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Introduction and main results

Since the early 2000s, a certain amount of attention of the mathematical com-

munity has been attracted by the spectral properties of complex (non-selfadjoint)

perturbations of model operators from mathematical physics. Among relatively

recent papers in this direction, we quote articles by Demuth, Hansmann, and Ka-

triel [13], Frank [19] and [20], Frank and Simon [22], Frank and Sabin [21], Frank,

1 The research is partially supported by ANR-18-CE40-0035 grant.
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Laptev, and Safronov [23], Fanelli, Krejčiřík, and Vega [15] and [16], Mizu-

tani [40], Fanelli and Krejčiřík [17], Cuenin and Kenig [10], and Lee and Seo [38],

dealing with spectral properties of complex Schrödinger operators. Similar prob-

lems for Dirac, fractional Schrödinger and other types of operators were treated in

Cuenin, Laptev, and Tretter [8], Cuenin and Seigl [9], Dubuisson [14], Cuenin [6]

and [11], Cossetti [12], Ibrogimov, Krejčiřík, and Laptev [34], and Hulko [30]

and [31]. A series of results on spectral analysis of Jacobi matrices can be found

in Borichev, Golinskii, and Kupin [4] and [5] and Golinskii and Kupin [26]–[29].

In the present article, we are interested in the study of perturbations of bilayer

graphene Hamiltonian given by

Dbg, m WD
�

m 4@2
z

4@2
Nz �m

�

; (1)

where m � 0 and

@z WD 1

2
.@x1

C i@x2
/; @ Nz WD 1

2
.@x1

� i@x2
/:

As usual, we let

L2.R2IC2/ WD
²

f D
�

f1

f2

�

W kf k2
2 D

Z

R2

jf .x/j2 dx < 1
³

to be the standard space of measurable vector-valued functions; here

jf .x/j D .jf1.x/j2 C jf2.x/j2/1=2:

Furthermore, let

H 2.R2IC2/ WD
²

f 2 L2.R2IC2/W kf k2
H 2 D

Z

R2

.1 C j�j2/2j Of .�/j2 d� < 1
³

be the corresponding second order Sobolev space, where Of denotes the Fourier

transform of a function f , see Section 1.1 for more notation. It is not difficult to

see that

Dbg, mW H 2.R2IC2/ �! L2.R2IC2/

is a selfadjoint operator. Since

D2
bg, m D .�2 C m2/I2;

the spectral mapping theorem yields �.Dbg, m/ WD .�1; �m� [ Œm; C1/. The

resolvent set of Dbg, m is denoted by �.Dbg, m/ WD Cn�.Dbg, m/.
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Detailed discussion of this and other similar operators from the physical point

of view can be found in the book of Katznelson [36].

We consider the perturbed operator

Dbg WD Dbg, m C V (2)

with V 2 Lq.R2I Mat2;2.C//; q � 1. Since the perturbation V is not assumed

to be selfadjoint, the operator Dbg may be non-selfadjoint as well. For the formal

definition of Dbg, m C V for the class of potentials considered here we allude to

the “factorization method” of Kato [35]; see also Gesztesy, Latushkin, et al. [24].

A version of Weyl’s theorem [24, Theorem 4.5] asserts that

�ess.Dbg/ D �ess.Dbg, m/ D .�1; �m� [ Œm; C1/; (3)

where we adopt the convention that �ess.Dbg/ WD �.Dbg/n�d .Dbg/ and the dis-

crete spectrum �d .D/ is the set of isolated eigenvalues of D of finite multiplicity.

We shall be interested in distribution properties of the discrete spectrum

�d .Dbg/ of the perturbed operator Dbg. Note that �d .Dbg/ can only accumulate

to �ess.Dbg/, and we want to find some quantitative characteristics of the rate of

accumulation.

The first step in this direction is to understand better the localization of the

discrete spectrum �d .Dbg/. The well-established Birman–Schwinger operator

BSz WD jV j1=2.Dbg, m � z/�1V 1=2; z 2 �.Dbg,m/; (4)

plays a key role in this problem, see original references by Birman [3] and

Schwinger [43]. Here, V.x/ D jV.x/jU.x/ is the polar decomposition of the ma-

trix V.x/, jV.x/j WD .V .x/�V.x//1=2 and U.x/ is the corresponding partial isom-

etry. So, V 1=2.x/ WD jV.x/j1=2U.x/ for a. e. x 2 R
2. The Birman–Schwinger

principle [24, Theorem 3.2] says that z 2 �.Dbg, m/ is an eigenvalue of Dbg if

and only if �1 is an eigenvalue of the operator BSz . In particular, we have the

inclusion

�d .Dbg/ � ¹z 2 �.Dbg, m/W k BSz k � 1º:
Laptev, Ferrulli, and Safronov [18, Theorem 1.1] obtain the following interesting

result.

Theorem 0.1 ([18]). Let Dbg, m; Dbg be as above and V 2 Lq.R2I Mat2;2.C//,

1 < q < 4=3. Then,

(1) for z 2 �.Dbg, m/,

k BSz kq D kjV j1=2.Dbg, m � z/�1V 1=2kq � CqkV kq
q

.jz � mj C jz C mj/q

jz2 � m2jq�1=2
I

(5)
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(2) in particular,

�d .Dbg/ �
°

zW CqkV kq
q

.jz � mj C jz C mj/q

jz2 � m2jq�1=2
� 1

±

:

Slightly later, the Cuenin [7, Theorem 1.1 and Proposition 2.4] improved the

resolvent bound in several respects. First, he showed that the norm of the Birman–

Schwinger operator BSz in the left hand side of (5) can be taken in an appropriate

Schatten–von Neumann class Sp; p D p.q/; second, the range of parameter q is

extended to 1 � q � 3=2. It was observed that these results were optimal in a

certain sense. We mention also that [7, Proposition A.5] addresses more general

situations as compared to [18, Theorem 1.1]; in particular, the former is valid for

more general differential operators than the bilayer graphene Hamiltonian.

The key to the Lieb–Thirring type inequalities obtained in this article is a claim

similar to [7, Proposition 2.4]. We feel that it is appropriate to give a detailed and

a self-contained proof of this result, see Theorem 0.2 below. As compared to [7,

Proposition 2.4], we extend the range of parameter q to 1 � q < 1.

Theorem 0.2. Let Dbg, m; Dbg be defined in (1), (2), and m > 0. For q � 1 and

" > 0, set

p D p.q; "/ WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

q

2 � q
C "; 1 � q < 4=3;

q

2 � q
; 4=3 � q � 3=2;

2q; q > 3=2:

(6)

(I) Let 1 � q � 3=2. There exists a C3 > 0 such that, for any A; B 2 L2q.R2I
Mat2;2.C//, one has

kA.Dbg,m � z/�1BkSp � C3ˆ.z/kAk2qkBk2q ; (7)

where

ˆ.z/ D ˆq.z/ WD jz C mj C jz � mj
jz2 � m2jq1

;

z 2 �.Dbg, m/ and q1 WD 1 � 1=.2q/.

(II) Let q > 3=2. There exists a C4 > 0 such that, for any A; B 2 L2q.R2I
Mat2;2.C//, one has

kA.Dbg, m � z/�1BkSp � C4‰.z/ kAk2qkBk2q; (8)

where

‰.z/ D ‰q.z/ WD .jz C mj C jz � mj/q2

jz2 � m2j1=q

1

d 1�q2.z; �.Dbg,m//
;
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z 2 �.Dbg, m/ and q2 WD 3=.2q/ < 1. Here, d.z; �.Dbg, m// is the distance

from z to �.Dbg, m/. The constants C3; C4 depend on m; q; ", but not on

A; B 2 L2q.R2I Mat2;2.C//.

