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1. Introduction

For a closed Riemannian surface .†; g/ the spectrum of the Laplace operator

acting on smooth functions, is purely discrete and can be written as

0 D �0 < �1.†; g/ � �2.†; g/ � �3.†; g/ � � � � �! 1;

where we repeat an eigenvalue as often as its multiplicity requires. Via the

variational characterization of eigenvalues this extends to a much larger class of

metrics with lower regularity properties. For details we refer to [18], which in

particular covers the metrics considered here.

The pioneering work of Hersch [13] and Yang and Yau [36] raised the natural

question, whether there are metrics g that maximize the scale-invariant quantities

N�1.†/ WD �1.†; g/ area.†; g/

if † is a closed surface of fixed topological type (see also [15, 19] for the case of

non-orientable surfaces). Such maximizers have remarkable properties. In fact,

they always arise as immersed minimal surfaces (of possibly high codimension)

in a sphere [9] and are unique in their conformal class unless they are branched

https://creativecommons.org/licenses/by/4.0/
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immersions into the two sphere [6, 23, 31]. By a slight abuse of notation, we also

call †, endowed with a maximizing metric, a ‘maximizer’.

For the statement of our results and related work, we need to introduce some

notation. We write † for a closed orientable surface of genus : Similarly, †K
ı

denotes a closed non-orientable surface of non-orientable genus ı:Here,K stands

for Klein. We briefly elaborate on these notions in Appendix A. Furthermore, we

use the common notation

ƒ1./ D sup
g
�1.† ; g/ area.† ; g/;

and similarly,

ƒK
1 .ı/ D sup

g
�1.†

K
ı ; g/ area.†K

ı ; g/;

with the supremum taken over all smooth metrics on † ; respectively †K
ı
:

Explicit values forƒ1./ orƒK
1 .ı/ are only known in very few cases. However,

in all of these cases not only the values but also explicit maximizing metrics are

known.

The case of the sphere is due to Hersch. We have ƒ1.S
2/ D 8� with unique

maximizer the round metric [13]. His arguments are very elegant and a corner-

stone in the development of the subject. For the real projective plane, we have

ƒ1.RP
2/ D 12� with unique maximizer the round metric [19]. The proof ex-

tends the ideas from [13] in a conceptually very nice way.

The first result for higher genus surfaces is due to Nadirashvili, namely

ƒ1.T
2/ D 8�2=

p
3 with unique maximizer the flat equilateral torus [25]. Nadi-

rashvili’s arguments are very different from the previously employed methods.

The crucial step in his proof is to obtain the existence of a maximizer. Using [23]

(see also [6]) it follows that such a maximizer necessarily has to be flat. The sharp

bound follows then from earlier work of Berger [2].

For the Klein bottle,ƒ1.K/ D 12�E.2
p
2=3/with unique maximizer a metric

of revolution [6, 8, 25]. HereE is the complete elliptic integral of the second kind.

There is also a conjecture concerning the sharp bound on genus 2 surfaces [14],

a proof of which has very recently been given by Nayatani and Shoda in [31].

Let us also mention that there are quite some results concerning similar ques-

tions for higher order eigenvalues, see e.g. [29, 33] and [26, 30, 17] for the case

of S2 and [27, 16] for the case of RP 2.

The growing interest in finding maximizers for eigenvalue functionals on

surfaces starting from Nadirashvili’s paper [25] is certainly connected to the
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connection of the problem to minimal surfaces in spheres. Similarly, for the

Steklov eigenvalue problem, there is a connection to free boundary minimal

surfaces in Euclidean balls. In pioneering work Fraser and Schoen showed the

existence of maximizers for the first Steklov eigenvalue on surfaces with boundary

of genus 0 [11].

Recently, Petrides used many of the ideas in [11] to prove the following

beautiful result concerning metrics realizing ƒ1./:

Theorem 1.1 (Theorem 2 in [32]). If ƒ1. � 1/ < ƒ1./, there is a metric g on
† D † , which is smooth away from finitely many conical singularities, such that

�1.†; g/ area.†; g/ D ƒ1./:

We extend this to non-orientable surfaces. Since non-orientable surfaces can

degenerate to non-orientable surfaces as well as orientable ones, we need to make

two instead of only a single spectral assumption.

