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Szegő’s theorem for canonical systems:

the Arov gauge and a sum rule

David Damanik,1 Benjamin Eichinger,2 and Peter Yuditskii3

Abstract. We consider canonical systems and investigate the Szegő class, which is defined

via the finiteness of the associated entropy functional. Noting that the canonical system

may be studied in a variety of gauges, we choose to work in the Arov gauge, in which

we prove that the entropy integral is equal to an integral involving the coefficients of the

canonical system. This sum rule provides a spectral theory gem in the sense proposed by

Barry Simon.
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1. Introduction

Simon’s monograph [25] is centered around Szegő’s theorem and its descendants.

Since the theorem and the philosophy underlying it are important to this paper, let

us briefly describe them. Formulated as [25, Theorem 1.8.6], Verblunsky’s form

of Szegő’s theorem reads

1
Y

nD0

.1 � j˛nj2/ D exp

� Z

log.w.�//
d�

2�

�

: (1.1)

Here, the setting is as follows. Choosing any probability measure � on the unit

circle @D D ¹z 2 CW jzj D 1º that is not supported on a finite set, one forms the
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associated monic orthogonal polynomials ¹ˆnºn�0 in L2.@D; d�/ via the Gram–

Schmidt procedure. These polynomials obey the recursive relations ˆnC1.z/ D

zˆn.z/ � N̨nˆ�
n.z/ with uniquely determined ˛n 2 D D ¹z 2 CW jzj < 1º, called

the Verblunsky coefficients. Here, ˆ�
n arises from ˆn by reversing the order of

the coefficients of the polynomial and taking complex conjugates of them. This

determines the left-hand side of (1.1). On the right-hand side of (1.1), w denotes

the Radon-Nikodym derivative of the absolutely continuous part of � with respect

to the normalized Lebesgue measure on the unit circle.

The identity (1.1) holds for all such measures �. In particular, focusing on the

property of both sides taking a non-zero value, we have the weaker statement that

1
X

nD0

j˛nj2 < 1 ()

Z

log.w.�//
d�

2�
> �1: (1.2)

In the formulation (1.2), Szegő’s theorem represents what Simon calls a gem

of spectral theory in [25, Section 1.4]: a one-to-one correspondence between a

class of coefficients and a class of measures.

Naturally, it has been a natural goal to pursue the proof of other gems of

spectral theory, and more specifically, further results in the spirit of or in very

close analogy to Szegő’s theorem. This includes the Killip–Simon theorem for

Hilbert-Schmidt perturbations of the free Jacobi matrix [15] and follow-up work

[11, 16, 27] concerning Jacobi matrices with periodic or finite-gap quasi-periodic

background and a continuum analog of the original result. The results obtained

by 2010 are covered in Simon’s monograph [25], whereas Yuditskii’s work [27]

solved one of the major open problems motivated by the work covered in [25].

The settings mentioned so far, orthogonal polynomials on the unit circle

(closely related to CMV matrices as canonical representations of unitary operators

of multiplicity one), Jacobi matrices (closely related to orthogonal polynomials on

the real line), and continuum Schrödinger operators on the half-line (natural coun-

terparts to Jacobi matrices with constant off-diagonal terms), include many of the

popular classes of unitary or self-adjoint operators. Recently, there has been a

push towards unifying the consideration of these classes under the umbrella of

canonical systems; see, for example, the recent monograph [23] by Remling.

While we will make the setting explicit only in the next section, let us point

out now that from the perspective of this recent push, it is a very natural goal

to establish Szegő’s theorem for canonical systems. In a pair of recent papers,

[6, 7], Bessonov and Denisov have obtained a result in the spirit of (1.2) for

canonical systems. This result is a gem of spectral theory in the sense of Simon

as it establishes a one-to-one correspondence between a class of coefficients and



Szegő’s theorem for canonical systems 1257

a class of measures. However, in [6, 7] this equivalence of finiteness statements

is not derived from an identity in the spirit of (1.1), but rather from a pair of

inequalities.

This raises the natural question of whether there is an underlying identity in

the spirit of (1.1) in the general setting of canonical systems and it is the purpose

of this paper to show that one indeed exists. In order to uncover it, we will have

to change perspective. There is a “gauge freedom” for canonical systems, and

using some highly natural “gauge fixing condition,” it will not be too difficult to

establish our version of (1.1); this identity will be stated in Theorem 2.1 below.

The organization of the paper is as follows. We describe the setting and state

the main result, Theorem 2.1, in Section 2. The proof of Theorem 2.1 is then

given in Section 3. Since the two different gauges, the one Bessonov and Denisov

work in and the one in which we prove Theorem 2.1, are obviously crucial to

our discussion, we include two appendices that explain the historical origin and

importance of each of them.

