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Abstract. We study uniqueness of the recovery of a time-dependent magnetic vector-

valued potential and an electric scalar-valued potential on a Riemannian manifold from

the knowledge of the Dirichlet-to-Neumann map of a hyperbolic equation. The Cauchy

data is observed on time-like parts of the space-time boundary and uniqueness is proved up

to the natural gauge for the problem. The proof is based on Gaussian beams and inversion of

the light ray transform on Lorentzian manifolds under the assumptions that the Lorentzian

manifold is a product of a Riemannian manifold with a time interval and that the geodesic

ray transform is invertible on the Riemannian manifold.
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1. Introduction

1.1. Statement of the problem. Let .M; Ng/ be a 1C n dimensional Lorentzian

manifold with boundary. Throughout this paper, we will assume that .M; Ng/ has

a global product structure, that is to say M D Œ0; T � � M , Ng D �dt2 C g,

where T > 0 and .M; g/ denotes a smooth compact connected Riemannian

manifold of dimension n > 2, with smooth boundary @M . We assume that

g 2 C6.M I Sym2M/, where Sym2M denotes the bundle of symmetric two-

tensors over M . We denote by � Ng the Laplace–Beltrami operator given by

� Ng WD div Ng r Ng , where div Ng (resp., r Ng) denotes the divergence (resp., gradient)

operator on .M; Ng/. In local coordinates .x0 WD t; x1; : : : ; xn/ and for each

u 2 C 2.M/ we have

� Ngu D
nX

i;jD0

j Ngj�1=2@xi
.j Ngj1=2 Ngij@xj

u/;

where

Ng�1 WD . Ngij /06i;j6n and j Ngj WD jdet Ngj:

As Ng D �dt2 C g, we have � Ng D �@2t C �g , where �g is defined analo-

gously. Consider a complex-valued scalar function q.t; x/ (electric potential) and

a complex-valued one-form A (magnetic potential), such that the following regu-

larity assumptions are satisfied

q 2 C.M/ and A 2 C1.MI T �M/: (1.1)

In local coordinates, the one-form A can be expressed as

A.t; x/ D b.t; x/ dt C
nX

iD1

!j .t; x/ dx
j D b.t; x/ dt C !.t; x/; (1.2)

where ! is a time-dependent one-form on .M; g/. Given A and q as above, We

consider the initial boundary value problem (IBVP)

8
ˆ̂<
ˆ̂:

�� NguC Ar NguC qu D 0 on M;

u D h on .0; T / � @M;
u.0; �/ D 0; @tu.0; �/ D 0 on M;

(1.3)
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with non-homogeneous Dirichlet data h 2 H 1
0 ..0; T / � @M/. Note that in local

coordinates, Ar Ngu D �b @tuC
Pn
i;jD1 g

ij!i @ju. We introduce N�, the outward

unit normal vector to .0; T /�@M , and define the hyperbolic Dirichlet-to-Neumann

(DN in short) map, given by

ƒA;q W h 7�!
�
@ N�u � .A N�/u

2

�ˇ̌
ˇ
.0;T /�@M

where u solves problem (1.3). This is well-defined as equation (1.3) admits a

unique solution u 2 C.0; T IH 1.M// \ C1.0; T IL2.M//; with @ N�uj.0;T /�@M 2
L2..0; T /�@M/. This follows from [29, Theorem 2.1] as explained in Section 2.1.

The goal of this paper is to study the unique recovery of the complex valued

coefficients A and q given ƒA;q , up to the natural obstructions discussed in the

next section.

1.2. Natural obstructions. The first obstruction concerns the recovery of the

magnetic potential A. Indeed, for j D 1; 2, fix .Aj ; qj / defined as above and

assume that there exists  .t; x/ 2 C2.M/ with  j.0;T /�@M D 0, such that

A1 D A2 C 2 Nd ; q1 D q2 C� Ng � A2r Ng � hr Ng ;r Ng i Ng ; (1.4)

where Nd denotes the exterior derivative on M, that acts on f 2 C1.M/ through
Ndf D @tf dt C df with d denoting the exterior derivative on M , and h�; �i Ng

denotes the inner product on .M; Ng/. Then, for uj the solution of (1.3) with

A D Aj , q D qj , j D 1; 2, it holds that u1 D e u2 and, using the fact that

 j.0;T /�@M D 0, we obtain

@ N�u1 � .A1 N�/u1
2

D @ N�u2 C .@ N� /u2 � .A1 N�/u2
2

D @ N�u2 � .A2 N�/u2
2

:

This proves that ƒA1;q1
D ƒA2;q2

, but A1 ¤ A2 as soon as  does not vanish

identically. In other words, the DN map ƒA;q is invariant with respect to the

gauge transformation given by (1.4) and the best we can expect is the recovery of

the coefficients A and q from ƒA;q modulo the gauge invariance (1.4).

The second obstruction to our problem is due to finite speed of propagation for

the wave equation. Let us define the set

D D ¹.t; x/ 2 M j dist.x; @M/ < t < T � dist.x; @M/º:

Due to domain of dependence arguments (see [25, Section 1.1] and [26, Sec-

tion 1.1]), it is not possible to recover the restriction of any of the coefficients A

and q on the set M n D from ƒA;q . Therefore, for our problem, the best we can

expect, is to recover the coefficients modulo the gauge invariance above, on the

set D.
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1.3. Main result. Before stating the main result, we need to recall the definition

of the geodesic ray transform on the (spatial) Riemannian manifold M . For each

.y; v/ 2 SM , with SM denoting the unit tangent bundle ofM , let 
.�I y; v/ denote

the unit speed geodesic starting at point y, in the direction v, that is,

rg

P

P
.�I y; v/ D 0; 
.0I y; v/D y; P
.0I y; v/D v:

For any .y; v/ 2 SM , we define �exit.y; v/ through

�exit.y; v/ WD inf ¹t > 0 j 
.t I y; v/ 2 @M; P
.t I y; v/ … T
.t Iy;v/@M º:

We now define

@�SM WD ¹.y; v/ 2 SM j y 2 @M; hv; �.y/ig < 0; �exit.y; v/ < 1º; (1.5)

where � denotes the outward normal unit vector on @M . Henceforth, for the sake

of brevity, we use the term maximal geodesic to refer to the geodesics 
.�I y; v/
(or 
.�/ in short) with .y; v/ 2 @�SM , over their maximal interval of definition in

M int , that is the interval I WD .0; �exit/.

Definition 1.1. Let .y; v/ 2 @�SM and let 
.�I y; v/W I ! M . We define the

geodesic ray transform of .f; ˛/ 2 C.M/ � C.M I T �M/, as follows:

I
 .f; ˛/ WD
Z

I

Œf .
.t//C ˛.
.t// P
.t/� dt:

We also need to recall the definition of the solenoidal component, ˛s, of a

one-form ˛ with local representation ˛ D
Pn
kD1 ˛k dx

k . Let

ı˛ WD
nX

i;jD1

1
p
g
@i .

p
ggij j̨ /

denote the divergence operator on M sending one-forms to functions. Given any

˛ 2 L2.M I T �M/, it can be uniquely decomposed as

˛ D ˛s C d ; (1.6)

where ı˛s D 0 and  2 H 1
0 .M/ solves�g D ı˛ in the weak sense onM . This

is called the Helmholtz decomposition (see for example [41]). We will be working

with C1.M/ one-forms. In this case, one can immediately see that since ı˛ 2
C.M/ � Ln.M/, elliptic regularity implies that  2 W 2;n.M/ � C1.M/. We

will use this observation later in the paper to derive the smoothness properties for

the gauge. With these notations, we can now state the main geometric assumption

on .M; g/.
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Hypothesis 1.2. Let .M; g/ be a compact connected Riemannian manifold with

smooth boundary. We say that the geodesic ray transform is injective on M with

respect to functions f 2 C.M/ and one-forms ˛ 2 C.M I T �M/, if the following

holds:

I
.�Iy;v/.f; ˛/ D 0 for all .y; v/ 2 @�SM H) f � 0 and ˛s � 0:

According to Theorems 3 and 4 in [36], Hypothesis 1.2 will be fulfilled if M

is simple. This condition can also be fulfilled by a non-simple manifold. We refer

to Section 2.2 for a more detailed discussion about this aspect.

Finally, let us introduce the set E � D where we recover the coefficients. For

any x 2 M , we define

Dg.x/ WD sup ¹�exit.y; v/ j .y; v/ 2 @�SM; x is in 
.�I y; v/º

and let

Dg.M/ WD sup ¹Dg.x/ j x 2 M º:

For T > 2Dg.M/, we define

E WD ¹.t; x/ 2 M j Dg.x/ < t < T �Dg.x/º:

Theorem 1.3. Let g 2 C6.M I Sym2M/, A1;A2 2 C1.MI T �M/ and q1; q2 2
C.M/. Assume that supp .A1 � A2/ � E, supp .q1 � q2/ � E, and

A1.t; x/ D A2.t; x/ for all .t; x/ 2 .0; T / � @M:

If Hypothesis 1.2 holds, then ƒA1;q1
D ƒA2;q2

implies that there exists  2
C2.M/ with  j.0;T /�@M D 0, such that (1.4) holds.

