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Maximal estimates

for the Fokker–Planck operator with magnetic field
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Abstract. We consider the Fokker–Planck operator with a strong external magnetic field.
We show a maximal type estimate on this operator using a nilpotent approach on vector
field polynomial operators and including the notion of representation of a Lie algebra. This
estimate makes it possible to give an optimal characterization of the domain of the closure
of the considered operator.
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1. Introduction and main results

1.1. Introduction. The Fokker–Planck equation was introduced by Fokker [4]
and Planck [14], to describe the evolution of the density of particles under Brow-
nian motion. In recent years, global hypoelliptic estimates have experienced a
rebirth through applications to the kinetic theory of gases. In this direction many
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authors have shown maximal estimates to deduce the compactness of the resolvent
of the Fokker–Planck operator and resolvent estimates to address the issue of re-
turn to the equilibrium. Hérau and Nier in [10] have highlighted the links between
the Fokker–Planck operator with a confining potential and the associated Witten
Laplacian. Then, in the book of Helffer and Nier [5], this work has been extended
and explained in a general way, and we refer more specifically to Chapter 9 for a
proof of the maximal estimate.

In this article, we continue the study of the model case of the Fokker–Planck
operator with an external magnetic field Be, started in [12], and we establish a
maximal-type estimate for this model, giving a characterization of the domain of
its closed extension.

1.2. Statement of the result. For d D 2 or 3, we consider the Fokker–Planck
operator K with an external magnetic field Be defined on T

d WD R
d=Zd with

values in R
d.d�1/=2 such that

K D v � rx � .v ^ Be/ � rv ��v C v2=4� d=2; (1)

where v 2 R
d represents the velocity, x 2 T

d represents the space variable and
t > 0 is the time. In the previous definition of our operator, we use .v ^ Be/ � rv

to mean

.v ^ Be/ � rv D

8
ˆ̂<
ˆ̂:

b.x/.v1@v2
� v2@v1

/ if d D 2;

b1.x/.v2@v3
� v3@v2

/C b2.x/.v3@v1
� v1@v3

/

Cb3.x/.v1@v2
� v2@v1

/ if d D 3:

The operator K is considered as an unbounded operator on the Hilbert space
H D L2.Td � R

d / whose domain is the Schwartz space D.K/ D S.Td � R
d /.

We denote by

� Kmin the minimal extension ofK whereD.Kmin/ is the closure ofD.K/with
respect to the graph norm on H �H ;

� Kmax is the maximal extension of K whose domain D.Kmax/ is given by

D.Kmax/ D ¹u 2 L2.Td � R
d /WKu 2 L2.Td � R

d /º:

From now on, we use the notation K for the operator Kmin.
The existence of a strongly continuous semi-group associated to the operator

K is shown in [12] when the magnetic field is regular. We improve this result by
considering a much lower regularity. In order to obtain the maximal accretivity,
we are led to substitute the hypoellipticity argument by a regularity argument for
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the operators with coefficients inL1, which will be combined with more classical
results of Rothschild and Stein in [16] for Hörmander operators of type-2 (see [11]
for more details of this subject).

Theorem 1.1. If Be 2 L1.Td ;Rd.d�1/=2/, then K is maximally accretive.

This implies that the domain of the operator K has the following property:

D.K/ D D.Kmax/: (2)

In this work, we are interested in specifying the domain of the operator K

introduced in (2). To accomplish this, we will obtain maximal estimates for K,
using techniques developed initially for the study of hypoellipticity of invariant
operators on nilpotent groups.

Notation 1.2. Before we state our main result, we establish the following nota-
tions.

� B2.Rd / (or B2
v to indicate the name of the variables) denotes the space

B2.Rd / WD ¹u 2 L2.Rd /W for all .˛; ˇ/ 2 N
2d ;

j˛j C jˇj � 2; v˛@ˇ
vu 2 L2.Rd /º;

which is equipped with its natural Hilbertian norm.

� zB2.Td � R
d / is the space L2.Td

x ; B
2
v .R

d // with the following Hilbertian
norm:

zB2.Td � R
d / 3 u �! kuk zB2 D

sX

j˛jCjˇ j�2

kv˛@
ˇ
vuk2:

where k:k is the L2.Td � R
d / norm.

� Lipsch.Td / is the space of Lipschitizian functions from T
d with values in

Rd.d�1/=2, equipped with the following norm:

kukLipsch.Td / D kukL1.Td ;Rd.d�1/=2/ C sup
x;y2Td ;x¤y

ju.x/ � u.y/j

d.x; y/
;

where d is the natural distance in T
d and j � j is the Euclidean norm in

R
d.d�1/=2.

We can now state the main theorem of this article:
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Theorem 1.3. Let d D 2 or 3. We assume that Be 2 Lipsch.Td /. Then for any
C1 > 0, there exists someC > 0 such that for allBe with kBekLipsch.Td / � C1; and
for all u 2 S.Td � R

d /, the operator K satisfies the following maximal estimate:

k.v � rx � .v ^ Be/ � rv/uk C kuk zB2 � C.kKuk C kuk/; (3)

where k:k is the L2 norm.

By complex interpolation theory, we can prove the following result:

Corollary 1.4. For all u 2 S.Td � R
d /, there is a constant C 0 > 0 such that the

following estimate is satisfied

C 0�1kr
2
3
x uk � kv � rxuk C kuk zB2 � C 0.kKuk C kuk/;

Another result can be deduced from Theorem 1.3.

Corollary 1.5. Given the density of S.Td � R
d / in the domain of K, we obtain

the following characterization of the domain of K:

D.K/ D ¹u 2 zB2.Td � R
d /=.v � rx � .v ^ Be/ � rv/u 2 L2.Td � R

d /º:

Organization of the article. In the next section, we recall the notion of maximal
hypoellipticity, and more specifically, we give some results of maximal hypoellip-
ticity for polynomial operators of vector fields with the nilpotent approach. Then,
in Sections 3 and 4, we use these techniques to prove the main result Theorem 1.3,
beginning with d D 2 and continuing with d D 3. Finally, in the appendix we
give the proof of Theorem 1.1.

2. Review of maximal hypoellipticity in the nilpotent approach

2.1. Maximal hypoellipticity for polynomial operators of vector fields. We
are interested in the polynomial operators of vector fields. We consider pC q real
C1 vector fields .X1; : : : ; Xp; Y1; : : : ; Yq/ on an open set� � Rd .

Let P.z; �1; : : : ; �pCq/ be a non commutative polynomial of degreem in pCq

variables, with C1 coefficients on �, and let P be the differential operator

P D P.z; Z1; : : : ; ZpCq/ D
X

j˛j�m

a˛.z/Z˛1
: : :Z˛k

; (4)
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for all ˛ 2
Fm

kD0¹1; : : : ; pCqºk, where, for ` 2 ¹1; : : : ; pCqº, the vector fieldZ`,
is defined by

Z` D X`; for all ` D 1; : : : ; p;

Z` D Y`�p; for all ` D p C 1; : : : ; p C q;

and where, for ˛ 2
Fm

kD0¹1; : : : ; p C qºk,

j˛j D

mX

kD1

d.˛k/ with d. j̨ / D

´
1 if j̨ 2 ¹1; : : : ; pº;

2 if j̨ 2 ¹p C 1; : : : ; p C qº:

It is further assumed that the vector fields Zj with j 2 ¹1; : : : ; p C qº satisfy
the Hörmander condition in �:

Condition 2.1. There exists an integer r such that the vector space spanned by
the iterated brackets of the vector fields Zj of length less than or equal to r , in
each point z of �; is all of Tz�.

When q D 0 and the vector fields Zj satisfy Condition 2.1, the operator P is
called a differential operator of type 1. Thus the Hörmander operator

Pp
j D1X

2
j

(case q D 0) is called a type 1 Hörmander operator.
When q D 1 and the vector fields Zj satisfy Condition 2.1, the operator P is

called a differential operator of type-2. The operator also studied by HörmanderPp
j D1X

2
j C Y1 (case q D 1) is called a type 2 Hörmander operator.