Acknowledgements. P. Yuditskii would like to thank David Müller for helpful

discussions. D. Damanik and B. Eichinger were supported in part by Austrian

Science Fund FWF, project no. P29363-N32.

2. Setting and main result

In this section we describe a setting and state our main result, Theorem 2.1.

Before doing so, however, we provide some basic facts about Hardy spaces and

functions of bounded characteristic; compare, for example, [12, Chapter 2] and

[24, Chapter 4,5]. For 0 < p < 1, a function F lies in the Hardy space Hp.CC/

if F is holomorphic onCC and jF jp has a harmonic majorant. H 1.CC/ is formed

by the bounded holomorphic functions and the Schur class S.CC/ � H 1.CC/ by

those whose modulus is bounded by 1 on CC. A meromorphic function F is said

to be of bounded characteristic, F 2 N.CC/, if it can be represented as

F.z/ D
F C.z/

F �.z/
;

where F ˙ 2 S.CC/. Such functions admit a representation

F ˙.z/ D
Y

j

b.z; z˙
j / exp i

°

a˙z C b˙ C
1

�

1
Z

�1

� 1

x � z
�

x

1 C x2

�

d�˙.x/
±

;
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where

b.z; i/ D
z � i

z C i
; b.z; zj / D

jz2
j C 1j

z2
j C 1

z � zj

z � Nzj

; Im zj > 0;

a˙ � 0; b˙ 2 R, and �˙ satisfy

1
Z

�1

d�˙.x/

1 C x2
< 1:

The coefficient � D a� � aC D limy!1 y�1 log jF.iy/j is called the mean type

of F in the upper half-plane. Decomposing �˙ into its absolutely continuous and

singular parts, one obtains a factorization F ˙.z/ D F ˙
in .z/F ˙

out.z/, where

F ˙
out.z/ D exp

° i

�

1
Z

�1

� 1

x � z
�

x

1 C x2

�

d�˙
ac.x/

±

; (2.1)

and

F ˙
in .z/ D

Y

j

b.z; z˙
j / exp i

°

a˙z C b˙ C
1

�

1
Z

�1

� 1

x � z
�

x

1 C x2

�

d�˙
s .x/

±

:

(2.2)

The functions F ˙
out.z/ are called the outer parts. F ˙, respectively F , have non-

tangential boundary values for a.e. x 2 R, which we will henceforth denote by

F ˙.x/, respectively F.x/. The outer parts are uniquely defined by those boundary

values by means of

.�˙
ac/

0.x/ D � log jF ˙.x/j: (2.3)

The functions F ˙
in .z/ are called inner parts. Its characteristic properties are

jF ˙
in .z/j � 1 for z 2 CC and jF ˙

in .x/j D 1 for a.e. x 2 R. The function F

lies in the Smirnov class N C.CC/ if F �.z/ is outer. For any p > 0, we have the

inclusions Hp.CC/ � N C.CC/ � N.CC/.

Let A.t/ and B.t/ be 2 � 2 matrix-functions with entries from L1
loc.Œ0; 1//

such that

A.t/ � 0; B.t/� D �B.t/;

and

tr A.t/j D tr B.t/j D 0; for j D

�

�1 0

0 1

�

:
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By a (two dimensional) canonical system associated with these data we mean the

differential equation of the form

@tA.z; t /j D A.z; t / .�izA.t/ C B.t// ; A.z; 0/ D I; z 2 C: (2.4)

Assume that the system (2.4) satisfies

1
Z

0

tr A.t/ dt D 1: (2.5)

That is, the system is in the limit point case by [10, Problem 163] or [23, Theo-

rem 3.5].

An entire matrix function A.z/ is called j-expanding in CC if

A.z/�jA.z/ � j � 0; z 2 CC: (2.6)

A.z/ is called j-inner if in addition

A.z/�jA.z/ � j D 0 (2.7)

on the real axis.

A.z; t / form a monotonic chain of j-inner matrix functions; see Remark 2.3

below. Therefore, for fixed z and t viewed as a fractional linear transform A maps

D into D. The Weyl discs are defined by D.z; t / WD ¹A.z; t /qW jqj � 1º, where

A.z; t / acts on q as in (2.9) below. Moreover, D.z; t1/ � D.z; t2/ for t1 > t2, and

due to (2.5) their intersection contains a single point. Hence, the Schur spectral

function w is well defined by

w.z/ D
\

t>0

D.z; t / (2.8)

and moreover w 2 S. In particular, we can define w as the limit

w.z/ D lim
t!1

a11.z; t /E.z/ C a12.z; t /

a21.z; t /E.z/ C a22.z; t /
; A.z; t / D

�

a11.z; t / a12.z; t /

a21.z; t / a22.z; t /

�

;

(2.9)

which does not depend onE.z/ 2 S. See [8, Lemma 9] and [8, Theorem XI] or [23,

Section 3.4] for an extensive presentation of Weyl theory for canonical systems.

