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Abstract. In this paper, we proved Anderson localization for the following long-range

operator

H D tan �
�

x0 C my0 C
m.m � 1/

2
!

�

ımn C �S� ;

which generalized the Maryland model to potentials given by skew shifts.
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1. Introduction and main result

Spectral theory of Schrödinger operators is an important topic in both physics and

mathematics. Let us begin with the Maryland model

H D � tan �.x C n!/ınn0 C �; (1.1)

where � > 0 is the coupling, x 2 T D R=Z is the phase, ! 2 RnQ is the

frequency, � is the lattice Laplacian on Z

�.n; n0/ D

´

1 jn � n0j D 1;

0 jn � n0j ¤ 1.

This is an unbounded self adjoint operator on l2.Z/. We assume

x C n! �
1

2
… Z; for n 2 Z;

to make the operator well defined.

https://creativecommons.org/licenses/by/4.0/
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The Maryland model was originally proposed in physics paper [8]. Simon [14]

proved Anderson localization for the Maryland model H (1.1) with Diophantine

frequencies !. Anderson localization means that H has pure point spectrum with

exponentially decaying eigenfunctions. Recently, using transfer matrix and Lya-

pounov exponent, Jitomirskaya and Yang [12] developed a constructive method to

prove Anderson localization for the Maryland model. More exactly, Jitomirskaya

and Liu [10] proved arithmetic spectral transitions for the Maryland model.

Schrödinger operators can be generalized to long range operators. For exam-

ple, consider the following long-range operator

H!.x/ D cos.x C n!/ınn0 C �S� ; (1.2)

where S� is a Toeplitz operator

S�.n; n0/ D O�.n � n0/

and � is real analytic, O�.n/ is the n-th Fourier coefficient of �. Bourgain and

Jitomirskaya [5] proved that there is �0 D �0.�/ > 0, such that if 0 < � < �0,

H!.x/, defined in (1.2), satisfies Anderson localization for .x; !/ 2 T2 in a set

of full measure. This result is non-perturbative, since �0 does not depend on !.

Note that in the long range case, we cannot use the transfer matrix formalism. In

this paper, we focus on 1D quasi-periodic operators. For quasi-periodic operators

on Zd , we only mention the recent progress made by Jitomirskaya, Liu and

Shi [11].

The Maryland model has many generalizations. Using KAM methods, Bel-

lissard, Lima, and Scoppola [6] generalized localization results of the Maryland

model to v-dimensional incommensurate structures. This result is perturbative.

Recently, Kachkovskiy [13] established non-perturbative Anderson localization

for a wide class of quasi-periodic Schrödinger operators with unbounded mono-

tone potentials, extending the classical localization results of the Maryland model.

The authors [15] gave a non-perturbative proof of Anderson localization for the

Maryland model with long range interactions

H.x/ D tan �.x C n!/ınn0 C �S� : (1.3)

Note that for all operators mentioned above, potentials are given by shifts

T x D x C !: (1.4)

Now, let T be skew shifts

T .x1; x2/ D .x1 C x2; x2 C !/; .x1; x2/ 2 T2: (1.5)
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In this case, using transfer matrix and Lyapounov exponent, Bourgain, Goldstein,

and Schlag [4] proved Anderson localization for

H D �v.T nx/ C �: (1.6)

For long range case, Bourgain [1] considered the following operator

H.x/ D v.T mx/ımn C �m�n.T mx/ C �n�m.T nx/; (1.7)

where v is a real, nonconstant, trigonometric polynomial, �k are trigonometric

polynomials and T is the skew shift on T2. Using multi-scale method, Bourgain

proved Anderson localization for the operator (1.7).

In this paper, we will study a generalized Maryland model with potentials given

by skew shifts. More precisely, we consider the following operator

H.x/ D tan �.T mx/1ımn C �S� ; (1.8)

where T is the skew shift on T2 and .T mx/1 refers to the first coordinate of T mx.

To make the operator (1.8) well defined, we will always assume

.T mx/1 �
1

2
… Z; for all m 2 Z: (1.9)

We will prove the following result.