The proof of this theorem relies in part on injectivity of the so-called light ray

transforms of vector valued functions. Recall that a curve ˇ inM is a null geodesic

(or a light ray), if r Ng

P̌
P̌ D 0 and h P̌; P̌i Ng D 0. Given the product structure of M,

we can parameterize maximal null geodesics through ˇ.t/ D .Qt C t; 
.t //; t 2 I

where 
 is a unit speed maximal geodesic in M and Qt 2 R. We define the light

ray transforms Lq and LA of q 2 C.M/ and A 2 C.MI T �M/ as follows:

Lq.ˇ/ WD
Z

I

q.ˇ.t// dt and LA.ˇ/ WD
Z

ˇ

A:

We have the following proposition, that will be proved in Section 5.
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Proposition 1.4. Let .q;A/2C.M/�C1.MI T �M/ be such that supp q; suppA�E.
If Hypothesis 1.2 holds, then we have the following statements:

(i) if Lq.ˇ/ D 0 for all maximal null geodesics ˇ in M, then q � 0 on M;

(ii) if LA.ˇ/ D 0 for all maximal null geodesics ˇ in M, then there exists
 2 C2.M/ vanishing on @M such that A � Nd on M.

1.4. Previous literature. Results related to the recovery of coefficients for

hyperbolic equations can in general be divided into two categories of time-

independent and time-dependent coefficients. Starting with the seminal works

[4, 6], there is an extensive literature related to the recovery of time-independent

coefficients for hyperbolic equations. These results usually rely on the Boundary

Control method, developed in [4, 6] and a time sharp unique continuation theo-

rem [40], which provide the building blocks of very general results. We refer the

reader to [27] for an introduction to the method and to [28] for an example of a

state of the art result in this direction. We also refer to [5, 21] for review. The

unique continuation theorem in [40] fails if the dependence of the coefficients on

time is non-analytic and therefore extension of these results for general time de-

pendent coefficients is not possible (see e.g. [1, 2]). We refer the reader to [17]

for a uniqueness result, when the dependence of the coefficients on time is real

analytic. Starting with [12], methods based on Carleman estimates have also been

quite fruitful in deriving uniqueness results for time-independent coefficients of

hyperbolic equations. Contrary to the Boundary Control method, where the best

known stability estimates are double logarithmic [11], these methods tend to give

strong stability estimates. We also mention [30] where Boundary Control method

is combined with complex geometric optics and stronger estimates are obtained

for low frequencies.

In the time-dependent category, most of the results are obtained for the recon-

struction of the zeroth order term, q, and are based on a use of geometric optic so-

lutions for the wave equation. Let us mention that this approach has also been used

in the time-independent category [8, 9, 23, 37] to obtain strong stability estimates

although they suffer from considerably stronger geometric assumptions compared

to the Boundary Control method. Methods based on geometric optics were used in

the context of recovery of time-dependent coefficients starting with [35]. Among

the literature of results in this direction, we refer to [10, 19, 24, 32, 33]. The lead-

ing coefficients for the wave equation in all these results are constant. Uniqueness

of zeroth order coefficient q for a variable coefficient wave equation was consid-

ered in [26] where the recovery of the potential was based on inversion of geodesic
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ray transform for scalar functions. It should be noted that even in the case where

A D 0, the result in this paper is a significant improvement of [26], since there

.M; g/ was assumed to be simple.

Approaches based on global geometric optic solutions fail if the Riemannian

manifold .M; g/ is not simple (see Section 3.5). This motivates the use of Gaussian

beams in the current paper. Gaussian beams were introduced in [3, 34] and

they were first used in the context of inverse problems in [7, 20]. We refer the

reader to [21] for a thorough presentation in the case of a wave equation with a

smooth metric, a smooth electric potential and no magnetic potential. This paper

is concerned with the reconstruction of time-dependent vector valued coefficients

for the wave equation under weak geometrical assumptions on the spatial manifold

.M; g/ and weaker regularity assumptions on the coefficients. We use Gaussian

beams to reduce the inverse problem to the inversion of the light ray transform

of the unknown coefficients. The closest previous work to this reduction is [39],

where the authors study the problem of recovery of the geometry along with a

time-dependent magnetic potential A and an electric potential q in a Lorentzian

manifold from a micro-local formulation of a Cauchy data set on the boundary.

It is shown that if Ng;A; q belong to some Ck, with k sufficiently large, then

this Cauchy data set uniquely determines the scattering relation of Ng along with

light ray transforms of A; q. Their approach is based on the study of Fourier

Integral Operators and propagation of singularities. The inversion of the light

ray transform on a general Lorentzian manifold is left as an open problem. Our

Gaussian beam construction makes the reduction to the light ray transform more

explicit in terms of the smoothness required. We also succeed in the inversion of

the light lay transform, in the sense of Proposition 1.4. Our inversion method for

the light ray transform was inspired in part by techniques developed in the context

of the Calderón problem [13].

1.5. Outline of the paper. This paper is organized as follows. In Section 2,

we discuss the forward problem (1.3) and also discuss the Hypothesis 1.2. In

Section 3, we present the Gaussian beam construction near a null geodesic in M.

In Section 4, we show the reduction step from the knowledge of the Dirichlet-

to-Neumann map ƒA;q , to the knowledge of the light ray transforms of A; q and

conclude that Theorem 1.3 follows from Proposition 1.4. Finally, Section 5 is

concerned with the proof of Proposition 1.4.
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2. Preliminaries

2.1. Direct problem. Let

Xu WD Ar NguC qu;

where A and q satisfy (1.1). We consider the wave equation

8
ˆ̂<
ˆ̂:

�� NguC Xu D F in M,

ujx2@M D h on .0; T / � @M ,

ujtD0 D u0; @tujtD0 D u1 on M .

(2.1)

It is classical that u is in the energy space

C.Œ0; T �IH 1.M// \ C1.Œ0; T �IL2.M// (2.2)

when h D 0, F 2 L2.M/, u0 2 H 1
0 .M/ and u1 2 L2.M/. The wave equation

8
ˆ̂<
ˆ̂:

�� Ngv D F in M,

vjx2@M D h on .0; T / � @M ,

vjtD0 D u0; @tvjtD0 D u1 on M ,

(2.3)

was considered in [29]. It was shown there that if F and u1 are as above, and

u0 2 H 1.M/ and h 2 H 1..0; T / � @M/ satisfy the compatibility condition

hjtD0 D u0jx2@M ; (2.4)

then the solution v is the energy space (2.2), and @ N�vjx2@M 2 L2..0; T / � @M/:

Let us now set u D v � w where v is the solution of (2.3) with F , u0, u1 and

h as above, and w is the solution of (2.1) with F D Xv 2 L2.M/, u0 D 0, u1 D 0

and h D 0. Then u satisfies (2.1) with the same F , u0, u1 and h as in (2.3) for v.

As both v and w are in (2.2), so is u. But then �� Ngu D F � Xu 2 L2.M/ and

@�ujx2@M 2 L2..0; T /� @M/. It is straightforward to turn this regularity result to

the corresponding estimate

kuk
C.Œ0;T �IH1

0
.M//\C1.Œ0;T �IL2.M// C k@�ukL2..0;T /�@M/

� C.kF kL2.M/ C khkH1..0;T /�@M/ C ku0kH1.M/ C ku1kL2.M//;
(2.5)

for solutions u of (2.1) under the compatibility condition (2.4).

We write If .t/ D
R t
0 f .s/ds, and show now that u satisfies the estimate

kukL2.M/ � C kIF kL2.M/ ; (2.6)
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when u0, u1 and h vanish identically. The map taking F to u is continuous from

L2.M/ to H 1.M/, and by considering its adjoint, we obtain also continuity from

H�1.M/ to L2.M/. Let F 2 L2.M/ and define v and w as above, but with u0, u1

and h vanishing also for v. Then �� NgIv D IF and

kvkL2.M/ D k@tIvkL2.M/ � C kIF kL2.M/ :

Moreover,

kwkL2.M/ � C kXvkH�1.M/ � C kvkL2.M/ ;

and the above two estimates imply (2.6).

2.2. On inversion of the geodesic ray transform. We are not aware of results

on inversion of the geodesic ray transform I
 .f; ˛/ when the metric tensor g is

assumed to be only C6-smooth. Therefore, for the purposes of the present section,

we assume g to be C1-smooth.

