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On Lieb–Thirring inequalities

for one-dimensional non-self-adjoint

Jacobi and Schrödinger operators
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Abstract. We study to what extent Lieb–Thirring inequalities are extendable from self-
adjoint to general (possibly non-self-adjoint) Jacobi and Schrödinger operators. Namely,
we prove the conjecture of Hansmann and Katriel from [12] and answer another open ques-
tion raised therein. The results are obtained by means of asymptotic analysis of eigenvalues
of discrete Schrödinger operators with rectangular barrier potential and complex coupling.
Applying the ideas in the continuous setting, we also solve a similar open problem for one-
dimensional Schrödinger operators with complex-valued potentials published by Demuth,
Hansmann, and Katriel in [5].
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1. Introduction

Lieb–Thirring inequalities have attracted the attention of the mathematical com-
munity since their appearance in the work of Lieb and Thirring [15, 16] on the
stability of matter, where they were carried out in the context of self-adjoint
Schrödinger operators. Later developments gave rise to a huge number of
works devoted primarily to Lieb–Thirring inequalities for Schrödinger opera-
tors but also other operator families. For some references concerning Lieb–
Thirring inequalities for Schrödinger and Jacobi operators, we mention at least
[4, 5, 7, 8, 9, 13, 14, 17].

Within the last decade, a great interest developed for generalizations of the
classical Lieb–Thirring inequalities, whichwere originally derived for self-adjoint

1 The research of František Štampach was supported by the GAČR grant No. 20-17749X.
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operators only, to non-self-adjoint operator families. Still several naturally for-
mulated questions have remained open. Here we particularly refer to the open
problems concerning non-self-adjoint Jacobi and Schrödinger operators that were
published in [12] and [5] and which are discussed in this article in more detail. As
far as the existing results on Lieb–Thirring inequalities for non-self-adjoint Jacobi
operators are concerned, the reader may consult the papers [2, 3, 10, 11, 12].

1.1. State of the art – Jacobi operators. Let J be the Jacobi operator acting
on `2.Z/ defined by its action on vectors of the standard basis ¹enºn2Z of `2.Z/

by
Jen D anenC1 C bnen C cn�1en�1; n 2 Z;

where ¹anºn2Z, ¹bnºn2Z, and ¹cnºn2Z are given bounded complex sequences.
Then, J is a bounded operator and can be identified with the doubly-infinite
complex Jacobi matrix
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We follow [12] and use the notation

dn WD max¹jan�1 � 1j; jan � 1j; jbnj; jcn�1 � 1j; jcn � 1jº; n 2 Z:

If limn!˙1 dn D 0, J is a compact perturbation of the free Jacobi operator J0

defined by
J0en D en�1 C enC1; n 2 Z:

In this case, it is well known that the essential spectrum is �ess.J / D �ess.J0/ D
Œ�2; 2� and

�.J / D Œ�2; 2�[ �d.J /:
The discrete spectrum �d.J / � Cn Œ�2; 2� is an at most countable set of eigenval-
ues of J with all possible accumulation points contained in Œ�2; 2�.

Lieb–Thirring inequalities for self-adjoint Jacobi operators, i.e., for the case
when an D cn > 0 and bn 2 R are due to Hundertmark and Simon [14] and can
be formulated as follows: if d 2 `p.Z/ for some p � 1, then

X

�2�d.J /\.�1;�2/

j�C 2jp�1=2 C
X

�2�d.J /\.2;1/

j� � 2jp�1=2 � Cpkdkp

`p ; (1)
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where Cp is an explicit constant that depends on p but is independent of J . Such
constants are meant generically and can vary while in the following the notation
remains the same.

When trying to find a convenient form for an extension of inequality (1) to
non-self-adjoint Jacobi operators, it seems natural to reformulate (1) in terms of
the distance between the eigenvalue � and the essential spectrum Œ�2; 2� as

X

�2�d.J /

.dist.�; Œ�2; 2�//p�1=2 � Cpkdkp

`p : (2)

In [12], Hansmann and Katriel conjectured that the inequality (2) is no longer
true when the assumption on self-adjointness of J is dropped. Our first main
result (Theorem 2) proves the conjecture. In fact, we show that (2) does not
hold even when restricted to non-self-adjoint discrete Schrödinger operators, i.e.,
Jacobi operators J with an D cn D 1, for all n 2 Z.

Another form of the inequality (1) that is admissible for an extension to the
non-self-adjoint case can be based on the observation that

dist.�; Œ�2; 2�/p
j�2 � 4j1=2

� 1

2

´

j� � 2jp�1=2 if � 2 .2;1/;

j�C 2jp�1=2 if � 2 .�1;�2/:

Then, (1) implies, for the self-adjoint case,

X

�2�d.J /

.dist.�; Œ�2; 2�//p
j�2 � 4j1=2

� Cpkdkp

`p : (3)

Note that its generalization to the non-real case would be a weaker version than (2)
since dist.�; Œ�2; 2�/ � 1

2
j�2�4j for all � 2 C. The estimate (3) is very close to the

even weaker version that was proven for general, possibly non-self-adjoint, Jacobi
operators in [12, Theorem 1].