Theorem 1.1. Consider a lattice operator H!.x/ associated to the skew shift

T D T! of the form (1.8). Assume ! 2 DC (diophantine condition)

kk!k >  jkj�2 for all k 2 Z n ¹0º (1.10)

and � real analytic satisfying

j O�.n/j < e��jnj; for all n 2 Z; (1.11)

for some � > 0. Fix x0 2 T2. Then for almost all ! 2 DC and � taken sufficiently

small (depending on ; �), H!.x0/ satisfies Anderson localization.

In the long range case here, the transfer matrix formalism is not applicable.

Unlike shifts cases, we cannot obtain non-perturbative results in skew shifts cases.

Our basic strategy is the same as that in [1], but the main difficulty is that the

potential tan has singularity and the operator H is unbounded.

In order to prove Anderson localization, we need Green’s function estimates

for

GŒ0;N �.x; E/ D .RŒ0;N �.H.x/ � E/RŒ0;N �/
�1; (1.12)
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where Rƒ is the restriction operator to ƒ � Z. Note that

RŒ0;N �.H.x/ � E/RŒ0;N � D D.x/B.x/; (1.13)

where

D.x/ D diag
� 1

cos �x1

; : : : ;
1

cos �.T N x/1

�

: (1.14)

Hence

GŒ0;N �.x; E/ D B.x/�1D.x/�1: (1.15)

Since in D.x/�1, the singularity 1
cos

vanishes, we only need Green’s function esti-

mates for B.x/�1. We need to point out that B.x/ is not self-adjoint. Fortunately,

we find that multi-scale analysis still applies to this case. Since the operator H

is unbounded and the energy E is unbounded, we use the specific property of

trigonometric functions to overcome the difficulty of the unboundedness of the

energy E.

We summarize the structure of this paper. First, we will prove Green’s function

estimates in Section 2. Then we recall some facts about semi-algebraic sets in

Section 3 and give the proof of Anderson localization in Section 4.

We will use the following notations. For positive numbers a; b; a . b means

Ca � b for some constant C > 0. a � b means C is large. a � b means a . b and

b . a. N 1� means N 1�� with some small � > 0. For x 2 R, kxk D inf
m2Z

jx � mj,

for x D .x1; x2/ 2 T2, kxk D kx1k C kx2k .

2. Green’s function estimates

In this section, we will prove the Green’s function estimates using multi-scale

analysis in [1].

We need the following lemma.

Lemma 2.1 (Lemma 3.16 in [1]). Let A.x/ D ¹Amn.x/º1�m;n�N be a matrix-val-

ued function on Td such that

A.x/ is self-adjoint for x 2 Td ; (2.1)

Amn.x/ is a trigonometric polynomial of degree < N C1 ; (2.2)

jAmn.x/j < C2e�c2jm�nj; (2.3)

where c2; C1; C2 > 0 are constants.

Let 0 < ı < 1 be sufficiently small, M D N ı6

; L0 D N
1

100
ı2

; 0 < c3 < 1
10

c2:
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Assume that for any interval I � Œ1; N � of size L0, except for x in a set of

measure < e�Lı3

0 ,

k.RI A.x/RI /�1k < eL1�
0 ; (2.4)

j.RI A.x/RI /�1.m; n/j < e�c3jm�nj; m; n 2 I; jm � nj >
L0

10
: (2.5)

For fixed x 2 Td ; n0 2 Œ1; N � is called a good site if I0 D
�

n0 � M
2

; n0 C M
2

�

�

Œ1; N � and

k.RI0
A.x/RI0

/�1k < eM 1�

; (2.6)

j.RI0
A.x/RI0

/�1.m; n/j < e�c3jm�nj; m; n 2 I0; jm � nj >
M

10
: (2.7)

Denote �.x/ � Œ1; N � the set of bad sites. Assume that for any interval

J � Œ1; N � such that jJ j > N
ı
5 , we have

jJ \ �.x/j < jJ j1�ı : (2.8)

Then

kA.x/�1k < eN
1� ı

C.d/
; (2.9)

jA.x/�1.m; n/j < e�c0
3

jm�nj; jm � nj >
N

10
(2.10)

except for x in a set of measure < e
� Nı2

C.d/ , where C.d/ is a constant depending on

d and c0
3 > c3 � .log N /�8.