Now we introduce the following definition.

Definition 2.2. Let m 2 N
�. The operator P is maximal hypoelliptic at a point z

of �, if there is a neighborhood ! of z, and a constant C > 0 such that

kuk2
Hm.!/ � C ŒkPuk2

L2.!/
C kuk2

L2.!/
�; for all u 2 C1

0 .!/; (5)

where k � kHm.!/ denotes the standard norm whose square is defined by

u 7�! kuk2
Hm.!/ D

X

j˛j�m

kZ˛1
: : :Z˛k

uk2
L2.!/

; for all ˛ 2 ¹1; : : : ; pºm: (6)

It has been shown by Helffer and Nourrigat in [6] that if the Hörmander
condition is verified at z, then the maximal hypoellipticity at z implies that P
is hypoelliptic in a neighborhood of z, which justifies the terminology.

It has also been shown by Rothschild and Stein in [17] that if the homoge-
neous operator associated to P (i.e.

P
j˛jDm a˛.z/Z

˛) is hypoelliptic at a point
z0, in the sense introduced by L. Schwartz, then P is maximal hypoelliptic in a
neighborhood of z0.
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2.2. Nilpotent and graded Lie algebras. We refer the reader to [9, Chapter 2]
for more details on this subject.

Definition 2.3. We say that a Lie algebra G is graded nilpotent of rank r , if it
admits a decomposition of the form

G D G1 ˚ � � � ˚ Gr ;

ŒGi ;Gj � � GiCj if i C j � r and ŒGi ;Gj � D 0 if i C j > r:

Definition 2.4. Let G D G1 ˚ � � � ˚ Gr be a graded nilpotent Lie algebra with
rank r .

(1) We say G is stratified of type 1 (or simply stratified) if it is generated by G1.

(2) We say G is stratified of type 2 if it is generated by G1 ˚ G2.

From now on, G will always refer to a graded nilpotent Lie algebra of rank r .

2.3. Representations theory on Lie algebras. Among the representations, the
irreducible unitary representations play a crucial role. Kirillov’s theory allows us
to associate to every element of the dual G� of G an irreducible representation.
Moreover, this theory says that any irreducible unitary representation can be
represented in this way.

To be more precise, we give a definition of an induced representation. The
starting point is a subalgebra H � G and a linear form ` on G such that

`.ŒH;H�/ D 0:

We will then associate a representation �`;H: of the group G WD exp.G/ in
V� WD L2.Rk.�// which is uniquely defined modulo unitary conjugation, where
k.�/ is the codimension of H in G. For this construction and using the nilpotent
character, we can find k D k.�/ linearly independent vectors e1; : : : ; ek such that
any a 2 G can be written in the form:

g WD exp.a/ D h exp.skek/ : : : exp.s1e1/; (7)

and such that, if
Aj D H ˚ Re1 ˚ � � � ˚ Rek�j C1;

then Aj �1 is ideal of codimension one in Aj .
With this construction, we can obtain that g 7! .s; h/ is a global diffeomor-

phism from G to R
k � H. The induced representation is given by

.�`;H.exp a/f /.t/ D exp ih`; h.t; a/if .�.t; a//;



Maximal estimates for the Fokker–Planck-Magnetic operator 7

where h.t; a/ and �.t; a/ are defined by the following formula:

exp tkek : : : exp t1e1 expa D exp.h.t; a// exp�k.t; a/ek : : : exp �1.t; a/e1:

We also note �`;H the representation of the associated Lie algebra defined by

�`;H.a/u D
d

ds
.�`;H.e

sa/u/
ˇ̌
ˇ
sD0

; (8)

where the representation �`;H can be defined on the set of u 2 V� such that the
mapping s 7! �`;H.e

as/u is of class C 1. We will actually work on the space S�

of the C1 representations �`;H.

More explicitly, we have

�`;H.a/ D ih`; h0.t; a/i C

kX

j D1

� 0
j .t; a/@tj ;

where h0 and � 0 designate

h0.t; a/ WD
d

ds
.h.t; sa//

ˇ̌
ˇ
sD0

;

� 0.t; a/ WD
d

ds
.�.t; sa//

ˇ̌
ˇ
sD0

:

In addition, � has the following structure:

�j .tj ; : : : ; t1; a/ D tj C  j .tj �1; : : : ; t1; a/; (9)

where  j are polynomials on R
k, depending only on the given variables, with real

coefficients.
We know from Kirillov’s theory that, in the nilpotent case, the irreducible

representations are associated with elements of G� and that, when � is irreducible,
the space V� identifies with L2.Rk.�// where k.�/ is a integer with L2.R0/ D C

by convention. We denote by bG the set of irreducible representations of the simply
connected group G WD expG associated to G. It is also important to note that in
the case of an irreducible representation, S� identifies with the Schwartz space
S.Rk.�//.

Returning to the induced representations �`;H, two particular cases will inter-
est us.

When ` D 0, we obtain the standard extension of the trivial representation
of the H subgroup of G. We can consider this as a representation on L2.G=H/.
An interesting problem (which is solved in [9]) is to characterize the maximal
hypoellipticity of �0;H.P / for P 2 Um.G/ (elements of U.G) with degree m).
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The second case is when the subalgebra H � G is of maximal dimension, for
a fixed form ` 2 G�, with the above property. In this case, we can show that the
representation is irreducible. Moreover one can thus construct all the irreducible
representations (up to unitary equivalence). Starting this time with an element
` 2 G�, we can construct a maximal subalgebra V` such that `.ŒV`; V`�/ D 0. We
can also show that the codimension k.`/ of V` is equal to 1

2
rankB`, where B` is

the 2-form defined by

G � G �! `.ŒX; Y �/:

For a 2 G, we define by .ad a/� the adjoint of ad aW b 3 G ! .ada/b WD Œa; b�

which is an endomorphism of G� defined by

.ad a/�`.b/ WD `.Œa; b�/:

The group G then naturally acts on G� by

g 7�! g` D

rX

kD0

.�1/k

kŠ
.ad a/�k`;

with g D exp.a/.

This action is called the coadjoint action. Kirillov’s theory tells us that if
` and Q̀ are on the same orbit for the coadjoint action, then the corresponding
unitary representations are equivalent. Conversely, two different orbits give two
non-equivalent irreducible representations. We can thus identify bG with the set of
irreducible representations of G with the set of G-orbits in G�:

bG D G�=G:

In the proof of the main theorem, we find a class of representations of a Lie algebra
G in the space S.Rk/ (k � 1) that have the following form:

Definition 2.5. For all X 2 G, we define the representation � as follows

�.X/ D P1.X/
@

@y1

C P2.y1IX/
@

@y2

C � � � C Pk.y1; : : : ; yk�1IX/
@

@yk

C iQ.y1; : : : ; ykIX/;

(10)

where Pj .yIX/ and Q.yIX/ are polynomials in y 2 Rk, depending only on the
given variables, with real coefficients, depending linearly onX 2 G and the linear
forms ¹X 7! Pj .0IX/º1�j �k are linearly independent in G�.
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We note that the induced representations always have this form. Conversely, it
is natural to ask if the representation defined in Definition 2.5 actually an induced
representation?

The positive answer is given by Helffer and Nourrigat in [9]. By requiring, for
all X 2 G

h`; Xi D Q.0IX/; (11)

and denoting by H the subspace of X 2 G such that Pj .0IX/ D 0 (j D 1; : : : ; k),
these authors prove the following proposition:

Proposition 2.6. Under the assumptions above,

i) the subspace H is a subalgebra of G, and we have

h`; ŒX; Y �i D 0 for all X; Y 2 HI (12)

ii) the representation � is unitarily equivalent to �`;H. There exists a unitary
transform T such that

�`;H.expX/Tf D T�.expX/f; for all X 2 G; f 2 S.Rk/;

where

� T is defined by

Tf .t/ D ei'.t/f .�.t//; for all f 2 S.Rk/; t 2 R
k

where ' is defined by

'.t/ D h`; .t/i D Q.0I .t//;

with .t/ is an element of G such that

exp .t/ D .exp tkXk/ : : : .exp t1X1/:

� �.t/ D .�1.t /; : : : ; �k.t // is global diffeomorphism of Rk defined by

�1.t / D t1;

�j .t / D tj CHj .t1; : : : ; tj �1/; for all j D 2; : : : ; k;

� Hj are polynomials.