The above result along with discussion on Birman–Schwinger operators pre-

ceding Theorem 0.1 provides the following corollary.

Corollary 0.3. (1) For 1 � q � 3=2 and V 2 Lq.R2I Mat2;2.C//,

�d .Dbg/ � ¹zW C3ˆ.z/kV kq � 1º:

In particular, the discrete spectrum �d .Dbg/ is bounded.

(2) For q > 3=2 and V 2 Lq.R2I Mat2;2.C//,

�d .Dbg/ � ¹zW C4‰.z/kV kq � 1º:

Theorem 0.2 combined with techniques developed in Borichev, Golinskii, and

Kupin [4] and [5] implies the following result.

Theorem 0.4. Let Dbg, m; Dbg be defined in (1), (2), and m > 0. For q > 1 and

" > 0, set

ˇ D ˇ.q; "/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

4q � 5

2.2 � q/
C 2q � 1

2q
"; 1 < q <

4

3
;

4q � 5

2.2 � q/
;

4

3
� q � 3

2
:

(9)

Assume that kV kq � 1. Then the Lieb–Thirring inequalities for the discrete

spectrum �d .Dbg/ hold:

(I) for 1 � q � 3=2,

X

�2�d .Dbg/

d 1C".�; �.Dbg,m// j�2 � m2jˇ � C5kV kqI (10)

(II) for q > 3=2,

X

�2�d .Dbg/

j�j2qC1C"d 2q�2C".�; �.Dbg, m// j�2 � m2j
.1 C j�j/2qC1C"

� C6kV kq: (11)

The constants C5 and C6 depend on m; q; ", but not on V 2 Lq.R2I Mat2;2.C//.

The counterparts of the above theorems for the case m D 0 are given below.

Their proofs are similar to Theorems 0.2, 0.4, and therefore they are omitted.
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Theorem 0.5. Let Dbg, 0; Dbg be given by (1), (2), and z 2 �.Dbg,0/ WD CnR.

Take an " > 0 and put p D p.q; "/ as in (6).

(I) Let 1 � q � 3=2. There exists a C 0
3 > 0 such that, for any A; B 2 L2q.R2I

Mat2;2.C//, one has

kA.Dbg, 0 � z/�1BkSp � C 0
3jzj�.1� 1

q /kAk2qkBk2q : (12)

(II) Let q > 3=2. There exists a C 0
4 > 0 such that, for any A; B 2 L2q.R2I

Mat2;2.C//, one has

kA.Dbg, 0 � z/�1BkSp � C 0
4jzj� 1

2q jIm zj�.1� 3
2q /kAk2qkBk2q; (13)

Above, jIm zj D d.z;R/ is the distance from z to the real line R. The

constants C 0
3 and C 0

4 depend on q; ", but not on A; B 2 L2q.R2I Mat2;2.C//.

Similarly to Corollary 0.3, we can describe the regions containing the discrete

spectrum �d .Dbg/ for m D 0. In particular, the set is bounded for 1 � q � 3=2

and V 2 Lq.R2I Mat2;2.C//.

Theorem 0.6. Let Dbg, 0; Dbg be defined as above. Let q > 1 and " > 0 be

small enough. Assume that kV kq � 1. Then the Lieb–Thirring inequalities for the

discrete spectrum �d .Dbg/ hold:

(I) for 1 � q � 3=2,
X

�2�d .Dbg/

jIm �j1C" � C 0
5kV kqI (14)

(II) for q > 3=2,

X

�2�d .Dbg/

jIm �j2� 3
2q C"

.1 C j�j/1� 3
2q C2"

� C 0
6kV kq : (15)

The constants C 0
5 and C 0

6 depend on q; ", but not on V 2 Lq.R2I Mat2;2.C//.

Remark 0.7. (1) In order to prove the above theorems we need the Sp-norm of

the Birman–Schwinger operator kV2.Dbg, m � z.iy//�1V1kSp to go to zero when

y ! C1, see (45). For this reason inequality (10) is obtained for 1 < q � 3=2,

even though the case q D 1 is treated in Theorem 0.2.

(2) The assumption kV kq � 1 does not mean that the perturbation is small.

Theorem 0.4 holds uniformly over any bounded in Lq set of potentials V , i.e.,

1 can be replaced with a constant C.q; m; "/.
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The paper is organized in the following manner. We start Section 1 recalling

some basic facts and notation on differential operators. The second part of Sec-

tion 1 is devoted to the proof of Theorem 0.2. The proof of Theorem 0.4 is in

Section 2. Section 3 is an appendix containing results on interpolation between

Sp-spaces and the Kato–Selier–Simon lemma.

The space of infinitely differentiable functions on R
2 is denoted by C 1.R2/;

C 1
0 .R2/ are infinitely differentiable functions with compact support. The notation

Lp.R2/; 1 � p � 1, stays for the familiar space of p-summable measurable

functions. L1
0 .R2/ refers also to functions from L1.R2/ with compact support.

Meaningful constants are written as Cj ; C 0
j ; j D 0; 1; : : : ; technical constants are

denoted by c; C , and they change from one relation to another.

1. Resolvent bounds for the bilayer graphene Hamiltonian

1.1. Fourier transforms. The purpose of this subsection is to fix some notation

and recall some basic properties of the Fourier transformation. For this purpose

we temporarily consider the case of arbitrary dimension n. At the end of the sub-

section we will compute Fourier transforms of some tempered distributions (ho-

mogeneous distributions and surface-carried measures) that will play an important

role in the next subsection. We refer to Hörmander [32] and Sogge [45] for more

details on the subject.

The Fourier transform of a function f 2 L1.Rn/ is defined as

.Ff /.�/ WD Of .�/ WD
Z

Rn

f .x/e�ix�� dx:

Let � D �.Rn/ denote the Schwartz space, i.e., the space of rapidly decreasing

smooth functions onRn. The Fourier transformation is an isomorphismFW � ! � ,

and its inverse is furnished by the Fourier inversion formula,

f .x/ D 1

.2�/n

Z

R
n

Of .�/eix�� dx:

We use the standard notation Lf WD F
�1f . Hence, F may be extended to the dual

space �
0, the space of tempered distributions, by setting Ou.�/ D u. O�/ for u 2 �

0,
� 2 � . Moreover, Plancherel’s formula,

k Of k2 D .2�/n=2kf k2; f 2 � ; (16)

gives rise to a continuous extension FW L2.Rn/ ! L2.Rn/.
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Let D D r be a formal differential operator. The Fourier multiplier

m.D/W � �! �
0

associated to a tempered distribution m 2 �
0 is the operator

m.D/f WD F
�1.m Of /; f 2 � ;

and (16) shows that m is bounded on L2.Rn/ if and only if m 2 L1.Rn/, and

km.D/k D kmk1. We also have

.m.D/'/.x/ D Lm � ' D
Z

Rn

Lm.x � y/'.y/ dy; ' 2 � ; (17)

with the understanding that �W �
0 � � ! �

0 is the convolution between a Schwartz

function and a tempered distribution. The second identity in (17) is in general

only formal, but it is rigorous if Lm is a regular tempered distribution. To simplify

notation, the expression .m.D//.x/, refers to the convolution kernel Lm.x/ of the

integral operator in (17).