We also need the following ergodic property of skew shifts on T2.

Lemma 2.2 (Lemma 15.21 in [2]). Assume ! 2 DC, T D T! is the skew shift on

T2, � > L� 1
10 . Then

#¹n D 1; : : : ; L W kT nx � ak < �º < C�2L:

Remark 2.3. In the proof of Lemma 2.2, we only need to assume

kk!k >  jkj�2; for all 0 < jkj � L:

By Lemma 2.1, Lemma 2.2, we can prove the Green’s function estimates.

Proposition 2.4. Let T D T! be the skew shift and

Hmn.x/ D tan �.T mx/1ımn C �S�: (2.11)
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Assume � real analytic satisfying

j O�.n/j < e��jnj; for all n 2 Z (2.12)

for some � > 0 and ! satisfying

kk!k >  jkj�2; for all 0 < jkj � N; (2.13)

� is small ( depending on ; � ). Then for energy E,

kGŒ0;N �.x; E/k < eN 1�

; (2.14)

jGŒ0;N �.x; E/.m; n/j < e� �
100

jm�nj; 0 � m; n � N; jm � nj >
N

10
(2.15)

for x … �N .E/, where

mes �N .E/ < e�N �

; � > 0: (2.16)

Proof. Write

HŒ0;N �.x/ � E D DŒ0;N �.x/BŒ0;N �.x/; (2.17)

where

Dmn.x/ D

q

1 C .� O�.0/ � E/2

cos �.T mx/1

ımn; (2.18)

Bmm.x/ D
1

q

1 C .� O�.0/ � E/2

Œsin �.T mx/1 C .� O�.0/ � E/ cos �.T mx/1�;

(2.19)

Bmn.x/ D
� O�.m � n/ cos �.T mx/1

q

1 C .� O�.0/ � E/2

; m ¤ n: (2.20)

We will apply Lemma 2.1 to BŒ0;N �.x/. Note that BŒ0;N �.x/ is not self-adjoint.

However, in the proof of Lemma 2.1, we don’t need (2.1). Since

T m.x1; x2/ D
�

x1 C mx2 C
m.m � 1/

2
!; x2 C m!

�

; (2.21)

Bmn.x/ is a trigonometric polynomial of degree < jmj. (2.3) holds with C2 D 1;

c2 D �.

We need to prove

mes¹x 2 T2W there exist m and n; with 0 � m; n � N; such that

jBŒ0;N �.x/�1.m; n/j > e
N 1��c3jm�nj�

jm�nj> N
10 º < e�N ı3 (2.22)
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for some c3 > �
100

; 0 < ı < 1.

By

j sin �x C .� O�.0/ � E/ cos �xj

D

q

1 C .� O�.0/ � E/2j cos �.x � ˛/j; 0 < ˛ < 1;

using the fact

mes¹x 2 Œ0; 1�W j cos�xj < �º < �; for all 0 < � < 1;

we have

mes
h

x 2 Œ0; 1�
ˇ

ˇ

ˇ

1
q

1 C .� O�.0/ � E/2

j sin �x C .� O�.0/ � E/ cos �xj < �0

i

< �0:

(2.23)

Since T is a measure-preserving transformation,

mes
h

x 2 T2
ˇ

ˇ

ˇ

1
q

1 C .� O�.0/ � E/2

j sin �.T mx/1 C .� O�.0/ � E/ cos �.T mx/1j

< �0

i

< �0:

(2.24)

Hence

mesŒx 2 T2 j min
0�m�N0

jBmm.x/j < �0� < N0�0: (2.25)

If min
0�m�N0

jBmm.x/j > �0 > �, take �0 D e�N
1
2

0 ; � D e�N0 , by Neumann

expansion and (2.25), we have

jBŒ0;N0�.x/�1.m; n/j < eN
1
2

0
� �

2
jm�nj; m; n 2 Œ0; N0� (2.26)

except for x in a set of measure < e�cN
1
2

0 . So, (2.22) holds for an initial scale N0.