Theorem 1.2. If ƒK
1 .ı � 1/ < ƒK

1 .ı/ and ƒ1.b.ı � 1/=2c/ < ƒK
1 .ı/, there is a

metric g on † D †K
ı

, which is smooth away from at most finitely many conical
singularities, such that

�1.†; g/ area.†; g/ D ƒK
1 .ı/:

Our methods are very similar to those in [32]. In addition to the cases al-

ready handled by Petrides, we also need to take care of degenerating one-sided

geodesics.

The non-strict inequality ƒ1. � 1/ � ƒ1./ was proved by Colbois and

El Soufi in [7] using a result of Anné [1]. It is easy to obtain the non-strict versions

of the inequalities assumed in Theorem 1.2 along the same lines, see also [20].

In [20] we prove the monotonicity ƒ1. � 1/ < ƒ1./ under some extra assump-

tions on the maximizing metric using a relatively simple glueing construction.

In [21], by means of a much more complicated glueing construction and using

Theorem 1.1 and Theorem 1.2, we prove all of the spectral gap conditions as-

sumed in Theorem 1.1 and Theorem 1.2 above. In particular, this implies the

existence of maximizing metrics on closed surfaces of any topological type.

Theorem 1.3 (Theorem 1.3 in [21] using Theorem 1.1 and Theorem 1.2). Let †
be a closed surface. Then there is a metric g on †, which is smooth away from at
most finitely many conical singularities, such that

�1.†; h/ area.†; h/ � �1.†; g/ area.†; g/

for any smooth metric h on †.
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Outline. In Section 2 we prove that the set of orientable, hyperbolic surfaces

with injectivity radius bounded below is a compact subset of the moduli space.

This is a version of the Mumford compactness criterion for non-orientable sur-

faces. We use this result in the main section, namely Section 3, in which we prove

Theorem 1.2.

Acknowledgements. The authors would like to thank the Max Planck Institute

for Mathematics in Bonn for financial support and excellent working conditions.

2. Compactness for non-orientable surfaces

The Mumford compactness criterion [24] states that the set of orientable, hyper-

bolic surfaces with injectivity radius bounded below is a compact subset of the

moduli space. In this section we show that the Mumford argument for orientable

surfaces holds for the non-orientable case as well.

Given any Riemannian metric g0 on † D †K
ı
; the Poincaré uniformization

theorem asserts that we can find a new metric on † which is conformal to g0 and

has constant curvature C1; 0; or �1; depending on the sign of �.†/: Assuming

ı � 3; these metrics have curvature �1: Let hk be a sequence of such metrics on

† with injectivity radius bounded uniformly from below, inj.†; hk/ � c > 0: The

goal is to prove that there exist diffeomorphisms �k of † and a hyperbolic metric

h of †, such that ��
k
hk converges smoothly to h as k ! 1. Our strategy is to

apply the Mumford compactness criterion to the orientation double covers of the

surfaces .†; hk/:

Consider the orientation double cover y† D †ı�1 of † endowed with the

pullback metrics of hk; denoted by Ohk : Since ı � 3; these are orientable hyperbolic

surface of genus ı � 1 and may thus be regarded (if we also fix a marking) as

elements in Teichmüller space Tı�1; which in addition admit fixed point free,

isometric, orientation reversing involutions �k :

We have the following lemma.

Lemma 2.1. Assume that infk inj.†K
ı
; hk/ > 0: Then there exists a sequence

of diffeomorphisms �k W†ı�1 ! †ı�1; such that, up to taking a subsequence,
��

k
Ohk ! Oh in C1: Moreover, .†ı�1; Oh/ admits a fixed point free, isometric, ori-

entation reversing involution �, which is obtained as a C 1-limit of the involutions
��1

k
ı �k ı �k :
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Proof. As above, we simply write † instead of †K
ı
; and y† instead of †ı�1:

It is elementary to see that inj.y†; Ohk/ � inj.†; hk/: Therefore, we can apply

the Mumford compactness criterion [24] and find diffeomorphisms �k and a limit

metric Oh as asserted.