Consider now a smooth real-valued function � which we think of as (a normal-

ized power of ) a Hamiltonian. Then, for � 2 R, we define the level sets of � (i.e.,

the sets of constant energy) as

S� WD ��1.�/ D ¹� 2 R
nW �.�/ D �º: (18)

These sets play a crucial role in scattering theory, see e.g. Hörmander [33, Chap-

ter XIV]. In the present paper the main feature of S� is its nowhere vanishing

Gaussian curvature. To ensure that S� is in fact a manifold (a curve) we make the

assumption that � is normalized such that jr�j D 1 on S�. In the following we

will only deal with1 �.�/ D j�j, in which case S� is just the sphere of radius �. Let

d�S�
be the canonical surface measure on S�. As usual, L2.d�S�

/ is the space of

measurable square-summable functions on S�. The Fourier restriction operator

for S� is defined by

R.�/' WD O'
ˇ

ˇ

S�
; ' 2 �.Rn/:

Its formal adjoint (the Fourier extension operator) is given by

R.�/�' D 2' d�S�
; ' 2 �.Rn/:

1 The fact that � 7!j�j is not smooth at � D 0 is irrelevant for our purposes since (by homo-

geneity) we will only need smoothness in a neighborhood of the unit sphere S1 D¹�W j�jD1º.
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Here, the Fourier transform of the measure ' d�S�
is defined as

2' d�S�
.x/ D

Z

Rn

e�ix��'.�/d�S�
.�/:

The multiplier corresponding to the function � 7! j�j is denoted by
p

��. Denote

by Ep
��

.�/ the (operator-valued) spectral measure associated to this operator,

viewed as an unbounded selfadjoint operator on L2.Rn/. Since its spectrum is

absolutely continuous we may write

dEp
��

.�/ D
dEp

��.�/

d�
d�;

where the convolution kernel of the density is given by

dEp
��

.�/

d�
.x � y/ D .2�/�n

Z

j�jD�

ei.x�y/��d�S�
.�/:

By a change of variables � D �� 0; j� 0j D 1, we see that

dEp
��.�/

d�
D �n�1

.2�/n
R.�/�R.�/; (19)

where R.�/ is the restriction operator discussed above. It is also plain that

R.�/f D ��nR.1/.f .��1�//:

Define

�w
C.�/ WD 1Œ0;1/.�/�w=�.w C 1/; w 2 C;

where � is the usual Gamma function.

Lemma 1.1. Let z; � 2 C, Im z > 0. The one-dimensional inverse Fourier

transform of the function

�z;�.x/ WD .x � z/�� ; x 2 R;

is given by

L�z;�.�/ D ei.��=2Cz�/�
��1
C .�/: (20)

Proof. After a change of variables, this follows immediately by applying the

inverse Fourier transformation to the following identity (see [32], specifically the

explanation after Example 7.1.17)

F.x 7! e��x�z
C.x//.�/ D e�i�.zC1/=2.� � i�/�z�1; � > 0; z 2 C: �
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Lemma 1.2. Let ˇ 2 C 1
0 .Rn/ and let S1 be the unit sphere inR

n. Then the inverse

Fourier transform of the surface measure d� WD ˇ d�S1
admits the representation

Ld�.x/ D
X

˙
e˙i jxja˙.jxj/ WD ei jxjaC.jxj/ � e�i jxja�.jxj/;

where a˙ 2 C 1.RC/ satisfy the symbol bounds

j@ka˙.s/j � Ck˙.1 C jsj/� n�1
2 �k: (21)

Proof. This is a special case of [45, Theorem 1.2.1]. �

Lemma 1.3. Let � 2 C 1
0 .Rn/ be supported in the annulus ¹1=2 � j�j � 3=2º,

and S D ¹�W a � Re � � bº be a vertical strip in C. Then
ˇ

ˇ

ˇ

ˇ

Z

Rn

e�ix�� �.�/

.j�j � z/�
d�

ˇ

ˇ

ˇ

ˇ

� Ce�2jIm � j2.1 C jxj/� nC1
2 CRe � ; � 2 S; jzj D 1;

where the constant depends on a; b and finitely many derivatives of �, but is

independent of �; z.

Proof. It suffices to prove this for jxj > 1 since the case jxj � 1 is trivial. Writing

the integral in polar coordinates and using Lemma 1.2 we find that

Z

Rn

e�ix�� �.�/

.j�j � z/�
d� D

X

˙

1
Z

�1

e˙ir jxj r
n�1a˙.r jxj/

.r � z/�
dr;

where the function r 7! rn�1a˙.r jxj/ is supported in a neighborhood of r D 1

and it satisfies

jrn�1a˙.r jxj/j � C.1 C jxj/� n�1
2

for any fixed Schwartz norm j � j. Hence, by Lemma 1.2 again, its inverse Fourier

transform is bounded by

jF�1.r 7�! rn�1a˙.r jxj//.�/j � CN .1 C j� j/�N .1 C jxj/� n�1
2

for any N > 0. The convolution theorem and Lemma 1.1 yield

ˇ

ˇ

ˇ

ˇ

1
Z

�1

e˙ir jxj r
n�1a˙.r jxj/

.r � z/�
dr

ˇ

ˇ

ˇ

ˇ

� CN e�jIm � j.1 C jxj/� n�1
2

1
Z

�1

.1 C j� � jxjj/�N �
Re ��1
C .�/ d�

� Ce�jIm � jj�.�/�1j.1 C jxj/� nC1
2 CRe � :
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The claim now follows from the estimate j�.�/�1j � Ce�2j� j2; see e.g. for-

mula (11.21) in Muscalu and Schlag [41]. �

1.2. Resolvent bounds in Sp-norm for bilayer graphene. We now return to the

case n D 2 and the bilayer Hamiltonian. The coming bound is a special case of

[7, Lemma A.6]. It is crucial for coming resolvent estimates.

In the following, we fix a function � 2 C 1
0 .R2/ supported in the annulus

¹1=2 � j�j � 3=2º such that, in addition, �.�/ D 1 for 3=4 � j�j � 5=4.

Proposition 1.4. Let 1 � a � 3=2; t 2 R, and z 62 RC. There exists a constant

C 0
1 > 0 (depending on � only) such that

j�.D/.�2 � z/�.aCit/.x/j � C 0
1e�2t2

.1 C jxj/3=2�a
; x 2 R

2; jzj D 1: (22)

Proof. Set z1=4 D jzj1=4e.iArg z/=4. Clearly the 4-th power complex roots of z are

given by ¹imz1=4º; m D 0; 1; 2; 3. Without loss of generality, we suppose that

m D 0 and jArg zj � � , or jArg z1=4j � �=4, the other cases being analogous.

Writing

.j�j4 � z/ D .j�j � z1=4/
�

3
Y

kD1

.j�j � ikz1=4/
�

and absorbing the second factor into �, we see that it suffices to prove

Z

Rn

eix�� Q�.�I aI t /

.j�j � z1=4/aCit
d� � Ce�2t2

.1 C jxj/3=2�a
;

whenever Q�.�I a; t/ satisfies the bounds
X

j˛j�N

k@˛
� Q�.�I a; t/k1 � CN e2�jt j

for a fixed, sufficiently large N > 0. This follows directly from Lemma 1.3. �

Remark 1.5. In view of the identity

1

j�j2 � z1=2
� 1

j�j2 C z1=2
D 2z1=2

j�j4 � z
;

inequality (22) also follows from a two-dimensional version of estimates (2.23)

and (2.25) in Kenig, Ruiz, and Sogge [37]; see also (44) in Frank and Sabin [21].