It is well-known that simple manifolds satisfy Hypothesis 1.2, see Theorems 3

and 4 in [36]. It is also likely that the method to invert the geodesic ray transform

using convex foliations, originating from [42], can be used to show that Hypoth-

esis 1.2 holds under the assumptions that the boundary of M is strictly convex

in the sense of the second fundamental form, and that there is a strictly convex

function on M . In [31] this is shown under the further assumption that f and ˛

are smooth. Let us point out that, even when A D 0, combining Theorem 1.3

and [31] gives a result on unique determination of smooth q that falls outside the

scope of the closest previous results [26].

Let us now describe a non-simple case satisfying Hypothesis 1.2 as studied

in [38]. There it is assumed that .M; g/ satisfies the following:

(i) M and @M have real analytic atlases;

(ii) there is an open set of simple geodesics� on a slightly larger manifold . yM;g/

such that T �M � ¹N �
 j 
 2 �º;

(iii) any path in M connecting two boundary points is homotopic to a path of the

form

c1 [ 
1 [ c2 [ 
2 [ � � � [ 
k [ ckC1;

where cj are paths on @M and 
j D Q
j jM for some Q
j 2 �. Moreover,


j intersects @M only at its endpoints and is transversal to @M ;

(iv) g is generic in the sense of [38, Corollary 1].
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Here 
 2 � being simple means that the endpoints of 
 are in yM nM and there are

no conjugate points on 
 , simple geodesics are given topology in the sense of the

parameterization (2) in [38], and N �
 denotes the conormal bundle of 
 , viewed

as a 1-dimensional submanifold of yM .

3. Gaussian Beam solutions

The goal of this section is to construct the so called Gaussian beam solutions

uj 2 C.Œ0; T �IH 1.M// \ C1.Œ0; T �IL2.M// for j D 1; 2 of the problems

´
�� Ngu1 C A1r Ngu1 C q1u1 D 0; .t; x/ 2 M;

u1.0; x/ D @tu1.0; x/ D 0; x 2 M;
´

�� Ngu2 � A2r Ngu2 C .�NıA2 C q2/u2 D 0; .t; x/ 2 M;

u2.T; x/ D @tu2.T; x/ D 0; x 2 M;

(3.1)

taking the form

u1.t; x/D ei�'.t;x/v1.t; x/CR1;�.t; x/; .t; x/ 2 M; (3.2)

u2.t; x/D e�i� N'.t;x/ Nv2.t; x/CR2;�.t; x/; .t; x/ 2 M; (3.3)

with � > 1. Here, Nı denotes the divergence operator on .M; Ng/ sending one-forms

to functions. The two equations in (3.1) are in essence formal adjoints of each

other, with respect to the real L2.M/ inner product. The phase function ' will be

chosen so that both the oscillatory parts ei�' and e�i� N' remain bounded in L2.M/

as � ! 1 and such that the principal terms jei�'.t;x/vk.t; x/j are concentrated

near a fixed maximal null geodesic in D. The remainder terms R1;�; R2;� will

vanish in the limit � ! 1.

3.1. Fermi coordinates. We will start by reviewing Fermi coordinates near a

fixed maximal null geodesic ˇW Œ��; �C� ! M, where we are using the time

coordinate t as the parameterization for the null geodesic. Here, ˇ.��/; ˇ.�C/

denote the start and end points of the maximal null geodesic on the boundary

.0; T / � @M . Note, in particular, that ˇ.t/ 2 D for all t 2 Œ��; �C�. Fermi

coordinates were first introduced by E. Fermi [18]. In this paper, the geometry

has a product structure which makes the construction of Fermi coordinates slightly

easier. This is to some extent similar to [16, 22], where a coordinate construction

was carried out in the context of an elliptic partial differential equation on a
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Riemannian manifold with a product structure. We will therefore follow [16] with

some modifications.

Let us introduce notation that will be fixed throughout the remainder of this

paper. We begin by embedding .M; g/ into a closed manifold . yM;g/ and extend

the null geodesic ˇ to yM WD .0; T / � yM such that ˇ.t/ is well-defined on the

interval Œ�� � "; �C C "� with " > 0 a small constant. We also consider extensions

of the metric g and the coefficients A1;A2; q1; q2 to the bigger set yM such that

the extended metric g is C6 smooth and the extensions of the coefficients satisfy

the regularity assumptions in (1.1) with M replaced by yM. Finally, for the sake of

convenience, we define the constants a; b; a0; b0; s� and sC as follows

aD
p
2.�� � "/; b D

p
2.�C C "/;

a0 D
p
2
�
�� � "

2

�
; b0 D

p
2
�
�C C "

2

�
;

(3.4)

and

s� D
p
2��; sC D

p
2�C:

We will now present Fermi coordinates near the null geodesic ˇ in yM. In all the

following arguments, ˇ.t/ denotes the parameterization of the null geodesic with

respect to the time coordinate in M.

Lemma 3.1 (Fermi coordinates). Let ˇW .�� � "; �C C "/ ! yM be a null geodesic
as above. There exists a coordinate neighborhood .U;ˆ/ of ˇ

��
�� � "

2
; �C C "

2

��

denoted by .z0 WD s; z1 WD r; z2; : : : ; zn/ such that

� ˆ.U / D .a; b/�B.0; ı0/ where a; b are given by (3.4) and B.0; ı0/ denotes a
ball in R

n with a sufficiently small radius ı0 only depending on the geometry
.M; Ng/ and ".

� ˆ.ˇ.t// D .
p
2t; 0; : : : ; 0„ ƒ‚ …

n times

/ for all t 2 .�� � "; �C C "/.

Furthermore, the metric Ng in this coordinate system is C4 smooth and satisfies

Ngjˇ D 2dsdr C
nX

jD2

.dzj /2 and
@ Ngjk
@zi

ˇ̌
ˇ
ˇ

D 0 for 0 6 i; j; k 6 n:

Proof. Let us begin by defining …W yM ! yM through ….t; x/ D x. Note that

…ˇ D 
 where 
 is a unit speed geodesic passing through the point x0 D ….ˇ.a//.

We choose ¹˛2; : : : ; ˛nº such that the set ¹ P
.x0/; ˛2; : : : ; ˛nº forms an orthonormal

basis for Tx0
yM . Let y1 denote the arc length parameter along the geodesic 
 from

the point x0. For each 2 6 k 6 n, let ek.y1/ 2 T
.y1/
yM denote the parallel
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transport of ˛k along 
 to the point 
.y1/. Since P
 is also parallel along 
 , the

set ¹ P
.y1/; e2.y1/; : : : ; en.y1/º forms an orthonormal basis for T
.y1/
yM . We now

define the coordinate system .y0; : : : ; yn/ through F1WRnC1 ! yM:

F1.y
0 WD t; y1; : : : ; yn/ D

�
t; exp
.y1/

� nX

˛D2

y˛e˛.y
1/

��
;

where expp.�/ denotes the exponential map on M at the point p. Let us remark

that since g 2 C6.M I Sym2M/, the map F1 is locally in C5 (see for example [14]).

We now define .s WD z0; r WD z1; : : : ; zn/ D F2.y
0; : : : ; yn/ through

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

s WD z0 WD 1p
2
.t C y1/C a

2
;

r WD z1 WD 1p
2
.�t C y1/C a

2
;

zj WD yj for all j > 2:

(3.5)

For the sake of brevity, we will also use the notations z D .s; z0/ D .s; r; z00/ for

this coordinate system. Let us consider the composition map FWR1Cn ! yM given

by F D F1 ı F�1
2 . It is clear that for all t 2 Œ�� � "; �C C "�:

F.
p
2t; 0/ D F1

�
t; t � a

p
2

2
; 0

�
D F1.t; t � .�� � "/; 0/ D ˇ.t/;

implying that F.s; 0/ is injective for all s 2 .a; b/ as ˇ is not self-intersecting on

the time interval Œ�� � "; �C C "�. Furthermore, for all s 2 .a; b/ it holds that

@

@s
F.s; 0/ D 1p

2

�
@t C P


�p
2

2
.s � a/

��
;

@

@r
F.s; 0/ D 1p

2

�
� @t C P


�p
2

2
.s � a/

��
;

@

@�
F.s; �v˛/

ˇ̌
ˇ
�D0

D e˛

�p
2

2
.s � a/

�
;

where v˛ denotes the ˛th coordinate vector in R
n�2. Thus F.s; z0/ is a locally

C5 map in a neighborhood of the null geodesic ˇ such that F.s; 0/ is injective and

DF.s; 0/ is invertible. The inverse mapping theorem applies to deduce thatF.s; z0/

is a diffeomorphism on a neighborhood of Œa0; b0� � B.0; ı0/ with ı0 sufficiently

small. We then choose ˆ D F�1. Note that ˆ 2 C5 near the null geodesic, and

since g 2 C6.M I Sym2M/, we deduce that the pull back of the metric Ng, ˆ� Ng is

C4 smooth in the Fermi coordinate system.
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Let us now study the form of the metric in this single coordinate chart .U;ˆ/

given by the z-coordinates. We will first derive the form of the metric in y-coor-

dinates which is just an affine transformation of the z coordinates (the linear part

of this affine transformation is unitary). To find the form of the metric in y-co-

ordinates, we note that F1 preserves the product structure on yM and therefore it

suffices to check the form of the Riemannian metric g near the geodesic 
 D ….ˇ/

in yM . Let the indices i; j; k run between 1 and n and the indices ˛; ˇ between 2

and n. Since the set ¹ P
.y1/; e2.y1/; : : : ; en.y1/º is an orthonormal basis, we see

that gjk j
 D ıjkj
 . This implies that @1gjk j
 D 0. Now note that

@˛gij j
 D hrg

@˛
@i ; @j ig j
 C h@i ;rg

@˛
@j ig j
 ;

where rg denotes the Levi-Civita connection on . yM;g/. Using the symmetry for

Levi-Civita connection, we see that

rg

@˛
@1j
 D rg

@1
@˛j
 D rg

P
.y1/
e˛.y

1/j
 D 0;

which together with rg

P

P
 D 0 implies that @jg11j
 D 0 for all j 2 ¹1; : : : ; nº.

