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Abstract. We study the properties of stationary G-chains in terms of their generating

functions. In particular, we prove an analogue of the Szegő limit theorem for symplectic

eigenvalues, derive an expression for the entropy rate of stationary quantum Gaussian

processes, and study the distribution of symplectic eigenvalues of truncated block Toeplitz

matrices. We also introduce a concept of symplectic numerical range, analogous to that

of numerical range, and study some of its basic properties, mainly in the context of block

Toeplitz operators.
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1. Introduction

A quantum state � in a bosonic Fock space �.Ck/ is a positive semidefinite oper-

ator with trace one. Let q1; p1I : : : I qk; pk be k pairs of position-momentum ob-

servables of a quantum system with k degrees of freedom satisfying the canonical

commutation relations. We introduce the observables .X1; X2; : : : ; X2k�1; X2k/ D
.q1; p1; : : : ; qk; pk/. Then if � has finite second moments, we write the covariance

matrix of � as A D ŒCov�.Xi ; Xj /�2k
i;j D1; where

Cov�.Xi ; Xj / D Tr
1

2
.X1X2 C X2X1/� � .Tr X1�/.Tr X2�/:
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The complete Heisenberg uncertainty principle for all the position and momentum

observables assumes the form of the following matrix inequality:

A C {

2
J2k � 0; (1.1)

where J2k D J2 ˚ � � � ˚ J2
„ ƒ‚ …

k times

with J2 D
�

0 1
�1 0

�

:

Following the terminology in [19], we call a real 2k � 2k positive definite

matrix A satisfying inequality (1.1) a G-matrix. A standard result in quantum

theory states that a k-mode, mean zero, Gaussian quantum state is uniquely

represented by its covariance matrix, which is a G-matrix. Conversely any 2k�2k

G-matrix is the covariance matrix of a unique (up to permutation) k-mode mean

zero quantum Gaussian state in the Fock space �.Ck/, see [17, 11]. Finite mode

quantum Gaussian states and quantum Gaussian processes have been extensively

studied in quantum optics, quantum probability, and quantum information – both

in theory as well as in experiments. A comprehensive survey of Gaussian states

and their properties can be found in the two books of Holevo [10, 11]. For

their applications to quantum information theory the reader is referred to the

survey article by Weedbrook et al. [29], Holevo’s book [11], and the new book

of Serafini [23].

In the present paper, our concern is with a stationary quantum Gaussian pro-

cess. This is a chain of finite mode (k mode) quantum Gaussian states exhibiting

stationarity. Let ¹�nº be a chain of quantum Gaussian states with covariance matri-

ces ¹Tnº. The stationarity property means that each Tn is a positive definite block

Toeplitz matrix such that Tn is the leading principal sub-matrix of TnC1. This se-

quence ¹Tnº gives rise to an infinite block Toeplitz matrix †. We call this chain

¹�nº of quantum Gaussian states a stationary quantum Gaussian process and the

infinite matrix † a G-chain [19]. Thus a G-chain † is an infinite block Toeplitz

matrix. The classical version of such objects has been well studied in probability

theory. (See for instance [12].) A study of the quantum version has been initiated

in [19, 20]. In order to study G-chains, we need to study properties of infinite

block Toeplitz matrices with blocks of size 2k � 2k. Every leading n � n princi-

pal block sub-matrix gives a covariance matrix of an nk-mode quantum Gaussian

state. Toeplitz matrices play an important part in the study of stationary processes

in classical probability theory as well. See, e.g., Grenander and Szegő [8].

Among real positive definite matrices, G-matrices are characterised by a sim-

ple property of their symplectic eigenvalues. Williamson’s theorem [32] tells us

that for every 2k � 2k real positive definite matrix A; there exists a symplectic
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matrix M such that

MAM T D d1.A/I2 ˚ � � � ˚ dk.A/I2;

where d1.A/ � � � � � dk.A/ are positive numbers uniquely determined by A.

These are uniquely determined by A: We call these numbers the symplectic eigen-

values of A. We can see that a matrix A is a G-matrix if and only if all its sym-

plectic eigenvalues dj .A/ � 1
2
: There has recently been considerable interest in the

study of various properties of symplectic eigenvalues (see for instance [1, 4, 6, 9]),

due to their close connection with quantum optics and thermodynamics [11, 15].

Given a k-mode quantum Gaussian state with covariance matrix A, the von

Neumann entropy of the state is given by

S.A/ D
k

X

j D1

2dj .A/ C 1

2
H

� 2dj .A/ � 1

2dj .A/ C 1

�

; (1.2)

where H is the Shannon entropy function given by

H.t/ D �t log t � .1 � t / log.1 � t /; 0 � t � 1;

and

H.0/ D H.1/ D 0:

See [5, 18], or [23], pp. 61–62. Let Tn be the covariance matrix of a k-mode

stationary quantum Gaussian process, truncated at level n: The entropy rate of the

process is defined as

lim
n!1

S.Tn/

n
:

An important problem in information theory has been the study of the entropy rate

of any given stationary process. This can be very complicated [3, 7]. The entropy

rate for a certain type of stationary quantum Gaussian process was calculated

in [19]. We compute the entropy rate for a more general class, namely, the

class of bounded partially symmetric stationary quantum Gaussian processes.