In particular T sends S.Rk/ into S.Rk/.
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Note that � is a global diffeomorphism of Rk, whose Jacobian is 1. We thus
pass without any problem from one maximal inequality to the another by a change
of variables which preserves Lebesgue measure.

We finish this part by proving a specific property that will be used later.

Proposition 2.7. Let � be a representation defined by (10). Then for everyX 2 G,
the operator �.X/ is formally skew-adjoint for the usual scalar product defined
on the space L2.Rk/, i.e.

h�.X/u; vi D �hu; �.X/vi for all u; v 2 S.Rk/:

Proof. Let u; v 2 S.Rk/. For X 2 G, we have

h�.X/u; vi D

Z

Rk

�.X/u.y/v.y/ dy;

by performing an integration by parts as a function of yj with j D 1; : : : ; k and
using the fact thatPj .yIX/ are polynomials with real coefficients that depend only
on y1; : : : ; yj �1 for all j D 1; : : : ; k, we get

h�.X/u; vi D �

kX

j D1

Z

Rk

u.y/Pj .y1; : : : ; yj �1IX/
@v

@yj

.y/ dy

C

Z

Rk

u.y/.�iQ.y1; : : : ; ykIX/v.y// dy;

since Q.yIX/ is also a polynomial with real coefficients. Then by reusing the
definition (10) of the representation �.X/, we obtain

h�.X/u; vi D �hu; �.X/vi; for all u; v 2 S.Rk/;

which implies the result. �

Remark 2.8. Proposition 2.7 is in particular true for any induced unitary rep-
resentation �`;H on G. As noted above, the induced representations indeed sat-
isfy (10).

2.4. Characterization of hypoellipticity in the case of homogeneous invariant

operators on stratified groups. The purpose of this part is to provide the nec-
essary and sufficient conditions for a polynomial operator of vector fields to be a
maximal hypoelliptic operator.
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Definition 2.9. Let G be a graded real Lie algebra which is stratified of type 2. We
define the enveloping algebraU.G/ as the non commutative algebra of polynomial
expressions of the form

P D
X

j˛j�m

a˛Y
˛; (13)

where a˛ 2 C, Yi;j .i D 1; : : : ; pj and j D 1; 2/ denotes a basis of Gj , ˛ D

.˛1; : : : ; ˛k/ is a k-uplet of couples .i; j / with i 2 ¹1; : : : ; pj º, and

Y ˛ D Y˛1
: : : Y˛k

with j˛j D

kX

lD1

j.˛l /:

When in equality (13), we consider only terms with j˛j D m, the set of polynomial
expressions of this form is denoted by Um.G/.

It is noted in [9, Chapter 2] that the representation �`;H of the algebra G

naturally extends to a representation of the enveloping algebra U.G/. For all t > 0,
we define an automorphism ıt of G by the condition

ıt .a/ D t ja if a 2 Gj :

One can of course extend the definition of ıt (called family of dilations) to the
enveloping algebra U.G/ by setting

ıt .P / D
X

j˛j�m

a˛.ıtY /
˛ D

X

j˛j�m

a˛t
j˛jY ˛ for t > 0:

We note that,

P 2 Um.G/ () ıt .P/ D
X

j˛jDm

a˛.ıtY /
˛ D tmP; for all t > 0:

To any element Y of G, we can associate a left-invariant vector field �.Y / on the
group G defined by

.�.Y /f /.u/ D
d

dt
f .u � exp.tY //

ˇ̌
ˇ
tD0

; for all f 2 H 1.Rk/; u 2 G:

This correspondence makes it possible to identify the enveloping algebra U.G/

with the algebra of all the polynomials of left-invariant vector fields. ToP 2 U.G/,
defined in (13), we can associate

�.P / D
X

j˛j�m

a˛�.Y /
˛:
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We recall the theorem conjectured by Rockland in [15], proved by him in
the case of the Heisenberg group, then in the general case by Beals [1] for the
necessary condition and by Helffer and Nourrigat in [9] for the sufficient condition.
Note that the case of rank 3, which ultimately is the only one that will be useful
here, was previously obtained in [6]. Combined with a result of Rothschild and
Stein [17] in the particular case where the order m of the operator P is even and
the Lie algebra is stratified of type 1 or 2, the Helffer-Nourrigat Theorem takes the
following form.

Theorem 2.10. Let G be a graded and stratified Lie algebra of type 1 or of type 2
and let P 2 Um.G/ with m even ( just in the case of type 2). Then the following
assertions are equivalent:

(1) the operator P defined in (4) is hypoelliptic in G;

(2) the operator P defined in (4) is maximal hypoelliptic in G;

(3) for any � non-trivial irreducible and unitary representation in bG, the oper-
ator �.P/ is injective in S� , where S denotes the space of the C1 vectors of
the representation.

Remark 2.11. When the Hörmander condition 2.1 is satisfied, the condition (3)
will be called the Rockland condition. To verify this condition, we observe that for
any non-trivial irreducible and unitary representation � in bG it suffices to show
that if u satisfies �.P/u D 0, then

� in the stratified case of type 1,

�.Yj /u D 0; for all j D 1; : : : ; pI

� in the stratified case of type 2,

�.X`/ D 0 and �.Yj / D 0; for all ` D 1; : : : ; p j D 1; : : : ; q:

This implies indeed in the two cases that

�.Y /u D 0; for all Y 2 G:

Then, assuming that � is irreducible and not trivial in Theorem 2.10, we get u D 0.

We will finish this part by quoting another result, from Helffer and Nourrigat
in [7], which appears in the proof of their theorem and which will be very useful
to us.
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Theorem 2.12. If P 2 Um.G/ is a maximal hypoelliptic operator, then there exists
a strictly positive constant C such that, for any induced representation � D �`;H,
for all u in S.Rk.�//, we have the following maximal estimate:

X

j˛j�m

k�.Y ˛/uk2
L2.Rk/

� C.k�.P/uk2
L2.Rk/

C kuk2
L2.Rk/

/:

2.5. Application to the maximal hypoellipticity of vector fields. We assume
that the fields Xi and Yj for i 2 ¹1; : : : ; pº and j 2 ¹1; : : : ; qº satisfy the
Hörmander condition (2.1) in z0. To the operator defined in (4), we first associate
in z0, an element of the enveloping algebraU.G/where G denotes the free nilpotent
Lie algebra with p C q generators .Z1; : : : ; ZpCq/ with rank r . Here, we follow
Rothschild and Stein’s approach in [17]. We associate to the operatorP an element
Pz0

of Um.G/ defined by
Pz0

D
X

j˛jDm

a˛.z0/Z
˛;

and we recall a result based on the articles [16], [8], and [2]:

Theorem 2.13 (Theorem 0.7 in [16]). Let P be the operator defined in (4) sat-
isfying the Hörmander condition 2.1 at z0 2 �. If Pz0

satisfies the Rockland’s
Criterion then the operator P is maximal hypoelliptic in a neighborhood of z0.

The inverse is not true in general. It is the whole purpose of the book [9] to
give necessary and sufficient conditions for this maximal hypoellipticity.

3. Proof of Theorem 1.3 when d D 2

For technical reasons, it is easier to work with

{K WD K C 1;

it is clear that is equivalent to prove the maximal estimate for {K.
The proof consists of constructing G, a graded and stratified algebra of type

2, and, at any point x 2 T
2, an element LKx of U2.G/ which is hypoelliptic. The

maximal estimate obtained for each {Kx will then be combined to give a maximal
estimate for the operator {K.