Theorem 1 (Hansmann and Katriel). Suppose � 2 .0; 1/ and d 2 `p.Z/ with

p � 1. Then,

X

�2�d.J /

.dist.�; Œ�2; 2�//pC�

j�2 � 4j1=2
� Cp;� kdkp

`p if p > 1; (4)

and
X

�2�d.J /

.dist.�; Œ�2; 2�//1C�

j�2 � 4j1=2C�=4
� C�kdk`1 if p D 1: (5)
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The inequalities (4) and (5) are slightly weaker than (3) due to the presence
of the positive parameter � . The proof presented in [12] elaborates on a previous
result due to Borichev et al. [2], where the parameter � enters and its positivity
is required by the chosen approach. However, it remained an open question
whether (4) and (5) could hold for � D 0, which would imply (3). Our second
main result (Theorem 3) answers this question to the negative, i.e., inequality (3)
does not extend to non-self-adjoint Jacobi operators. In fact, it is not even true
for non-self-adjoint discrete Schrödinger operators. This means that the positivity
of � is not just a requirement dictated by the chosen approach in [12] but it is
essential. Consequently, Theorem 1 is sharp in this sense. Recently, Theorem 1
was generalized to non-self-adjoint perturbations of finite gap Jacobi matrices by
Christiansen and Zinchenko in [3].

Although the answers to both questions raised in [12] are negative, they help to
better understand the boundaries between the self-adjoint and general setting for
Lieb–Thirring-type inequalities. The strategy to obtain the answers is based on
a convenient choice of a concrete family of Jacobi operators from the considered
class. We study the discrete Schrödinger operator with rectangular barrier poten-
tial and complex coupling. The properties of this particular operator can be of
independent interest. For our goals, it is essential that the eigenvalue problem can
be transformed into a study of solutions of relatively simple algebraic equations.
These results are worked out in Section 2.

1.2. State of the art - Schrödinger operators. A similar open problem, this
time for Schrödinger operators with complex-valued potentials, was published
in [5]. Recall that the classical Lieb–Thirring inequality for a Schrödinger operator
H D ��C V in L2.Rd / reads

X

�2�d.H/

j�jp�d=2 � Cp;d kV kp
Lp ; (6)

provided that V is a real-valued function from Lp.Rd /, where the range for p
depends on the dimension d as follows:

p � 1 if d D 1; p > 1 if d D 2; p � d

2
if d � 3: (7)

Inequality (6) cannot be true for complex-valued V 2 Lp.Rd / with p > d

since, in this case, �d.H/ can have accumulation points anywhere in �ess.H/ D
Œ0;1/, see [1]. However, if j�jp is replaced by .dist.�; Œ0;1///p in (6), we arrive
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at the inequality
X

�2�d.H/

.dist.�; Œ0;1///p

j�jd=2
� Cp;d kV kp

Lp ; (8)

which seems to be a reasonable candidate for the Lieb–Thirring inequality ex-
tended to complex-valued potentials. This brings us to the following open problem
formulated in [5].

Open question (Demuth, Hansmann, andKatriel). Assuming (7), is inequality (8)
true for all V 2 Lp.Rd /? Prove it or construct a counter-example.

In Theorem 9 we partly answer the question by showing it is again negative
for d D 1, see the construction of a concrete counter-example in Section 3. The
approach is similar as the one used in the discrete case of Jacobi matrices. Note
that, for d D 1, the inequality (8) can be viewed as a continuous analogue of the
inequality (3). The problem remains open, however, in higher dimensions d � 2.

2. Jacobi operators

For the sake of concreteness, we formulate two statements whose proofs follow
from the analysis of properties of the discrete Schrödinger operator with rectan-
gular barrier potential and complex coupling studied below. To distinguish, in
notation, the restriction of the class of general Jacobi operators J with d 2 `p.Z/

to the set of discrete Schrödinger operators with complex potential b 2 `p.Z/, we
denote by T D T .b/ the operator determined by the equations

Ten WD en�1 C bnen C enC1; n 2 Z:

Theorem 2. For any p � 0 and ! < p, one has

sup
0¤b2`p.Z/

1

kbkp

`p

X

�2�d.T .b//

dist.�; Œ�2; 2�//! D 1:

In particular, for ! D p � 1=2, Theorem 2 confirms the conjecture of Hans-
mann and Katriel. On the other hand, the inequality

X

�2�d.J /

.dist.�; Œ�2; 2�//p � Cpkdkp

`p

is known to hold for any Jacobi operator J , see [11, Theorem 4.2]. Hence,
for ! � p � 1, the claim of Theorem 2 is no longer true. This shows the



6 S. Bögli and F. Štampach

difference between the self-adjoint and general case for this kind of Lieb–Thirring
inequalities for the exponent ! in the interval Œp � 1=2; p/.

The next statement concerns the possibility of extension of inequality (3) to
the non-self-adjoint setting.

Theorem 3. For any p � 1 and � � 1=2, one has

sup
0¤b2`p.Z/

1

kbkp

`p

X

�2�d.T .b//

.dist.�; Œ�2; 2�//p
j�2 � 4j� D 1:

If we put � D 1=2, Theorem 3 shows that (3) does not hold for general Jacobi
operators. In other words, Theorem 1 is no longer true when � D 0.