Let † D
�

Ai�j

�

be a G-chain corresponding to a stationary quantum Gaussian

process. We call this process bounded if † is a bounded operator on l2
2k

(the

space of square summable sequences of elements of C
2k). In this case † is

a Toeplitz operator generated by a matrix symbol zA in L1
2k�2k

: The process is

partially symmetric if A�n D An for all n 2 N: We show that a stationary

quantum Gaussian process is partially symmetric and bounded if and only if

its corresponding G-chain is generated by an zA in L1
2k�2k

such that zA.�/ is a

G-matrix for almost all �: The computation of the entropy rate requires a study of
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the distribution of symplectic eigenvalues of block Toeplitz matrices. To achieve

this we prove a symplectic analogue of a fundamental theorem for the distribution

of eigenvalues of Toeplitz matrices, well-known as the Szegő limit theorem [8, 14].

The classical Szegő theorem can be stated as follows. Suppose 'W .��; �/ ! R is

an essentially bounded function, and .Tn/ is the sequence of Hermitian Toeplitz

matrices generated by ': Then for every function f; continuous on the interval

Œess inf '; ess sup '�; one has

lim
n!1

1

n

n
X

j D1

f .�j .Tn// D 1

2�

�Z

��

f .'.x// dx; (1.3)

where �j .Tn/; j D 1; 2; : : : ; n; are the eigenvalues of Tn: Many different versions

and proofs of this theorem are available in the literature [2, 22, 24, 25, 26, 27, 28,

30, 31]. We prove an analogue of this theorem for symplectic eigenvalues, and

apply this to compute the entropy rate and to study the distribution of symplectic

eigenvalues of block Toeplitz matrices. In particular we prove that the union of

the set of all symplectic eigenvalues of truncated n � n block Toeplitz matrices

Tn. zA / is dense in the set of all symplectic eigenvalues of zA.�/ where zA.�/ varies

over the essential range of zA:

In classical operator theory, the numerical range is an important and useful

concept. We introduce an analogous notion of the symplectic numerical range and

study its basic properties. We show that the closure of the symplectic numerical

range of an operator is convex and contains the symplectic spectrum. We give a

relationship between the symplectic numerical ranges of truncated block Toeplitz

matrices and their symbol. This, in turn, helps us to have a better understanding of

the distribution of symplectic eigenvalues of the truncated block Toeplitz matrices.

The paper is organised as follows. We give some basic notations and results

in Section 2, introduce the notion of symplectic numerical range in Section 3,

and study some of its basic properties, especially in the context of block Toeplitz

operators. In Section 4 we prove a symplectic analogue of Szegő limit theorem,

and give its applications.

2. Preliminaries

We begin with some basic facts about Toeplitz operators. For proofs and other

details, the reader may refer to the book of Böttcher and Silbermann [2].

Let L1
k�k

denote the set of all functions zA D
�

zaij

�

from Œ��; �� to the set of

all k � k complex matrices, with zA.��/ D zA.�/ and zaij essentially bounded for
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all i; j D 1; : : : ; k: For an zA in L1
k�k

; we define

k zAk D ess sup
�2Œ��;��

k zA.�/k; (2.1)

where k zA.�/k denotes the operator norm of zA.�/: It is easy to see that k�k is a norm

on L1
k�k

: The space L1
k�k

is a C �-algebra with the usual operations. Let L2
k

be

the set of all functions Qx D . Qx1; : : : ; Qxk/ from Œ��; �� to C
k with Qx.��/ D Qx.�/

and Qx 2 L2 for all i D 1; : : : ; k: The space L2
k

is a Hilbert space with the inner

product

h Qx; zyi D 1

2�

�Z

��

h Qx.�/; zy.�/i d� D 1

2�

�Z

��

k
X

iD1

Qxi .�/zyi .�/ d�: (2.2)

With each zA in L1
k�k

; we can associate the multiplication map M zA on L2
k

defined

as

M zA. Qx/.�/ D zA.�/ Qx.�/; (2.3)

where Qx is here understood as a column vector. It can be verified that M zA is a

bounded linear operator on L2
k
; and kM zAk � k zAk: The space ¹M zAW zA 2 L1

k�k
º is

a C �-algebra, and the map zA 7! M zA is a surjective isomorphism. This implies

that

kM zAk D k zAk
for all zA in L1

k�k
:

Next let l2
k

be the set of all sequences of vectors Ox D .x0; x1; x2; : : :/; xi 2C
k ,

such that
P1

iD0 kxik2 < 1: Here the norm kxi k is the Euclidean norm of

xi D .x
.1/
i ; : : : ; x

.k/
i /. The space l2

k
is a Hilbert space with the inner product

given by

h Ox; Oyi D
1

X

iD0

hxi ; yii: (2.4)

Clearly this inner product induces the l2 norm on l2
k
: We denote this norm by k�k2:

In a similar way, l2
k
.Z/ is the Hilbert space of all square summable doubly infinite

sequences Ox of vectors with the l2 norm.