It remains to show that we can find the involution �: Since ��
k

Ohk ! Oh in C1;

we have the uniform Lipschitz bound

d Oh
..��1

k ı �k ı �k/.p/; .�
�1
k ı �k ı �k/.q//

� Cd
��

k
Ohk
..��1

k ı �k ı �k/.p/; .�
�1
k ı �k ı �k/.q//

D Cd
��

k
Ohk
.p; q/

� Cd Oh
.p; q/:

Similarly, we obtain a uniform bound on kD�k
C 0;1. y†; Oh/

. Since y† is compact, it

follows from Arzelà–Ascoli, that, up to taking a subsequence, ��1
k

ı �k ı �k ! � in

C 1.y†; Oh/: We have

d Oh
.�.p/; �.q// � lim

k!1
d

��

k
Ohk
.�.p/; .��1

k ı �k ı �k/.p//

C lim
k!1

d
��

k
Ohk
..��1

k ı �k ı �k/.p/; .�
�1
k ı �k ı �k/.q//

C lim
k!1

d
��

k
Ohk
..��1

k ı �k ı �k/.q/; �.q//

� C lim
k!1

d
C 0. y†; Oh/

.��1
k ı �k ı �k ; �/

C lim
k!1

d
��

k
Ohk
..��1

k ı �k ı �k/.p/; .�
�1
k ı �k ı �k/.q//

D d Oh
.p; q/;

(2.2)

using that ��
k

Ohk ! Oh in C1; and ��1
k

ı �k ı �k ! � in C 0.y†; Oh/: Observe that � is

an involution again, hence (2.2) implies that actually

d Oh
.�.p/; �.q// D d Oh

.p; q/:

By the Myers–Steenrod theorem it thus follows that � is a smooth, isometric

involution.

We need to show that � does not have any fixed points. But this is a consequence

of the general bound d
��

k
Ohk
..��1

k
ı �k ı �k/.p/; p/ � c > 0 for some uniform c: To

prove this let c > 0 be such that B Oh
.x; 2c/ � y† is strictly geodesically convex for

any x 2 y†: Then B
��

k
Ohk
.x; c/ is strictly geodesically convex for k � K sufficiently

large. Assume now that there is k � K; such that d Ohk
..��1

k
ı �k ı �k/.p/; p/ < c:
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Let  be the unique minimizing geodesic connecting p to .��1
k

ı �k ı �k/.p/: Since

��1
k

ı �k ı �k is an isometry, we need to have im.��1
k

ı �k ı �k ı / D im : Since

�k is fixed point free,  is non-constant. Therefore, ��1
k

ı �k ı �k restricted to im 

induces an involution of the interval Œ0; 1�mapping 0 to 1 and vice versa. But such

an involution needs to have a fixed point. It follows that �k has a fixed point for

large k, which is a contradiction.

Finally, note that � is orientation reversing by C 0-convergence. �

Since ��1
k

ı �k ı �k ! � in C 1 it follows that the metric Oh on y† is �-invariant.

Therefore, it induces a smooth hyperbolic metric h on†:Moreover, the hyperbolic

metrics on † induced from ��
k
hk and ��1

k
ı �k ı �k converge smoothly to h on †:

Finally, observe that the diffeomorphisms �k induce diffeomorphisms �k of †;

such that ��
k
hk are the metrics described above and converge smoothly to h:

Thus we have proved the following proposition.

Proposition 2.3. Let .hk/ be a sequence of hyperbolic metrics on †K
ı

such that
their injectivity radius is uniformly bounded from below inj.†K

ı
; hk/ � c > 0:

Then there are diffeomorphisms �k of †K
ı

and a hyperbolic metric h; such that
��

k
hk ! h smoothly.