Borrowing terminology from Yang-Mills theory, we say that w.z/ is an ob-

servable, while the corresponding chain ¹A.z; t /º possesses a gauge freedom, that

is, we can pass to an equivalent chain

B.z; t / D A.z; t /U.t /; U.t / 2 SU.1; 1/;

with the same Schur spectral function.
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Recall that a matrix U belongs to SU.1; 1/ if

U�jU D j; (i)

detU D 1: (ii)

Matrices obeying (i) are also called j-unitary.

One of the best known conditions fixing the gauge, B.t/ D 0, deals with the

concept of j-modulus, which was the fundamental concept in Potapov’s theory of

j-contractive analytic matrix functions [20], see also [21, 22]. We will call this the

PdB-gauge (Potapov–de Branges). Some pertinent historical remarks are given in

Appendix A.

Another normalization was especially promoted by Arov:

A-gauge: A.t/ C B.t/ is upper triangular and tr B.t/ D 0: (2.10)

This normalization arises in the theory of unitary extensions of isometries [5].

A short discussion is contained in Appendix B.

We say that the Schur spectral function w.z/ belongs to the Szegő class if the

entropy functional I.w/ [3, 4] is finite:

I.w/ WD
1

�

Z

R

log
1

1 � jw.x/j2
dx

1 C x2
< 1: (2.11)

Recently, Bessonov and Denisov [7] found a characterization of the Szegő class

in terms of the canonical system data for the PdB-gauge. They proposed an explicit

expression zK.A/ (functional) given in terms of A.t/ (for the exact formula see [7])

such that

c1I.w/ � zK.A/ � c2I.w/ec2I.w/

with absolute positive constants c1; c2. As a consequence, I.w/ is finite if and only

if zK.A/ is finite.

This raises the natural question of whether the finiteness conditions on the

two sides, measure and coefficients, can be expressed in such a way that the

equivalence of the two finiteness statements can be traced back to an identity

between the two expressions in question. The main result of this note is the

following theorem, which in fact establishes such an identity.

Theorem 2.1. For a canonical system (2.4) under the A-gauge condition (2.10),

we have

I.w/ D

1
Z

0

.tr A.t/ � 2
p

det A.t//dt: (2.12)
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In the proof we follow mainly the original paper [4] of Arov and Krein. Cer-

tain technical details are taken from [26], where the extremal entropy functional

technique was applied to the character-automorphic Nehari problem.

Remark 2.2. We work with Schur spectral functions instead of Titchmarsh–Weyl

(resolvent) functions. Passing to resolvent functions allows us to relate our entropy

functional (2.11) to the one given in [7]. To be more precise: by the integral

representation for functions with positive imaginary part, we have

Re
1 � w.z/

1 C w.z/
D b Im z C

1

�

Z

R

Im z

jx � zj2
d�.x/; (2.13)

where b � 0 and
R

d�.x/

1Cx2 < 1. In particular, if we assume that w.i/ > 0, this

implies that

1

1 C w.i/
D

1

2

�

1 C b C
1

�

Z

R

d�.x/

1 C x2

�

:

Denoting by �0
ac.x/ the density of � with respect to the Lebesgue measure, we

have

�0
ac.x/ D Re

1 � w.x/

1 C w.x/
D

1 � jw.x/j2

j1 C w.x/j2
:

Using that 1 C w is outer, we obtain that

�
1

�

Z

R

log �0
ac.x/

dx

1 C x2
D I.w/ C 2 log.1 C w.i//:

Hence,

I.w/ D 2 log
1

2

�

1 C b C
1

�

Z

R

d�.x/

1 C x2

�

�
1

�

Z

R

log �0
ac.x/

dx

1 C x2
:

Remark 2.3. A monotonic family of j-inner matrix functions A.z; t / obeys the

property

A.z; t2/jA.z; t2/� � j � A.z; t1/jA.z; t1/� � j

for t2 > t1. As soon as t is chosen in a way that A.z; t / is differentiable, we

define M.z; t / D A.z; t /�1@tA.z; t /j. Then the monotonicity property implies

that M.z; t / has positive real part, M.z; t / CM.z; t /� � 0. Assuming in addition

that A is j-inner and entire, we obtain that

M.z; t / D �izA.t/ C B.t/;

where A.t/ � 0 and B.t/ D �B.t/�. Thus, we have (2.4).
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Conversely, if A.z; t / is given by this system, we have

@t .A.t; z/jA.t; z/� � j/ D A.z; t /.�izA.t/ C B.t/ C i NzA.t/ C B.t/�/A.z; t /�

D
z � Nz

i
A.z; t /A.t/A.z; t /� � 0; z 2 CC:

(2.14)

That is, ¹A.z; t /º is a monotonic chain of j-inner entire matrix functions.