To keep the article self-contained, we provided the above proof which rests only

on the stationary phase method (Lemma 1.2) and formula (20).
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Proposition 1.6. Fix an " > 0 and set the function � as above. For q � 1, let

p D p.q; "/ WD

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

q

2 � q
C "; 1 � q < 4=3;

q

2 � q
; 4=3 � q � 3=2;

2q; q > 3=2:

(23)

For A; B 2 L2q.R2/, the following bounds hold true:

(I) for 1 � q � 3=2,

kA�.D/.�2 � z/�1BkSp � C7 kAk2qkBk2q ; jzj D 1I (24)

(II) for q > 3=2

kA�.D/.�2 � z/�1BkSp � C8

d.z;RC/1�3=.2q/
kAk2qkBk2q; jzj D 1:

(25)

Here, Cj D Cj .q; "/; j D 7; 8, are independent of A; B , and z.

Proof. The proof relies heavily on interpolation between Schatten–von Neumann

classes Sp; p � 1, presented in Section 3. It is convenient to separate part (I)

of the proposition in two cases: Case I.1 for 1 � q < 4=3 and Case I.2 for

4=3 � q � 3=2. We begin with the proof of Case I.2.

Case I.2: 4=3 � q � 3=2. Without loss of generality we may assume that A > 0

and B > 0. At the moment, we suppose also that A; B 2 L2q.R2/ \ L1
0 .R2/. We

wish to apply Corollary 3.4 to the analytic family of operators given by

T� WD A� �.D/.�2 � z/��B�

on the strip

S D S0;a0
WD ¹�W 0 � Re z � a0º; with 1 � a0 � 3=2.

Here, � D a C i t , 0 � a � a0, and t 2 R.

We start by checking assumptions of Corollary 3.4, see also Theorem 3.3. For

arbitrary f; g 2 L2.R2/ we have, by Plancherel’s identity,

.T�f; g/ D
Z

R2

�.�/.j�j4 � z/�� bB�f .�/
b
A�g.�/d�;
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which shows that � 7! .T�f; g/ is analytic in S . By the Cauchy–Schwarz inequal-

ity,

j.T�f; g/j � k�k1k.j � j4 � z/�� k1kB�f k2 kA�gk2:

Since j arg.j�j4 � z/j � 2� , we have that

j.j�j4 � z/�� j D j exp.�.a C i t /.log k�j4 � zj C i arg.j�j4 � z//j
� j.j�j4 � z/j�a exp.2�jt j/:

Observe that a varies over a compact interval and z is fixed. Putting all this

together, we obtain that

j.T�f; g/j � Ce2�jt jk�k1kAka
1kBka

1kf k2kgk2; � D a C i t;

showing that (61) is satisfied. It also yields that

kT�kS1
� Ce2�jIm � j (26)

for Re � D 0. Note that T� is compact since we have the Hilbert-Schmidt bound

kT�k2
S2

D
Z

R
2
x

Z

R
2
y

jA�.x/j2jF.�.j � j4 � z/��/.x � y/j2jA�.x/j2dxdy

� e4�jIm � jk�.j � j4 � z/�Re �k2
1kAk2Re �

2 kBk2Re �
2 ;

and the right hand side is finite by the assumption that A; B 2 L1
0 .R2/.

On the vertical line ¹�W Re � D a0º, Proposition 1.4 and Hardy–Littlewood–

Sobolev inequality (see Lieb and Loss [39, Section 4.3]) yield that

kTa0Cit k2
S2

�
Z

R
2
x

Z

R
2
y

j�.D/.�2 � z/�.a0Cit/.x � y/j2jA.x/j2a0 jB.y/j2a0 dxdy

� Ce2�2t2

Z

R
2
x

Z

R
2
y

1

jx � yj3�2a0
jA.x/j2a0 jB.y/j2a0 dxdy

� Ce2�2t2kjAj2a0kskjBj2a0ks;

where 2=s C .3 � 2a0/=2 D 2, or s D 4=.1 C 2a0/. In particular,

kjAj2a0ks D kAk2a0

8a0=.1C2a0/
;

the same equality holding for kjBj2a0ks. Hence, gathering the above computa-

tions, we arrive at the bound

kT�kS2
� Ce�2jIm � j2kAka0

8a0=.1C2a0/
kBka0

8a0=.1C2a0/
for Re � D a0: (27)
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We recall now Corollary 3.4 (see also Theorem 3.3) with parameters chosen

as

� WD 1; 1 D  � a0 C .1 � / � 0;
1

s

D 

2
C .1 � /

1 D 

2
;

to interpolate between (26) and (27). Solving first for  and then for s yields

 D 1=a0 and s D 2a0. Corollary 3.4 then implies that

kA�.D/.�2 � z/�1BkS2a0
� C7 kAk8a0=.1C2a0/kBk8a0=.1C2a0/;

which is exactly (24) with 4=3 � q � 3=2 if one puts 2q D 8a0=.1 C 2a0/.

To sum up, we proved (24) for 4=3 � q � 3=2 and A; B 2 L2q.R2/\L1
0 .R2/.

It remains to get rid of the assumption that A; B 2 L1
0 .R2/. The proof relies

essentially on the fact that the constant C7 from (24) does not depend on A; B .

We proceed by a limiting argument. Let A; B 2 L2q.R2/. For n 2 N, define

En D ¹x 2 R
2W jxj C jA.x/j C jB.x/j � nº

and set the “truncations” of A; B to be

An D A1En ; Bn D B1En :

Let PnW L2.R2/ ! L2.R2/ be the corresponding orthogonal projection

Pnf D 1Enf; f 2 L2.R2/:

The elementary properties of L2q-integrable functions yield that

lim
n!C1

kPnf � f k2 D 0 for any f 2 L2.R2/.

Recalling [25, Theorem 5.2] and inequality (24) for functions from L2q.R2/ \
L1

0 .R2/, we obtain

kA�.D/.�2 � z/�1BkSp D sup
n

kPn.A�.D/.�2 � z/�1B/PnkSp

D sup
n

kAn�.D/.�2 � z/�1BnkSp

� C7kAnk2qkBnk2q

� C7kAk2qkBk2q:

Case I.2 follows.
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Case II: q > 3=2. As before, we may assume without loss of generality that

A; B 2 L2q.R2/ \ L1
0 .R2/, and that A; B > 0.

Let S WD S0;a0
WD ¹a C i t W 0 � a � a0 D 2q=3; t 2 Rº. Notice that q > 3=2

implies that a0 D 2q=3 > 1. Consider the analytic family of operators

T� D A��.D/.�2 � z/�1B� ;

defined on S . For Re � D a0, inequality (24) applied with p0 D 3; q0 D 3=2

instead of p; q yields

kT�kS3
� C3kA2q=3k3kB2q=3k3 D C3kAk2q=3

2q kBk2q=3
2q

(28)

for Re � D a0. On the other hand, since for Re � D 0 we have jA� j D jB� j D 1

a.e. on R
2, we also see that

kT�kS1
� k�k1

d.z;RC/
: (29)

by the spectral theorem for �2. Compactness of T� follows by the same argument

as in Case I.1. Interpolating in between (28) and (29), with

� WD 1; 1 D 2q

3
�  C 0 � .1 � / D 2q

3
;

we get  D 3=.2q/ 2 .0; 1/ and consequently

1

p0

D 

3
C .1 � /

1 D 

3
;

which means that p0 D 2q. That is,

kA�.D/.�2 � z/�1BkS2q
� C8

d.z;RC/1�
kAk2qkBk2q ;

By the same limiting argument as before, we get relation (25).

