC2 :

Here, we have used @ttj D ��nj to obtain the second line, the anti-commutation
relations of the Pauli matrices and finally again the boundary conditions. For any
set O that does not contain corners, we find

hf; i�3@tgiL2.†\O/ D �

2
hf; giL2.†\O/ :

By density, this identity extends to all f; g 2 H 1=2.† \ O/ that satisfy boundary
conditions, in particular, one can take f D 
u and g D 
v, with u; v 2 D.DQ/.
By dominated convergence, one can increase the set O to obtain the integral over
all of † on both sides of the equality. For (2.6), we sum (2.6) with O D �C and
O D ��. Taking into account a change in sign of the tangent vector,

˝

DLu;DLv
˛

L2.�C/�L2.��/

D hru;rviL2.�C/�L2.��/ � i
Z

†

.huC; �3@tvCiC2 � hu�; �3@tv�iC2/

Again, for functions fC; gC 2 C 1.†/, we define

f� D .cosh.˛/C sinh.˛/� �t /fC; g� D .cosh.˛/C sinh.˛/� �t /gC

and obtain the desired form of the boundary term away from corners:

� i hfC; �3@tgCiC2 C i hf�; �3@tg�iC2

D �i hfC; �3@tgCiC2

C i h.cosh.˛/C sinh.˛/� �t /fC; �3..cosh.˛/C sinh.˛/� �t //@tgCiC2

C i sinh.˛/ hf�; �3� � .@tt/ gCiC2

D � sinh.˛/ hf�; � �t gCiC2 :
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As for the quantum-dot case, the result for all 
u˙ and 
v˙ that satisfy boundary
conditions, follows from here by density and dominated convergence. �

We can now prove Lemma 2.3.

Proof of Lemma 2.3. We start noticing that, by the triangle inequalityH1.O;C2/�
K.O/ and there exists C > 0 such that

kukK.O/ � CkukH 1.O/; for u 2 H 1.O;C2/:

Moreover,H 1.O;C2/ is dense in K.O/ with respect to the norm k � kK.O/, see [20,
Proposition 2.12]).

Fix a bounded extension operator (see [1, Section 5])

�WH 1=2.@O;C2/ 7�! H 1.O;C2/:

For v 2 K.O/, we define T�v 2 H�1=2.@O;C2/ by

T�vŒf � WD i hv;H�.f /iL2.O/ � i hHv; �.f /iL2.O/ ; for f 2 H 1=2.@O;C2/:

(A.1)
Let us prove that T� has the necessary properties. Indeed

jT�vŒf �j � kvkL2.O/k�.f /kK.O/ C kHvkL2.O/k�.f /kL2.O/

� Ck�.f /kH 1.O/kvkK.O/

� C�kf kH 1=2.@O/kvkK.O/;

for some �� > 0, and so T� is bounded from K.O/ to H�1=2.@O;C2/. Moreover,
by (2.3), it coincides with � �n 
 onH 1.O;C2/. SinceH 1.O;C2/ is dense in K.O/

(see [20, Proposition 2.12]), �E is independent of the choice ofE and it be denoted
by T to stress this. �

B. Properties of the angular operator

In this appendix we prove some technical results about the angular operator.

Proof of Lemma 3.4. Let us consider the quantum-dot case. The operator DQ
ang

in symmetric on HQ. To prove the self-adjointness, we start noticing that by
construction D..D

Q
ang/

�/ � H 1.Œ0; !�;C2/. So, let g 2 H 1.Œ0; !�;C2/, then

integrating by parts we have that for any f 2 D.D
Q
ang/

h�i�3@�f; giL2 � hf;�i�3@�giL2 D h�i�3f .!/; g.!/iC � h�i�3f .0/; g.0/iC :
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Since f verifies the boundary conditions f2.0/ D f1.0/ and f2.!/ D �ei!f1.!/,
we have that g 2 D..D

Q
ang/

�/ if and only if

hf1.!/; g1.!/C e�i!g2.!/iC � hf1.0/; g1.0/ � g2.0/iC2 D 0:

Choosing firstly f such that f1.!/ D 0 and f1.0/ ¤ 0, and secondly f such that
f1.!/ ¤ 0 and f1.0/ D 0, we deduce that g has to verify the boundary conditions
and so g 2 D.D

Q
ang/. The same proof can be adapted to prove the self-adjointness

of DL
ang.

Let us now find the eigenvalues of Dang. The generic solution of

�i�3@�f D �f

is

f .�/ D
�

c1e
i��

c2e
�i��

�

:

Let us impose the boundary conditions. For the quantum-dot case, in order to
satisfy the boundary conditions at � D 0, the eigenfunctions must take the form

f .�/ D c1

�

ei��

e�i��

�

:

The boundary condition at � D ! implies that � D �k D .2k C 1/ �
2!