To define {Kx, we replace Be.x/ by a fixed constant b 2 R, and we will show
a global estimate for the following model:

Kb WD v � rx C b.v1@v2
� v2@v1

/ ��v C v2=4; in R
2 � R

2;

which appears as the image by an induced representation of {Kx .
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Then we will use a partition of unity and check the errors coming from the
localization of the estimates.

3.1. Application of Proposition 2.6. We will show that we can put ourselves
within the framework of this proposition. We therefore look for a graded Lie
algebra G of type 2, a subalgebra H, an element zKb in U2.G/ and a linear form `

such that
�`;H. zKb/ D Kb:

For this, one determines the necessary conditions on the brackets between the
generating elements of this algebra. In the writing ofKb we can see the differential
operators of degree 1 with the following polynomial coefficients:

X 0
1;1 D @v1

; X 00
1;1 D iv1; (14)

X 0
2;1 D @v2

; X 00
2;1 D iv2; (15)

X1;2 D v:rx: (16)

Kb is indeed written as a polynomial of these five differential operators

Kb D X1;2 �

2X

kD1

�
.X 0

k;1/
2 C

1

4
.X 00

k;1/
2
�

� ib.X 0
1;1X

00
2;1 � X 0

2;1X
00
1;1/: (17)

We now look at the Lie algebra generated by these five operators and their brackets.
This leads us to introduce three new elements that verify the following relations:

X2;2 WD ŒX 0
1;1; X

00
1;1� D ŒX 0

2;1; X
00
2;1� D i;

X1;3 WD ŒX1;2; X
0
1;1� D @x1

; X2;3 WD ŒX1;2; X
0
2;1� D @x2

:

We also observe that we have the following properties:

ŒX 0
1;1; X

0
2;1� D ŒX 00

1;1; X
00
2;1� D 0;

ŒX 0
j;1; Xk;3� D ŒX 00

j;1; Xk;3� D ŒXk;3; X2;2� D � � � D 0; for all j; k D 1; 2:

We then construct a graded Lie algebra G verifying the same commutator
relations. More precisely, G is stratified of type 2, nilpotent of rank 3, its underlying
vector space is R8, and G1 is generated by Y 0

1;1; Y
0
2;1; Y

00
1;1 and Y 00

2;1, G2 is generated
by Y1;2 and Y2;2 and G3 is generated by Y1;3 and Y2;3. The laws of algebra are
given by

Y2;2 D ŒY 0
1;1; Y

00
1;1� D ŒY 0

2;1; Y
00
2;1�; Y1;3 D ŒY1;2; Y

0
1;1�; Y2;3 D ŒY1;2; Y

0
2;1�; (18)

ŒY 0
1;1; Y

0
2;1� D ŒY 00

1;1; Y
00
2;1� D 0; (19)

ŒY 0
j;1; Yk;3� D ŒY 00

j;1; Yk;3� D ŒYk;3; Y2;2� D � � � D 0 for all j; k D 1; 2: (20)
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We check that the mapping � (with the convention that if ˘ D ; there is no
exponent) defined on its basis by

�.Y ˘
i;j / D X˘

i;j with i D 1; 2; j D 1; 2; 3 and ˘ 2 ¹;; 0; 00º: (21)

defines a representation of the Lie algebra G.
We now see that our representation � can be rewritten in the following form

�.Y / D P1.Y /@v1
C P2.v1I Y /@v2

C P3.v1; v2I Y /@x1
C P4.v1; v2; x1I Y /@x2

C iQ.v1; v2; x1; x2I Y /;

where for all Y 2 G, there are a; b; c; d; ˛; ˇ; ; and ı 2 R such that

Y D aY 0
1;1 C bY 0

2;1 C cY 00
1;1 C dY 00

2;1

C ˛Y1;2 C ˇY2;2

C Y1;3 C ıY2;3;

and the polynomials Pj with j D 1; : : : ; 4 and Q are defined by

P1.Y / D a;

P2.v1I Y / D b;

P3.v1; v2I Y / D ˛v1 C ;

P4.v1; v2; x1I Y / D ˛v2 C ı;

and

Q.v; xI Y / D cv1 C dv2 C ˇ:

We can now apply Proposition 2.6. We then obtain � D �`;H with

` 2 G�; h`; Y i D Q.0I Y / D ˇ;

H WD ¹Y 2 G=P1.0I Y / D � � � D P4.0I Y / D 0º D Vect.Y 00
1;1; Y

00
2;1; Y1;2; Y2;2/;

Let’s go back to our operator Kb which was written as a polynomial of
the vector fields ¹Xj;2; Xj;3; X

0
j;1; X

00
j;1ºj D1;2 in (17). We then define zKb as the

same polynomial but in this time the operator is function of the vector fields
¹Yj;2; Yj;3; Y

0
j;1; Y

00
j;1ºj D1;2 defined as

zKb D Y1;2 �

2X

kD1

�
.Y 0

k;1/
2 C

1

4
.Y 00

k;1/
2
�

� ib.Y 0
1;1Y

00
2;1 � Y 0

2;1Y
00
1;1/;

such that
�`;H. zKb/ D Kb:

Note that, with the notation used in the introduction to the section, we have

{Kx D zKBe.x/:
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3.2. Verification of Rockland’s criterion. To prove the maximal hypoelliptic-
ity, we must check the Rockland criterion (see Theorem 2.10) for zKb. Let � be a
unitary irreducible non-trivial representation of G in V� . We will show that the
operator �. zKb/ is an injective operator in the space S� , which identifies when �
is irreducible to S.Rk.�//. Let u 2 S.Rk.�// such that

�. zKb/u D 0:

On the one hand, we have

Reh�. zKb/u; ui D 0:

On the other hand, by integration by parts and by using that the operator �.Y / is
a formally skew-adjoint operator (see Proposition 2.7), we obtain

Reh�. zKb/u; ui D Reh�.Y1;2/u; ui„ ƒ‚ …
I

C

2X

kD1

.k�.Y 0
k;1/uk2 C k�.Y 00

k;1/uk2/

� b Rehi.�.Y 0
1;1/�.Y

00
2;1/ � �.Y 0

2;1/�.Y
00
1;1//u; ui

„ ƒ‚ …
II

:

First, we will calculate the term I. Using the fact that the operator �.Y1;2/ is skew-
adjoint according to Proposition 2.7, we obtain

h�.Y1;2/u; ui D �hu; �.Y1;2/ui D �h�.Y1;2/u; ui:

Therefore, we have

h�.Y1;2/u; ui C h�.Y1;2/u; ui D 0;

so
I D Reh�.Y1;2/u; ui D .h�.Y1;2/u; ui C h�.Y1;2/u; ui/=2 D 0:

Then we go to calculating the term II. Using that � is a representation and the
relations of the given commutators in (19), we get

Œ�. zY 0
1;1/; �.

zY 00
2;1/� D �.Œ zY 0

1;1;
zY 00

2;1�/ D 0;

Œ�. zY 0
2;1/; �.

zY 00
1;1/� D �.Œ zY 0

2;1;
zY 00

1;1�/ D 0:

Then the operators i�.Y 0
1;1/�.Y

00
2;1/ and i�.Y 0

2;1/�.Y
00
1;1/ are skew-adjoint on the

space S� with the scalar product of V� for any representation � . By integration
by parts, we have

hi�.Y 0
1;1/�.Y

00
2;1/u; ui D �hi�.Y 0

1;1/�.Y
00
2;1/u; ui;

hi�.Y 0
2;1/�.Y

00
1;1/u; ui D �hi�.Y 0

2;1/�.Y
00
1;1/u; ui;
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and then,

Rehi�.Y 0
1;1/�.Y

00
2;1/u; ui D Rehi�.Y 0

2;1/�.Y
00
1;1/u; ui D 0:

Therefore, we have

II D Rehi.�.Y 0
1;1/�.Y

00
2;1/ � �.Y 0

2;1/�.Y
00
1;1//u; ui D 0:

The identity

Reh�. zKb/u; ui D

2X

kD1

.k�.Y 0
k;1/uk2 C k�.Y 00

k;1/uk2/;

implies

�.Y 0
j;1/u D �.Y 00

j;1/u D 0; for all j D 1; 2: (22)

It remains to consider Y1;2, for which we can notice that

Y1;2 D zKb C

2X

kD1

�
.Y 0

k;1/
2 C

1

4
.Y 00

k;1/
2
�

C ib.Y 0
1;1Y

00
2;1 � Y 0

2;1Y
00
1;1/:

Applying � and by action on u, we have

�.Y1;2/u D �. zKb/uC

2X

kD1

�
�
.Y 0

k;1/
2 C

1

4
.Y 00

k;1/
2
�
u

C ib�.Y 0
1;1Y

00
2;1 � Y 0

2;1Y
00
1;1/u

D 0:

From Remark 2.11 in the stratified case of type 2, we deduce that

�.Y /u D 0; for all Y 2 G;

which implies, � being assumed to be non trivial, u D 0.