3. Maximizing the first eigenvalue

In this section we extend [32, Theorem 2] to the non-orientable case. The strategy

is the same as in [32]. That is, we first use that we can maximize the first eigenvalue

in each conformal class. We then pick a maximizing sequence, consisting of

maximizers in their own conformal class. This has the advantage, that these

metrics can be studied in terms of sphere-valued harmonic maps. Using these

harmonic maps it is possible to estimate the first eigenvalue along the maximizing

sequence in case that the conformal class degenerates. To do so, we extend the

results from [37] to non-orientable surfaces.

For fixed non-orientable genus ı � 3; let ck be a sequence of conformal classes

on † D †K
ı

represented by hyperbolic metrics hk; such that

lim
k!1

sup
g2ck

�1.†; g/ area.†; g/ D ƒK
1 .ı/:

We will now use the following result due to Nadirashvili–Sire (with an extra

assumption not relevant for our purposes) and, independently, Petrides.
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Theorem 3.1 ([28, Theorem 2.1] or [32, Theorem 1]). For each conformal class
ck as above, there is a metric gk ; which is smooth away from finitely many conical
singularities, such that

�1.†; gk/ area.†; gk/ D sup
g2ck

�1.†; g/ area.†; g/:

From now on we assume that gk 2 ck is picked as in the preceding theorem.

Moreover, we assume that they are normalized to have

area.†; gk/ D 1:

Since these metrics are maximizers, there is a family of first eigenfunctions

uk
1 ; : : : ; u

k
`.k/C1

; such that ˆk D .uk
1 ; : : : ; u

k
`.k/C1

/W .†; hk/ ! S`.k/ is a harmonic

map [10]. Since the multiplicity of �1 is uniformly bounded in terms of the

topology of† [3, 5], we may pass to a subsequence, such that `.k/ is some constant

number l . Moreover, in this situation the maximizing metrics can be recovered by

gk D
jrˆk j2

hk

�1.†; gk/
hk:

In view of Proposition 2.3, we want to show the following proposition.

Proposition 3.2. The injectivity radius of hk is uniformly bounded from below,
provided that ƒK

1 .ı/ > ƒ1.ı � 1/; and ƒK
1 .ı/ > ƒ

K
1 .ı � 1/:

We will argue by contradiction and assume inj .†; hk/ ! 0: The Margulis

lemma implies that we can find closed geodesics 1
k
; : : : ;  s

k
in .†; hk/; such that

their lengths go to zero, i.e. lhk
.k

i / ! 0; as k ! 1. We assume that s is chosen

maximal with this property.

Each of these geodesics is either one-sided or two-sided. If a such a geodesic

is two-sided, tubular neighborhoods are described by the classical collar lemma

for hyperbolic surfaces [4]. In the second case we may apply the collar lemma to

the orientation double cover as follows.

Let c be a one-sided closed geodesic in †: We write y† for the orientation

double cover and � for the non-trivial deck transformation. The lifts of c to y† can

not be closed, since in this case they would be disjoint and it would follow that

c is two-sided. Thus the lifts c1 and c2 are geodesic segments with � ı c1 D c2:

Let C be a collar around the closed geodesic c2 � c1: It is not very difficult to see

that the action of � near c2 � c1 is just given by rotation about � and reflection at

c2 � c1: Therefore, � maps C to itself (by the explicit construction of C), so that we

can use C=� as a tubular neighborhood of c.
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Our first goal is to prove that for the situation at hand the volume, measured

with respect to gk, either concentrates in the neighborhood of a pinching geodesic,

or in one connected component of the complement of these neighborhoods. Before

stating and proving this result we need to introduce some notation, which we

borrow from Section 4 in [32].

We write s1 for the number of one-sided closed geodesics with length going

to 0. Moreover, we denote by s2 the number of such geodesics that are two-sided.

Clearly, s D s1 C s2 and 0 � s1; s2 � s. From now on we assume that the closed

geodesics  i
k

are ordered such that the first s1 geodesics are one-sided. Moreover,

we write l i
k

D lhk
. i

k
/ for the hyperbolic length of the short geodesics.