Remark 2.4. Note that w.z/ is in the Schur class if

�

w.z/

1

��

j

�

w.z/

1

�

� 0;

whereas m.z/ is a Titchmarsh–Weyl function, i.e. it has positive imaginary part

in CC, if

i

�

m.z/

1

��

J

�

m.z/

1

�

� 0; for J D

�

0 1

�1 0

�

:

While passing from functions in S to functions with positive imaginary part

requires a fractional linear transform, see (2.13), we note that, since

iU JU � D j;

for some unitary matrix U , passing from j-inner to J-inner matrix functions

corresponds just to a conjugation by U . That is,

A.z/�jA.z/ � j � 0 () i.M.z/�JM.z/ � J/ � 0;

where M.z/ D U �A.z/U .

3. Proof of the main theorem

Note that the following condition is equivalent to (2.6),

A.z/jA.z/� � j � 0; z 2 CC: (3.1)

Due to (3.1) we have

�ja21.z/j2 C ja22.z/j2 � 1:

That is,

ja21.z/=a22.z/j2 C j1=a22.z/j2 � 1 (3.2)

and both a21.z/=a22.z/ and 1=a22.z/ belong to S.
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Furthermore, for the A-gauge, we have

A.t/ D

�

a.t/ b.t/ C ic.t /

b.t/ � ic.t / a.t/

�

; B.t/ D

�

0 b.t/ C ic.t /

�b.t/ C ic.t / 0

�

:

Therefore,

@tA.i; t / D A.i; t /.A.t/ C B.t//j

D

�

�a11.i; t /a.t/ 2a11.i; t /.b.t/ C ic.t // C a12.i; t /a.t/

�a21.i; t /a.t/ 2a21.i; t /.b.t/ C ic.t // C a22.i; t /a.t/

�

:

Taking into account that A.i; 0/ D I , we obtain

a11.i; t / D e�
R t

0 a.t/dt ; a21.i; t / D 0; a22.i; t / D e
R t
0 a.t/dt : (3.3)

According to the Potapov–de Branges theorem [23, Theorem 5.1], for an

arbitrary w.z/, there exists a canonical system and a corresponding monotonic

chain ¹A.z; t /ºt>0 of j -expanding matrix functions such that A.z; 0/ D I and

w.z/ is the Schur function associated to this system by (2.8). Since w.z/ 2 D.z; t /

for any t > 0, we find jE.z; t /j � 1 such that

w.z/ D
a11.z; t /E.z; t / C a12.z; t /

a21.z; t /E.z; t / C a22.z; t /
: (3.4)

Since A.z; t / is invertible and all elements depend analytically on z, we have in

fact E.z; t / 2 S.

Using (3.4) and (2.7) we have

1 � jw.x/j2 D
1 � jE.x; t /j2

ja22.x; t /j2j1 C E.x; t /a21.x; t /=a22.x; t /j2
; x 2 R:

We will show that 1 C E.z; t /a21.z; t /=a22.z; t / is an outer function. Due

to (3.2), for any t we have E.z; t /a21.z; t /=a22.z; t / 2 S. Thus, the claim follows

if we show that s 2 S implies that 1 C s is outer. Define

f .z/ D
1 � s.z/

1 C s.z/
:

Then f is holomorphic on CC and Re f � 0 there. Due to [12, Chapter 2,

Exercise 13] f 2 Hp.CC/ for any p < 1 and hence in particular f 2 N C.CC/. It

remains to show that 1 C s and 1 � s cannot have a common nontrivial inner part.

Assume the contrary, i.e., 1 C s D �g1; 1 � s D �g2, for some inner function � .

Then 2 D �.g1 C g2/ which is a contradiction.
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Therefore, since a21.i; t / D 0 (A-gauge condition), we obtain by (2.1), (2.3)

1

�

Z

log j1 C E.x; t /a21.x; t /=a22.x; t /j
dx

1 C x2

D log j1 C E.i; t /a21.i; t /=a22.i; t /j D 0:

Furthermore, the function a22.z; t / is entire and 1=a22.z; t / belongs to H 1.

Therefore a possible inner part of 1=a22.z; t / must be of the form ei�t z , �t � 0.