2.1. Discrete Schrödinger operator with rectangular barrier potential and

complex coupling. For n 2 N and ˇ 2 C, we consider the two-parameter family
of discrete Schrödinger operators T D Tˇ;n determined by the potential

bk WD
´

ˇ for k 2 ¹1; 2 : : : ; nº;
0 for k 2 Z n ¹1; 2 : : : ; nº:

Alternatively, Tˇ;n can be written in the form

Tˇ;n D J0 C ˇPn;

where J0 is the free Jacobi operator (or the discrete Laplacian) and Pn the orthog-
onal projection onto span¹e1; : : : ; enº. The operator Tˇ;n is a discrete analogue of
the Schrödinger operator with rectangular barrier potential supported on the set
¹1; : : : ; nº and complex coupling parameter ˇ.

Our first goal is a general spectral analysis of Tˇ;n which can be of independent
interest. However, we restrict the coupling constant ˇ to purely imaginary which
is sufficient for our later purpose. Without loss of generality, we can even assume
ˇ D ih for h > 0. The discrete spectrum of such an operator is located in the
rectangular domain Œ�2; 2�C i.0; h�.

Lemma 4. Let h > 0. If � 2 �d.Tih;n/, then

�2 � Re� � 2 and 0 < Im� � h;

for all n � 2.



On Lieb–Thirring inequalities 7

Proof. The proof is based on the enclosure of the spectrum by the numerical
range. Let � 2 �d.Tih;n/ and � 2 `2.Z/ be a corresponding normalized eigen-
vector. Then,

jRe�j D jh�; .ReTih;n/�ij D jh�; J0�ij � kJ0k D 2:

Similarly, one has

Im� D h�; .ImTih;n/�i D hh�; Pn�i D hkPn�k2;

which readily implies Im� � h and also

Im � � h.j�1j2 C j�2j2/ > 0

because n � 2. The last expression cannot vanish indeed, since if �1 D �2 D 0,
then it follows from the eigenvalue equation Tih;n� D �� that � D 0, contradict-
ing the assumption k�k D 1. �

Next, we look at the eigenvalues of Tˇ;n more closely. By the Birman–
Schwinger principle, � … Œ�2; 2� is an eigenvalue of Tˇ;n if and only if �1
is an eigenvalue of the operator ˇPn.J0 � �/�1Pn which has finite rank. This
observation provides us with a characteristic equation for the discrete spectrum
of Tˇ;n:

� 2 �d.Tˇ;n/ () det.1C ˇPn.J0 � �/�1Pn/ D 0:

Recall that the Joukowsky conformal mapping k 7! k C k�1 maps bijectively
the punctured unit disk ¹k 2 C j 0 < jkj < 1º onto C n Œ�2; 2�. Writing
� D k C k�1, for 0 < jkj < 1, a standard computation shows

.J0 � �/�1 D k

k2 � 1
Q.k/;

where Q.k/ is the Laurent operator with entries .Q.k//i;j D kjj �i j, see, for ex-
ample, [14, Proposition 2.6]. LetQn.k/ denote the finite section matrix obtained
from Q.k/ by restricting the indices to ¹1; : : : ; nº, i.e.,

Qn.k/ D PnQ.k/Pn � RanPn:

Spectral properties of the matrix Qn.k/, sometimes called the Kac–Murdock–

Szegő matrix, are studied in [6] for a general k 2 C. Particularly, the characteristic
polynomial ofQn.k/ is expressible in terms of the Chebyshev polynomials of the
second kind Un, see [6, eq. (2.4)]. Using these facts, we obtain the expression

det.1C ˇPn.J0 � �/�1Pn/ D det
�

1C kˇ

k2 � 1Qn.k/
�

D kn

1� k2
ŒUn.�/ � 2kUn�1.�/C k2Un�2.�/�;

(9)
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where

� D k C k�1 � ˇ

2
:

Taking further into account thewell known identity for Chebyshev polynomials

Un

�z C z�1

2

�

D znC1 � z�n�1

z � z�1
; n 2 N0;

it is natural to introduce a new parameter z by the equation

ˇ D k C k�1 � z � z�1: (10)

Then, using (9), one gets the explicit formula

det
�

1C kˇ

k2 � 1Qn.k/
�

D k2n

1 � k2

ˇn

.z � k/n.1� kz/n
z2n.z � k/2 � .1 � kz/2

z2 � 1
:

Zeros of the determinant are solutions of the equation

z2n.z � k/2 � .1 � kz/2 D 0;

which, when solved for k D k.z/, yields

k D znC1 � 1

zn � z or k D znC1 C 1

zn C z
: (11)

Inserting the above expressions for k back into (10), we arrive at two polynomial
equations

ˇ.znC1 � 1/.zn�1 � 1/ � zn�2.z2 � 1/2 D 0 (12)

and
ˇ.znC1 C 1/.zn�1 C 1/C zn�2.z2 � 1/2 D 0; (13)

for n � 2. The solutions of equations (12) or (13) have the following properties
whose verification is straightforward.