Assume (2.22) holds up to scale L0 D N
1

100
ı2

, since

BmC1;nC1.x/ D Bmn.T x/; (2.27)

(2.4) and (2.5) will hold for x outside a set of measure at most e�Lı3

0 . Denote

�.x/ � Œ0; N � the set of bad sites with respect to scale M D N ı6

. n0 … �.x/

means

jBŒ0;M �.T
n0� M

2 x/�1.m; n/j

D
ˇ

ˇ

ˇBŒn0� M
2

;n0C M
2

�.x/�1
�

m C n0 �
M

2
; n C n0 �

M

2

�ˇ

ˇ

ˇ

< e
M 1��c3jm�nj�

jm�nj> M
10 ; m; n 2 Œ0; M�:

(2.28)
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From the inductive hypothesis, we have

jBŒ0;M �.x/�1.m; n/j < e
M 1��c3jm�nj�

jm�nj> M
10 ; m; n 2 Œ0; M� (2.29)

for x … �0; mes �0 < e�M ı3

. By (2.28), (2.29), Lemma 2.1, we only need to

show that for any x 2 T2; N
ı
5 < L < N ,

#¹1 � n � L j T nx 2 �0º < L1�ı : (2.30)

Expressing (2.29) as a ratio of determinants and replacing cos; sin by trun-

cated power series, �0 may be viewed as a semi-algebraic set of degree at

most M 6. (For properties of semi-algebraic sets, see Section 3.) If r > e� 1
2 M ı3

,

by Proposition 3.2, �0 may be covered by at most M C
�

1
r

�

r-balls. Choosing

r D L� 1
20 > N �1 > e� 1

2 M ı3

, using Lemma 2.2, Remark 2.3, we have

#¹1 � n � L j T nx 2 �0º < M C
�1

r

�

r2L < LCı5C1� 1
20 < L1�ı :

This proves (2.30) and (2.22).

By (2.17),

GŒ0;N �.x; E/ D .HŒ0;N �.x/ � E/�1 D BŒ0;N �.x/�1DŒ0;N �.x/�1; (2.31)

hence

GŒ0;N �.x; E/.m; n/ D
cos �.T nx/1

q

1 C .� O�.0/ � E/2

BŒ0;N �.x/�1.m; n/; m; n 2 Œ0; N �:

(2.32)

By (2.31) and (2.32),

kGŒ0;N �.x; E/k � kBŒ0;N �.x/�1k; (2.33)

jGŒ0;N �.x; E/.m; n/j � jBŒ0;N �.x/�1.m; n/j; m; n 2 Œ0; N �: (2.34)

Proposition 2.4 follows from (2.22), (2.33), and (2.34). �

3. Semi-algebraic sets

We recall some basic facts of semi-algebraic sets in this section, which is needed in

Section 4. Let P D ¹P1; : : : ; Psº � RŒX1; : : : ; Xn� be a family of real polynomials

whose degrees are bounded by d . A semi-algebraic set is given by

S D
[

j

\

l2Lj

¹Rn j Plsjl 0º; (3.1)
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where Lj � ¹1; : : : ; sº; sjl 2 ¹�; �; Dº are arbitrary. We say that S has degree at

most sd and its degree is the inf of sd over all representations as in (3.1).

We need the following quantitative version of the Tarski-Seidenberg principle.

Proposition 3.1 ([7]). Let S � Rn be a semi-algebraic set of degree B , then any

projection of S is semi-algebraic of degree at most BC ; C D C.n/.

We also need the following fact.

Proposition 3.2 (Corollary 9.6 in [2]). Let S � Œ0; 1�n be semi-algebraic of degree

B . Let � > 0, mesn S < �n. Then S may be covered by at most BC .1
�
/n�1�-balls.

Finally, we will use the following lemma.

Lemma 3.3 (Lemma 15.26 in [2]). Let S � T3 be a semi-algebraic set of degree

B such that

mes S < e�B�

; � > 0:

Let M be an integer satisfying

log log M � log B � log M:

Then for any fixed x0 2 T2,

mesŒ! 2 T j there exists j � M such that .!; T j
! x0/ 2 S� < M �c ; c > 0;

where T! is the skew shift with frequency !.