For all s1 C 1 � i � s the collar theorem [4] asserts the existence of an open

neighborhood P i
k

of  i
k

isometric to the following truncated hyperbolic cylinder

C
i
k D

®

.t; �/ j �wi
k < t < w

i
k; 0 � � < 2�

¯

with

wi
k D �

l i
k

�

� � 2 arctan
�

sinh
l i
k

2

��

endowed with the metric

�
l i
k

2� cos
� li

k

2�
t
�

�2

.dt2 C d�2/:

Below we identify .�; t / D .0; t / with .�; t / D .2�; t/. Thus the closed geodesic

 i
k

corresponds to ¹t D 0º.
By the discussion above and the collar theorem again, we get that for all

1 � i � s1, there exists an open neighborhood P i
k

of  i
k

isometric to the following

truncated Möbius strip

M
i
k D ¹.t; �/ j �wi

k < t < w
i
k; 0 � � < 2�º= �

with

wi
k D �

2l i
k

.� � 2 arctan.sinh l ik//

endowed with the metric

�
2l i

k

2� cos
�2li

k

2�
t
�

�2

.dt2 C d�2/:

Moreover, the equivalence relation � is given by identifying .t; �; / � .�t; �C�/,
where � C � 2 R=2�R. Hence, the closed geodesic  i

k
corresponds to ¹t D 0º.
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We denote by †1
k
; : : : ; †r

k
the connected components of† n

Ss
iD1 P

i
k
. Conse-

quently, † can be written as the disjoint union

† D
� s

[

iD1

P i
k

�

[
� r

[

j D1

†
j

k

�

:

For s1 C 1 � i � s and 0 < b < wi
k

we denote by P i
k
.b/ the truncated hyperbolic

cylinder whose length, compared to P i
k
, is reduced by b, i.e.,

P i
k.b/ D ¹.t; �/; �wi

k C b < t < wi
k � bº:

Analogously, for 1 � i � s1 and 0 < b < wi
k
, we introduce

P i
k.b/ D ¹.t; �/; �wi

k C b < t < wi
k � bº= � :

Finally, we denote by†
j

k
.b/ the connected components of† n

Ss
iD1 P

i
k
.b/ which

contains †
j

k
.

We are now ready to prove the above mentioned result, namely, that the volume

either concentrates in the neighborhood of a pinching geodesic P i
k
, or in one

connected component †
j

k
of the complement of these neighborhoods.

Lemma 3.3. There exists D > 0 such that one of the two following assertions is
true:

(1) there exists an i 2 ¹1; : : : ; sº such that

areagk
.P i

k.ak// � 1 � D

ak

for all sequences ak ! C1 with ak

wi
k

! 0 as k ! C1 for all 1 � i � s;

(2) there exists a j 2 ¹1; : : : ; rº such that

areagk
.†

j

k
.9ak// � 1 � D

ak

for all sequences ak ! C1 with ak

wi
k

! 0 as k ! C1 for all 1 � i � s.

Proof. The proof of Claim 11 in [32] can easily be adapted to the present situation.

First recall the rough strategy of the proof: construct suitable test functions

for �1.†; gk/ in the P i
k

and the †
j

k
’s, apply the min-max formula for the first

eigenvalue and prove the claim by contradiction. More precisely, on y†; the test

functions are constructed with linear decay in the t variable in neck regions of
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the type yP i
k
.2ak/ n yP i

k
.3ak/ and yP i

k
.1ak/ n yP i

k
.2ak/; respectively, where the hat

indicates that we consider the preimages under the covering map y† ! †: By

conformal invariance, the Dirichlet energy of these can be estimated using the

hyperbolic metric and decays like a�1
k
: From the construction it is clear that these

functions are invariant under the relevant involutions. From this point on, one can

just follow the arguments in [32]. �

Below we consider the two possible cases of the preceding lemma separately.

The following lemma deals with the first case, i.e. when the volume concentrates

in one of the P i
k
. We show that in this case we would have ƒK

1 .ı/ � 8� if  i
k

is

2-sided; and ƒK
1 .ı/ � 12� if  i

k
is 1-sided.

Lemma 3.4. Suppose that there exists an i 2 ¹1; : : : ; sº such that

areagk
.P i

k.ak// � 1� D

ak

for all sequences ak ! C1 with ak

wi
k

! 0 as k ! C1 for all 1 � i � s.