The operator �. zKb/ is therefore injective in the S� for any irreducible and
non-trivial representation � . Therefore, according to Theorem 2.10 the operator
zKb is maximal hypoelliptic in the group G. By applying Theorem 2.12 with
Kb D �`;H. zKb), we obtain the existence of C > 0 such that

kX1;2uk C

2X

kD1

.k.X 0
k;1/

2uk C k.X 00
k;1/

2uk/C

2X

k;`D1

kX 0
k;1X

00
`;1uk

� C.kKbuk C kuk/;

(23)

the previous inequality is verified.
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3.3. Proof of Theorem 1.3

3.3.1. First step. We fix x0 2 R
2 and we write Be.x0/ D b0 2 R. We recall that

{K WD v � rx � .v ^ Be/ � rv ��v C v2=4:

We begin with u 2 S.R2 � R
2/ with P1.Suppu/ � B.x0; "/, where P1 is the

standard projection P1.x; v/ D x and " > 0 a constant which will be chosen later,
we have

{Ku D . LK �Kb0
/uCKb0

u:

On the one hand, we have by definition of K and Kb0

k. {K �Kb0
/uk D k.Be � Be.x0//.v1@v2

� v2@v1
/uk

� krxBekL1 jx � x0jk.v1@v2
� v2@v1

/uk

� "krxBekL1k.v1@v2
� v2@v1

/uk:

(24)

We then obtain the following estimate:

k. {K �Kb0
/uk � "kBekLipsch.T2/kuk zB2 :

On the other hand, by the inequality (23) and Theorem 2.13 at the point x0, we
obtain that the operator Kb0

is maximal hypoelliptic in B.x0; "/. So the operator
Kb0

verifies, for a constantC > 0 large enough, which depends on the coefficients
of the polynomial operator of vector fields Kb0

, the following estimate:

kKb0
uk C kuk �

1

C
kX1;2uk C

1

C

2X

kD1

.k.X 0
k;1/

2uk C k.X 00
k;1/

2uk/

C
1

C

2X

k;`D1

kX 0
k;1X

00
`;1uk;

(25)

Finally, we observe that

k {Kuk � kKb0
uk � k. {K �Kb0

/uk;

Using the inequalities (24) and (25) and choosing

0 < " <
1

CkBekLipsch.T2/

;

we get zC > 0 such that for all u 2 S.R2 � R
2/ with P1.Suppu/ � B.x0; "/

kX1;2uk C

2X

kD1

.k.X 0
k;1/

2uk C k.X 00
k;1/

2uk/C

2X

k;`D1

kX 0
k;1X

00
`;1uk

� zC.k {Kuk C kuk/:

(26)
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3.3.2. Second step. We have shown that for each x0 2 T
2 there exists a

B.x0; ".x0// such that (26) applies. T2 being compact, then there exists a smooth
partition of unity .'j /

n0

j D1 in the variable x 2 T
2 such that

'j 2 C1
0 .T2/ and

n0X

j D0

'2
j D 1 on T

2;

and the inequality (26) holds on each Supp'j (with a uniform constant since the
collection of 'j is finite). More precisely, we take " D inf¹"j ; j D 1; : : : ; n0º > 0;

where "j is the radius of the ball centered at a point xj whose (26) holds, such that

Supp'j � B.xj ; "/ � B.xj ; "j / for all j 2 ¹1; : : : ; n0º;

where the ball B.xj ; "/ is defined by for all j D 1; : : : ; n0

B.xj ; "/ WD ¹x 2 T
2=d.x; xj / < "º:

Intermediate step. The purpose of this step is to show the following two esti-
mates:

� for all � > 0, there exitsts C� > 0 such that

kuk2
zB1

� �kuk2
zB2

C C�kuk2 for all u 2 zB2I (27)

� for all ' 2 C1.T2
x/, there exists C' > 0 such that

kŒ {K; '�uk � C'kuk zB1 for all u 2 zB1; (28)

where zB1 is the space L2
x
b̋B1

v with the Hilbertian norm

kuk2
zB1

WD
X

j˛jCjˇ j�1

kv˛@ˇ
vuk2; for all u 2 zB1:

According to the definition of k � kB1
v
, we have for u 2 S.T2 � R

2/ and x 2 T
2

ku.x; :/k2

B1
v

D
X

j˛jCjˇ j�1

kv˛@ˇ
vu.x; :/k

2
L2.R2/

D
X

j˛jCjˇ j�1

hv˛@ˇ
vu.x; :/; v

˛@ˇ
vu.x; :/i:

By an integration by parts with respect to v and by applying the Cauchy–Schwarz
inequality, then there exists a constant C > 0 such that

ku.x; :/k2

B1
v

� Cku.x; :/kku.x; :/kB2
v
:
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Finally, by the Young inequality we obtain that for all � > 0, there exists C� > 0

such that

ku.x; :/k2

B1
v

� �ku.x; :/k2

B2
v

C C�ku.x; :/k2 for all � > 0:

Then, by integrating in x on the torus T2, we deduce the estimate (27).

Now, we note that the commutator is

Œ {K; '� D Œv � rx; '� D v � rx;

according to the previous equality and applying Hölder’s inequality (p D 1 and
q D 1), we obtain

kŒ {K; '�uk D kv � rx'uk � krx'kL1.T2/kvukL2.T2�R2/

� krx'kL1.T2/kuk zB1

� C'kuk zB1 :

End of the proof. Let Be 2 Lipsch.T2/ and u 2 S.T2 � R
2/. By the partition

of unity and by application of the inequality (26) with w D u'j , we obtain that
there exists C > 0 such that

kuk2
zB2

D

n0X

j D1

k'juk2
zB2

� C

n0X

j D1

.k {K'juk2 C k'juk2/: (29)

Using the definition of the commutators, we get

n0X

j D1

k {K'juk2 � 2

n0X

j D1

.kŒ'j ; {K�uk2 C k'j
{Kuk2/:

According to the estimates (27) and (28), we obtain, for every � > 0, the existence
of C� > 0 such that

n0X

j D1

k {K'juk2 � 2k {Kuk2 C 2�kuk2
zB2

C C�kuk2: (30)

By inserting inequality (30) into inequality (29), we deduce that, for every � > 0,
there exists C� > 0 such that

kuk2
zB2

� 2CkKuk2 C 2�Ckuk2
zB2

C C�kuk2;



Maximal estimates for the Fokker–Planck-Magnetic operator 21

Then, using the same techniques, we have

kv � rxuk2 D

n0X

j D1

k'j .v � rxu/k
2

� 2

n0X

j D1

.kŒ'j ; v � rx�uk2 C k.v � rx/.'ju/k
2/:

Using the inequalities (30) and (26), we get C 0 > 0 and for all �0 > 0, C�0 > 0

such that

kv � rxuk2 �

n0X

j D1

.C 0k'j
{Kuk2 C �0k'juk2

zB2
C C�0k'juk2/

� C 0k {Kuk2 C �0kuk2
zB2

C C�0kuk2:

It remains to estimate the following term:

kBe.v1@v2
� v2@v1

/uk2 D

n0X

j D1

kBe.v1@v2
� v2@v1

/.'ju/k
2:

By direct application of the inequalities (26) and (30), we obtain that there exists
C; C 00 > 0 and for all �00 > 0, C�00 > 0 such that

kBe.v1@v2
� v2@v1

/uk2 � C

n0X

j D1

.k {K.'ju/k
2 C kuk2/

� C 00k {Kuk2 C �00kuk2
zB2

C C�00kuk2:

Choosing �, �0 and �00 > 0 such that, 2C� C �0 C �00 < 1, we thus obtain the
existence of a constant zC > 0 such that, for all u 2 S.T2 � R

2/,

k.v � rv � Be.v1@v2
� v2@v1

//uk C kuk zB2 � zC.k {Kuk C kuk/:

4. Proof of Theorem 1.3 when d D 3

4.1. Preliminaries. We now present the proof of Theorem 1.3 when d D 3,
and explain the differences with the proof in the case d D 2. We first replace
Be.x/ with a constant vector b D .b1; b2; b3/ 2 R3 fixed, and we show an overall
estimate for the following model:

Kb D v � rx C .v ^ b/ � rv ��v C v2=4� 3=2: (31)
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We define the transformation

VM WR3 � R
3 �! R

3 � R
3; .x; v/ 7�! VM .x; v/ WD .Mx; .M�1/tv/;

where M is the rotation matrix that is obtained by multiplying the two matrices
of rotations R.�1/ and R.�2/ around the axes .Ox/ and .Oz/ with rotation angles
�1 and �2 respectively

R.�1/ WD

0
@
1 0 0

0 cos �1 � sin �1

0 sin �1 cos �1

1
A ; R.�2/ WD

0
@

cos �2 � sin �2 0

sin �2 cos �2 0

0 0 1

1
A

where both angles are defined by

�1 D arctan.b1=b2/; �2 D arctan.
q
b2

1 C b2
2=b3/:

We note that the following differential operators are invariant by conjugation by
the transformation VM (by orthogonality of matrix M that is to say M�1 D M t ):

VM .v � rx/VM �1 D .M�1/tv � .M�1/trx

D .M�1/tM�1v � rx D v � rx;

VM .��v C v2=4� 3=2/VM �1 D VM .�rv C v=2/ � .rv C v=2/VM �1

D .M�1/t .�rv C v=2/ �M t .�rv C v=2/

D MM t .��v C v2=4� 3=2/

D ��v C v2=4 � 3=2:

By construction of the matrix M , where jbj is the Euclidean norm of b 2 R
3,

conjugation of the magnetic operator gives

VM .v ^ b/ � rvVM �1 D jbj.v1@v2
� v2@v1

/:

Therefore, the conjugation of the Fokker–Planck-magnetic operator defined in
equation (31), by the canonical transformation operator VM , gives us the following
operator:

Qjbj WD VMKbVM �1 D v � rx C jbj.v1@v2
� v2@v1

/ ��v C v2=4 � 3=2; (32)

Note that the space zB2 is invariant by rotation. The maximal estimates for Kb

are therefore equivalent to the maximal estimates for Qjbj (with uniform control
of constants).

As in the case d D 2, the proof consists in constructing a graded Lie algebra
G of rank 3, and, in every point x 2 T

3, an element Qjbj of U2.G/ hypoelliptic
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with b D Be.x/. We deduce from the maximal estimate obtained for each Qjbj,
a maximal estimate for the operator Qjbj.

By conjugation by the canonical transformation VM �1 of the operatorQjbj, we
then have

kX1;2uk C

3X

kD1

.k.X 0
k;1/

2uk C k.X 00
k;1/

2uk/C

3X

k;`D1

kX 0
k;1X

00
`;1uk

� C.kKbuk C kuk/; for all u 2 S.R3 � R
3/:

(33)

4.2. End of the proof. For the rest of the proof, there is no difference with the
case d D 2, we use a partition of unity and we control the error, in order to
obtain the maximal estimate (3) for the initial operatorK in the space S.T3 �R

3/.
For more details on a similar result without a magnetic field but with an electric
potential, we refer the reader to Chapter 9 of the book of Helffer and Nier [5].

Appendix A. Maximal accretivity

of the magnetic Fokker–Planck operator with low regularity

A.1. Preliminary remark. By following the steps of the proof of the maximal
accretivity for the Kramers–Fokker–Planck operator without a magnetic field,
given in [5, Proposition 5.5], we need some local hypoelliptic regularity of the
following operator:

v � rx � .v ^ Be/ � rv ��v D Y0 C

dX

j D1

Y 2
j ;

where

Y0 D v � rx � .v ^ Be/ � rv

and

Yj D @vj
; for all j D 1; : : : ; d:

In the case where Be is C1, this regularity results immediately from the hypoel-
lipticity argument of Hörmander operators. The difficulty in our weakly regular
case is that the vector field Y0 has coefficients in L1. We can only hope for a
weaker Sobolev type of regularity.
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A.2. Review of Sobolev regularity for Hörmander operators of type-2. In
this part, we will recall a result of Sobolev regularity for a relevant class of dif-
ferential operators. We consider the differential operator of type-2 of Hörmander
given by

L D

nX

j D1

X2
j CX0;

where the vector fields X0; : : : ; Xn are real and C1 on an open set � � R
n. We

suppose further that the Xj with j D 0; 1; : : : ; n satisfy Hörmander condition 2.1.
The hypoellipticity of these operators has been studied by Hörmander in [11].

We denote by Hm
loc.R

2d / the space of functions locally in Hm.R2d / defined
in (6). (See [17] for more details of this subject). We recall from Rothschild and
Stein in [17] the following result.

Theorem A.1 (Theorem 18 in [17]). If f;Lf 2 L2
loc.�/, then f 2 H2

loc.�/.

This theorem is proven under the assumption that the polynomial operators of
vector fields are with C1 coefficients, a hypothesis that will not be satisfied in our
case. The case with weakly regular coefficients appears less often in the literature.
We note, for example, that the case of the operator of the following form:

nX

i;j D1

ai;jXiXj CX0;

with non-regular coefficients ai;j was studied by Xu in [19] and Bramanti and
Brandolini in [3], who prove results of regularity as in Hölder and Sobolev spaces.
Readers are referred to the article [18] for the study of Hölder regularity for the
particular case of Kolmogorov operators with Hölder coefficients. None of these
theorems apply directly. Moreover, they require a hypothesis of Hölder regularity
which will not made here.

A.3. Proof of the Sobolev regularity. To prove Theorem 1.1, we will show the
Sobolev regularity associated to the following problem

K�f D g with f; g 2 L2
loc.R

2d /;

where K� is the formal adjoint of K:

K� D �v � rx ��v C .v ^ Be/ � rv C v2=4� d=2: (34)

The result of Sobolev regularity is the following:
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Theorem A.2. Let d D 2 or 3. We suppose that Be 2L1.Rd ;Rd.d�1/=2/. Then
for all f 2L2

loc.R
2d /, such thatK�f Dg with g2L2

loc.R
2d /, then f 2H2

loc.R
2d /.

Before proving Theorem A.2, it is important to reduce our problem to a
problem with regular coefficients, in order to prove partial regularity in v for the
following family of operators:

Proposition A.3. Let cj 2
S

R>0L
1.Rd ; L2.¹jvj � Rº// for all j D 1; : : : ; d

such that

@vj
.cj .x; v// D 0 in D0.R2d /; for all j D 1; : : : ; d: (35)

Let P0 be the Kolmogorov operator

P0 WD �v � rx ��v: (36)

If h 2 L2
loc.R

2d / satisfies
8
ˆ̂<
ˆ̂:

P0h D

dX

j D1

cj .x; v/@vj
hj C Qg;

hj ; Qg 2 L2
loc.R

2d / for all j D 1; : : : ; d ;

(37)

then rvh 2 L2
loc.R

2d ;Rd /:

Proof. Let h satisfy (37). We can work near a point .x0; v0/ 2 R
2d i.e.

in the ball B..x0; v0/; r0/ for some r0 > 0. We show that rvh belongs to
L2.B..x0; v0/; r0=2/;R

d /.