Throughout this paper, we denote the elements of L1
k�k

(L2
k
) by zA; zB; : : :

( Qu; Qx; : : :), the elements of l2
k

by Ou; Ox; : : : ; and the usual matrices (vectors) by

A; B; : : : (u; x; : : :), unless we mention otherwise.

Let zA 2 L1
k�k

: For each n 2 Z; let An be the nth Fourier coefficient of zA given

by

An D 1

2�

�Z

��

zA.�/e�{n� d�:
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Suppose that L. zA / is the doubly infinite k�k block Toeplitz matrix
�

Ai�j

�1
i;j D�1 :

Since l2
k
.Z/ and L2

k
are isomorphic Hilbert spaces, we can identify L. zA / with the

linear operator M zA defined in (2.3). Let T . zA / be the infinite block Toeplitz ma-

trix
�

Ai�j

�1
i;j D0

: This is a principal submatrix of L. zA /: If for n 2 N; xPn is the

projection operator on l2
k
.Z/ defined as

NPn.: : : ; x�n; x�.n�1/; : : : ; x0; : : : ; xn; : : :/

D .: : : ; 0; 0; x�.n�1/; : : : ; x0; : : : ; xn; : : :/;

then xPnL. zA / xPn converges strongly to L. zA /; and for every n; xPnL. zA / xPn D
T . zA /: For zA in L1

k�k
; we say T . zA / is the infinite block Toeplitz matrix generated

by zA and zA is the symbol of the block Toeplitz operator T . zA /:

Proposition 2.1. Let † D
�

Ai�j

�1
i;j D0

be an infinite block Toeplitz matrix. Then

† is a bounded linear operator on l2
k

if and only if † D T . zA / for some zA in L1
k�k

:

In this case k†k D k zAk: For every Ox 2 l2
k
;

h Ox; T . zA / Oxi D 1

2�

�Z

��

h Qx.�/; zA.�/ Qx.�/i d�; (2.5)

where Qx is the element of L2
k

defined as Qx.�/ D
P1

nD0 xne{n� :

A Hermitian operator T on a Hilbert spaceH is said to be positive semidefinite

if hx; T xi � 0 for all x in H. If equality here holds only for the null vector,

then T is said to be positive definite. If the space H is finite-dimensional, a

positive semidefinite operator is positive definite if and only if it is invertible.

This is not the case when H is infinite-dimensional (consider, e.g., the operator

T D diag.1; 1=2; 1=3; : : :/ on the space l2). So, we will use the term positive

invertible for an operator that is positive definite and invertible. Let Tn. zA / be the

truncated n � n block Toeplitz matrix
�

Ai�j

�n�1

i;j D0
: The operator T . zA / is positive

semidefinite if and only if all Tn. zA / are positive semidefinite.

The essential range of zA is given by the set of all k � k matrices B such that

for every � > 0; m.¹t W k zA.t/ � Bk < �º/ > 0: Here m.�/ denotes the Lebesgue

measure. We denote the essential range of zA by R. zA /: Clearly the essential range

of zA is closed in the space of k � k matrices and is contained in the closure of the

range of zA: So, if zA 2 L1
k�k

; then R. zA / is compact. Also if X � Œ��; �� is any

set such that zA.X/ \ R. zA / D ;; then m.X/ D 0:
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Proposition 2.2. Let zA 2 L1
k�k

: Then T . zA / is a positive semidefinite operator on

l2
k

if and only if all matrices zA.�/ in R. zA / are positive semidefinite. Consequently

the matrices Tn. zA / are positive semidefinite for all n if and only if all matrices
zA.�/ in R. zA / are positive semidefinite.

If T . zA / is positive invertible, then all matrices zA.�/ in R. zA / are positive

definite.

The following proposition gives an equivalent condition for Tn. zA / to be pos-

itive definite for each n: See [16].

Proposition 2.3. For every zA 2 L1
k�k

; Tn. zA / is positive definite for every n if and

only if all matrices zA.�/ in R. zA / are positive semidefinite, and zA.�/ are positive

definite for all � in some subset of Œ��; �� that has positive measure

We call a Toeplitz operator † D
�

Ai�j

�

partially symmetric if each An is

a real matrix and A�n D An for all n 2 N: An element zA of L1
k�k

is even if
zA.��/ D zA.�/ for almost all � 2 Œ��; ��:

Proposition 2.4. For any zA in L1
k�k

; the following statements are equivalent:

(i) T . zA / is partially symmetric;

(ii) zA is even and every matrix zA.�/ in R. zA / is real;

(iii) the infinite matrix T . zA / is real and every matrix zA.�/ in R. zA / is real.

Here we point out that symplectic eigenvalues of Tn. zA / and zA.�/ are defined

only when T . zA / is a partially symmetric operator on l2
2k

, and Tn. zA / and zA.�/ are

positive definite.