Lemma 5. The solutions of (12) or (13) are invariant under the transformation

z $ z�1. Suppose further that ˇ D ih with h > 0. Then, the only solutions

of (12) located on the unit circle are two double roots z D ˙1 if n is odd, and

one double root z D 1 if n is even. Similarly, the only solution of (13) located on

the unit circle is one double root z D �1 if n is even, and no solution if n is odd.

In addition, if n is odd, then the solutions of (12) or (13) are invariant under the

transformation z $ �Nz (symmetry with respect to the imaginary axis) and, if n is

even, then z is a solution of (12) if and only if �Nz is a solution of (13).
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Lemma 5 allows us to restrict the analysis of the solutions of (12) and (13) to
the unit disk jzj < 1. Since the polynomials in (12) and (13) are of degree 2n,
Lemma 5 implies that the number of roots (counting multiplicities) located in the
unit disk equals n � 1 for each equation (12) and (13) if n is even, and n � 2

for equation (12) and n for equation (13) provided that n is odd. So, the total
multiplicity of roots of equations (12) and (13) together equals 2n � 2 regardless
the parity of n.

Not all of these solutions, however, correspond to an eigenvalue of Tˇ;n for
ˇ D ih and h > 0.

Proposition 6. Let h > 0, and n � 2. Then,

� 2 �d.Tih;n/ () � D ihC z C z�1;

for z 2 C, jzj < 1, Im z > 0, which is either a solution of (12) or (13), with

ˇ D ih, satisfying the constraint jznC1 � 1j < jzn � zj or jznC1 C 1j < jzn C zj,
respectively.

Proof. First, note that the Joukowsky transform maps the upper/lower half of the
unit disk onto the lower/upper half-plane, i.e., if 0 < jzj < 1 and Im z ? 0, then
Im.z C z�1/ 7 0. This implies that, among the solutions of (12) and (13) inside
the unit disk, only those with positive imaginary part are of interest. Indeed, if
z is a solution of (12) or (13) with Im z < 0, then by (10), the equation for the
eigenvalue reads � D z C z�1 C ih. But then

Im� D hC Im.z C z�1/ > h

which is in contradiction with Lemma 4. If Im z D 0 and z … ¹0;˙1º, then
jRe�j > 2 which is again impossible by Lemma 4.

Yet another restriction to solutions of (12) and (13) has to be imposed. It comes
from the necessary requirement jkj < 1, where k is given by the respective formula
from (11) depending on whether z is a solution of (12) or (13). On the other
hand, if z is a solution of (12) or (13), jzj < 1, Im z > 0, and jkj < 1, then
� D z C z�1 C ih is an eigenvalue of Tih;n.

Finally, it is straightforward to check that the solutions of (12) and (13) located
on the unit circle do not give rise to an eigenvalue. Indeed, since these solutions
satisfy z 2 ¹˙1º (depending on the parity of n, see Lemma 5), taking the
respective limit z ! ˙1 in (11) and using L’Hospital’s rule, one finds that

jkj D nC 1

n � 1 > 1: �

A numerical illustration of Proposition 6 is shown in Figure 1.
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Figure 1. For parameters ˇ D i =10 and n D 39, the plots on top show the solutions of (12)
(left) and (13) (right) in the upper z-plane. The small oval-shaped regions are given by
the inequalities jznC1 � 1j < jzn � zj (left) and jznC1 C 1j < jzn C zj (right), see
Proposition 6. Red dots indicate solutions that are located inside the regions and hence
give rise to eigenvalues of Tˇ;n. Blue dots stay outside the regions. The eigenvalues
� D ih C z C z�1 of Tˇ;n are visualized on bottom. Black balls indicate eigenvalues
determined by respective solutions of (12) and orange squares indicate those given by (13).

2.2. On the conjecture and the open problem of Hansmann and Katriel. In
this subsection, we let ˇ to be purely imaginary and n-dependent. Namely,

ˇ D ˇn WD in�2=3;

which means that

bk WD
´

in�2=3 for k 2 ¹1; 2 : : : ; nº;
0 for k 2 Z n ¹1; 2 : : : ; nº;

and we consider the sequence of discrete Schrödinger operators Tn WD Tˇn;n. Note
that, as n ! 1, the support of the potential sequence b is growing while its
magnitude jˇnj tends to zero. The `p-norm of b is

kbk`p D n
1
p

� 2
3 :

By means of this particular choice of a sequence of discrete Schrödinger
operators, we establish Theorems 2 and 3. First, we focus on the statement of
Theorem 2 which follows readily from the following proposition.
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Proposition 7. For ! < p, one has

lim
n!1

n
2p�3

3

X

�2�d.Tn/

.dist.�; Œ�2; 2�//! D 1:

Proof. We make use of the characterization of discrete eigenvalues of Tn given in
Proposition 6 via solutions of the equations (12) and (13). In fact, for the purpose
of this proof, it is sufficient to focus on solutions of (12) located in a particular
subregion of the unit disk.