4. Proof of Anderson localization

In this section, we give the proof of Anderson localization as in [3].

By application of the resolvent identity, we have the following

Lemma 4.1. Let I � Z be an interval of size N and ¹I˛º subintervals of size

M � N , N D e.log M /2
. Assume that, for all k 2 I , there is some ˛ such that

h

k �
M

4
; k C

M

4

i

\ I � I˛ (4.1)

and, for all ˛,

kGI˛
k < eM 1�

; jGI˛
.n1; n2/j < e� �

100
jn1�n2j; (4.2)

with n1; n2 2 I˛; jn1 � n2j > M
10

:
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Then

jGI .n1; n2/j < eM ; n1; n2 2 I; (4.3)

jGI .n1; n2/j < e� �
200

jn1�n2j; n1; n2 2 I; jn1 � n2j >
N

10
: (4.4)

Proof. For m; n 2 I , there is some ˛ such that

h

m �
M

4
; m C

M

4

i

\ I � I˛: (4.5)

By resolvent identity,

jGI .m; n/j � eM 1�

C
X

n12I˛;n2…I˛

jGI˛
.m; n1/je��jn1�n2jjGI .n2; n/j: (4.6)

If jm � n1j � M
8

, then jn1 � n2j � M
8

, hence

X

jm�n1j� M
8 ;m2…I˛

jGI˛
.m; n1/je��jn1�n2j � MeM 1�

e�� M
8 <

1

4
: (4.7)

If jm � n1j > M
8

, then jGI˛
.m; n1/j < e� �

100
jm�n1j, hence

X

jm�n1j> M
8

;m2…I˛

jGI˛
.m; n1/je��jn1�n2j < e� �

1000
M <

1

4
: (4.8)

By (4.6), (4.7), and (4.8),

max
m;n2I

jGI .m; n/j < eM 1�

C
1

2
max

m;n2I
jGI .m; n/j: (4.9)

(4.3) follows from (4.9).

Take m; n 2 I; jm � nj > N
10

, assume (4.5), by resolvent identity,

jGI .m; n/j �
X

n02I˛ ;n1…I˛

jGI˛
.m; n0/je��jn0�n1jjGI .n1; n/j

� M
X

jm�n1j> M
4

e�
�

100
jm�n1jjGI .n1; n/j

� M t
X

jm�n1j> M
4

;:::;jnt�1�nt j> M
4

e� �
100

.jm�n1jC���Cjnt�1�nt j/jGI .nt ; n/j (4.10)

where t � 10 N
M

.

If jn � nt j � M , then by (4.3) and (4.10),

jGI .m; n/j � M t N t eM � �
100

jm�nt j � e20 N
M

log N C2M � �
100

jm�nj < e� �
200

jm�nj:

(4.11)
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If t D 10 N
M

, then by (4.3) and (4.10),

jGI .m; n/j � M t N te� �
100

10N
M

M
4

CM � e20 N
M

log N CM � �
100

2N < e� �
100

jm�nj:

(4.12)

(4.4) follows from (4.11) and (4.12). This proves Lemma 4.1. �

Now we can prove the main result.

Theorem 4.2. Consider a lattice operator H!.x/ associated to the skew shift

T D T! of the form

H!.x/ D tan �.T mx/1ımn C �S� : (4.13)

Assume ! 2 DC (diophantine condition)

kk!k >  jkj�2; for all k 2 Z n ¹0º (4.14)

and � real analytic satisfying

j O�.n/j < e��jnj; for all n 2 Z (4.15)

for some � > 0. Fix x0 2 T2. Then for almost all ! 2 DC and � taken sufficiently

small( depending on ; � ), H!.x0/ satisfies Anderson localization.

Proof. By Shnol’s theorem [9], to establish Anderson localization, it suffices to

show that if � D .�n/n2Z; E 2 R satisfy

�0 D 1; j�nj < C jnj; jnj ! 1; (4.16)

H.x0/� D E�; (4.17)

then

j�nj < e�cjnj; jnj ! 1: (4.18)

Denote � D �.E/ � T2 the set of x such that

jGŒ�N;N �.x; E/.m; n/j < e
N 1��

�
100

jm�nj�
jm�nj> N

10 (4.19)

fails for some jmj; jnj � N . Let N1 D N C1 , C1 is a sufficiently large constant.