Step 1. Regular solution with compact support. We begin by assuming that h
is in H 2.R2d / and supported in B..x0; v0/; r0/ with r0 > 0 and we will establish
a priori estimates. We multiply equation (37) by h and integrate it with respect to
x and v, we obtain

hP0h; hi D

dX

j D1

hcj @vj
hj ; hi C h Qg; hi; (38)

where h:; :i denotes the Hilbertian scalar product on the real Hilbert spaceL2.R2d/.
Let’s start by calculating the left side of the previous equality

hP0h; hi D h.v � rx ��v/h; hi

D

Z

R
2d

.v � rxh/hdxdv �

Z

R
2d

.�vh/h dx dv:
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Then performing an integrations by parts with respect to x and v in the previous
equality, we get

hP0h; hi D krvhk2
L2.R2d ;Rd /

;

we used that the operator v � rx is formally skew-adjoint in L2.R2d /.
We now estimate each term in the right hand side of the equality (38). Using

Assumption (35) and performing integration by parts with respect to vj , we have

dX

j D1

hcj @vj
hj ; hi D �

dX

j D1

hcjhj ; @vj
hi:

Then applying the Cauchy–Schwarz inequality to the scalar product, we get

ˇ̌
ˇ

dX

j D1

hcj .x; v/@vj
hj ; hi

ˇ̌
ˇ �

dX

j D1

kcjhj kL2.R2d /k@vj
hkL2.R2d /:

Then we obtain that for all � > 0, there exists C� > 0 such that

ˇ̌
ˇ

dX

j D1

hcj .x; v/@vj
hj ; hi

ˇ̌
ˇ � �krvhk2

L2.R2d ;Rd /
C C�

dX

j D1

kcjhj k2
L2.R2d /

:

Similarly, we get

jh Qg; hij �
1

2
k Qgk2

L2.R2d /
C
1

2
khk2

L2.R2d /
:

By choosing � < 1, we obtain the existence of a constant C > 0 such that for any
h and hj satisfy the problem (37),

krvhk2
L2.R2d ;Rd /

� C
� dX

j D1

kcjhj k2
L2.R2d /

C k Qgk2
L2.R2d /

C khk2
L2.R2d /

�
: (39)

Step 2. General solution. Now, we consider the solution h of the problem (37)
in L2

loc.R
2d / and show how to apply the result of Step 1 by using a cut-off and a

regularization.

(A) General framework and useful remark. To have the regularity stated in
Proposition A.3 for a solution h 2 L2

loc.R
2d / of (37), we introduce two cut-off

functions �1 and �2 such that
8
ˆ̂̂
<
ˆ̂̂
:

�1; �2 2 C1
0 .R2d /; Supp�1 � B..x0; v0/; r0/;

�1 D 1 in B
�
.x0; v0/;

r0

2

�
and �1 D 0 in R

2d n B..x0; v0/; r0/;

�1�2 D �1:
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Where r0 > 0 is fixed at the beginning of the proof.
Let hı be the function defined on R

2d by

hı.x; v/ D �2.1� ı2�x;v/
�1�1h; for ı > 0; (40)

where the operator .1� ı2�x;v/
�1 is defined via the Fourier transform.

Note that hı 2 H 2.R2d / is supported in B..x0; v0/; r0/. Using the dominated
convergence theorem one can show

hı �! �1h in L2.R2d / when ı ! 0: (41)

We will now show that there is a constant C and ı0 such that for all ı 2 .0; ı0�

krvhıkL2.R2d ;Rd / � C: (42)

Before giving the proof, we make the following simple remark:

Remark A.4. If Q1 and Q2 are two differential operators of order k1 and k2

respectively with coefficients in C1
0 such that

k1 C k2 � k � 2;

then there exists a constant C > 0 such that for all ı > 0

kQ1.1� ı2�x;v/
�1Q2ukL2.R2d / � Cı�kkukL2.R2d /; for all u 2 L2.R2d /:

(43)

(B) Reformulation and relations of commutators. Let’s go back to the proof
of inequality (42). We recall that h verifies

P0h D

dX

j D1

cj .x; v/@vj
hj C Qg: (44)

The goal is to follow the approach of the first step for hı with however some
differences. From (44), let’s look for the equation verified by hı . We have

P0hı D �2.1� ı2�x;v/
�1�1P0hC Œ�2.1� ı2�x;v/

�1�1; P0�h: (45)

To control the commutator in the right-hand side, we will use the following
relations of commutators:

Œ'; P0� D ��v' C v � rx' � 2rv' � rv; for all ' 2 C1
0 .R2d /; (46)

Œ'; @vj
� D �@vj

'; for all ' 2 C1
0 .R2d /; j D 1; : : : ; d ; (47)

Œ.1� ı2�x;v/; P0� D ı2Œ�x;v; v � rx� D 2ı2

dX

j D1

@vj
@xj
; (48)

Œ.1� ı2�x;v/
�1; P0� D �.1� ı2�x;v/

�1Œ.1� ı2�x;v/; P0�.1� ı2�x;v/
�1:

(49)
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Using the relations of the previous commutators and equalities (44) and (45), we
rewrite P0hı in the following form:

P0hı D

dX

j D1

�2.1� ı2�x;v/
�1�1cj @vj

hj C B0 Qg

C B1hC 2�2.1 � ı2�x;v/
�1rv�1 � rvh

C B2hC 2rv�2 � rv..1� ı2�x;v/
�1�1h/:

(50)

Here the Bj for j D 0; 1; 2 are the uniformly bounded operators with respect to ı
on L2.R2d / (according to (43)).

B0 D �2.1 � ı2�x;v/
�1�1; (51)

B1 D �2.1 � ı2�x;v/
�1.�x;v�1/C �2.1 � ı2�x;v/

�1.v � rx�1/; (52)

B2 D �2.1 � ı2�x;v/
�1ı2R.1� ı2�x;v/

�1�1; (53)

where R is the second-order operator

R D Œ�x;v; v � rx� D 2

dX

j D1

@vj
@xj
: (54)

(C) Proof of the uniform boundedness of krvhıkL2.R2d /. In order to show (42),
we multiply equation (50) by hı and integrate, we obtain

hP0hı ; hıi D

dX

j D1

h�2.1� ı2�x;v/
�1�1cj @vj

hj ; hıi C hB0 Qg; hıi

C hB1h; hıi C h2�2.1 � ı2�x;v/
�1rv�1 � rvh; hıi

C hB2h; hıi C h2rv�2 � rv..1� ı2�x;v/
�1�1h/; hıi;

(55)

and we estimate term by term of the right-hand side of the previous equality.
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For the first term, we use relation (47) to switch @vj
and �k for k D 1; 2, and

obtain

h�2.1 � ı2�x;v/
�1�1cj @vj

hj ; hıi D I0 C I1 C I2;

where the Ij for j D 0; 1; 2 are defined by

I0 D h@vj
.�2.1� ı2�x;v/

�1�1cjhj /; hıi; (56)

I1 D h�2.1� ı2�x;v/
�1.@vj

�1/cjhj ; hıi; (57)

I2 D h.@vj
�2/.1� ı2�x;v/

�1�1cjhj ; hıi: (58)

To estimate I0, we integrate by parts with respect to vj

I0 D � h�2.1� ı2�x;v/
�1�1cjhj ; @vj

hıi;

and then, applying the Cauchy–Schwarz inequality, we get

jI0j � kB0.cjhj /kL2.R2d /k@vj
hıkL2.R2d /:

Then using the uniform boundedness of B0 we obtain that for all �0 > 0, there
exists C�0 > 0 such that

jI0j � C�0kcjhj k2
L2.B..x0;v0/;r0//

C �0k@vj
hık2

L2.R2d /
: (59)