A stationary G-chain † D
�

Ai�j

�

is bounded if it is bounded as a linear

operator on l2
2k

; and is partially symmetric if it is a partially symmetric linear

operator. The following theorem gives a characterisation of a partially symmetric

bounded stationary G-chain in terms of its symbol.

Theorem 2.5. Let † be an infinite real matrix. Then † is a partially symmetric

bounded stationary G-chain if and only if it is generated by an zA in L1
2k�2k

such

that zA.�/ is a G-matrix for all zA.�/ in R. zA /:

Proof. By Proposition 2.1 † is a bounded linear operator on l2
2k

if and only if

† D T . zA / for some zA in L1
2k�2k

: By Propositions 2.2 and 2.4 we know that zA.�/

are real positive semidefinite matrices for all zA.�/ 2 R. zA / if and only if T . zA /

is partially symmetric and positive semidefinite. Let †0 D T . zA / C {
2
J1; where
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J1 is the infinite block diagonal matrix
L

N
J2: Clearly †0 is the infinite 2k � 2k

block Toeplitz matrix corresponding to the sequence hBnin2Z; where

Bn D

8

<

:

An n ¤ 0;

A0 C {

2
J2k n D 0:

One can see that †0 is generated by the function zB D zA C {
2
J2k : Now zA.�/ is a

G-matrix if and only if zB.�/ is positive semidefinite. Similarly, T . zA / is a G-chain

if and only if Tn. zB/ is positive semidefinite for every n 2 N: Hence we obtain the

theorem by using Proposition 2.2. �

3. Symplectic numerical range

Let H be a real separable Hilbert space. We denote the direct sum H ˚ H by
zH: It is easy to see that the space zH is isomorphic to

L

N
K where K is a two

dimensional real Hilbert space and the operator J D
�

0 I
�I 0

�

on zH is orthogonally

equivalent to
L

N
J2: Henceforth we will identify zH with

L

N
K and the operator

J with
L

N
J2:

Definition 3.1. Let A be a positive definite operator on zH: We define the sym-

plectic numerical range of A to be the set

Ws.A/ D
°1

2
.hu; Aui C hv; Avi/W hu; J vi D 1; u; v 2 zH

±

:

This is a subset of .0; 1/. It is unbounded as the set of vectors .u; v/ with

hu; J vi D 1 is unbounded. An infinite dimensional version of Williamson’s

theorem was proved in [21]: for any positive invertible operator A on zH there exists

a positive invertible operator P on H and a symplectic transformation LW zH ! zH
such that

A D L

�
P 0

0 P

�

LT :

The symplectic spectrum of A is the spectrum of the positive invertible operator P:

If A is a 2n�2n real positive definite matrix, then its symplectic spectrum is the set

of its symplectic eigenvalues ¹d1.A/; : : : ; dn.A/º � .0; 1/: We denote by �s.A/

the symplectic spectrum of A:

Proposition 3.2. Let H be a real separable Hilbert space and A a bounded

positive invertible operator on zH: Then



A Szegő type theorem 1377

(i) Ws.A/ D Ws.MAM T / for every symplectic transformation M ;

(ii) �s.A/ � Ws.A/ D Œinf �s.A/; 1/;

(iii) if H is finite-dimensional, then Ws.A/ is the closed set Œd1.A/; 1/; where

d1.A/ is the minimum symplectic eigenvalue of A:

Proof. Part (i) follows from the fact that hMu; JMvi D hu; J vi for every sym-

plectic transformation M:

Let u; v 2 zH be such that hu; J vi D 1: Let

˛ D 1

2
.hu; Aui C hv; Avi/; ˛1 D 1

2
hu; Aui; ˛2 D 1

2
hv; Avi:

For any t > 0; htu; J v=ti D 1: Let

˛.t/ D htu; A.tu/i C hv=t; A.v=t/i
2

D t2˛1 C 1

t2
˛2:

Clearly ˛.t/ is continuous in t and ˛.1/ D ˛: Since limt!1 ˛.t/ D 1; by the

intermediate value theorem, Œ˛; 1/ � Ws.A/: Thus Ws.A/ D Œinf Ws.A/; 1/:

Now, let P be the positive invertible operator on H such that

A D L yP LT ;

where L is a symplectic transformation on zH and yP D
�

P O
O P

�

: We know that

�s.A/ D �.P / D �. yP /: Thus, we only need to show that inf Ws.A/ D inf �. yP /:

Let u; v be two distinct unit vectors in zH: Without loss of generality, we can

assume that hu; J vi > 0: Clearly hu; J vi � 1: Let u0 D u=
p

hu; J vi and

v0 D v=
p

hu; J vi: Then hu0; J v0i D 1; and

hu0; Au0i C hv0; Av0i
2

D hu; Aui C hv; Avi
2hu; J vi � hu; Aui C hv; Avi

2
: (3.1)

Since the left-hand side of (3.1) belongs to Ws. yP / and the right-hand side to

W. yP /; it follows that

inf Ws. yP / � inf W. yP /: (3.2)

Now let x be any unit vector in H; and let u D 1p
2
.x ˚ x/ and v D 1p

2
.�x ˚ x/.