For every point x0 2 R in the support of the singular measure in (2.2) leads to a

singularity of the function. Using again (2.1), (2.3) we get

1

�

Z

log ja22.x; t /j
dx

1 C x2
D log a22.i; t / � �t :

Thus,

1

�

Z

R

log
1

1 � jw.x/j2
dx

1 C x2

D
1

�

Z

R

log
1

1 � jE.x; t /j2
dx

1 C x2
C log ja22.i; t /j2 � 2�t :

Assuming that (2.11) holds, and using (3.3), we get

lim sup
t!1

�

t
Z

0

a.t/ dt � �t

�

�
1

2�

Z

R

log
1

1 � jw.x/j2
dx

1 C x2
: (3.5)

Now we assume that

lim inf
t!1

�

t
Z

0

a.t/ dt � �t

�

D lim
tk!1

�

tk
Z

0

a.t/ dt � �tk

�

< 1:

From (2.6) it follows

ja12.z; t /=a22.z; t /j2 C j1=a22.z; t /j2 � 1:

We define

v.�; t / D
a12.z; t /

a22.z; t /
and �.�; t / D

e�i�t z

a22.z; t /
; � D

z � i

z C i
2 D:

and recall that � is the outer part of 1=a22.z; t / and therefore also belongs to H 1.

Due to (2.9) for E.z/ D 0, on compact subsets of D,

lim
t!1

v.�; t / D v.�/ WD w.z/:
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Moreover, we have j�.�; t /j D j1=a22.z; t /j for a.e. � 2 T. Let v 2 H 1.D;Cn/

and v�.�/v.�/ � 1 for a.e. � 2 T. Then, we have

0 �

Z

T

�

1 v.�/�

v.�/ I

�

1 � j�0j2

j� � �0j2
dm.�/ D

�

1 v.�0/�

v.�0/ I

�

;

i.e., v�.�0/v.�0/ � 1 for every �0 2 D. Hence, we get

jv.�; t /j2 C j�.�; t /j2 � 1; � 2 D:

Therefore, we have (for r < 1)

Z

T

log
1

1 � jv.r�/j2
dm.�/ D lim

t!1

Z

T

log
1

1 � jv.r�; t /j2
dm.�/

� lim
tk!1

Z

T

log
1

j�.r�; tk/j2
dm.�/

D lim
tk!1

log
1

j�.0; tk/j2

D 2 lim
tk!1

�

tk
Z

0

a.t/ dt � �tk

�

:

We get

Z

T

log
1

1 � jv.�/j2
dm.�/ D

Z

T

lim
r!1

log
1

1 � jv.r�/j2
dm.�/

� 2 lim inf
t!1

�

t
Z

0

a.t/ dt � �t

�

:

In other words,

1

2�

Z

R

log
1

1 � jw.x/j2
dx

1 C x2
� lim inf

t!1

�

t
Z

0

a.t/dt � �t

�

: (3.6)

Combining the inequalities (3.5) and (3.6), we obtain the identity

2 lim
t!1

�

t
Z

0

a.t/dt � �t

�

D
1

�

Z

R

log
1

1 � jw.x/j2
dx

1 C x2
D I.w/: (3.7)
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Now we will compute �t . To this end we pass to the Potapov–de Branges

normalization

B.z; t / WD A.z; t /A.0; t /�1:

Since A.0; t / is j-unitary, we get

B.z; t / D A.z; t /jA.0; t /�j:

Therefore

@tB.z; t /j D A.z; t /.�izA.t/ C B.t//A.0; t /� C A.z; t /B.t/�A.0; t /�

D �izB.z; t /H.t/;

where

H.t/ D A.0; t /A.t/A.0; t /�:

De Branges proved that the mean type �t is given by

�t D

t
Z

0

p

det H.t/dt:

This follows by combining [10, Theorem 39] and [10, Problem 127]. For another

explicit reference see also [23, Theorem 4.26]. Hence, we obtain

�t D

t
Z

0

p

det H.t/dt D

t
Z

0

p

det A.t/dt D

t
Z

0

p

a.t/2 � b.t/2 � c.t/2dt:

Since 2a.t/ D tr A.t/, together with (3.7) we obtain the final result (2.12).

Appendices

A. The Potapov–de Branges gauge and the j -modulus of Potapov

In 1955 V. P. Potapov presented his theory of the multiplicative structure of

J -contractive matrix functions [20]. Recall that an analytic matrix-function W.�/

is called j-contractive if it satisfies an inequality of the form

j � W.�/�jW.�/ � 0

at every point � of its domain � 2 D. We will restrict our discussion to the case of

2 � 2 matrices, whereas Potapov’s original considerations take place in arbitrary

dimension.
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Clearly the class of such matrices is multiplicative, and therefore any natural

representation result for this class requires one to find a decomposition of a given

matrix function into a product of “elementary factors.”