Case I.1: 1 � q � 4=3. Let Q� be a cutoff function with the same support

properties as � and such that Q� D 1 on the support of �; in particular, Q�� D �.

Let A; B 2 L2.R2/. We start by proving that

kA�.D/
dEp

��.�/

d�
Q�.D/BkS1

� C kAk2kBk2: (30)

Indeed, using (19), we re-write the operator on the left hand side of (30) as

A�.D/
dEp

��
.�/

d�
Q�.D/B D �n�1

.2�/n
.R.�/�.D/A/�.R.�/ Q�.D/B/: (31)
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The kernel of the operator R.�/�.D/AW L2.R2/ ! L2.S�/ is given by

.R.�/�.D/A/.�; x/ D �.�/eix�A.x/; x 2 R
2; � 2 S�;

and thus

kR.�/�.D/Ak2
S2

D
Z

R
2
x

Z

S�;�

j�.�/A.x/j2 dxd�S�
.�/ D k�k2

L2.S�/
kAk2

2 � C kAk2
2:

Since the same bound holds for R.�/ Q�.D/B , Hölder’s inequality for Sp-classes

yields (30).

Set 0 < a0 < 1. Using the formula

.�2 � z/�.a0Cit/ D
Z

R

.�4 � z/�.a0Cit/ dEp
��.�/:

inequality (30) and the fact that the functions k�j kS�
are supported on the set

where 1=2 � � � 3=2, we get the bound

kA�.D/.�2 � z/�.a0Cit/�.D/BkS1
� C

e2�jt j

.1 � a0/
kAk2kBk2: (32)

On the other hand, from (22), we see that

j�.D/.�2 � z/�3=2Cit .x/j � C 0
1e�2t2

;

that is, the kernel of �.D/.�2 � z/�3=2Cit .x/ is uniformly bounded with respect

to the “space variable” x 2 R
2. The Hilbert-Schmidt bound for integral operators

implies immediately

kA�.D/.�2 � z/�3=2Cit BkS2
� C kAk2kBk2: (33)

Let 0 < " < 1=2 be fixed. Suppose, as in Cases I.2 and II, that one has

A; B 2 L2.Rd / \ L1
0 .R2/. Furthermore, set

T� WD A�.D/2.�2 � z/�� B

and S D Sa0;b0
WD ¹�W a0 � Re � � b0º to be the vertical strip with

a0 D .1 � 2"/

.1 � "/
< 1; b0 D 3=2 > 1:

As previously, the family .T�/ on Sa0;b0
satisfies the assumptions of Theorem 3.3

and we can interpolate between (32) and (33). More precisely, for the parameters

of the corollary we take � WD 1 and

1 D 1 � 2"

1 � "
 C 3

2
.1 � /;
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i.e.,  D .1 � "/=.1 C "/. Hence the relation

1

s

D 

1
C .1 � /

2

gives s D 1 C ". To sum up, we arrive at

kA�.D/.�2 � z/�1BkS1C"
� C "�.1�"/=.1C"/kAk2kBk2: (34)

We interpolate once again in between (34) and (24) for q D 4=3 to obtain (24) for

1 � q < 4=3. Passing from A; B 2 L2q.R2/\L1
0 .R2/ to general A; B 2 L2q.R2/

is carried out as in the previous cases. �

We introduce some notation before going to the proof of Theorem 0.2. Let

k.u/4 WD .u2 � m2/;

where we use the principal branch of 4-th complex root, so that one has k.u/ D
.u2 � m2/1=4 2 RC for u D x 2 R; x > m. Furthermore,

�.u/ WD u C m

k.u/2
D

�u C m

u � m

�1=2

; u 6D ˙m

with the standard choice of the branch of the square complex root.

1.3. Proof of Theorem 0.2. In order to distinguish the variable referred to in

operators @z; @ Nz and the spectral parameter of the operator Dbg, m, the latter will

be denoted by u 2 �.Dbg, m/ in this subsection.

We consider first Case I of the theorem, i.e., 1 � q � 3=2. Let A; B 2 L2q.R2I
Mat2;2.C//, that is

A.x/ D ŒAjl.x/�j;lD1;2; x D .x1; x2/ 2 R
2;

and Ajl.x/ 2 L2q.R2/. Recalling the identities

4@z@ Nz D 4@ Nz@z D .@2
x1

C @2
x2

/2 D �2;

we readily see

D2
bg, m � u2 D

�

m 4@2
Nz

4@2
z �m

�2

� u2

D
�

�2 C .m2 � u2/ 0

0 �2 C .m2 � u2/

�

D .�2 � k.u/4/I2:
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For k.u/4 2 CnRC, we have

.Dbg, m � u/�1 D .�2 � k.u/4/�1.Dbg, m C u/:

We are interested in Schatten–von Neumann properties of Birman–Schwinger

operator of the bilayer Hamiltonian, i.e.,

BSu WD ŒBSu;jl �j;lD1;2 D A.Dbg, m � u/�1B D A.�2 � k.u/4/�1.Dbg, m C u/B:

Of course, a bound of the form

k BSu kSp � C.u/kAk2qkBk2q;

see (7) and (8), will follow if we prove it “entry-by-entry”, that is

k BSu;jl kSp � C.u/kAk2qkBk2q ; j; l D 1; 2:

We shall do the computation for the entry BSu;11; the bounds for other entries of

the operator BSu are obtained in a similar way. We have

BSu;11 D .m C u/A11.�2 � k.u/4/�1B11

C 4A11.�2 � k.u/4/�1@2
NzB21

C 4A12.�2 � k.u/4/�1@2
zB11

C .m � u/A12.�2 � k.u/4/�1B21:

(35)

To simplify the following computations, we use the following homogeneity argu-

ment. Let f 2 Ls.R2/, s > 0, f D f .x/, x 2 R
2. Set x D ay; a > 0; y 2 R

2.

We write g.y/ D f .ay/; to make the writing of differential operators more pre-

cise, we write x- or y-subindex to indicate the variable the differential operator is

computed with. For instance �x and �y are the Laplacians computed with respect

to x and y, respectively.

It is plain that for j D 1; 2

@yj
g.y/ D a@xj

f .ay/ D a@xj
f .x/;

@2

y2
j

g.y/ D a2@2

x2
j

f .ay/ D a2@2

x2
j

f .x/:

In particular, @z;yg D a@z;xf; @2
z;yg D a2@2

z;xf , �2
yg D a4�2

xf , etc.