Then hu; J vi D 1: We see that

hx; P xi D hu; yP ui C hv; yP vi
2

:

This implies that

inf W.P / � inf Ws. yP /: (3.3)
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Combining (3.2) and (3.3), and using the fact that inf W. yP / D inf W.P / D
inf �.P /; we obtain (ii).

When H is finite-dimensional, we have

d1.A/ D min
u;v2H

hu;J viD1

hu; Aui C hv; Avi
2

:

(See Theorem 5 of [1].) This gives part (iii). �

Let zA 2 L1
2k�2k

be such that all matrices zA.�/ in R. zA / are real positive

definite. Then the symplectic numerical range of zA is the set

Ws. zA / D
²

1

2�

�Z

��

h Qu.�/; zA.�/ Qu.�/i C h Qv.�/; zA.�/ Qv.�/i
2

d� W

1

2�

�Z

��

h Qu.�/; J Qv.�/i d� D 1; Qu; Qv 2 L2
2k

³

:

We next give a relationship between Ws. zA / and Ws. zA.�// for zA.�/ 2 R. zA /:

Theorem 3.3. Let zA be an element of L1
2k�2k

such that all matrices zA.�/ in R. zA /

are real positive definite. The set Ws. zA / is the same as the closed convex hull of
S

zA.�/2R. zA / Ws. zA.�//:

Proof. Let B D zA.�/ 2 R. zA / and � 2 Ws.B/: Then there exists a pair .u; v/ in

R
2k �R

2k such that hu; J2kvi D 1 and � D 1
2
.hu; Bui C hv; Bvi/: For n 2 N; let

Sn be the set

Sn D
°

t W k zA.t/ � Bk <
1

n.kuk2 C kvk2/

±

;

and let mn D m.Sn/, the measure of Sn. Since B 2 R. zA /; mn > 0 for every n:

Define the vector functions Qun and Qvn on Œ��; �� as

Qun.t / D

8

ˆ
<̂

ˆ̂
:

s

2�

mn

u t 2 Sn;

0 otherwise,

and Qvn.t / D

8

ˆ
<̂

ˆ̂
:

s

2�

mn

v t 2 Sn;

0 otherwise.

Clearly Qun and Qvn are in L2
2k

; and h Qun; J2k Qvni D 1: Let

�n D 1

2
.h Qun; QA Quni C h Qvn; zA Qvni/:
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Then �n 2 Ws. zA /; and we have

j�n � �j D
ˇ
ˇ
ˇ
ˇ

1

2�

�Z

��

1

2
.h Qun.t /; zA.t/ Qun.t /i C h Qvn.t /; zA.t/ Qvn.t /i/ dt

� 1

2
.hu; Bui C hv; Bvi/

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1

mn

Z

Sn

1

2
.u; zA.t/ui C hv; zA.t/vi/ dt

� 1

mn

Z

Sn

1

2
.hu; Bui C hv; Bvi/ dt

ˇ
ˇ
ˇ
ˇ

D
ˇ
ˇ
ˇ
ˇ

1

mn

Z

Sn

1

2
.hu; . zA.t/ � B/ui C hv; . zA.t/ � B/vi/ dt

ˇ
ˇ
ˇ
ˇ

� 1

2mn

.kuk2 C kvk2/

Z

Sn

k zA.t/ � Bk dt

� 1

2n
:

This proves �n ! �: Hence Ws.B/ � Ws. zA /: Since Ws. zA / is convex, the closed

convex hull of
S

B2R. zA / Ws.B/ is contained in Ws. zA /:

To prove the reverse inclusion, we use the fact that every element of Ws. zA / is

a limit of finite sums of the form

X

j

j̨

4�
.huj ; zA.�j /uj i C hvj ; zA.�j /vj i/;

where zA.�j / 2 R. zA /, and j̨ � 0 are such that
P

j j̨ huj ; J vj i D 1: Let

ǰ D huj ; J vj i: Without loss of generality we may assume that ǰ � 0 for all

j: Replacing uj by
p

ǰ uj and vj by
p

ǰ vj we can take huj ; J2kvj i D 1 for

every j; and
P

j̨ D 1: This shows that every element of Ws. zA / is a limit of

convex combinations of elements of
S

zA.�/2R. zA / Ws. zA.�//: �

Let Ou; Ov 2 l2
2k

; Ou D .u1; u2; : : :/ and Ov D .v1; v2; : : :/: Define Qu.�/ D
P

une{n�

and Qv.�/ D
P

vne{n� : Clearly

h Ou; J Ovi D 1

2�

�Z

��

h Qu.�/; J2k Qv.�/i d�:
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Using (2.5) we see that

Ws.T . zA // � Ws. zA /

for every partially symmetric, bounded, positive invertible operator T . zA / on l2
2k

:

Since Tn. zA / is a principal submatrix of T . zA /; we have

Ws.Tn. zA // � Ws.TnC1. zA // � Ws.T . zA // � Ws. zA /: (3.4)