This implies that �11j j
 D 0 for all j , where � i
jk

denotes the Christoffel symbol

for . yM;g/. Pick an arbitrary unit vector .v2; : : : ; vn/ 2 R
n�1 and for each y1 2 R

consider the geodesic in yM parametrized as h. Qr/ D exp
.y1/

�
Qr
Pn
˛D2 v

˛e˛.y1/
�

with the corresponding Fermi coordinates .y1; Qrv2; : : : ; Qrvn/. Note that Ph˛.0/ D
v˛, and h satisfies

0 D Rhk˛ˇ . Qr/C �k˛ˇ . Qr/ Ph˛. Qr/ Phˇ . Qr/ D �k˛ˇ . Qr/ Ph˛. Qr/ Phˇ . Qr/;

since Rhk
˛ˇ
. Qr/ D 0 in this coordinate system. Since v˛ is arbitrary, we deduce that

�k˛ˇ j
 D 0 for 1 6 k 6 n and all 2 6 ˛; ˇ 6 n:

To conclude that all the Christoffel symbols vanish on the null geodesic, we still

need to show �˛
1ˇ

j
 D 0. Using the definition of the Christoffel symbol, we see

that it suffices to show that @˛g1ˇ j
 D 0. But,

@˛g1ˇ j
 D h@1;rg@˛@ˇ ig j
 D �1˛ˇ j
 D 0:

Thus in y coordinates Ngjˇ D �jk where �jk denotes the Minkowski metric on

R
1Cn and @i Ngjk jˇ D 0. Since the map y ! z is affine, it is easy to verify that Ng

satisfies the claimed properties. �

It should be clear now that the constants a; a0; s�; sC; b0; b defined in (3.4)

merely denote the s-coordinates of the points ˇ.�� � "/, ˇ
�
�� � "

2

�
, ˇ.��/, ˇ.�C/,

ˇ
�
�C C "

2

�
, and ˇ.�C C "/ respectively.
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3.2. Eikonal and transport equations. Throughout this subsection we will

assume that ˇ is a null geodesic in D that is extended to yM as described above

with local coordinates .z0; : : : ; zn/ and that A; q satisfy (1.1). Let us consider the

differential operator

LA;q WD �� Ng C Ar Ng C q:

We start the construction of the approximate Gaussian beam by defining the

set

V D ¹.z0; z0/ 2 yM j z0 2 Œa0; b0�; jz0j < ıº; (3.6)

with 0 < ı < ı0 (see Lemma 3.1) sufficiently small such that the set V does not

intersect the sets ¹0º � M and ¹T º �M (this can always be fulfilled as ˇ � D).

We make a WKB ansatz of the form

u D ei�'v; (3.7)

such that u is an approximate solution to LA;qu D 0 as a formal power series in

� > 1. Here, ' 2 C3.V/ and v 2 C2.V/. We make the following ansatz for '; v

respectively:

' D
2X

kD0

'k.s; z
0/ and v.s; z0/ D �

n
4 v0.s/�

� jz0j
ı

�
; (3.8)

where for each k D 0; 1; 2, 'k is a homogeneous polynomial of degree k with

respect to the variables zi with i 2 ¹1; : : : ; nº. The smooth function �WR ! Œ0;1�

satisfies �.t/ D 1 for jt j 6 1
4
, and �.t/ D 0 for jt j > 1

2
.

Note that

� Ng.e
i�'v/ D ei�'.��2hd'; d'i Ngv C i�.2hd'; dvi Ng C .� Ng'/v/C� Ngv/:

Let us define

S' WD hd'; d'i Ng ; and TAv WD 2hd'; dvi Ng C .�Ar Ng' C� Ng'/v:

Then:

LA;q.e
i�'v/ D ei�'.�2.S'/v � i�TAv C LA;qv/: (3.9)

We require that S' D
Pn
k;lD0 Ngkl@k'@l' vanishes up to second order on the null

geodesic ˇ with respect to the transversal directions (the case S' � 0 is known as

an eikonal equation). Put differently, in terms of the Fermi coordinates we require

that

@˛1

@z1˛1
� � � @˛n

@zn˛n
.S'/.s; 0; : : : ; 0/ D 0 for all s 2 .a0; b0/; (3.10)

for all m D 0; 1; 2 and all choices of ˛1; : : : ; ˛n > 0 such that
Pn
jD1 j̨ D m.
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We will also require that the following transport equation holds along the null

geodesic ˇ:

.TAv0/.s; 0; : : : ; 0/ D 0 for all s 2 .a0; b0/: (3.11)

3.3. Construction of the phase. We begin by solving equation (3.10). For

m D 0, we obtain the equation

� nX

k;lD0

Ngkl @'
@zk

@'

@zl

�ˇ̌
ˇ
ˇ

D 0 for 1 6 i; j 6 n:

Recalling that Ngjˇ D 2dz0dz1 C .dz2/2 C : : :C .dzn/2, this reduces to

2@0'@1' C
nX

kD2

.@k'/
2 D 0: (3.12)

Similarly, for m D 1, we obtain (recall that for all i; j; k we have @ig
jk jˇ D 0)

� nX

k;lD0

Ngkl@2k˛'@l'
�ˇ̌
ˇ
ˇ

D 0 for 1 6 ˛ 6 n: (3.13)

Recalling the definition of the phase function ' from equation (3.8), it is clear that

equations (3.12) and (3.13) will be satisfied if we set '0 D 0 and '1 D r . Next we

consider the case m D 2 in equation (3.10) and write

'2.s; z
0/ WD

X

16i;j6n

Hij .s/z
izj ;

where Hij D Hj i is a symmetric matrix. Let us impose the auxiliary condition

that

=H.s/ > 0 for s 2 .a0; b0/: (3.14)

This assumption will lead to a Gaussian decay away from the null geodesic ˇ, but

we will also provide a geometric motivation behind this assumption in the next

section. We require

@2

@zi@zj

� nX

k;lD0

Ngkl @'
@zk

@'

@zl

�ˇ̌
ˇ
ˇ

D 0 for all 1 6 i; j 6 n:

This is equivalent to

.@2ij Ngkl@k' @l' C 2 Ngkl@3kij' @l' C 2 Ngkl@2ki' @2lj' C 4@i Ngkl@2jk' @l'/jˇ D 0:



1122 A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L. Oksanen

which again simplifies to

�
@2ij Ng11 C 2 Ng10@30ij' C 2

nX

kD2

@2ki' @
2
kj'

�ˇ̌
ˇ
ˇ

D 0:

We therefore obtain the following Riccati type ODE:

d

ds
H CHCH CD D 0; s 2 .a0; b0/; H.s�/ D H0; with =H0 > 0;

(3.15)

where C is the matrix defined through
8
ˆ̂<
ˆ̂:

C11 D 0;

Ci i D 2 for 2 6 i 6 n;

Cij D 0 otherwise,

(3.16)

and D D .Dij /n�n WD 1
4
.@2ij Ng11jˇ /n�n for all i; j 2 ¹1; : : : ; nº. Note that since g

is C4 smooth in the Fermi coordinates, we have D 2 C2.Œa0; b0�ICn�n/. We now

recall two lemmas. For the proofs, we refer the reader to [21, Lemma 8, Section 8]

and [21, Lemma 10, Section 8] respectively.

Lemma 3.2. The Riccati equation (3.15) has a unique solution. The solution H
is symmetric and =.H.s// > 0 for all s 2 .a0; b0/. We have H.s/ D Z.s/Y.s/�1

where Z.t/ and Y.t/ solve the following system of first order linear ODEs:

d

ds
Y D CZ; Y.s�/D I; (3.17)

d

ds
Z D �DY; Z.s�/D H0: (3.18)

In addition, Y.s/ is non-degenerate for all s 2 Œa0; b0�.