Furthermore, one has

kgks
s D

Z

R
2
y

jg.y/js dy D
Z

R
2
y

jf .ay/js dy D a�2

Z

R
2
x

jf .x/js dx D a�2kf ks
s; (36)

or kgks D a�2=skf ks.
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Suppose that k.u/ 6D 0 and write k.u/4 as k.u/4 D jk.u/j4ei'. We assume also

that ei' 6D 1; the case ei' D 1 can be obtained by a standard argument passing to

the limit in relations (24), (25). So, putting a D 1=jk.u/j,

.�2
x � k.u/4/f .x/ D jk.u/j4.jk.u/j�4�2

x � ei'/f .x/

D jk.u/j4.�2
y � ei'/g.y/;

where g.y/ D f .ay/; x D ay. In the same way,

@2
z;xf .x/ D jk.u/j2@2

z;yg.y/; @2
Nz;xf .x/ D jk.u/j2@2

Nz;yg.y/:

Set zAjl.y/ D Ajl.ay/ and zBjl .y/ D Bjl.ay/ for j; l D 1; 2. Turning back

to (35), we rewrite it as

BSu;11 D 1

jk.u/j2
� .m C u/

jk.u/j2
zA11.y/.�2

y � ei'/�1 zB11.y/

C 4 zA11.y/.�2
y � ei'/�1@2

Nz;y
zB21.y/

C 4 zA12.y/.�2
y � ei'/�1@2

z;y
zB11.y/

C .m � u/

jk.u/j2
zA12.y/.�2

y � ei'/�1 zB21.y/
�

:

(37)

Suppose momentarily that we could prove the following estimates,

k zA11.�2
y � ei'/�1 zB11kSp � C k zA11k2qk zB11k2q ;

k zA11.�2
y � ei'/�1@2

Nz;y
zB21kSp � C k zA11k2qk zB21k2q ;

k zA12.�2
y � ei'/�1@2

z;y
zB11kSp � C k zA12k2qk zB11k2q ;

k zA12.�2
y � ei'/�1 zB21kSp � C k zA12k2qk zB21k2q ;

(38)

Recall that j.m C u/=jk.u/j2j D j�.u/j and j.m � u/=jk.u/j2j D j�.u/j�1, while

1 � C.j�.u/j C j�.u/j�1/; u 2 C:

Plugging these bounds in (37) implies

k BSu;11 kSp � C

jk.u/j2 .1 C j�.u/j C j�.u/j�1/k zAk2qk zBk2q

� C

jk.u/j2 .j�.u/j C j�.u/j�1/k zAk2qk zBk2q

D C.j�.u/j C j�.u/j�1/jk.u/j2=q�2kAk2qkBk2q ;

(39)

where we used the rescaling (36) in the last line. We notice that

.j�.u/j C j�.u/j�1/jk.u/j2=q�2 � Cˆq.u/; u 2 �.Dbg,m/:

Hence (39) is exactly the formula claimed in (7).
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Consequently, it remains to prove (38). Set

m1.�/ WD 1

.j�j4 � ei'/
; m2.�/ WD .�1 ˙ i�2/2

.j�j4 � ei'/
:

Furthermore, take �1 2 C 1
0 .R2/ with the properties: 0 � �1.x/ � 1 for all

x 2 R2, �1 is supported in ¹x 2 R2W 1=2 � jxj � 3=2º and �1.x/ D 1 for

x 2 ¹x 2 R
2W 3=4 � jxj � 5=4º. Let �2 WD 1 � �1; by definition �1 C �2 D 1

is a smooth partition of unity. Rewriting (38) in terms of symbols of differential

operators, we shall show that

k zA�l.D/mj .D/ zBkSp � C k zAk2qk zBk2q ; l; j D 1; 2:

For 1 � q � 3=2, the bound for l D 1 is exactly Case I of Proposition 1.6.

Consider the case l D 2 now. Notice that for the range of q’s we are interested

in, one can always choose " > 0 small enough so that p D p.q; "/ � q. Thus we

shall prove the bound

k zA�2.D/mj .D/ zBkSq � C k zAk2qk zBk2q ; j D 1; 2;

which is stronger than (38). Notice that

j�2.�/m1.�/j D
ˇ

ˇ

ˇ

�2.�/

j�j4 � ei'

ˇ

ˇ

ˇ � C

.1 C j�j2/
;

j�2.�/m2.�/j D
ˇ

ˇ

ˇ

�2.�/.�1 ˙ i�2/2

j�j4 � ei'

ˇ

ˇ

ˇ � C

.1 C j�j2/
:

Lemma 3.1 applied to the operator zA�2.D/mj .D/ zB gives

k zA�2.D/mj .D/ zBkSq � k.1 C j�j2/�1kq k zAk2qkBk2q; j D 1; 2;

as needed.

Let us turn to Case II, q > 3=2. The proof closely follows the proof of

Proposition 1.6, Case II. It consists in interpolation in between bounds for para-

meters q D 3=2 (i.e., Case I), and q D 1.

Assume that A > 0 and B > 0. Fix q > 3=2 and let p D p.q/ WD 2q. This

choice implies in particular that 2q=3 > 1. Set a0 D 0; b0 D 2q=3 and consider

the strip

S WD ¹� D a C i t W a0 � a � b0; t 2 Rº:

The family of operators

T� D A�.Dbg, m � u/�1B� ;



Lieb–Thirring inequalities 1165

is analytic on S . Apply (7) with q0 D 3=2 in place of q to the family T� on

Re � D b0 D 2q=3; that is

kA2q=3Cit .Dbg, m � u/�1B2q=3CitkS3
� Cˆ.u/kAk2q=3

2q kBk2q=3
2q ; (40)

where we used that kA2q=3Citk3 D kAk2q=3
2q , and the same relation holds for B .

Notice that q01 D 1 � 1=.2q0/ D 2=3. For Re � D a0 D 0, we have the trivial

bound

kAit .Dbg, m � u/�1B itkS1
� 1

d.u; �.Dbg, m//
: (41)

As in Proposition 1.6, we interpolate between (40) and (41) using Theorem 3.3

with parameters � WD 1 and

1 D 2q

3
 C .1 � /0;

1

p

D 3


C .1 � /

1 D 1

2q
:

Hence,  D 3=.2q/ and p D 2q. Claim (8) follows, and this finishes the proof

of the theorem. �

2. Lieb–Thirring inequalities for bilayer graphene

In what follows we always assume that m > 0. We begin with the standard

Zhukovsky transform

z D z.w/ D m

2

�

w C 1

w

�

; (42)

which maps the upper half-plane CC onto the domain �.Dbg, m/. Since

jz.w/ ˙ mj D m

2jwj jw ˙ 1j2;

we have

jz C mj C jz � mj D m

2jwj.jw C 1j2 C jw � 1j2/ D m

jwj.1 C jwj2/;

jz2 � m2j 1
2 D m

2jwj jw2 � 1j:
(43)

The distortion [42, Corollary 1.4] for the Zhukovsky transform reads as

d.z; �.Dbg, m//

Im w
� jz0.w/j D mjw2 � 1j

2jwj2 D jz2 � m2j1=2

jwj ; w 2 CC: (44)
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2.1. Proof of Theorem 0.4, Case I: 1 < q � 3=2. We have, by (43),

ˆ.z.w// D C.1 C jwj2/
jwjp1

jw2 � 1j2q1
; p1 WD 2q1 � 1 D 1 � 1

q
> 0:

The bound (7) in the variable w reads

kV2.Dbg, m � z.w//�1V1kSp � C9.1C jwj2/
jwjp1

jw2 � 1j2q1
kV kq; w 2 CC; (45)

where V2 D A WD jV j1=2 and V1 D B WD V 1=2, see the discussion preceding (4).