Let zA 2 L1
2k�2k

be such that all matrices zA.�/ in R. zA / are real positive

definite. Let

m zA D ess inf
�2Œ��;��

d1. zA.�//: (3.5)

Using Theorem 3.3 we see that

m zA D inf Ws. zA /: (3.6)

Theorem 3.4. Let T . zA / be a partially symmetric, bounded, positive invertible

operator on l2
2k

: Let n 2 N; and let d be a symplectic eigenvalue of Tn. zA /: Then

d � m zA: If d D m zA; then d1. zA.�// is the constant m zA for almost all �:

Proof. Let d be a symplectic eigenvalue of Tn. zA /: Then there exist vectors

Ou D .u1; : : : ; un/; Ov D .v1; : : : ; vn/; uj ; vj 2 R
2k with h Ou; J Ovi D 1 and

d D 1

2
.h Ou; Tn. zA / Oui C h Ov; Tn. zA / Ovi/:

Let Qu and Qv be the elements of L2
2k

given by Qu.�/ D
P

uj e{j� ; Qv.�/ D
P

vj e{j� :

Then

d � m zA D 1

2
.h Ou; Tn. zA / Oui C h Ov; Tn. zA / Ovi/ � m zA

D 1

2�

�Z

��

h1

2
.h Qu.�/; zA.�/ Qu.�/i C h Qv.�/; zA.�/ Qv.�/i/

� m zAh Qu.�/; J2k Qv.�/i
i

d�:

Using (3.6), we know that the above integrand is nonnegative almost everywhere.

Hence, we have d � m zA: Also d D m zA if and only if

1

2
.h Qu.�/; zA.�/ Qu.�/i C h Qv.�/; zA.�/ Qv.�/i/ D m zAh Qu.�/; J2k Qv.�/i

for almost all �: So the last statement of the theorem by using Proposition 3.2(iii)

and (3.5). �
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4. A Szegő type theorem for symplectic eigenvalues and applications

We first recall some basic facts about symplectic eigenvalues. See [1, 4], and [13]

for details. A positive number d is a symplectic eigenvalue of a 2k � 2k positive

definite matrix A if and only if ˙d are the eigenvalues of the (non-Hermitian)

matrix {J2kA: Thus each symplectic eigenvalue di of A lies in the interval Œ0; kAk�:

Let T . zA / be a bounded, partially symmetric, positive invertible operator on l2
2k

generated by zA: Let d
.n/
1 � � � � � d

.n/

nk
denote the symplectic eigenvalues of Tn. zA /

arranged in increasing order. Since zA 2 L1
2k�2k

; each d
.n/
i � kTn. zA /k � k zAk:

Theorem 4.1. Let † be a partially symmetric, bounded positive invertible opera-

tor on l2
2k

generated by zA: Let d
.n/
1 � � � � � d

.n/

nk
denote the symplectic eigenvalues

of Tn. zA /: Then for every function f continuous on Œ0; k zAk�;

lim
n!1

1

n

nk
X

j D1

f .d
.n/

j / D 1

2�

�Z

��

k
X

j D1

f .dj . zA.�/// d�: (4.1)

Proof. By Theorem 6.24 of [2], we know that if zB 2 L1
2k�2k

; and �
.n/
1 ; : : : ; �

.n/

2nk

are the eigenvalues of the n � n truncated block Toeplitz matrix Tn. zB/; then

lim
n!1

1

n

2nk
X

j D1

.�
.n/
j /m D 1

2�

�Z

��

2k
X

j D1

.�j . zB.�///m d�; (4.2)

for every nonnegative integer m: Suppose zB D {J2k
zA: Then Tn. zB/D {J2nkTn. zA /;

and the eigenvalues �
.n/
1 ; : : : ; �

.n/

2nk
of Tn. zB/ are ˙d

.n/
1 ; : : : ; ˙d

.n/

nk
: Also the eigen-

values �j . zB.�// of zB.�/ are ˙dj . zA.�//: Hence for every non-negative integer m;

lim
n!1

1

n

nk
X

j D1

.d
.n/

j /2m D 1

2�

�Z

��

k
X

j D1

.dj . zA.�///2m d�: (4.3)

By linearity, we can extend (4.3) to polynomials in .d
.n/

j /2; i.e.,

lim
n!1

1

n

nk
X

j D1

p.d
.n/

j

2
/ D 1

2�

�Z

��

k
X

j D1

p.d 2
j . zA.�/// d� (4.4)

for every polynomial p: Each d
.n/

j 2 Œ0; k zAk�; and hence .d
.n/

j /2 2 Œ0; k zAk2�:

Let q.x/ be any polynomial and let s.x/ D q.
p

x/: Clearly s is continuous on

Œ0; k zAk2�: For a given � > 0; we can find a polynomial p such that

sup
x2Œ0;k zAk2�

js.x/ � p.x/j < �:
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Since dj . zA.�// � k zA.�/k and k zA.�/k � k zAk for almost all �;