A natural objective in this context is the generalization of the Riesz–Herglotz

representation of functions of the Schur class,

w.�/ D ei�0�nB.�/e
R

@D
�Ct
��t

d�.t/; (A.1)

where � is a non-negative measure on the unit circle @D and B.�/ is the Blaschke

product

B.�/ D
Y

k�1

Bk.�/; Bk.�/ D
j�k j

�k

�k � �

1 � ��k

; �k 2 D; �k 6D 0:

Any generalization of this kind requires one to overcome the following two

serious obstacles:

� to take into consideration the non-commutativity of matrix multiplication,

� to find a criterion for the convergence of the product of elementary factors.

Note that, unlike in the class of unitary matrices, one can easily find a j-unitary

matrix of arbitrarily large norm; consider, for example,

U D

�

cosh � sinh �

sinh � cosh �

�

:

Moreover, it is a highly non-trivial task to control the product of j-contractive

factors.

To overcome the first problem, Potapov used the concept of a multiplicative

Stieltjes integrals. In connection with the second problem, he introduced the

concept of j-modulus.

In the classical representation (A.1), in order to control, say, the convergence

of the Blaschke product, one normalizes each factor to be positive at a fixed point,

Bk.0/ > 0. After that the criterion for convergence is the Blaschke condition

Y

k�1

Bk.0/ D
Y

k�1

j�kj > 0:

Potapov demonstrates that any non-singular j-contractive matrix W has a polar

representation

W D UR; R D e�H j; (A.2)

where U is j-unitary and H � 0.



1268 D. Damanik, B. Eichinger, and P. Yuditskii

Note that R is j-hermitian, that is, jR D R�j, and

W �jW D R�jR D jR2:

Thus, R should be defined as a suitable root of jW �jW . In Proposition A.4 below

we provide an explicit formula due to Orlov (cf. [19]) for the j-modulus R.

Thus, Potapov normalized each factor Rk by the j-modulus, and after that he

arrived at the rather complicated problem of controlling the product

Y

k�1

Rk D
Y

k�1

e�Hkj: (A.3)

From [20, Theorem 9] we can extract the following theorem.

Theorem A.1. Let Hk � 0 and tr Hk j D 0. Then the product (A.3) converges if

and only if
X

k�1

Hk < 1:

A particular case of his main theorem on the multiplicative representation is

the following statement (where we switched back from the unit disk to the upper

half plane).

Theorem A.2. [20, p.133] An entire matrix function A.z/, A.0/ D I , which is j-

expanding in the upper half-plane and j-unitary on the real axis, can be presented

in the form

A.z/ D

`
Õ

Z

0

e�izH.t/jdt ; (A.4)

where H.t/ is a summable non-negative definite matrix function.

Remark A.3. In (A.4) Potapov uses the concept of multiplicative integral, which

is given by
`

Õ
Z

0

e�izH.t/jdt D lim
max �k!0

n
Y

kD1

e�izH.�k/j�k

for a partition

0 D t0 � �1 � t1 � � � � � tn�1 � �n � tn D `; �k D tk � tk�1:
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Note that for z D i , we have a product of j-moduli. It is a well-known fact, see

[20, p. 135], that this multiplicative integral solves the differential equation

@tA.z; t /j D A.z; t /.�izH.t//; A.z; t / D

t
Õ

Z

0

e�izH.t/jdt :

Thus, his integral representation (A.4) provides the existence of a solution of

the inverse monodromy problem: as soon as A.z/ is given and represents a j-

inner entire matrix function, one can find a suitable H.t/, 0 � t � `, so that

A.z/ D A.z; `/.

The uniqueness problem was open until 1961 [8]. Moreover, de Branges gave

a solution of an inverse spectral problem. As soon as

1
Z

0

tr H.t/ dt D 1;

the multiplicative integral
1
Õ

Z

0

e�izH.t/jdt

diverges; nevertheless the limit of the ratio in (2.9) makes sense, and this is enough

to reconstruct the canonical system under the PdB-gauge condition uniquely up to

a monotonic change of the variable t ; see [8, Theorems XI and XII].

Finally we note that Potapov himself revised his Theorem A.1, see [21, 22],

and Orlov found an explicit representation for the j-modulus [19].

For the reader’s convenience, we give a proof of Orlov’s theorem.