The two terms jI1j and jI2j satisfy the following estimates:

jI1j � k�2.1� ı2�x;v/
�1.@vj

�1/cjhj kL2.R2d /khıkL2.R2d /

� Ckcjhj kL2.B..x0;v0/;r0//khıkL2.R2d /;
(60)

jI2j � k.@vj
�2/.1� ı2�x;v/

�1�1cjhj kL2.R2d /khıkL2.R2d /

� Ckcjhj kL2.B..x0;v0/;r0//khıkL2.R2d /:
(61)

Using (59)–(61), we get that for all �0 > 0, there exists C�0 > 0 such that

ˇ̌
ˇ

dX

j D1

h�2.1 � ı2�x;v/
�1�1cj @vj

hj ; hıi
ˇ̌
ˇ

� C�0

dX

j D1

kcjhj k2
L2.B..x0;v0/;r0//

C �0krvhık2
L2.R2d ;R2d /

C C�0khık2
L2.R2d /

;

(62)
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We show for the fourth and the sixth term of (55) that for all �00 and �000 > 0, there
exists C�00 and C�000 > 0 such that

h2�2.1 � ı2�x;v/
�1rv�1 � rvh; hıi

� C�00khk2
L2.B..x0 ;v0/;r0//

C �00krvhık2
L2.R2d /

C C�00khık2
L2.R2d /

(63)

h2rv�2 � rv..1� ı2�x;v/
�1�1h/; hıi

� C�000khk2
L2.B..x0;v0/;r0//

C �000krvhık2
L2.R2d ;R2d /

C C�000khık2
L2.R2d /

:
(64)

It remains to estimate the three remaining terms corresponding to the following
scalar products:

jhB0 Qg; hıij � kB0 QgkL2.R2d /khıkL2.R2d /;

jhB1h; hıij � kB1hkL2.R2d /khıkL2.R2d /;

jhB2h; hıij � kB2hkL2.R2d /khıkL2.R2d /:

Applying (43), we obtain the existence of constants C1 > 0 and C2 > 0 such that

hB0 Qg; hıi � C1k QgkL2.B..x0;v0/;r0//khıkL2.R2d /; (65)

hB1h; hıi � C2khkL2.B..x0 ;v0/;r0//khıkL2.R2d /: (66)

To estimate the norm kB2hkL2.R2d /, we apply (43) (with Q1 D .1 � ı2�x;v/
�1

and Q2 D ı2R where R is defined in (54)). We also obtain the existence of C3

and ı0 > 0 such that for all ı 2 .0; ı0�

jhB2h; hıij � C3khkL2.B..x0;v0/;r0//khıkL2.R2d /: (67)

Finally, using the estimates (62)–(67), and choosing �0; �00 and �000 > 0 such that
�0 C �00 C �000 < 1, we get the existence of a constant zC and ı0 > 0 such that for
all ı 2 .0; ı0�

krvhık2
L2.R2d ;Rd /

� zC
� dX

j D1

kcjhj k2
L2.B..x0 ;v0/;r0//

C k Qgk2
L2.B..x0 ;v0/;r0//

C khk2
L2.B..x0;v0/;r0//

�
:

(68)

This completes the proof of (42).

(D) Deduce the uniform local boundedness of rvh. Let h 2 L2.R2d / sat-
isfy (37). On the one hand, according to (41) we know that

hı �! �1h in L2.R2d / when ı ! 0:
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This implies that

hı �! �1h and rvhı �! rv.�1h/ in D0.R2d / when ı ! 0:

On the other hand, according to inequality (68), we obtain that .rvhı/ı is bounded
in L2.R2d / for ı 2 .0; ı0�. By weak compacity, there is a subsequence .ık/k2N

tending to 0 and a function u 2 L2.R2d ;Rd / such that

rvhık
�! u in D0.R2d / when k ! C1:

Hence rv.�1h/ D u in D0.R2d /. Then rvh 2 L2.B..x0; v0/; r0=2/;R
d /.

Step 3. Conclusion. Taking the information obtained near each point .x0; v0/,
we deduce that rvh 2 L2

loc.R
2d ;Rd /, which finishes the proof of Proposition A.3.

�

We now give the proof of Theorem A.2.

Proof of Theorem A.2. The key idea of the proof is to decompose the operatorK�

defined in (34) as follows:

K� D P0 C .v ^ Be/ � rv C v2=4� d=2: (69)

Let f 2 L2
loc.R

2d / and Be 2 L1.Rd ;Rd.d�1/=2/ such that

K�f D g with g 2 L2
loc.R

2d /;

the goal is to show that f 2 H2
loc.R

2d /.

Step 1. Reformulation of the problem. By following decomposition given
in (69) of the operator K�, we can consider our problem as a special case of the
following generalized problem:

8
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
:̂

P0f D

dX

j D1

cj .x; v/@vj
hj C Qg

hj D f 2 L2
loc.R

2d /;

Qg D g �
v2

4
f C

d

2
f 2 L2

loc.R
2d /; for all j D 1; : : : ; d ;

(70)

where P0 the Kolomogrov operator defined in (36) and

cj .x; v/ D �.v ^ Be/j 2 L1.Rd ; L2
loc.R

d //; for all j D 1; : : : ; d ;
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and where we denote by .L/j the jth component of the vector L 2 R
d . Note that

the coefficients cj verify the condition (35) of Proposition A.3 because

@vj
.v ^ Be/j D 0; for all j D 1; : : : ; d:

then Proposition A.3 gives rvf 2 L2
loc.R

2d ;Rd /.

Step 2. Application to Theorem A.1. Our operator P0 can be written as
follows:

P0 D �
� dX

j D1

X2
j CX0

�
; (71)

where Xj for j D 0; 1; : : : ; d are defined by

Xj D

´
@vj

if j ¤ 0;

v � rx if j D 0:

According to Step 1, Problem (70) is a special case of the problem of regularity
of type P0f D Qh, with f and g 2 L2

loc.R
2d / and Qh is given by

Qh D

dX

j D1

cj .x; v/@vj
f C g �

v2

4
f C

d

2
f:

According to Step 1, we have shown that rvf 2 L2
loc.R

2d ;Rd /, which implies
that Qh 2 L2

loc.R
2d /. Hence, by applying Theorem A.1, we obtain f 2 H2

loc.R
2d /,

which completes the proof of Theorem A.2. �

Remark A.5. In this part, we have shown a local Sobolev regularity on R
2d , we

actually need it only in � � R
d where � is one of the open set of Rd appearing

when choosing local coordinates for Td .

A.4. Proof of Theorem 1.1. Finally, we are ready to give the proof of Theo-
rem 1.1. The accretivity of the operator K is clear. To show that the operator
is maximal, it suffices to show that there exists �0 > 0 such that the operator
T D KC�0Id is of dense image in L2.Td �R

d /. As in [5], we take �0 D d
2

C 1.
Let f 2 L2.Td � R

d / such that

hu; .K C �0Id/wi D 0; for all w 2 D.K/; (72)

we have to show that u D 0.
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For this we observe that equation (72) implies that
�
K� C

d

2
C 1

�
u D 0 in D0.Td � R

d /

() K�u D �
�d
2

C 1
�
u in D0.Td � R

d /;

where K� is the operator defined in (34).
Under the assumptions Be 2L1.Td ;Rd.d�1/=2/, u2D.K/�L2

loc.T
d � R

d /,
Theorem A.2 and Remark A.5 show that f 2 H2

loc.T
d � R

d /. More precisely,
using the compactness of T

d , we have �.v/f 2 H2.Td � R
d / for any � 2

C1
0 .Rd /. The rest of the proof is standard. The regularity obtained for f

allows us to justify the integrations by parts and the cut-off argument given in
[5, Proposition 5.5]. We note that in [5], a cut-off in x and v was necessary to
develop the argument whereas here it suffices to perform a cut-off in v. Here we
refer to [12, Proposition 3.1].
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