ˇ
ˇ
ˇ
ˇ

1

2�

�Z

��

s.d 2
j . zA.�/// d� � 1

2�

�Z

��

p.d 2
j . zA.�/// d�

ˇ
ˇ
ˇ
ˇ

� 1

2�

�Z

��

ks.d 2
j . zA.�/// � p.d 2

j . zA.�///k d� � �;

(4.5)

holds for all j D 1; : : : ; k: Similarly,

js.d
.n/

j

2
/ � p.d

.n/
j

2
/j < � (4.6)

for all j D 1; : : : ; nk: Combining the relations (4.4), (4.5), and (4.6), we see that

lim
n!1

1

n

nk
X

j D1

s.d
.n/

j

2
/ D 1

2�

�Z

��

s.d 2
j . zA.�/// d�:

Since s.x2/ D q.x/; we have

lim
n!1

1

n

nk
X

j D1

q.d
.n/

j / D 1

2�

�Z

��

q.dj . zA.�/// d�: (4.7)

Now let f be any continuous function on Œ0; k zAk�: Then by using the Weierstrass

approximation theorem and arguing as above, we can show that (4.1) holds for f:

�

Remark 4.2. We know that d is a symplectic eigenvalue of a positive definite

matrix A if and only if ˙d are eigenvalues of the non-Hermitian matrix iJA.

In [26] Tilli has proved a very general version of Szegő’s limit theorem for non-

Hermitian block Toeplitz matrices. It is possible to derive Theorem 4.1 from

Tilli’s general results. The proofs of the general version are, naturally, more

intricate. We have given a short self-contained presentation for the special case

we need.

The entropy rate of a stationary quantum Gaussian process with the associated

G-chain T . zA / is given by the formula

S.T . zA // D lim
n!1

S.Tn. zA //

n
;

where S.Tn. zA // denotes the entropy of the quantum Gaussian state with the

corresponding G-matrix Tn. zA /: As a consequence of Theorem 4.1, we obtain a
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closed expression for the entropy rate of a partially symmetric, bounded stationary

quantum Gaussian process in terms of the entropies of the Gaussian states with

G-matrices zA.�/:

Corollary 4.3. Let T . zA / be a partially symmetric, bounded stationary G-chain

generated by zA: The entropy rate S.T . zA // of the corresponding stationary

Gaussian process is

S.T . zA // D 1

2�

�Z

��

S. zA.�// d�: (4.8)

Proof. Define the function f W Œ0; k zAk� ! R as

f .x/ D

8

ˆ
<

ˆ
:

�

x C 1

2

�

log
�

x C 1

2

�

�
�

x � 1

2

�

log
�

x � 1

2

�

if
1

2
< x � k zAk;

0 if 0 � x � 1

2
:

Using (1.2)we can see that the entropy of any G-matrix B can be written as

S.B/ D
X

d2�s.B/

f .d/: (4.9)

Hence the entropy rate S.T . zA // of T . zA / is given by

S.T . zA // D lim
n!1

1

n

nk
X

j D1

f .dj .Tn. zA ///: (4.10)

Since f is continuous and zA 2 L1
2k�2k

; we can apply Theorem 4.1 to get

S.T . zA // D 1

2�

�Z

��

1

k

k
X

j D1

f .dj . zA.�/// d�:

Using the formula (4.9) for the sum inside this integral, we obtain (4.8). �

The entropy rate of a special kind of stationary quantum Gaussian process has

been computed in the paper [19]. There the authors considered a block Toeplitz

matrix Tn. zA / given by

Tn. zA / D
´

A n D 0;

pjnjB otherwiseI
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where A and B are 2k�2k real symmetric matrices such that AC tB is a G-matrix

for each t 2 Œ�2; 2�, and ¹p1; p2; : : :º is a probability distribution over ¹1; 2; : : :º.
In this case zA.�/ takes the form

�

A C
P

j 2Zn¹0º pjj jBe{j�
�

; � 2 Œ��; ��: Our

Corollary 4.3 gives a much more general result.

In the rest of the paper, we use Theorem 4.1 to study the distribution of

symplectic eigenvalues of truncated block Toeplitz matrices. Henceforth T . zA /

is a partially symmetric, bounded, positive invertible operator on l2
2k

generated

by zA: Recall the definition of m zA given in (3.5).

Theorem 4.4. For each m 2 N; limn!1 d
.n/
m D m zA: Consequently

[

n2N
Ws.Tn. zA // D Ws. zA /: (4.11)

Proof. For every n 2 N; Tn. zA / is a principal submatrix of TnC1. zA /: Hence from

the relation (42) of [1] we see that

0 � d .nC1/
m � d .n/

m for all n � m:

Hence lim
n!1

d
.n/
m exists. Suppose this equals r: By definition r � m zA. Suppose

r > m zA: Define f on Œ0; k zAk� as

f .x/ D

8

ˆ
ˆ̂
<

ˆ̂

:̂

0 x > r or x < m zA � 1;

x � m zA C 1 m zA � 1 � x � m zA;

x � r

m zA � r
m zA � x � r:

Clearly f is continuous on Œ0; k zAk�; and the formula (4.1) holds for f: But

f .d
.n/

j / D 0 for all j D m; : : : ; nk and for all n � m: So the left hand side

of (4.1) is zero. But since m zA D ess inf d1. zA.�// and f is positive for Œm zA; r �;

we have f .dj . zA.�/// > 0 for � in a set of positive measure. Hence the right hand

side of (4.1) is strictly positive. This is a contradiction.