Proposition A.4. Let A be invertible and

� D j � A�jA � 0:

Then,

I � �1=2j�1=2 � 0 (A.5)

and

R D I � j�1=2.I C .I � �1=2j�1=2/1=2/�1�1=2: (A.6)

Proof. It is known that

j � AjA� � 0
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and therefore

0 � A�j.j � AjA�/jA

D A�jA � A�jAjA�jA

D j � � � .j � �/j.j � �/

D � � �j�

D �1=2.I � �1=2j�1=2/�1=2:

Thus, the first statement of the proposition, (A.5), is proved.

Now we assume that � > 0. Then,

R2 D I � j� D ��1=2.I � �1=2j�1=2/�1=2:

That is, R2 is similar to the positive matrix I��1=2j�1=2 � 0. We get the following

representation,

R D ��1=2.I � �1=2j�1=2/1=2�1=2: (A.7)

To pass to the general case, we use the identity

X1=2 � I D .X � I /.X1=2 C I /�1;

which holds for an arbitrary X � 0. Therefore (A.7) can be rewritten as

R D I C ��1=2..I � �1=2j�1=2/1=2 � I /�1=2

D I C ��1=2..I � �1=2j�1=2/ � I /..I � �1=2j�1=2/1=2 C I /�1�1=2

D I � j�1=2..I � �1=2j�1=2/1=2 C I /�1�1=2:

The last representation makes sense for an arbitrary � � 0. Thus, (A.6) is

proved. �

B. The Arov gauge and unitary extensions of an isometry

During the final years of his life, Potapov was looking for a bridge connecting

his multiplicative theory with classical interpolation problems of Nevanlinna-Pick

type [18], see also [17].

The term classical interpolation problem follows the book [2], where different

methods of solving these problems are presented. Among them is the reduction of

interpolation problems to unitary extensions of isometric operators. M. G. Krein

was one of the founders and protagonists of this approach, see especially [1].
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Trying to develop Potapov’s approach, Kheifets and Yuditskii [14] were able to

select data of the Abstract Interpolation Problem (AIP), which unified all known

interpolation problems. But it clearly indicated that the best way of solving of AIP

deals with the description of characteristic functions of unitary extensions of an

isometry. The most elegant form of the solution to the latter problem is given in

the paper [5] by Arov and Grossman, and we briefly recall its setting and solution.

By a unitary node we mean a unitary operator U acting from the Hilbert space

H ˚ E1 to H ˚ E2. H is called state space and the spaces E1 and E2 are called

coefficient spaces. With this set of data we can associate an open linear dynamical

system

U.hn ˚ un/ D hnC1 ˚ vn; h0 D 0; un 2 E1; vn 2 E2:

The system ¹unº is called input and ¹vnº is the output. It is easy to verify that the

Fourier transforms of input and output,

u.�/ D

1
X

nD0

un�n; v.�/ D

1
X

nD0

vn�n; � 2 D;

are related by

v.�/ D w.�/u.�/;

where w.�/ is the Schur class operator valued function given by

w.�/ D w.�; U / D PE2
.I � �UPH /�1U jE1

: (B.1)

Here, PH and PE2
are the orthogonal projections onto the corresponding sub-

spaces. We call w.�/ the characteristic function of the unitary node (with respect

to the given coefficient spaces).

Problem B.1. Let V W K ˚ E1 ! K ˚ E2 be an isometry with the defect spaces

N1 D NdV
and N2 D N�V

,

V W dV �! �V ; K ˚ E1 D dV ˚ NdV
; K ˚ E2 D �V ˚ N�V

:

The unitary operator U W H ˚E1 ! H ˚E2, K � H , is called a unitary extension

of V if

U jdV
D V:

Describe the characteristic functions w.�/ of unitary extensions of the given

isometry V .
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To solve this problem we first define the Arov-Grossman extension

AW K ˚ E1 ˚ N2 ! K ˚ N1 ˚ E2 (B.2)

given by

AjdV
D V

AjNdV
D idW NdV

�! N1; AjN2
D idW N2 �! N�V

:

We point out that by making this extension, we extend the coefficient spaces, but

the state space K remains the same. We denote the corresponding characteristic

operator function by

S.�/ D PN1˚E2
.I � �APK/�1AjE1˚N2

:

From the definition of the operator A and the operator function S.�/ one can see

that

PN1
S.0/jN2

D PN1
AjN2

D 0:

In other words, if we split S.�/ in blocks

S.�/ D

�

s1.�/ s.�/

s0.�/ s2.�/

�

W

�

E1

N2

�

�!

�

N1

E2

�

;

then s.0/ D 0.