(1) If  i
k

is 2-sided, then ƒK
1 .ı/ � 8� .

(2) If  i
k

is 1-sided, then ƒK
1 .ı/ � 12� .

Proof. In [32], Petrides proved the first statement by following ideas of Girouard

(see [12]). The proof of the second statement is carried out analogously.

By assumption, there exists an i 2 ¹1; : : : ; sº, such that the volume concen-

trates on Pk WD P i
k
. On Pk we have coordinates .t; �/ as above (on Mk). By the

assumptions on the volume and ak , we can find cut-off functions �k which are 1

on Pk.ak/ and 0 outside Pk; and satisfy

Z

†

jr�k j2dvgk
! 0: (3.5)

We denote by C D .�1;1/ � S1 the infinite cylinder with its canonical coordi-

nates .t; �/ 2 .�1;1/� Œ0; 2�/. Let �WC ! S2 � R3 be given by

�.t; �/ D 1

e2t C 1
.2et cos.�/; 2et sin.�/; e2t � 1/:

Observe that this induces a map  WM ! RP
2.

p
3/ if we divide by the Z=2-ac-

tions that we have on both sides. More precisely, M D C= �; where .t; �/ �
.�t; � C �/ as above, and on S2 we simply take the antipodal map. If we de-

note by vWRP
2.

p
3/ ! S4 the Veronese map, the concatenation v ı �WM ! S4
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is a conformal map [12]. We may regard Mk � M using Fermi coordinates as

introduced above.

By a theorem of Hersch [13], there exists a conformal diffeomorphism �k of S4,

such that
Z

Pk

.� ı �k ı v ı �/�kdvgk
D 0;

where � W S4 ,! R5 is the standard embedding. Set ui
k

D .�i ı �k ı v ı �/�k. By

construction, we have

5
X

iD1

Z

Mk

.ui
k/

2dvgk
� 1 � D

ak

;

since areagk
.P i

˛.ak// � 1� D
ak

. Using conformal invariance and (3.5), one easily

finds that
Z

†

jruk j2gk
dvgk

� 12� C o.1/:

For details we refer to [12]. Consequently, there is i D i.k/ 2 ¹1; : : : ; 5º; such

that

�1.†; gk/ �
R

M
jrui

k
j2gk
dvgk

R

M
.ui

k
/2dvgk

� 12� C o.1/:

This finally implies

ƒK
1 .ı/ � lim sup

k!1

�1.†; gk/ � 12�;

which establishes the claim. �

We are thus left with the case second case from Lemma 3.3. In this case, we

have the following lemma, which concludes the proof of Proposition 3.2.

Lemma 3.6. Suppose that the second alternative from 3.3 holds, then either

(i) ƒK
1 .ı/ � ƒK

1 .ı � 1/, or

(ii) ƒK
1 .ı/ � ƒ1./;

where  D b.ı � 1/=2c:
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Proof. Again, we apply the machinery from [32] to the orientation cover. The

essential point is to keep track of the geometry of the corresponding involutions.

Denote by .y†; Ohk/ the orientation covers of .†; hk/; and by �k the corresponding

deck transformations.

We can then identify the spectrum of the Laplacian for any metric g in Œhk�

with the spectrum of the Laplacian acting only on the even functions on .y†; Og/:
We consider the associated harmonic maps ˆk W .†; gk/ ! Sl : By conformal

invariance, we can also view these as harmonic maps from .†; hk/ to Sl . In this

situation, the metric can be recovered by

gk D
jrˆk j2

hk

�1.†; gk/
hk;

see [32, proof of Theorem 1]. By pulling back the ˆk’s to y†; we obtain even

harmonic maps ŷ
k W .y†; Ohk/ ! Sl ; such that

Ogk D
jr ŷ

k j2
Ohk

�1.†; gk/
Ohk:

With out loss of generality, we may assume that the volume (with respect

to gk) concentrates in †1
k
.9ak/: Denote by y†1

k
.9ak/ its preimage under the

covering projection. Note that this preimage might be disconnected. As in

[32, Section 4], there are a compact Riemann surface x† and diffeomorphisms

�k W x† n ¹p1; : : : ; prº ! y†1
k
.9ak/: Moreover, the hyperbolic metrics Nhk D ��

k
Ohk

converge in C1
loc.