More concretely, we seek solutions z D rei� of the equation (12), with
ˇ D in�2=3, in the compact region determined by the restrictions

�

4
� � � 3�

4
and 1 � 1p

n
� r � 1� c

logn

n
; (14)

where c 2 .1=2; 2=3/ is arbitrary but fixed. Actually, the choice for the range of �
is taken for the sake of concreteness, any closed subinterval of .0; �/ could be
taken. It follows from (14) that

rn �
�

1� c log n
n

�n

D n�c
�

1CO
� log2 n

n

��

; n ! 1:

In particular, we may write

rn D O.n�c/; n ! 1: (15)

On the other hand, again according to (14), one has

r D 1CO
� 1p

n

�

; n ! 1: (16)

For z D rei� and ˇ D in�2=3, the equation (12) reads

in�2=3.1� rnC1ei.nC1/�/.1 � rn�1ei.n�1/�/ D rnein�.rei� � r�1e� i�/2:

Using (15) and (16), one gets the asymptotic equality

in�2=3.1CO.n�c// D �4.sin2 �/rnein�
�

1CO
� 1p

n

��

;

for n ! 1. Note that the error terms actually hold uniformly in �. Notice also that
the term sin2 � stays bounded away from zero by our assumptions. More precisely,
sin2 � 2 Œ1=2; 1�which follows from the restriction on � from (14). Finally, taking
also into account that c 2 .1=2; 2=3/, we arrive at the asymptotic formula

4 i.sin2 �/n2=3rnein� D 1CO
� 1p

n

�

; n ! 1: (17)
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Taking the arguments in (17), one observes that the argument of a solution has
to fulfill

� D �j D �.4j � 1/

2n
CO

� 1

n3=2

�

; n ! 1; (18)

for j 2 Z. Bearing in mind the supposed restriction on � from (14), we choose
the range for the index j to be

nC 2

8
� j � 3nC 2

8
: (19)

Taking modulus in (17), one obtains for the modulus of a solution

rj D
h n�2=3

4 sin2 �j

�

1CO
� 1p

n

��i1=n

; n ! 1:

Since 4 sin2 �j 2 Œ2; 4� for any j satisfying (19),

.4 sin2 �j /
�1=n D 1CO

�1

n

�

; n ! 1;

uniformly for all j admissible. Then a straightforward calculation yields

rj D 1 � 2

3

log n

n
CO

�1

n

�

; n ! 1; (20)

uniformly in j . Note that the found rj fulfills the restriction (14) for n sufficiently
large. In total, we see that there are asymptotically n=4 solutions zj D rj e

i�j

of (12) within the region (14), with j as in (19), and asymptotic expansions for
their arguments and moduli are given by equations (18) and (20).

Next, we show that the found solutions zj give rise to eigenvalues of Tn, if n
is sufficiently large. To this end, according to Proposition 6, one has to check that
jkj j < 1, where

kj WD
1� znC1

j

zj � zn
j

:

The verification proceeds as follows. Taking (15) into account, we obtain

1� znC1
j

1 � zn�1
j

D .1 � znC1
j /.1C zn�1

j CO.n�2c// D 1� .zj � z�1
j /zn

j CO.n�2c/;

for n ! 1. Using further that zj is a solution of (12), together with formulas (15)
and (20), we get

.zj � z�1
j /zn

j D in�2=3
.1� znC1

j /.1� zn�1
j /

zj � z�1
j

D n�2=3

2 sin�j

.1CO.n�c//; n ! 1:
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In total, we have

1� znC1
j

1 � zn�1
j

D 1 � n�2=3

2 sin�j

CO.n�2c/; n ! 1;

where c 2 .1=2; 2=3/. Hence, using (20) once more, we arrive at the expansion

kj D e� i�j

�

1 � n�2=3

2 sin�j

CO
� logn

n

��

; n ! 1:

Since sin�j > 0, we observe that jkj j < 1 for n sufficiently large. Moreover, for
the respective eigenvalue, we obtain

�j D kj C k�1
j D 2 cos�j C in�2=3 CO

� log n

n

�

; n ! 1: (21)

Consequently, it follows from (21) that

dist.�j ; Œ�2; 2�/ D Im�j D n�2=3 CO
� log n

n

�

; n ! 1: (22)

Recall that the indices j are restricted as in (19) and so the number of eigenvalues
of Tn, which the analysis is restricted to, is asymptotically n=4 for large n. Thus,
we may estimate

X

�2�d.Tn/

.dist.�; Œ�2; 2�//! � n

4

�

n�2=3 CO
� log n

n

��!

D n1�2!=3

4

�

1CO
� log n

n1=3

��

;

for n ! 1. Therefore,

n
2p�3

3

X

�2�d.Tn/

.dist.�; Œ�2; 2�//! � n2.p�!/=3

4

�

1CO
� log n

n1=3

��

; n ! 1;

from which the statement follows. �

The chosen sequence of operators Tn also exhibits properties that imply The-
orem 3. These properties are established in the next result.