Lemma 3.3. The following identity is satisfied:

det.=.H.s// � j det.Y.s//j2 D det.=.H0//:

Let us make some remarks about the regularity of the solutions Y.s/;H.s/.

Since C is a constant matrix, the matrix Y.s/ also satisfies

d2

ds2
Y D �CDY; Y.s�/ D I; PY.s�/ D CH0 (3.19)

since D 2 C2.Œa0; b0�IC2n/, we immediately deduce that Y 2 C4.Œa0; b0�ICn�n/.
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Now considering the ODE for the function Z.s/, we deduce that we have Z 2
C3.Œa0; b0�ICn�n/. Finally, since H.s/ D Z.s/Y �1.s/ and since Y.s/ is non-

singular on Œa0; b0�, we conclude that

H 2 C3.Œa0; b0�ICn�n/ and ' 2 C3.V/ (3.20)

in the Fermi coordinates.

3.4. Construction of the amplitude. Let us study the transport equation (3.11).

First observe that in Fermi coordinates

.� Ng'/jˇ D
NX

i;jD0

Ngij@2ij'jˇ D
nX

jD2

@2jj'jˇ D Tr.CH/:

Thus equation (3.11) simplifies to

2@sv0 C .Tr.CH/ � A.s; 0/ P̌/v0 D 0 s 2 Œa0; b0�; (3.21)

where A P̌ WD A@s D hA; dz1i Ng : We proceed to prove that

v0.s/ D det.Y.s//�
1
2 e

1
2
.
R s

s�
A.�;0/ P̌ d�/ s 2 Œa0; b0� (3.22)

satisfies equation (3.21). Indeed, this follows immediately from the observation

Tr.C.s/H.s// D Tr.C.s/Z.s/Y.s/�1/

D Tr
�dY
ds
.s/Y.s/�1

�

D d

ds
log.det.Y.s///;

where we have used the fact that dY
ds
.s/ D C.s/Z.s/. Clearly v0 2 C2.Œa0; b0�/,

which together with the definition of v implies that v 2 C2.V/. This concludes

the construction of the amplitude function and also the construction of u defined

by (3.7) which we refer to as an approximate Gaussian beam.

3.5. Geometrical interpretations. We will briefly discuss some geometrical

aspects of the approximate Gaussian beam construction. In particular, we will

discuss explicitly, how conjugate points on .M; Ng/ manifest themselves in the

vector valued function Y.s/ constructed above. First we note the following lemma.

Lemma 3.4. Let ˇ be a null geodesic as above and let us consider the Fermi
coordinates near ˇ. We have the following identity:

@2 Ng11
@zi@zj

ˇ̌
ˇ
ˇ

D �2R0i0j jˇ ;
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for all indices i; j 2 ¹1; : : : ; nº, where R���� denotes the curvature tensor for the
Lorentzian manifold . yM; Ng/.

Proof. First note that by Bianchi identities the expression is clearly symmetric

with respect to indices i; j . We let r Ng and N� i
jk

denote the Levi-Civita connection

and the Christoffel symbol for .M; Ng/ respectively. Recall that Ngij denotes the

inverse of the matrix Ngij and since Ngjˇ D 2dz0dz1 C .dz2/2 C � � � C .dzn/2 it

follows that
@2 Ng11
@zi@zj

ˇ̌
ˇ
ˇ

D � @2 Ng00
@zi@zj

ˇ̌
ˇ
ˇ
:

Since Œ@i ; @j � D 0, we have

R0i0j jˇ D hr Ng

@0
r Ng

@i
@0; @j i Ng jˇ � hr Ng

@i
r Ng

@0
@0; @j i Ng jˇ :

Using the definition of the Levi-Civita connection, we have

r Ng

@0
r Ng

@i
@0 D

nX

kD0

.@0 N�ki0/@k C
nX

k;mD0

N�ki0 N�m0k@m; (3.23)

and

r Ng

@i
r Ng

@0
@0 D

nX

kD0

.@i N�k00/@k C
nX

k;mD0

N�k00 N�mik@m: (3.24)

Recall that @igjk jˇ D 0. This implies that N� i
jk

jˇ D 0 but since @0 also denotes

the tangent vector to ˇ, we observe additionally that @0�
i
jk

jˇ D 0 which implies

that (3.23) vanishes along ˇ. Hence,

R0i0j jˇ D �
D nX

kD0

@i N�k00@k ; @j
E

Ng

ˇ̌
ˇ
ˇ

D �
� nX

kD0

Ngjk@i N�k00
�ˇ̌
ˇ
ˇ

D 1

2

� nX

k;mD0

Ngjk Ngkm@2im Ng00
�ˇ̌
ˇ
ˇ

D 1

2

� nX

mD0

ıjm@
2
im Ng00

�ˇ̌
ˇ
ˇ

D 1

2
@2ij Ng00jˇ

D �1
2
@2ij Ng11jˇ : �



Recovery of time-dependent coefficients 1125

We can next use the above lemma in conjunction with the product structure of

the Lorentzian manifold M to derive the following corollary.

Corollary 3.5. For any null geodesic ˇ as above, we have

@2 Ng11
@z1@zi

ˇ̌
ˇ
ˇ

D 0;

for all indices i 2 ¹1; : : : ; nº.

This corollary can be used to simplify the Riccati equation (3.15) further.

Indeed, Corollary 3.5 implies that D1i D 0 for i 2 ¹1; : : : ; nº and since C1j D
Cj1 D 0 for all j 2 ¹1; : : : ; nº, we can simply take H11 D s C c0 for any constant

c0 with =.c0/ > 0, H1j D Hj1 D 0 for all j > 1 and take HiC1;jC1 WD zHi;j for

all i; j 2 ¹1; : : : ; n�1º where zH is a symmetric .n�1/� .n�1/matrix satisfying

d

ds
zH C 2 zH 2 C zD D 0; zH.s�/ D zH0; (3.25)

with zDij D DiC1;jC1 for all i; j 2 ¹1; : : : ; n�1º. This observation also simplifies

the construction of the matrix Y . Indeed, we can take Y11 D c0 and Y1j D Yj1 D 0

for all j 2 ¹1; : : : ; nº.
Note that a key ingredient in the construction of Gaussian beams is the re-

quirement that the matrix valued function Y.s/ is non-singular. This is indeed

guaranteed in the above construction as a consequence of choosing =.H0/ > 0.

We will briefly discuss what happens when one pursues real valued solutions to

this linear system. Recall that Y.s/ satisfies equation (3.19). This of course im-

plies that the columns of the matrix Y should also satisfy the same ODE. Let V be

one of the columns of Y with representation V D
Pn
jD1 V

j .s/ @
@zj

. Using the def-

inition of the matrixD and Lemma 3.4, we deduce that d2

ds2V
i D

Pn
jD1R0i0jV

j .

Rearranging the indices and using the Bianchi identities, we obtain (recall that on

the null geodesic, @0 D P̌):
D2

ds2
V C R.V; P̌/ P̌ D 0:

This is the well-known Jacobi equation along ˇ. We therefore see that the columns

of Y are variation fields of some variation of ˇ through null geodesics. In

particular, based on this geometric characterization of Y , one can deduce that if

there exists a point ˇ.s/ on the interval Œa0; b0� that is conjugate to ˇ.a0/, then any

real valued solution Y.s/ to (3.19) will always become singular at that point (see

for example [15, Section 5.5]). Therefore a global geometric optic construction

with a real valued phase function can not be achieved in the presence of conjugate

points on .M; Ng/.
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3.6. Construction of the remainder terms. With the WKB construction com-

plete, we now return to the task of constructing solutions u1; u2 to (3.1), concen-

trating on a null geodesic ˇ 2 D. In particular, we will construct the remainder

terms in equations (3.2)-(3.3). We consider the differential operators LA1;q1
and

L�
A2;q2

(formal adjoint of LA2;q2
with respect to the real L2 inner product). We

can use the previous discussion to obtain two families of approximate solutions

given by ei�'v1 and e�i�' Nv2 to these differential operators. Indeed, let

F1;� D �LA1;q1
.ei�'v1/; F2;� D �L�

A2;q2
.e�i� N' Nv2/:

Applying equation (3.9), we obtain

F1;� D �ei�'Œ�2.S'/v1 � i�TA1
v1 C LA1;q1

v1�;

F2;� D �e�i� N'Œ�2.S'/ Nv2 C i�T� NA2
v2 C L�

A2;q2
Nv2�:

(3.26)

The phase function ' 2 C3.V/ is chosen exactly as in Section 3.3 and adapting

equation (3.11) to this case, we make the following ansatz for v1; v2:

vi D �
n
4 vi;0.s/�

� jz0j
ı

�
for i D 1; 2;

such the functions vi;0.s/ satisfy the following transport equations:

2@sv1;0 C .Tr .CH/ � A1 P̌/v1;0 D 0; s 2 Œa0; b0�;
2@sv2;0 C .Tr .CH/C NA2 P̌/v2;0 D 0; s 2 Œa0; b0�:

(3.27)

Using (3.22), we have

v1;0.s/ D det.Y.s//�
1
2 e

1
2
.
R s

s�
.A1

P̌/.�;0/ d�/;

v2;0.s/ D det.Y.s//�
1
2 e� 1

2
.
R s

s�
. NA2

P̌/.�;0/ d�/:

(3.28)

Note that F1;�; F2;� are compactly supported in a small tubular region around

the null geodesic where the Fermi coordinates are well defined. Also recall from

the previous discussions that v1; v2 2 C2.V/ in the Fermi coordinates. Next we

define the expression Rj;�, j D 1; 2, as the solution of the following IBVP
8
ˆ̂<
ˆ̂:

LA1;q1
R1;� D F1;�; .t; x/ 2 M;

R1;�.0; x/ D 0; @tR1;�.0; x/ D 0; x 2 M;
R1;�.t; x/ D 0; .t; x/ 2 .0; T / � @M;

(3.29)

8
ˆ̂<
ˆ̂:

L�
A2;q2

R2;� D F2;�; .t; x/ 2 M;

R2;�.T; x/ D 0; @tR2;�.T; x/ D 0; x 2 M;
R2;�.t; x/ D 0; .t; x/ 2 .0; T / � @M:

(3.30)
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The energy estimate (2.5) in Section 2 implies that equations (3.29) and (3.30)

admit unique solutions

Rj;� 2 C.Œ0; T �IH 1
0 .M// \ C1.Œ0; T �IL2.M// j D 1; 2;

with the estimates

kRj;�kH1.M/ 6 CkFj;�kL2.M/: (3.31)

We claim that Rj;�, j D 1; 2, satisfy the following decay property

lim
�!C1

.kRj;�kL2.M/ C ��1kRj;�kH1.M// D 0; (3.32)

and showing this completes the construction of the solutions u1; u2 of (3.1). Note

that for j D 1; 2, using (3.10) and (3.11), we have the following bounds:

kvjkC2.M/ 6 C�
n
4 ;

jTAj
vj j 6 C�

n
4 jz0j�

� jz0j
ı

�
;

jS'j 6 C jz0j2N.jz0j/ for z 2 V;

(3.33)

where C > 0 only depending on the geometry and kA1kC1; kA2kC1 . Here, N

denotes a continuous function depending on the geometry . yM; Ng/ and such that

N.0/ D 0. Note that equation (3.14) implies that

jei�' j D je�i� N' j 6 e�D�jz0j2 ; (3.34)

with D > 0 independent of � and only depending on the geometry. In particular,

these estimates imply that

k� n
4 ei�'k2

L2.V/
.

Z

V

�
n
2 e�D�jz0j2�2

� jz0j
ı

�
dz D O.1/;

k� n
4 .S'/ei�'k2

L2.V/
.

Z

V

jz0j4� n
2 N2.jz0j/e�D�jz0j2�2

� jz0j
ı

�
dz D o.��2/;

k.TAj
vj /e

i�'k2
L2.V/

.

Z

V

�
n
2 jz0j2e�D�jz0j2�2

� jz0j
ı

�
dz D O.��1/;

(3.35)

Combining these bounds with (3.26), we find



Fj;�



L2.M/

D o.�/; j D 1; 2; (3.36)

and using the estimate (3.31), we deduce that

lim
�!C1

��1


Rj;�




H1.M/

6 C lim
�!C1

��1


Fj;�




L2.M/

D 0; j D 1; 2:



1128 A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L. Oksanen

Therefore, in order to prove the bound (3.32), it only remains to prove that

lim
�!C1

kRj;�kL2.M/ D 0; j D 1; 2: (3.37)

Let us begin by stating the following two lemmas that will simplify the proof of

the estimate (3.37).

Lemma 3.6. Let ';V be as above. Then, @t' does not vanish in V.

Proof. Since we are considering the neighborhood V, we may use the Fermi

coordinate system .s; z0/. Recall that in this coordinate system

'.z/ D z1 CHij .z
0/zizj D r CHij .s/z

izj

where i; j 2 ¹1; : : : ; nº. Therefore,

p
2@t' D @s' � @r' D �1C

X

16i;j6n

PHij .s/zizj C 2

nX

iD1

Hi1.s/z
i ;

which implies that for jz0j D
p

jz1j2 C � � � C jznj2 < ı sufficiently small we have

j@t'j > 1

2
: (3.38)

This proves the lemma. �

Lemma 3.7. Let ' be as above and suppose that f 2 C.V/ with suppf � V. The
following estimate holds:

lim
�!1

�
n
4







tZ

0

f .�; �/ei�'.�;�/ d�





L2.M/

D 0: (3.39)

Proof. Note that since f is supported near the null geodesic ˇ, we may use the

Fermi coordinate system .s; z0/. Define ��WRnC1 ! R through

��.x/ D ��1�
nC1

4 �.�
1
4 jxj/;

with � defined as in (3.8) and � D k�kL1.Rn/. We define the smooth functions

f� D f � �� .s; z0/ 2 V:

It is clear that f� is supported near the null geodesic ˇ and

lim
�!1

kf� � f kC.M/ D 0; kf�kW k;1.M/ 6 Ck�
k
4 for all k 2 N: (3.40)
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We write 



�
n
4

tZ

0

f .�; �/ei�'.�;�/ d�





L2.M/

6 I1 C I2;

where

I1 D




�

n
4

tZ

0

f�.�; �/ei�'.�;�/ d�





L2.M/

;

and

I2 D




�

n
4

tZ

0

.f � f�/.�; �/ei�'.�;�/ d�





L2.M/

:

For I1, we integrate by part in time using ei�' D �i
�@t'

@te
i�' and use Lemma 3.6

together with the fact that the setV does not intersect the sets ¹0º�M and ¹T º�M
to obtain

I1 6




 �
n
4

�@t'
f�e

i�'




L2.M/

C




�

n
4

�1

tZ

0

@�

� f�
@�'

�
ei�' d�






L2.M/

. �� 3
4 ;

where we are using the first bound in (3.35) together with equation (3.40) to bound

the first term by ��1 and the second term by �� 3
4 . For the term I2, we can use the

Cauchy–Schwarz inequality along with inequalities (3.35) and equation (3.40) to

obtain

I2 6 T k� n
4 .f � f�/e

i�'kL2.M/

6 T kf� � f kC.M/ � k� n
4 ei�'kL2.V/ �! 0 as � ! 1: �

Proof of Estimate (3.37). The result for R1;� and R2;� being similar, we will only

give a proof for R1;�. Using the energy estimate (2.6) in Section 2, together with

the fact that R1;� solves equation (3.30), it suffices to prove that

lim
�!1

kF�;�kL2.M/ D 0;

where

F�;�.t; x/ WD
tZ

0

F1;�.�; x/ d�:

We have

F�;�.t; x/ D I1.t; x/C I2.t; x/C I3.t; x/; (3.41)



1130 A. Feizmohammadi, J. Ilmavirta, Y. Kian, and L. Oksanen

where

I1.t; x/ D �
tZ

0

ei�' Œ�2.S'/.�; x/v1.�; x/� d�;

I2.t; x/ D
tZ

0

ei�'Œi�TA1
v1.�; x/� d�;

I3.t; x/ D �
tZ

0

ei�' Œ.LA1;q1
/v1.�; x/� d�:

We proceed to bound each of the above integrals using the Fermi coordinates .s; z0/

around ˇ. This can be done since each of the above integrands is supported in a

small tubular neighborhood of ˇ. For the first integral, I1, we apply integration

by parts to obtain

I1.t; x/ D
tZ

0

i�2

�@�'
.@�e

i�'/.S'/.�; x/v1.�; x/ d�

D i�ei�'

@t'
.S'/.t; x/v1.t; x/C

tZ

0

ei�'
h

� i�@�
h� S'

@�'

�
v1

ii
.�; x/ d�

D i�ei�'

@t'
.S'/v1 C i�

tZ

0

ei�'
@2�'

.@�'/2
.S'/v1 dt � i�

tZ

0

ei�'
@� Œ.S'/v1�

@�'
dt

WD S1.t; x/C S2.t; x/C S3.t; x/:

(3.42)

Using (3.35), we deduce that kS1kL2.M/ D o.1/. For S2.t; x/, we first use the

Cauchy–Schwarz inequality to observe that

kS2kL2.M/ 6 �T kei�' @2t '

.@t'/2
.S'/v1kL2.V/:

Recalling that ' 2 C3.V/ and applying the bound (3.35) again, we deduce that

kS2kL2.M/ D o.1/. For S3, we integrate by parts again to obtain

S3 D �ei�' @t Œ.S'/v1�
.@t'/2

C
tZ

0

ei�'@�

h@� ..S'/v1/
.@�'/2

i
d� WD S4 C S5:

Using equation (3.10), it is clear that j@t .S'/j . jz0jN.jz0j/ and j@2t .S'/j . N.jz0j/
on the set V. Using this observation, together with bounds analogous to (3.35),



Recovery of time-dependent coefficients 1131

we deduce that kS4kL2.M/ D o.�� 1
2 / and kS5kL2.M/ D o.1/. Let us now consider

the function I2.t; x/. We have

I2.t; x/ D
tZ

0

�i
�@�'

@� .e
i�'/Œi�TA1

v1.�; x/� d�

D ei�'

@t'
.TA1

v1/.t; x/ �
tZ

0

ei�'
h
@�

�TA1
v1

@�'

�i
d� WD S6.t; x/C S7.t; x/:

(3.43)

Using (3.35) again, we deduce that kS6kL2.M/ . �� 1
2 . For S7, noting that

@t
�TA1

v1

@t'

�
2 Cc.V/, we can use Lemma 3.7 to show that lim�!1 kS7kL2.M/ D 0.