x† n ¹p1; : : : ; prº/ to a hyperbolic metric Nh:
Observe, that we can restrict and pullback the involutions �k to get involutions

N�k of x† n ¹p1; : : : ; prº: Clearly, these involutions are isometric with respect to the

hyperbolic metrics Nhk :

In a next step, we construct a fixed point free limit involution on x†: For the

compact subsets x†c WD ¹x 2 x† j injx.
x†; Nh/ � cº; we can argue exactly as in

the proof of Lemma 2.1 to get limit involutions N�n on x†1=n: Since any isometric

involution must map x†c to itself, we may take subsequences, such that for m � n;

we have N�mjx†1=n
D N�n: Using a standard diagonal argument, we find a limit

involution on x† n ¹p1; : : : ; prº: Clearly, this involution extends to an involution

N� on all of x†: Moreover, N� is fixed point free: Arguing again as in Lemma 2.1,

we can not have fixed points different from the pi ’s. If say p1 is fixed under N�;
the involution is just rotation by � in a disc centered at p1: By C 0-convergence

away from p1; we see that the involutions O�k act just via rotation on the collars

around the degenerating geodesic. But this is impossible, since this implies that

O�k is orientation preserving.
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By [37], the pullbacks x̂
k of the harmonic maps ŷ

k along the diffeomorphisms

�k are then harmonic maps that converge in C1
loc.

x† n ¹p1; : : : ; pr ; x1; : : : ; xsº/ to

a limit harmonic map x̂ . Clearly, x̂ is invariant under N�: Note, that no energy

can be lost at the points xi or pi . By construction, no volume concentrates near

the closed geodesics bounding y†1
k
.9ak/ � y†, which implies that no energy is

lost at the points pi . Observe next, that the points xi always come in pairs by the

invariance of the harmonic maps. Moreover, from the construction of the limit

involution, it is clear, that two such points are bounded away from each other.

Therefore, energy concentration of the harmonic maps in a point xi implies that

the volume with respect to the metric gk concentrates at a point in †. But by [18,

Lemma 2.1 and 3.1] this implies

ƒK
1 .ı/ D lim

k!1
.†; gk/ � 8�:

Finally, the energy identity from [37] implies that there is also no energy lost in the

necks. Let Nh0 be the hyperbolic metric in the conformal class of the cusp compact-

ification of .x†n¹p1; : : : ; prº; Œ Nh�/. Since x̂ W .x†n¹p1; : : : ; psº; Œ Nh0�/ ! Sl has finite

energy, x̂ extends to a harmonic map .x†; Œ Nh0�/ ! Sl [34, Theorem 3.6]. More-

over, this extension is certainly invariant under N�: In conclusion, x̂ W .x†; Nh0/ ! Sl

is an N� invariant harmonic map with energy

Z

x†

jr x̂ j2dv Nh0
D lim

k!1

Z

y†

jr ŷ
k jdv Ohk

:

We consider the metric

Ng D
jr x̂ j2Nh0

ƒK
1 .ı/

Nh0

and observe that it is invariant under the involution N�; so that it descends to a metric

g on x†=N�: Since there is no energy lost along the sequence x̂
k of harmonic maps,

we have

area.x†=N�; g/ D 1:

Using that the capacity of a point relative to any ball is 0 [22, Chapter 2.2.4], it is

easy to construct N�k-invariant cut-offs �";k on x†with the following two properties.