� 1=2,
while c1 is determined by the normalization constant . To conclude, it is enough
to observe that the operator DQ

ang is self-adjoint and it has compact resolvent,

since D.D
Q
ang/ is compactly embedded in HQ. Thanks to this, and by the spectral

theorem we can deduce that ¹f Q

k
ºk2Z is a basis of HQ. Finally,

� �er f
Q

k
.�/ D 1p

2!

�

0 e�i�

ei� 0

�

�
�

ei�
Q

k
�

e�i�
Q

k
�

�

D 1p
2!

�

ei�
Q

�k�1
�

e�i�
Q

�k�1
�

�

;

where in the last equality we used that ��Q

k
� 1 D �

Q

�k�1
.

Let us consider the Lorentz-scalar case. Reasoning as before, in order to be an
eigenfunction the pair of spinors .fC.�/; f�.�// has to be of the form

f˙.�/ D
�

a˙e
i��

b˙e
�i��

�

:

Let us impose the boundary conditions:
�

ei2��a�

e�i2��b�

�

D
�

cosh.˛/ � sinh.˛/
� sinh.˛/ cosh.˛/

�

�
�

aC

bC

�

; (B.1)

�

ei!�a�

e�i!�b�

�

D
�

cosh.˛/ e�i! sinh.˛/
ei! sinh.˛/ cosh.˛/

��

ei!�aC

e�i!�bC

�

: (B.2)
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Combining (B.1) and (B.2), after few trigonometric identities, we have that
�

2i cosh.˛/e�i�.��!/ cos.�.� C 1=2//

�2 sinh.˛/ei.!=2C��/ sin..� � !/.� C 1=2//

�2 sinh.˛/e�i.!=2C��/ sin..� � !/.� C 1=2//

�2i cosh.˛/ei�.��!/ cos.�.� C 1=2//

�

�

�

aC

bC

�

D 0:

(B.3)

To get a non-trivial solution, the determinant of the matrix has to be zero, that is

cosh2.˛/ cos2.�.�C 1=2// � sinh2.˛/ sin2 ..� � !/.�C 1=2// D 0:

We want to find the solutions of the following equations

cos.�.�C 1=2// D jtanh.˛/j sin.j� � !j.�C 1=2//; (B.4)

cos.�.�C 1=2// D � jtanh.˛/j sin.j� � !j.�C 1=2//: (B.5)

By using standards tools, it is easy to see that both equations admit a countable
family of solutions. Let ¹�L

2nºn2Z be the family of solutions of (B.4) such that
�L

0 is the unique solution in .�1=2; 0/. Moreover let ¹�L
2nC1ºn2Z be the family

of the solutions of (B.5) such that �L
�1 is the unique solution in .�1;�1=2/. By

construction, for any k 2 Z, �L
k

D ��L
�k�1

� 1. With this notation, �L
0 ; �

L
�1 are

the unique solutions to (B.4) and (B.5) that are in .�1; 0/.

3

4 2

1 0

1 3

2

0 1=2

cos C 1=2//

jtanh.˛/j sin.j !j C 1=2//

tanh.˛/j sin.j !j C 1=2//

Figure 1. The solutions of (B.4) and (B.5) in .�5=2; 3=2/, with ˛ D 1 and ! D �=4.

Assuming that (B.4) and (B.5) hold true, setting

�k D sign.˛ sin..� � !/.�L
k C 1=2///;
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we have that (B.3) is equivalent to
�

iei�L
k

! ��ke
�i!=2

��ke
i!=2 �ie�i�L

k
!

�

�
�

aC

bC

�

D 0; (B.6)

whose solutions are

ak;C WD ck�ke
�i!=2.�L

k
C1=2/; bk;C WD icke

i!=2.�L
k

C1=2/; with ck 2 C: (B.7)

Then, thanks to (B.1) we have

ak;� WD cke
�i2��L

k .i cosh.˛/e�i!=2.�L
k

C1=2/ � �k sinh.˛/ei!=2.�L
k

C1=2//;

bk;� WD cke
i2��L

k .�k cosh.˛/ei!=2.�L
k

C1=2/ � i sinh.˛/e�i!=2.�L
k

C1=2//:
(B.8)

Finally, let us write ck D �ke
i'k , for �k > 0 and 'k 2 Œ0; 2�/, and set

�k W D .jak;Cj2 C jbk;Cj2 C jak;�j2 C jbk;�j2/�1=2

D Œcosh.˛/.cosh.˛/C sinh.˛/�L
k sin.!.�L

k C 1=2///��1=2I
(B.9)