By Proposition 3.2 (iii), we know that Ws.Tn. zA // D Œd
.n/
1 ; 1/: Hence

[

n2N
Ws.Tn. zA // D Œ lim

n!1
d

.n/
1 ; 1/ D Œm zA; 1/:

Since m zA D inf Ws. zA / and Ws. zA / is convex, this proves (4.11) �
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Lemma 4.5. Let K be a compact subset of R; and let cn.K/ be the cardinality of

the set ¹j W d
.n/

j 2 Kº: Then

lim
n!1

cn.K/

n
D 1

2�

k
X

j D1

m¹� 2 Œ��; ��W dj . zA.�// 2 Kº: (4.12)

Proof. Let g be the distance function defined as

g.x/ D jx � Kj WD inf¹jx � t jW t 2 Kº:

For any � > 0 define the function f�W Œ0; k zAk� ! R as f�.x/ D e� g.x/
� : Clearly

f� is continuous and f�.x/ D 1 if and only if x 2 K: We can see that as � ! 0;

f� converges to the characteristic function �K in the L1 norm. Hence

lim
�!0

1

2�

�Z

��

k
X

j D1

f�.dj . zA.�/// d� D 1

2�

�Z

��

X

j

�K.dj . zA.�/// d�

D 1

2�

X

j

m.¹� W dj . zA.�// 2 Kº/:

Also

lim
�!0

lim
n!1

1

n

nk
X

j D1

f�.d
.n/

j / D lim
n!1

X

j

�K.d
.n/

j / D lim
n!1

cn.K/

n
:

Applying Theorem 4.1 with f D f� and taking � ! 0 we get (4.12). �

We know that the map dj that takes a positive definite matrix B to its j th

minimum symplectic eigenvalue dj .B/ is continuous [1]. Since � 7! zA.�/ is

measurable on Œ��; ��; the composite map � 7! dj .�/ D dj . zA.�// is also

measurable.

LetRj denote the essential range of the map dj .�/ and let R D
Sk

j D1 Rj : Since

zA 2 L1
2k�2k

; the set R is compact.

Lemma 4.6. For every zA.�/ in R. zA / and 1 � j � k; dj .A.�//is in Rj :

Proof. Let B D zA.�/ be any element of R. zA /: We show that dj .B/ 2 Rj : Let

� > 0: Since the map dj is continuous on positive definite matrices, we can find a

ı > 0 such that

k zA.t/ � Bk < ı H) jdj . zA.t// � dj .B/j < �: (4.13)
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By the definition of the essential range of zA; the set S D ¹t W k zA.t/ � Bk < ıº has

positive measure. Let T be the set

T D ¹t W jdj . zA.t// � dj .B/j < �º:

By (4.13) we see that S � T: Hence T also has positive measure. This shows that

dj .B/ 2 Rj : �

For any subset X of R let B.X; ı/ be its ı-neighbourhood:

B.X; ı/ D ¹x 2 RW jx � sj < ı for some s 2 Xº:

Let Dn be the set of symplectic eigenvalues of Tn. zA /: Let D D
S

n Dn

Theorem 4.7. The set D is dense in R: Further for each ı > 0 let Xı be the set

Xı D Œm zA; k zAk�nB.R; ı/: (4.14)

Then

lim
n!1

cn.Xı/

n
D 0: (4.15)

Proof. Since R is compact, we can apply Lemma 4.5 to get

lim
n!1

cn.R/

n
D 1

2�

k
X

j D1

m.¹� W dj . zA.�// 2 Rº/: (4.16)

SupposeD is not a dense subset ofR. Then there exist j 2 ¹1; 2; : : : ; kº x 2 Rj

and � > 0 such that B.x; �/ \ D D ;: Since x 2 Rj the set

S D ¹t W jx � dj . zA.t//j < �º

has a positive measure. Let Y D RnB.x; �/: The set Y is compact, hence by (4.12)

we have

lim
n!1

cn.Y /

n
D 1

2�

k
X

j D1

m¹t W dj . zA.t// 2 Y º: (4.17)

Since S has positive measure,

m¹t W dj . zA.t// 2 Rº > m¹t W dj . zA.t// 2 Y º:

This shows that the right hand side of (4.16) is strictly greater than the right hand

side of (4.17). But since D \ B.x; �/ D ;; cn.Y / D cn.R/ for all n: So, the left
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hand sides of (4.16) and (4.17) are equal. This is a contradiction. Hence D must

be dense in R:

The set Xı is compact, and hence (4.12) holds when K DXı : Since Xı \Rj D;
for every j;

m¹� W dj . zA.�// 2 XıºD0:

This proves (4.15). �
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