Finally, for the function I3.t; x/, since '; v1 2 C2.V/, we have LA1;q1
v1 2

C.V/ and that this function is supported near the null geodesic ˇ. Using this

observation together with Lemma 3.7, we conclude that lim�!1 kI3kL2.M/ D 0.

This completes the proof. �

4. Reduction to the light ray transform

In this section we will obtain the light ray transforms of A and q on null geodesics

from the knowledge of the Dirichlet-to-Neumann map ƒA;q and then use Propo-

sition 1.4 to prove Theorem 1.3. Proposition 1.4 will subsequently be proved in

the next section.

4.1. Recovery of the light-ray transform ofA. From now on we fix q D q1�q2,
A D A1 � A2 extended by zero to .R �M/ n M. We take ˇ to be a maximal null

geodesic in D � M and extend it to yM. For j D 1; 2, we define

uj 2 C.Œ0; T �IH 1.M// \ C1.Œ0; T �IL2.M//

a solution of (3.1) taking the form (3.2)–(3.3) with the properties described in the

previous section. We fix u3 the solution of (1.3) with A D A2, q D q2 and f

given by

f .t; x/ WD u1.t; x/ D v1.t; x/e
i�'; .t; x/ 2 .0; T / � @M:

Then the function u D u3 � u1 solves
8
<
:

�� NguC A2.t; x/r NguC q2.t; x/u D Ar Ngu1 C qu1; in M;

u D 0; on .0; T / � @M;
u.0; �/ D 0; @tu.0; �/ D 0 in M:

(4.1)
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Moreover, since A1 D A2 on .0; T / � @M by assumption, we have @ N�u D
@ N�u3 � @ N�u1 D ƒA2;q2

f �ƒA1;q1
f D 0. Multiplying (4.1) by u2 and integrating

by parts, we obtain

Z

M

ŒAr Ngu1u2 C qu1u2� dV Ng D 0; (4.2)

where dV Ng.t; x/ D j Ngj 1
2dt ^ dx denotes the volume form for Ng D �dt2 C g.

Applying (3.32), we obtain

0 D lim
�!C1

��1

Z

M

ŒAr Ngu1u2 C qu1u2� dV Ng

D i lim
�!C1

Z

M

.Ar Ng'/e�2�=.'/v1 Nv2 dV Ng :

Recall that the functions v1 and v2 are supported in a small tubular neighborhood

of the null geodesic ˇ. Thus the integrand in the above equation is supported near

ˇ and we can the use Fermi coordinates

z D .z0; : : : ; zn/ D .s; z0/ D .s; r; z2; : : : ; zn/ D .s; r; z00/

to compute the limit. We have

v1 Nv2 D �
n
2 v1;0 Nv2;0�2

� jz0j
ı

�
D �

n
2 det.jY.s/j/�1G.s/�2

� jz0j
ı

�
;

where

G.s/ D e
1
2

R s
s�
.A.�;0/ P̌/ d� :

Note that

.Ar Ng'/.s; 0/G.s/ D 2 PG.s/:
Using Lemma 3.1, we have jj det Ngj.s; z0/ � 1j 6 C jz0j2. Using the fact that

A; q D 0 on the set yM n M and the above two observations, we get

lim
�!C1

b0Z

a0

Z

jz0j<ı

�
n
2 PG.s/e�2�=.'/.det jY.s/j/�1�2

� jz0j
ı

�
ds ^ dz0 D 0:

Lemma 3.3 implies that

Z

jz0j<ı

�
n
2 e�2�=.'/.det jY.s/j/�1�2

� jz0j
ı

�
dz0 D C C O.j�j�1/;
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where C ¤ 0 is a constant. Combining Fubini’s theorem and the above equation,

we have

0 D
b0Z

a0

PG.s/ ds D
sCZ

s�

PG.s/ ds D G.sC/ � G.s�/:

Since G.s�/ D 1 by definition, we conclude that G.sC/ D 1, which implies that

for any null geodesic ˇ 2 D, we have

exp

�
1

2

Z

ˇ

A

�
D 1:

Since suppA � E, we can conclude that

1

4�i

Z

ˇ

A 2 Z; (4.3)

for any maximal null geodesic in R �M . Now consider equation (4.3) and write

ˇ.t/ D .Qt C t; 
.t //, where t 2 I and Qt 2 R. We consider the family of null

geodesics ˇs.t / D .s C t; 
.t // and note that equation (4.3) holds for all s 2 R.

Since A is of compact support, we must have that
R
ˇs

A vanishes for jsj large.

Together with the continuity of A, we can conclude that it must vanish for all s.

Therefore, for any maximal null geodesic in R �M we have

Z

ˇ

A D 0:

Finally, under the hypothesis of Theorem 1.3, together with Proposition 1.4, we

conclude that the first equation in (1.4) holds.

4.2. Recovery of the light ray transform of q. The previous discussion yields

that A1 � A2 D Nd for some  2 C2.M/ with  j@M D 0. We define Q D 1
2
 ,

and let

zA2.t; x/D A2.t; x/C 2d Q D A1.t; x/ for all .t; x/ 2 M;

Qq2.t; x/D q2.t; x/C� Ng
Q � A2r Ng Q � hr Ng Q ;r Ng Q i Ng for all .t; x/ 2 M:

(4.4)

The gauge invariance of the DN map implies that

ƒA1;q1
D ƒ zA2; Qq2

D ƒA1; Qq2
: (4.5)
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Furthermore, we also know that supp . Qq2 � q1/ � E. We now proceed as in the

previous section. We start by fixing q D q1 � Qq2. As before, we take ˇ to be a

maximal null geodesic in D � M and extend it to yM. For j D 1; 2, we define

uj 2 C.Œ0; T �IH 1.M// \ C1.Œ0; T �IL2.M//;

as the Gaussian beam solutions of (3.1) (with A2 replaced with zA2 and q2 replaced

with Qq2), taking the form (3.2)-(3.3). We fix u3 the solution of (1.3) with A D zA2,
q D Qq2 and f given by

f .t; x/ WD u1.t; x/ D v1.t; x/e
i�'; .t; x/ 2 .0; T / � @M:

Then the function u D u3 � u1 solves
8
<̂

:̂

�� NguC zA2.t; x/r NguC Qq2.t; x/u D qu1; in M;

u D 0; on .0; T / � @M;
u.0; �/ D 0; @tu.0; �/ D 0 in M:

(4.6)

Moreover, (4.5) implies

@ N�u D @ N�u3 � @ N�u1 D ƒ zA2; Qq2
f �ƒA1;q1

f D 0:

Multiplying (4.6) by u2 and integrating by parts, we obtain
Z

M

qu1u2 dV Ng D 0: (4.7)

Applying (3.32), we obtain

lim
�!1

Z

M

qe�2�='v1 Nv2 dV Ng D 0; (4.8)

Here, we note that since zA2 D A1, we have

v1 Nv2 D �
n
2 v1;0 Nv2;0�2

� jz0j
ı

�
D �

n
2 det.jY.s/j/�1�2

� jz0j
ı

�
:

Thus, taking the limit � ! 1 and using Lemma 3.3, we deduce that
Z

t2I

q.ˇ.t// dt D 0: (4.9)

This equation only holds for maximal null geodesics in D, but since suppq � E,

we can conclude that this equation holds for all maximal null geodesicsˇ inR�M .

Together with Proposition 1.4, we conclude that q D 0, thus completing the proof

of Theorem 1.3.
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5. Inversion of the light ray transforms

This section is concerned with the proof of Proposition 1.4. We start with the

inversion of the light ray transform of a scalar function q satisfying suppq � E.