At this point, arguing as before, we conclude that ¹f L
k

ºk2Z is a basis of HL. To
conclude the proof, we only need to determine 'k in order to verify (3.4). Since
��L

k
� 1 D �L

�k�1
, we have that

� �er f
L

k;˙.�/ D
�

bk;˙e
i�L

�k�1
�

ak;˙e
�i�L

�k�1
�

�

:

Since �k D ���k�1 and �k D ��k�1, we have that a�k�1;˙ D bk;˙ if and only if
��ke

i'�k�1 D iei'k . Since �k D ei.1��k/�=2 and i D ei�=2 we can conclude the
proof setting 'k D �k=4. �

Proposition B.1. Let uk be defined as in Definition 3.1 and let C be the charge

conjugation operator defined in (3.12). Then

Cuk D uk : (B.10)

Proof. We start computing

Cuk.r; �/ D �.r/r�k�1fk.�/;

then it remains to prove �1fk.�/ D fk.�/. For the quantum-dot case, it is trivial.
Let us consider the Lorentz scalar case. Then,

�1fk;˙.�/ D
�

bk;˙e
i�L

k
�

ak;˙e
�i�L

k
�

�

;

where ak;˙ and bk;˙ are defined in (B.7) and (B.8), with ck D �ke
i�k=4 and �k > 0

is defined in (B.9). Arguing as above one can see that ak;˙ D bk;˙ and this
concludes the proof. �
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C. Straightening of a curvilinear wedge

Throughout this section, we consider a domain that is bounded by a pair of semi-
infinite curves of class C 2, intersecting at an angle ! at the origin. We assume
that the tangent and curvature have left and right limits at the origin. Up to
interchanging the interior and exterior, we can assume that ! 2 .0; 2�/. Contrary
to the previous convention, in this appendix, we take y-axis oriented along the
bisector of W! . We orient � in the same way, with the angle of opening ! at the
origin. Then, we assume that � is bounded by a pair of semi-infinite curves that
admit a parametrization .x; c.x// for x � 0 and .x; c.x//, for x � 0 respectively.
The border of W! is parameterized by

�

x; jxj
tan.!=2/

�

.

.x; c.x//

x; jxj
tan.!=2/

x

y

!

C

Figure 2. The domain � and the wedge W! .

Consider the coordinate transformation S W .x; y/ 2 � 7! S.x; y/ 2 W!

defined by

S.x; y/ D
�

x; y � c.x/C jxj
tan.!=2/

�

:

Since the boundary of � is C 2 except at the origin, where it is tangent to the
wedge,

ˇ

ˇ

ˇ

ˇ

c0.x/ � sign.x/

tan.!=2/

ˇ

ˇ

ˇ

ˇ

� jxj sup
Rn¹0º

jc00.x/j:

The Jacobian matrix of S is

J.x; y/ D
�

1 0

�c0.x/C sign.x/

tan.!=2/
1

�

D 1 CO.jxj/:
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The relative angle of the rotation of the boundary tangent is

ı.x/ � sign.x/ arctan.1=c0.x// � !=2/ and jı.x/j � jxj:

Now, for u D .uC; u�/ 2 L2.W!/�L2.W c
! /, we defineUSu 2 L2.W!/�L2.W c

! /

by

.USu/˙.x; y/ WD eiı.x/�3=2u˙.S.x; y// D
�

eiı.x/=2 0

0 e�iı.x/=2

�

u˙.S.x; y//:

One checks that

e�iı�3

�

0 e�i!=2

ei!=2 0

�

eiı�3 D
�

0 e�i.!=2Cı/

ei.!=2Cı/ 0

�

:

If u˙ have boundary traces that satisfy Lorentz-scalar boundary conditions at the
boundary of †, we have that

.�i� � nW!
C ��3/
.USu/C � .�i� � nW!

� ��3/
.USu/�

D eiı.x/�3=2..�i� � n� C ��3/
uC.S.x; y//

� .�i� � n� � ��3/
u�.S.x; y/// D 0:

We can also compute

HUS.u/ D eiı.x/�3US .Hu/ � i
�

� c0.x/C sign.x/

tan.!=2/

�

�1e
iı.x/�3=2@yu ı S

C .ı0.x/=2/�1e
iı.x/�3=2:

Then, expanding the first exponential around x D 0, we have

U �
SHUS DH C .eiı.x/�3 � 1/H � i.�c0.x/C sign.x/

tan.!=2/
/�1e

iı.x/�3@y

C .ı0.x/=2/�1e
iı.x/�3 :

We recover (4.1), setting

L1 WD �i.eiı.x/�3 � 1/�1;

L2 WD �i.eiı.x/�3 � 1/�2 � i
�

� c0.x/C sign.x/

tan.!=2/

�

�1e
iı.x/�3 ;

M WD .ı0.x/=2/�1e
iı.x/�3 :

(C.1)
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