Proposition 8. For any � � 1=2 and p � 1, one has

lim
n!1

n
2p�3

3

X

�2�d.Tn/

dist.�; Œ�2; 2�/p
j�2 � 4j� D 1:
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Proof. The first part of the proof is a moderate modification of the approach
applied in the proof of Proposition 7. The essential difference is that one has
to take into account the eigenvalues of Tn occurring in the neighborhoods of the
endpoints ˙2 of the essential spectrum Œ�2; 2�. These eigenvalues were excluded
from the previous analysis by restricting the range of � in (14). At this point, we
need to allow � to approach 0 arbitrarily close. Therefore, we extend the range for
the angle � supposing

�� � � � .1 � �/�; (23)

for arbitrary but fixed 0 < � < 1=2. Then, sin� still remains bounded away
from zero and the same computation as in the proof of Proposition 7 yields that,
for n large, there are asymptotically n.1 � 2�/=2 eigenvalues �j of Tn with the
asymptotic behavior (21). The adapted range for indices j is given by inequalities

�� � �.4j � 1/
2n

� .1� �/�:

Then, the argument �j satisfies (23), as n ! 1, see (18). It means the range for j
now reads

2n� C 1

4
� j � 2n.1 � �/C 1

4
: (24)

The asymptotic formula (22) remains true in the same form. Consequently, for
all n sufficiently large and j satisfying (24), one has

dist.�j ; Œ�2; 2�/ � 1

2
n�2=3: (25)

In addition, for � � 1=2, one gets

lim inf
n!1

1

n

X

�2�.Tn/

1

j�2 � 4j� � lim inf
n!1

1

n

X

j as in (24)

1

j�2
j � 4j�

D 1

22�C1�

.1��/�
Z

��

dx

.1 � cos2 x/�
;

(26)

where (21) has been used. Further, we estimate the integral

.1��/�
Z

��

d x

.1 � cos2 x/�
D 2

�=2
Z

��

dx

sin2� x

� 2

1
Z

��

dx

x2�
D

8

ˆ

ˆ

<

ˆ

ˆ

:

2

2� � 1..��/
1�2� � 1/ if � >

1

2
;

�2 log.��/; if � D 1

2
:

(27)
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A combination of (26) and (27) implies that

lim inf
n!1

1

n

X

�2�.Tn/

1

j�2 � 4j� � C�.�/; (28)

where

C� .�/ WD 1

22��
�

8

ˆ

ˆ

<

ˆ

ˆ

:

1

2� � 1..��/
1�2� � 1/ if � >

1

2
;

� log.��/ if � D 1

2
:

Clearly, for any � � 1=2,
lim

�!0C
C� .�/ D 1: (29)

Finally, one makes use of (25) together with (28) to obtain the lower bound

lim inf
n!1

n
2p�3

3

X

�2�d.Tn/

dist.�; Œ�2; 2�/p
j�2 � 4j� � 2�p C� .�/:

Bearing in mind (29) and taking the limit � ! 0C in the above inequality, one
proves the statement. �

3. Schrödinger operators in dimension one

The following theorem is a continuous analogue to Theorem 3 and particularly
yields the negative answer to the open problem from [5] for one-dimensional

Schrödinger operatorsH D d2

dx2 CV with complex-valued potentials V 2 Lp.R/

and p � 1.

Theorem 9. For any p � 1 and � � 1=2, one has

sup
0¤V 2Lp.R/

1

kV kp
Lp

X

�2�d.H/

.dist.�; Œ0;1///p

j�j� D 1:

The proof of Theorem 9 follows from the following asymptotic analysis of
discrete eigenvalues of the Schrödinger operator with rectangular barrier potential
and complex coupling constant.

3.1. One-dimensional Schrödinger operator with rectangular barrier poten-

tial and complex coupling. Our strategy proceeds similarly as in the discrete
settings. However, a scaling of the variable allows us to restrict the analysis to
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an even simpler family of Schrödinger operators with a rectangular potential of
a fixed support. Concretely, we study the one-parameter family of Schrödinger
operators Hh WD H0 C Vh acting on L2.R/ with the potential

Vh.x/ WD i h�Œ�1;1�.x/; x 2 R; (30)

where h > 0 and �Œ�1;1� is the indicator function of the interval Œ�1; 1�. More
concretely, the asymptotic behavior of the discrete eigenvalues ofHh, for h ! 1,
located in a subset of the complex plane is of our primary interest and, in the end,
yields a proof for Theorem 9.

The general analysis of the discrete eigenvalues of Hh proceeds in a standard
fashion by solving the eigenvalue equation Hh D � separately on .�1; 1/ and
R n Œ�1; 1� and choosing , as well as its derivative, to be continuous at ˙1 . As a
result, one finds that � D k2 is an eigenvalue ofHh, if there exist� 2 Cn.2ZC1/�

2

satisfying the equations

k2 D �2 C ih and k D i� tan� (31)

together with the restriction

Re.� tan�/ > 0: (32)

The last inequality means nothing but Im k > 0. Then the eigenvector of Hh

corresponding to the eigenvalue � D k2 can be chosen as

 .x/ D
´

cos.�/eikjxj if jxj > 1;
eik cos.�x/ if jxj � 1:

The equations in (31) provide us with the characteristic equation

�2 C ih cos2 � D 0; (33)

whose solutions � are restricted by (32).
Finally, one can show, similarly as in Lemma 4, that the discrete spectrum of

Hh has to be located in the strip Œ0;1/Ci.0; h�, for h > 0. A numerical illustration
of the discrete spectrum of Hh, for h D 2500, is shown in Figure 2.