For w D iy, y > 0,

kV2.Dbg, m � z.iy//�1V1kSp � C9

� y

1 C y2

�p1

kV kq <
C9

yp1
kV kq: (46)

We proceed with the regularized perturbation determinant

H.w/ WD det
p

.I C V2.Dbg, m � z.w//�1V1/; w 2 CC;

which admits the bounds, see [44, Theorem 9.2]

log jH.w/j � �p kV2.Dbg, m � z.w//�1V1kp
Sp

(47)

and

jH.w/ � 1j � '.kV2.Dbg, m � z.w//�1V1kSp /; (48)

where

'.x/ WD x exp¹�p.x C 1/pº; x � 0:

Denote

h.w/ D hy.w/ WD H.yw/

H.iy/
; h.i/ D 1; (49)

y � 1 is chosen later on.

Proposition 2.1. Assume that

kV kq � 1: (50)

Then there is a constant C10 D C10.m; q; "/ so that for y D C10 the following

holds

log jh.w/j � C11

.1 C jwj/4pq1

jw2 � y�2j2pq1
kV kq; w 2 CC:

Proof. Without loss of generality we assume that C9 > 1. If yp1 � C9 � C9kV kq,

we have, by (46),

kV2.Dbg, m � z.iy//�1V1kSp � C9

yp1
kV kq � kV kq � 1: (51)
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An obvious bound '.x/ � exp¹2p�pº x, 0 � x � 1, implies, in view of (51),

'.kV2.Dbg, m � z.iy//�1V1kSp / � e2p�p kV2.Dbg, m � z.iy//�1V1kSp ;

and so, by (48),

1 � jH.iy/j � jH.iy/ � 1j � C9e2p�p

yp1
kV kq � 1

2
;

as soon as yp1 � 2C9 exp¹2p�pº DW C12. The case jH.iy/j > 1 being trivial, we

continue with the case 1
2

� jH.iy/j � 1. Hence,

jH.iy/j � 1

2
; log jH.iy/j � �.1 � jH.iy/j/ � �C12

kV kq

yp1
: (52)

A combination of (47), (45), and (52) leads to the bound

log jh.w/j D log jH.yw/j � log jH.iy/j

� C.1 C yjwj/2p .yjwj/pp1

jy2w2 � 1j2pq1
kV kp

q C C12

kV kq

yp1

� C13

h.1 C jwj/2pjwjpp1

jw2 � y�2j2pq1

kV kp
q

ypp1
C kV kq

yp1

i

� C13

kV kq

yp1

h.1 C jwj/2pjwjpp1

jw2 � y�2j2pq1
C 1

i

:

As 2p C pp1 � 4pq1 D �pp1 < 0, we have for y � 1

.1 C jwj/2pjwjpp1 C jw2 � y�2j2pq1 � .1 C jwj/2pCpp1 C .1 C jwj/4pq1

< 2.1 C jwj/4pq1 :

The result follows with y D C10 D C
1=p1

12 , C11 D 2C13. �

It is well known that the Lieb–Thirring inequalities agree with the Blaschke

type conditions for the zeros of the corresponding perturbation determinants. So,

the next step is an application of [5, Theorem 4.4] to the above function h. The

input parameters are

a D 0; b D 2pq1; cj D 0I x0
1 D y�1; x0

2 D �y�1; K D C kV kq;

d1 D d2 D d D 2pq1 D

8

ˆ

ˆ

<

ˆ

ˆ

:

2q � 1

2 � q
C

�

2 � 1

q

�

"; 1 < q <
4

3
;

2q � 1

2 � q
;

4

3
� q � 3

2
:
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The output parameters in [5, Theorem 4.4] are

l D ¹lºa;" D 0; .d � 1 C "/C D 3q � 3

2 � q
C !q"; l1 D 4q � 2

2 � q
C �q";

with

!q D

8

ˆ

ˆ

<

ˆ

ˆ

:

3q � 1

q
; 1 < q <

4

3
;

1;
4

3
� q � 3

2
I

�q D

8

ˆ

ˆ

<

ˆ

ˆ

:

6q � 1

q
; 1 < q <

4

3
;

1;
4

3
� q � 3

2
:

So, the Blaschke type condition of [5, Theorem 4.4] takes the form

X

�2Z.h/

.Im �/1C"

.1 C j�j/l1
j�2 � y�2j.d�1C"/C � C14kV kq ; (53)

and, since the “test point” y in Proposition 2.1 does not depend on V , the constant

C14.m; q; "/ does not depend on V either.

In terms of the zeros of H we have

� 2 Z.h/ () y� D � 2 Z.H/; � D �

y
;

and as y D C10 is a constant, condition (53) does not alter

X

�2Z.H/

.Im �/1C"

.1 C j�j/l1
j�2 � 1j.d�1C"/C � C15kV kq : (54)

It remains to get back to the spectral variable z 2 �.Dbg, m/, keeping in mind

that for the discrete spectrum of Dbg the equivalence holds

� 2 �d .Dbg/ () � 2 Z.H/:

To make the final result transparent, we invoke the main result [7, Theorem 1.1],

which claims, in particular, that the discrete spectrum �d .Dbg/ is bounded, that

is, j�j � C16, for all � 2 �d .Dbg/. In the Zhukovsky variable the latter means

0 < c � j�j � C < 1; for all � 2 Z.H/: (55)

So we can neglect the term 1 C j�j in (53). Next, as in (43),

j�2 � m2j D m2

4

j�2 � 1j2
j�j2 H) cj�2 � 1j � j�2 � m2j1=2 � C j�2 � 1j:

Finally, the distortions (44) and (55) imply

c H) � � d.�; �.Dbg, m//

j�2 � m2j1=2
� C Im �:

Case I of Theorem 0.4 is proved. �
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2.2. Proof of Theorem 0.4, Case II: q > 3=2. We use the distortion (44) to

obtain the bound similar to (45)

kV2.Dbg, m � z.w//�1V1kSp � C9

.1 C jwj/2q2

.Im w/p2

jwjp3

jw2 � 1jp4
kV kq ; w 2 CC;

(56)

where

p D 2q; p2 WD 1 � q2 D 1 � 3

2q
> 0; p3 WD 2 � 5

2q
; p4 WD 1 C 1

2q
:

Note that p3 � p2 D p1. For w D iy, y > 0, the bound is exactly the same as (46)

kV2.Dbg, m � z.iy//�1V1kSp <
C9

yp1
kV kq: (57)

We argue as in the proof of Proposition 2.1 to obtain the bound for h (49)

log jh.w/j � C11

jwjpp2.1 C jwj/2pp4

.Im w/pp2 jw2 � y�2jpp4
kV kq: (58)

Indeed,

log jh.w/j D log jH.yw/j � log jH.iy/j

� C
.1 C yjwj/2pq2.yjwj/pp3

.Im yw/pp2 jy2w2 � 1jpp4
kV kp

q C C12

kV kq

yp1

� C13

h .1 C jwj/2pq2 jwjpp3

.Im w/pp2 jw2 � y�2jpp4

kV kp
q

ypp1
C kV kq

yp1

i

� C13

kV kq

yp1

h .1 C jwj/2pq2 jwjpp3

.Im w/pp2 jw2 � y�2jpp4
C 1

i

:

Next,

.1 C jwj/2pq2 jwjpp3 C .Im w/pp2 jw2 � y�2jpp4

� .1 C jwj/2pq2 jwjpp3 C jwjpp2.1 C jwj2/pp4

� jwjpp2..1 C jwj/2pq2 jwjpp1 C .1 C jwj/2pp4/

� 2jwjpp2.1 C jwj/2pp4 ;

and (58) follows.
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The computation with [5, Theorem 4.4] is a bit more complicated now. The

input parameters are

a D pp2 D 2q � 3 > 0; b D pp4 D 2q C 1;

x0
1 D y�1; x0

2 D �y�1; x1 D 0;

c1 D pp2 D a; cj D 0; j � 2;

d1 D d2 D d D pp4 D b;