Proof of statement (i) in Proposition 1.4. We know that for any maximal geo-

desic ˇ in R �M , Z

t2I

q.ˇ.t// dt D 0:

Using the identification of maximal null geodesics ˇ D .QtC t; 
.t //with maximal

geodesics in M , we conclude that

Lq.Qt; 
/ D
Z

I

q.Qt C t; 
.t // dt D 0; (5.1)

for all Qt 2 R and all unit speed maximal geodesics 
 in M . Taking the Fourier

transform of L.Qt; 
/ with respect to the variable Qt 2 R and using the fact that q is

compactly supported, we deduce that

0 D cLq.�; 
/ D
Z

I

Z

R

e�i� Qtq.t C Qt; 
.t // d Qt dt D
Z

I

ei� t Oq.�; 
.t// dt;

where Oq.�; �/ denotes the Fourier transform of q with respect to the time variable.

Evaluating at � D 0, we get

Z

I

Oq.0; 
.t// dt D 0;

for all geodesics 
 in M . Using Hypothesis 1.2, we deduce that Oq.0; �/ D 0. Next,

we evaluate all the derivatives of yL.�; 
/ at � D 0:

0 D Œ@k�
cLq.�; 
/�j�D0

D
�
@k�

Z

I

ei� t Oq.�; 
.t// dt
�ˇ̌
ˇ̌
�D0

D
kX

jD0

�
k

j

� Z

I

.i t /k�j@j� Oq.0; 
.t// dt:

(5.2)

We now use induction on j to show that @
j
� Oq.0; �/ D 0 for all j 2 N. This is true

for j D 0 as shown above. Suppose the induction hypothesis holds for all j < k.
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Then using (5.2) implies that
Z

I

@k� Oq.0; 
.t// dt D 0:

Together with Hypothesis 1.2, we conclude that @k� Oq.0; �/ D 0. This completes the

proof by induction. Now, since q.t; �/ is a compactly supported function in t , we

know that Oq.�; �/ is real analytic with respect to � and since all the derivatives

vanish at � D 0, we conclude that Oq vanishes identically, which implies that

q � 0. �

It remains to prove the inversion of the light ray transform of a one-form A

satisfying suppA � E up to the natural gauge. let us begin with some remarks

and lemmas. We write A D b dt C !. Similar to the proof above, we have

0 D bLA.�; 
/ D
Z

R

e�i� Qt

Z

I

Œb.Qt C t; 
.t //C !.Qt C t; 
.t // P
.t/� dt d Qt;

for all maximal geodesics 
 2 M . Since A is compactly supported, we can

interchange the order of integration to obtain

0 DbLA.�; 
/ D
Z

I

. Ob.�; 
.t//C O!.�; 
.t// P
.t// dt;

where Ob and O! denote the Fourier transform in time of the compactly supported

function b and the one-form ! respectively. Evaluating at � D 0, we obtain

I
 . Ob.0; 
/C O!.0; 
// D 0:

Using Hypothesis 1.2 together with smoothness properties of the Helmholtz de-

composition discussed in Section 1.3, we deduce that

Ob.0; x/ D 0; O!.0; x/ D d 0.x/; (5.3)

for some 0 2 C1.M/ vanishing on @M . Note that since ! is C1 smooth, and since

d 0.x/ D O!.0; x/ 2 C1.M I T �M/, it follows that

 0 2 C2.M/:

We have the following lemma.

Lemma 5.1. Let  �1 WD 0 and  0 be as above. There exists a sequence of
functions ¹ kº1

kD1
� C2.M/ all vanishing on @M and such that for every k > 0,

@k� O!.0; x/ D d k.x/ and @k�
Ob.0; x/ D ik k�1.x/:
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Proof. We proceed by induction. The claim is true for k D 0 as discussed above.

Suppose it holds for all m < k. For m D k, we have

@k�
bLA.0; 
/ D

kX

jD0

�
k

j

� Z

I

.i t /k�j Œ@j�
Ob.0; 
.t//C @j� O!.0; 
.t// P
.t/� dt D 0:

Now using the induction hypothesis, we can simplify this expression to obtain

Z

I

Œ@k�
Ob.0; 
.t//C @k� O!.0; 
.t// P
.t/� dt

D �
k�1X

jD0

�
k

j

�� Z

I

.i t /k�j Œ.ij / j�1 C d j P
.t/� dt
�
:

Now using the fact that
R
I t
k�jd j P
.t/ dt D �

R
I .k � j /tk�j�1 j dt , we can

simplify the right hand side of the above equation to

�
k�1X

jD0

�
k

j

�� Z

I

Œ.i t /k�j .ij / j�1 � .i t /k�j�1i.k � j / j � dt
�

D �
k�1X

jD0

�
k

j

�� Z

I

Œ.i t /k�j .ij / j�1� dt

�
C

kX

jD1

�
k

j

�� Z

I

Œ.ij /.i t /k�j j�1� dt

�

D ik

Z

I

 k�1.
.t// dt:

Hence we have
Z

I

Œ@k�
Ob.0; 
.t//� ik k�1.
.t//C @k� O!.0; 
.t// P
.t/� dt D 0:

Using Hypothesis 1.2 together with smoothness properties of the Helmholtz de-

composition in Section 1.3, we conclude that there exists  k 2 C1.M/ vanishing

on @M such that

@k� O!.0; x/ D d k.x/; and @k�
Ob.0; x/ D ik k�1.x/:

Since d k D @k� O!.0; x/ 2 C1.M I T �M/ and  k 2 C1.M/, we conclude that

 k 2 C2.M/:

This completes the induction argument. �
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Proof of statement (ii) in Proposition 1.4. Let us define

 .t; x/ WD
tZ

0

b.s; x/ ds D
tZ

�1

b.s; x/ ds; (5.4)

where we are using the fact that suppA � M. Note that since A has compact

support, equation (5.3) implies

 .t; x/ D  .T; x/ D
TZ

0

b.s; x/ ds D Ob.0; x/ D 0 for t > T . (5.5)

Similarly,  .t; x/ D 0 for t 6 0. Again, we let O .�; x/ denote the Fourier

transform of  in the time variable. Note that since  is compactly supported in

time, O .�; x/ is analytic with respect to � . Let us define the coefficients ¹ Q kº1
kD0

through

O .�; x/ D
1X

kD0

Q k.x/
kŠ

�k :

We claim that Q k.x/ D  k.x/ holds for all k > 0 and all x 2 M . To see this

note that by definition @t D b. Hence i� O .�/ D Ob.�/. Now differentiating this

expression k C 1 times and evaluating at � D 0, we deduce that

i Q k D i O .k/.0/ D i
1

k C 1
Ob.kC1/.0/ D i k ;

where we used Lemma 5.1 in the last step. Thus, we have

O .�; x/ D
1X

kD0

 k.x/

kŠ
�k :

Since !.t; x/ is also compactly supported in t , Lemma 5.1 implies that

O!.�; x/ D
1X

kD0

@k� O!.0; x/
kŠ

�k D
1X

kD0

d k.x/

kŠ
�k: (5.6)

Note that for every fixed x 2 M , the following estimate holds:

j@k� O!.0; x/j 6 k@k� O!.�; x/kL1.R/ .

TZ

0

jt jkj!.t; x/j dt;
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which implies that the infinite series (5.6) is uniformly convergent with respect to

x 2 M , and therefore we can write

O!.�; x/ D
1X

kD0

d k.x/

kŠ
�k D d

� 1X

kD0

 k.x/

kŠ
�k

�
D d O .�; x/:

Hence, ! D d , and subsequently

A D b dt C ! D .@t / dt C d D Nd : (5.7)

Note that  j.0;T /�@M D 0 as  kj@M D 0 for all k > 0. We will now show that

 2 C2.M/. Indeed, it is clear from equation (5.4) that  2 C1.M/. But then

since Nd D A 2 C1.MI T �M/ we may conclude that  2 C2.M/. �

5.1. Remarks. With the proof of Theorem 1.3 complete, let us state a few

remarks. We start with the auxiliary condition that the coefficients A; q should

be known on the set M n E. This is merely an artifact of the light ray inversion

method, as the Gaussian beam construction shows that the light ray transforms

of A and q can be obtained on the set D. As the ratio Dg.M/=T grows, the set

E grows and the coefficients are therefore recovered in a large set that is closer

in size to the optimal set D. The assumption that Dg.M/ < 1 in particular

implies that the manifold .M; g/ should be non-trapping. To illustrate this remark,

consider M D Œ0; 1� � S1 with S1 denoting the unit circle and note that in this

case Dg.M/ D 1.

Regarding the smoothness of the metric g, note that we only require the metric

in Fermi coordinates to be C4 smooth. This however, can only be guaranteed if the

metric is a priori known to be C6 smooth, as there could be some loss of regularity

in the angular directions of the exponential map of a Riemannian manifold. One

can in fact use a mollification of the phase function ' to improve the result to

g 2 C4.M I Sym2M/. The key here is that there is no loss of regularity in the

direction tangent to the null geodesic in Fermi coordinates. We believe that the

result could be extended to g 2 C2.M I Sym2M/, but this will require mollification

of the metric, g�. Improvements beyond the C2-smoothness for the metric g could

be much harder.
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