3.2. On the problem of Demuth, Hansmann, and Katriel. Analogously to the
discrete case, we first consider the Schrödinger operator zHh on L2.R/ defined by

zHh WD � d2

dx2
C zVh;
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Figure 2. The points represent eigenvalues � D �2 C ih ofHh, for h D 2500, where � are
numerically found solutions of the equation (33) satisfying condition (32).

where
zVh.x/ WD i

h
�Œ�h;h�.x/

and h > 0. The operator Uh defined on L2.R/ by

Uhf .x/ WD h1=2f .hx/; x 2 R;

is an isomorphism on L2.R/. Moreover, one has

h2 zHh D U�1
h HhUh;

where Hh is the Schrödinger operator with potential (30). It follows that

� 2 �.Hh/ () �

h2
2 �. zHh/:

Noticing also that
k zVhkp

Lp D 2h1�p

and
dist.�; Œ0;1// D Im � for � 2 �d. zHh/;

one obtains

1

k zVhkp
Lp

X

�2�d. zHh/

.dist.�; Œ0;1///p

j�j� D 1

2
h2��p�1

X

�2�d.Hh/

.Im�/p

j�j� : (34)

Now, equality (34) together with the following statement implies Theorem 9.

Proposition 10. For any p � 1 and � � 1=2, it holds that

lim
h!1

h2��p�1
X

�2�d.Hh/

.Im�/p

j�j� D 1:
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Proof. First note that the function on the left-hand side of (33) is even in �.
Moreover, equation (33) does not possess any purely imaginary solutions. Thus,
we can restrict the analysis of solutions of (33) to the half-plane given by Re� < 0.

In the proof, we are interested in those solutions � of (33) that are located in
the set determined by the inequalities

˛ logh � Im� � ˇ log h and Re� � �h j Im�j; (35)

where ˛; ˇ;  > 0 are (h-independent) constants such that  < 2˛ < 2ˇ < 1. Such
a set does indeed contain solutions of (33), if h is large enough. In fact, we will
show that the number of solutions is increasing as h ! 1 and their asymptotic
behavior implies the claim.

It follows from (35) that

cos� D e� i�

2
.1CO.h�2˛// and � D .Re�/.1CO.h� //;

as h ! 1. Note that both error terms in the above asymptotic formulas are
independent of� and hence the asymptotic expansions are uniform in� from (35).
Further, since  < 2˛, one has

�

cos�
D 2.Re�/ei�.1CO.h� //; h ! 1: (36)

Rather than (33), we actually focus on solutions of the equation

�C e� i�=4
p
h cos� D 0; (37)

which are clearly also solutions of (33). By combining (36) and (37), one arrives
at the equation

2.Re�/ei� D �
p
he7 i�=4.1CO.h� //; (38)

for h ! 1.
Next, we will need the following general observation: for given r > 0 and

' 2 Œ0; 2�/, all solutions � 2 C, with Re� < 0, of the equation

2.Re�/ei� D �rei'

are

�j D ' � 2j� C i log
�4j� � 2'

r

�

; j 2 N:

Applying this observation to (38) with

r D
p
h.1CO.h� // and ' D 7�

4
.1CO.h� //;
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one gets asymptotic formulas for solutions of (37) in the form

�j D �

4
.7� 8j /C i log

��.8j � 7/
2
p
h

�

CO.h� /; h ! 1; (39)

provided that the indices j 2 N are taken such that the �j satisfy the restrictions
from (35). The first restriction from (35) imposes h˛ � exp.Im�j / � hˇ , which
means

h˛C1=2

4�
.1CO.h� //C 7

8
� j � hˇC1=2

4�
.1CO.h� //C 7

8
:

Using that the Landau symbols above do not depend on j , we can restrict the
range for j even more. In fact, due to the freedom of choice of constants ˛ and ˇ
satisfying  < 2˛ < 2ˇ < 1, we can simply suppose

h˛C1=2 � j � hˇC1=2; (40)

for h sufficiently large, without loss of generality. Concerning the second restric-
tion from (35), it is straightforward to check that it is automatically satisfied for
� D �j , if h is sufficiently large.

Further, we show that the found solutions �j , with j as in (40), give rise to
eigenvalues of Hh for h large enough. To do so, one has to verify condition (32),
which is equivalent to

.Im�/ sinh.2 Im�/ < .Re�/ sin.2Re�/;

for � D �j . To this end, we use the asymptotic expansions

sin.2Re�j / D �1CO.h� /; Re�j D �1
2

p
heIm�j .1CO.h� //; h ! 1;

and the inequalities

sinh.2 Im�j / <
1

2
e2 Im�j ; Im�j � ˇ log h;

which are consequences of (39) and (35). Then, since ˇ < 1=2, we have

.Im�j / sinh.2 Im�j / <
ˇ

2
log.h/hˇeIm�j <

ˇ

2

p
heIm�j < .Re�j / sin.2Re�j /;

provided h to be sufficiently large.
According to (31), the eigenvalue �j corresponding to the solution �j is given

by �j D ihC �2
j . It follows from (39) and (40) that

Im �j D hC Im.�2
j / D hC 2Re�j Im�j

D hCO.hˇC1=2 logh/ D h.1CO.hˇ�1=2 logh//;
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as h ! 1. In particular, we may conclude that there exists h0 > 0 such that, for
h > h0 and j satisfying (40), we have the estimate