Theorem B.2. [5] The set of solutions of Problem B.1 is parametrized by the

Schur class operator functions E.�/ acting from N1 to N2. For an arbitrary

parameter E.�/, the solution w.�/ is given by the formula

w.�/ D s0.�/ C s2.�/E.�/.IN1
� s.�/E.�//�1s1.�/: (B.3)

Remark B.3. The fractional linear transform of the form (B.3) is called Redheffer

transform. Let us point out that the inverse operator in this formula is well-defined

since s.0/ D 0, and therefore ks.�/E.�/k � j�j.

Remark B.4. The formula (B.3) can be rewritten as the following algebraic

identity,
"

s1.�/ s.�/

s0.�/ s2.�/

# "

I

E.�/'.�/

#

D

"

'.�/

w.�/

#

;

or
�

I �s0.�/

0 �s1.�/

��

w.�/

I

�

D

�

s2.�/ 0

s.�/ �I

��

E.�/

I

�

'.�/:
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As soon as s1.�/ is invertible, we can pass to the identity
�

w.�/

I

�

D W.�/

�

E.�/

I

�

'.�/;

that is,

w.�/ D .W11.�/E.�/ C W12.�//.W21.�/E.�/ C W22.�//�1;

where

W.�/ D

�

W11.�/ W12.�/

W21.�/ W22.�/

�

D

�

I �s0.�/

0 �s1.�/

��1�

s2.�/ 0

s.�/ �I

�

:

The last formula is called the Potapov–Ginzburg transform. It allows us to pass

from contractive to j-expanding matrix (operator) functions. The normalization

condition s.0/ D 0 in this case corresponds to W21.0/ D 0, that is, W.0/ is upper

triangular, which is essentially the A-gauge condition.

For the A-gauge, we can easily prove a counterpart of (A.2). That is, we prove

that any j-contractive matrix with detB D 1 can be normalized so that it will

satisfy the A-gauge fixing condition corresponding to (2.10).

Lemma B.5. Let B be a j-contractive matrix with detB D 1. It admits a unique

representation

B D

�

b11 b12

b21 b22

�

D AU; A D

�

��1 h

0 �

�

; � � 1:

where U 2 SU.1; 1/.

Proof. First we multiply B by a diagonal j-unitary U1 to have the same arguments

for b21 and b22,

B.1/ D BU1; U1 D

�

ei�1 0

0 e�i�1

�

:

After that we can make the resulting matrix upper triangular using a hyperbolic

rotation U2,

B.2/ D B.1/U2; U2 D

�

cosh �2 sinh �2

sinh �2 cosh �2

�

:

Due to detB.2/ D 1, we have b
.2/
11 b

.2/
22 D 1. Therefore, multiplication by one more

diagonal matrix U3 2 SU.1; 1/ makes the main diagonal entries positive. As a

result, we have

A WD BU1U2U3 D

�

��1 h

0 �

�

: (B.4)
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For uniqueness note that if a j-unitary matrix is of the form (B.4), then � D 1 and

h D 0, see (B.6) below. �

A counterpart of Potapov’s Theorem A.1 is also the comparably easy Propo-

sition B.7 below.

Let us first prove a lemma.

Lemma B.6. Let A be an upper triangular matrix of the form

A D

�

��1 h

0 �

�

; � � 1:

It is j -expanding if and only if

jhj � � �
1

�
: (B.5)

Proof. Indeed,

A�jA � j D

�

���1 0

�h �

��

��1 h

0 �

�

� j D

�

1 � ��2 �h��1

�h��1 �2 � jhj2 � 1

�

: (B.6)

Therefore,

det.A�jA � j/ D
.�2 � 1/2

�2
� .�2 � 1/

jhj2

�2
�

jhj2

�2
D

.�2 � 1/2

�2
� jhj2:

The last expression is nonnegative if and only if (B.5) holds. �

Proposition B.7. Let

Bn D

�

ƒ�1
n Hn

0 ƒn

�

WD

n
Y

kD1

Ak; Ak D

�

��1
k

hk

0 �k

�

be a product of j -expanding matrices. The infinite product converges if and only

if the infinite product of �k converges.

Proof. Due to Lemma B.6,

kBnk � ƒ�1
n C ƒn C jHnj � C < 1:

For m > n, let

Bn;m D

�

ƒ�1
n;m Hn;m

0 ƒn;m

�

WD

m
Y

kDnC1

Ak :
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Then,

kBm � Bnk � kBnkkBn;m � Ik

� C.1 � ƒ�1
n;m C ƒn;m � 1 C ƒn;m � ƒ�1

n;m/

D 2C.ƒn:m � ƒ�1
n;m/:

Thus, the sequence ¹Bnº is Cauchy if and only if the sequence ¹ƒnº is Cauchy. �
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