For " small, there are neighborhoods U" � V" of ¹p1; : : : ; prº such that

�
T

">0 V" D ¹p1; : : : ; prº;
� �";k D 0 in U";

� �";k D 1 outside V"; and

�
R

x† jr�";kj2dv Ng � "2:
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We write Ngk D ��
k
. Ogk/. Let u be the lift of a first eigenfunction of .x†=N�; g/

to x†. Using �";ku as a test function on y†k.9ak/ for k large enough, we find with

the help of the dominated convergence theorem that

ƒK
1 .ı/ D lim

k!1
�1.†; gk/

� lim sup
"!0

lim
k!1

R

x† jr.�";ku/j2dv Ogk
R

x† j�";kuj2dv Ngk
�

�R

x† �";kudv Ngk

�2

� lim sup
"!0

R

x† jruj2dv Ng C C"
R

x†nV"
juj2dv Ng �

�R

x† udv Ng

�2

�
R

y†
jruj2dv Ng

R

x† juj2dv Ng

� �1.x†=N�; g/:

If x† is disconnected, it has two connected components and the genus of each

component is at most b.ı � 1/=2c: Therefore, the quotient x†=N� is an orientable

surface of genus at most b.ı � 1/=2c in this case and thus

ƒK
1 .ı/ � ƒ1.b.ı � 1/=2c/

thanks to [7]. In case x† is connected, the quotient is non-orientable of non-

orientable genus at most ı � 1 and we have that

ƒK
1 .ı/ � ƒK

1 .ı � 1/

again thanks to [7].1 �

Thanks to the weak inequality ƒK
1 .ı C 1/ � ƒK

1 .ı � 1/ and the fact that

ƒK
1 .2/ > 12�; we can always rule out the first scenario from Lemma 3.3. Thanks

to [19] and [6, 8, 25] our main result Theorem 1.2 follows from the theorem below.

Theorem 3.7. Let ı � 3: IfƒK
1 .ı/ > max¹ƒK

1 .ı�1/; ƒ1.b.ı�1/=2c/º; there is a
metric smooth away from finitely many singularities on †K

ı
that achieves ƒK

1 .ı/:

Proof. By the assumptions, Proposition 2.3, and Proposition 3.2, we can take

hyperbolic metrics hk ! h in C1; such that

lim
k!1

sup
g2Œhk�

�1.†; g/ area.†; g/ D ƒK
1 .ı/:

1 More precisely, the non-orientable version of the result.
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As above, we take unit volume metrics gk 2 Œhk �; such that

�1.†; gk/ D sup
g2Œhk�

�1.†; g/ area.†; g/:

For the corresponding sequence of harmonic mapsˆkW .†; hk/ ! Sl no bubbling

can occur since this would imply ƒK
1 .ı/ � 8�; by the same argument as above.

Therefore, we can take a subsequence such that ˆk ! ˆ in C1; which implies

that gk ! g D jrˆj2
h

ƒK
1

.ı/
h in C1: In particular,

�1.†; g/ area.†; g/ D ƒK
1 .ı/

and g is smooth away from the branch points of ˆ: The number of branch points

is finite and the branch points correspond to conical singularities of g [35]. �

A. Topology of surfaces

For convenience of the reader and the authors, we review here the notion of non-

orientable genus.

Recall the classification of closed surfaces. The classes of closed orientable

and non-orientable surfaces are both uniquely described up to diffeomorphism

by the Euler characteristic. More precisely, any closed orientable surface is

diffeomorphic to a surface of the form

† D S
2# T 2# : : :#T 2

„ ƒ‚ …

 times

;

and any closed non-orientable surface is diffeomorphic to a surface of the form

†K
ı D S

2#RP 2# : : :#RP 2

„ ƒ‚ …

ı times

:

These two families provide – up to diffeomorphism – a complete list of all ori-

entable respectively non-orientable closed surfaces. We call  the genus of †

and ı the non-orientable genus of †K
ı
: Note that with this convention, the real

projective plane has non-orientable genus 1. We have �.† / D 2 � 2 and

�.†K
ı
/ D 2 � ı; so that the orientation cover of †K

ı
is given by †ı�1: Some

authors prefer to refer to the genus of the orientation cover as the non-orientable

genus. As explained above these two definitions differ. Moreover, recall that we

have the relation

S
2#RP 2# : : :#RP 2

„ ƒ‚ …

ı times

Š S
2# T 2# : : :#T 2

„ ƒ‚ …

k times

#RP 2# : : :#RP 2

„ ƒ‚ …

.ı�2k/ times

;

if 2k < ı:
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