Im �j >
h

2
: (41)

Similarly, one computes that

j�j j D j�j j2
ˇ

ˇ

ˇ

ˇ

1C ih

�2
j

ˇ

ˇ

ˇ

ˇ

D .Re�j /
2.1CO.h�2 //; h ! 1; (42)

where we have used the assumption  < 2˛ together with the asymptotic formulas

1

�j

D O.h�˛�1=2/ and j�j j2 D .Re�j /
2.1CO.h�2 //; h ! 1:

It follows again from (39) and (40) that 0 < �Re�j � 2�j , for all h sufficiently
large. Using (42), we may claim without loss of generality that, for h > h0 and j
within the range (40), we have the estimate

j�j j1=2 � 2�j: (43)

In total, for � � 1=2, estimates (41) and (43) yield the lower bound
X

�2�d.Hh/

.Im �/p

j�j� � hp

22�Cp�2�

X

h˛C1=2�j �hˇC1=2

1

j 2�
;

for all h > h0. If we further apply the estimate

X

u�j �v

1

j 2�
�

v
Z

u

d x

x2�
� 1

.u� 1/2�
� 1

v2�
;

which holds true for any 1 < u < v, we obtain

X

�2�d.Hh/

.Im�/p

j�j� �

8

ˆ

ˆ

<

ˆ

ˆ

:

hp

2pC1�
Œ.ˇ � ˛/ loghCO.h�˛�1=2/� if � D 1=2;

hp

22�Cp�2� .2� � 1/ Œh
.1�2�/.˛C1=2/ CO.h�ı/� if � > 1=2;

for h ! 1, where ı WD min¹2�.˛C 1=2/; .2� � 1/.ˇC 1=2/º. Finally, we arrive
at the lower estimate

h2��p�1
X

�2�d.Hh/

.Im�/p

j�j�

�

8

ˆ

ˆ

<

ˆ

ˆ

:

ˇ � ˛
2pC1�

log.h/.1C o.1// if � D 1=2;

1

22�Cp�2� .2� � 1/
h.2��1/.1=2�˛/.1C o.1// if � > 1=2;

as h ! 1, which readily implies the statement. �
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The authors are indebted to Rupert Frank for the following remark which was
kindly provided after posting the preprint of this paper on arXiv.

Remark 11. The statement of Theorem 9 is particularly interesting for � D 1=2.
In this case, the resulting asymptotic bound is different from what one would
expect when ideas of the semiclassical analysis (or Weyl’s law) are applied. If we
write Hh D h yHh, then the operator yHh WD h�1H0 C i�Œ�1;1� is in the form of a
semiclassical Schödinger operator with semiclassical constant h�1=2 (our notation
h for the coupling is a bit unfortunate here). By semiclassical analysis, one could
expect that the asymptotic behavior of

X

�2�d.Hh/

.dist.�; Œ0;1///p

j�j� D hp��
X

�2�d. yHh/

.dist.�; Œ0;1///p

j�j�

is of order hp��C1=2 for h large. However, the proof of Proposition 10 shows that,
for � D 1=2, one has

X

�2�d.Hh/

.dist.�; Œ0;1///p

j�j1=2
� O.hp log h/; h ! 1:

Hence, we observe at least a logarithmic gain to Weyl’s law.
It was known to the community thatWeyl’s law may fail in the non-self-adjoint

case. However, an example of a Schrödinger operator with compactly supported
potential exhibiting this phenomenon was unknown. An interesting question
now is whether the logarithmic enhancement is caused by the discontinuity of
the potential or a general phenomenon. It is also currently unclear whether the
enhancement can be larger than logarithmic.

3.3. A comment on the multidimensional case. The open problem from [5]
concerns arbitrary dimensions d 2 N. At this point, when the solution is found
for d D 1, one can naturally ask whether the approach used in the one-dimensional
case could be generalized to find counter-examples in the multidimensional case
as well. Clearly, there are many candidates that could be thought of as multidimen-
sional analogues of the Schrödinger operators Hh analyzed in this Section 3. Ex-
cept the requirement that the multidimensional candidate should coincide withHh

for d D 1, one should also seek operators whose spectral problem can be reduced
to a problem of finding zeros of some well known functions.

One of possible candidates is given by the family of Schrödinger operators

Hh WD ��C ih�B1.0/; h > 0;
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where �B1.0/ is the indicator function of the d -dimensional unit ball B1.0/ cen-
tered at the origin. Since the potential is spherically symmetric, it is natural to use
spherical coordinates in the spectral analysis ofHh. Then the eigenvalue equation
for the radial part of the transformed operatorHh reduces to the Bessel differential
equation. The requirement that the eigenfunctions have to be continuously differ-
entiable at the unit sphere provides us with a characteristic equation expressed in
terms of Bessel and Hankel functions of the first kind. However, the necessary
asymptotic analysis of the eigenvalues seems to be much more involved than in
the particular case of d D 1.

At this moment, we do not known whetherHh can serve as a counter-example
for the open problem of Demuth, Hansmann, and Katriel when d � 2. This
question should be the subject of future research.
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