Then by Proposition 2.4,

mes �.E/ < e�N �

; (4.20)

#¹jj j � N1jT j x0 2 �º < N 1�ı
1 : (4.21)
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So, we may find an interval I � Œ0; N1� of size N such that

T j x0 … �; for all j 2 I [ .�I /: (4.22)

Hence

jGŒj �N;j CN �.x0; E/.m; n/j < e
N 1�� �

100
jm�nj�

jm�nj> N
10 ; m; n 2 Œj � N; j C N �:

(4.23)

By (4.16), (4.17), and (4.23), we have

j�j j � C
X

n12Œj �N;j CN �

n2…Œj �N;j CN �

e
N 1�� �

100
jj �n1j�

jj �n1j> N
10 e��jn1�n2jjn2j < e� �

200
N : (4.24)

Denoting j0 the center of I , we have

1 D �0 � kGŒ�j0;j0�.x0; E/kkRŒ�j0;j0�H.x0/RZnŒ�j0;j0��k: (4.25)

By (4.16) and (4.24), we have for jnj � j0,

j.RŒ�j0;j0�H.x0/RZnŒ�j0;j0��/nj

�
X

jn1j>j0

e��jn�n1jj�n1
j

�
X

j0<jn1j�j0C N
2

e��jn�n1je� �
200

N C C
X

jn1j>j0C N
2

e��jn�n1jjn1j < e� �
400

N :

(4.26)

By (4.25) and (4.26),

kGŒ�j0;j0�.x0; E/k > e
�

500
N ; (4.27)

hence

dist.E; spec HŒ�j0;j0�.x0// < e�
�

500 N : (4.28)

Denote

E! D
[

jj j�N1

spec HŒ�j;j �.x0/: (4.29)

It follows from (4.28) that if x …
S

E 02E!
�.E 0/, then

jGŒ�N;N �.x; E/.m; n/j < e
N 1�� �

100
jm�nj�

jm�nj> N
10 ; jmj; jnj � N: (4.30)
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Consider the set S � T3 � R of .!; x; E 0/, where

kk!k > cjkj�2; for all 0 < jkj � N; (4.31)

x 2 �.E 0/; (4.32)

E 0 2 E! : (4.33)

By Proposition 3.1,

Proj
T3 S is a semi-algebraic set of degree < N C ; (4.34)

and by (4.20),

mes.Proj
T3 S/ < e� 1

2
N �

: (4.35)

Let N2 D e.log N /2
,

RN D ¹! 2 T j .!; T j x0/ 2 Proj
T3 S; 9jj j � N2º: (4.36)

By (4.34), (4.35), (4.36), using Lemma 3.3, mesRN < N �c
2 ; c > 0. Let

R D
\

N0�1

[

N �N0

RN ; (4.37)

then, by Borel–Cantelli theorem, mesR D 0. We restrict ! … R.

If ! … RN , we have for all jj j � N2; .!; T j x0/ … Proj
T3 S , by (4.30),

jGŒj �N;j CN �.x0; E/.m; n/j < e
N 1�� �

100
jm�nj�

jm�nj> N
10 ; m; n 2 Œj � N; j C N �:

(4.38)

Let

ƒ D
[

1
4

N2<j <4N2

Œj � N; j C N � �
h1

4
N2; 4N2

i

;

by Lemma 4.1, we deduce from (4.38) that

jGƒ.x0; E/.m; n/j < e�
�

200 jm�nj; jm � nj >
N2

10
; (4.39)

and therefore

j�j j < e� �
4000

jj j;
1

2
N2 � j � N2: (4.40)

Since ! … R, by (4.37), there is some N0 > 0, such that for all N � N0;

! … RN . So, (4.40) holds for j 2
S

N �N0
Œ1

2
e.log N /2

; e.log N /2

� D Œ1
2
e.log N0/2

; 1/.

This proves (4.18) for j > 0, similarly for j < 0. Hence Theorem 4.2 follows. �
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