K D C kV kq:

The output parameters in [5, Theorem 4.4] are

l D a; ¹lºa;" D �a; .d � 1 C "/C D 2q C "; l1 D 2 C 4q C 4";

so the Blaschke type condition takes the form

X

�2Z.h/

.Im �/aC1C"

.1 C j�j/2C4qC4"

j�2 � y�2j2qC"

j�ja � C14kV kq:

After the change of variable � D y � D C10�, we come to

X

�2Z.H/

.Im �/aC1C"

.1 C j�j/2C4qC4"

j�2 � 1j2qC"

j�ja � C15kV kq: (59)

As before, the final step relies on the distortion relations for the Zhukovsky

transform. Indeed, separate the upper-half plane CC in three regions

�1 WD ¹� 2 CCW c � j�j � C º;
�2 WD ¹� 2 CCW j�j � C º;
�3 WD ¹� 2 CCW j�j � cº;

with constants c; C chosen as 0 < c < 1 < C < C1. It is clear that

X

�2Z.H/\�1

.Im �/aC1C" j�2 � 1j2qC" � C
X

�2Z.H/\�1

.Im �/aC1C"

.1 C j�j/2C4qC4"

j�2 � 1j2qC"

j�ja :

On the other hand, one has j�.�/j � j�j for � 2 �2, and j�.�/j � j�j�1 for

� 2 �3. Using these relations along with inequalities given next to (55), we cut

the sum (59) in parts corresponding to domains �i ; i D 1; 2; 3, and rewrite these

partial sums in terms of �-variable.

Case II of Theorem 0.4 is proved as well. �
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3. Some technical tools:

interpolation theorems and Kato–Selier–Simon lemma

3.1. Kato–Selier–Simon lemma. Recall the notation introduced in Section 1.1.

We have the following proposition usually called Kato–Selier–Simon lemma.

Proposition 3.1 ([44, Theorem 4.1]). (1) Let f; g 2 Lq.Rd /; d � 1. Then, for

2 � q < 1, f .x/g.D/ 2 Sq , and

kf .x/g.D/kSq � .2�/�d kf kqkgkq :

(2) Let f 2 Lq.Rd /; d � 1, and A; B 2 L2q.Rd /. For 2 � q < 1,

kA.x/f .D/B.y/kSq � .2�/�d kf kq kAk2qkBk2q :

The first claim of the above proposition is in Simon [44, Theorem 4.1]; the

second claim is a “symmetrized” version of the first one and it is proved similarly.

3.2. Interpolation theorem for bounded analytic families. In this subsection,

we follow mainly the presentation of Zhu [47, Chapter 2].

Let X0; X1 be two Banach spaces. We say that the pair X0; X1 is compatible,

if there is a topological Hausdorff space X containing both X0 and X1. We have

the following theorem.

Theorem 3.2 ([47, Theorem 2.4]). Let X0; X1 be a pair of compatible Banach

spaces, idem for Y0; Y1. For a ; 0 <  < 1, there are Banach spaces X ; Y ,

X D ŒX0; X1� ; Y D ŒY0; Y1� ;

interpolating in between X0 and X1 and Y0 and Y1, respectively, in the following

sense.

Let T W X0 C X1 ! Y0 C Y1 be a bounded linear map such that

kT xkY0
� C0kxkX0

; x 2 X0;

kT xkY1
� C1kxkX1

; x 2 X1:

Then T induces a linear map T W X ! Y with the property

kTk � C

0 C

1�
1 :

Saying “interpolation” we mean “complex interpolation” throughout the arti-

cle. For instance, we have

ŒLp0.Rd /; Lp1.Rd /� D Lp .Rd /; (60)
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where 1 � p0; p1 � 1, 1=p D =p0 C .1 � /=p1, and d � 1, see [47,

Theorem 2.5].

It is important that a similar construction holds for “non-commutative”

Lp-spaces as well. That is, denoting by Sp the Schatten–von Neumann classes

of compact operators, we have

ŒSp0
; Sp1

� D Sp ;

where 1 � p0; p1 � 1 and 1=p D =p0 C .1 � /=p1. A proof of this

result is in [47, Theorem 2.6]. Much more information and further references

on the interpolation theory of Banach spaces are in the monographs by Bennett

and Sharpley [1] and by Bergh and Löfström [2].

For 1 � p01; p02 � C1, it is plain to see that

Lp01.Rd
x / � Lp02.Rd

y / ' Lp01.Rd
x / u Lp02.Rd

y /; x; y 2 R
d ;

and so interpolation (60) holds for these spaces as well. This observation is often

applied to an operator A of the form

AW Lp01.Rd / � Lp02.Rd / �! Sq01
; 1 � q01 � C1;

see Section 1.

3.3. Interpolation theorem for general analytic families. Following Gohberg

and Krein [25, Chapter III.13], we present a generalized version of interpolation

in between Sp-spaces.

Let a; b 2 R, a < b, and

S D ¹�W a � Re � � bº

be a vertical strip in the complex plane. For a Hilbert space H , we say that a

family of bounded operators .T�/�2S ; T� W H ! H is is analytic on S , if .T�f; g/

is analytic on an open neighborhood of S for any fixed f; g 2 H .

Theorem 3.3 ([25, Theorem 13.1]). Let .T�/�2S be an analytic family of opera-

tors. Assume that for any f; g 2 H

log j.T�f; g/j � C1If;geC2If;gjIm � j; � 2 S; (61)

where the constants Cj If;g ; j D 1; 2 depend on f; g, but not on � 2 S , and

0 � C2If;g <
�

b � a
:
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Furthermore, suppose that

(1) for Re � D a, T� 2 Sp0
, with 1 � p0 < 1 and

kT�kSp0
� C0I

(2) for Re � D b, T� 2 Sp1
, with p0 < p1 � 1 and

kT�kSp1
� C1:

Take an x 2 .a; b/ and write it as x D  a C .1 � / b;  2 .0; 1/. For

� 2 S; Re � D x we have that T� 2 Sp , and moreover

kT�kSp
� C


0 C

1�
1 ;

where 1=p D =p0 C .1 � /=p1.

We often use the following corollary of the above theorem.

Corollary 3.4. Let .T�/�2S be an analytic family of operators satisfying the

assumption of Theorem 3.3 with conditions (1) and (2) replaced by the following

assumptions:

(10) for Re � D a, T� 2 Sp0
, with 1 � p0 < 1 and

kT�kSp0
� C0eA0jIm � j2 :

(20) for Re � D b, T� 2 Sp1
, with p0 < p1 � 1 and

kT�kSp1
� C1eA1jIm � j2 ;

for some constants A0; A1 � 0.

As above, for an x D  a C .1 � / b 2 .a; b/;  2 .0; 1/ and � 2 S; Re � D x we

have that T� 2 Sp , and moreover

kTxkSp
� C 00 C


0 C

1�
1 ;

where 1=p D =p0 C .1 � /=p1. The constant C 00 depends on a; b; C0; C1; A0

and A1.

The corollary follows immediately by applying Theorem 3.3 to the analytic

family of operators zT� D emax.A0;A1/�2
T� ; � 2 S .
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