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Abstract. In 1964 J. M. Luttinger introduced a model for the quantum thermal trans-
port. In this paper we study the spectral theory of the Hamiltonian operator associated
with Luttinger’s model, with a special focus at the one-dimensional case. It is shown that
the (so called) thermal Hamiltonian has a one-parameter family of self-adjoint extensions
and the spectrum, the time-propagator group and the Green function are explicitly com-
puted. Moreover, the scattering by convolution-type potentials is analyzed. Finally, also
the associated classical problem is completely solved, thus providing a comparison be-
tween classical and quantum behavior. This article aims to be a first contribution in the
construction of a complete theory for the thermal Hamiltonian.
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1. Introduction

The aim of this introductory section is twofold: first of all, we will provide
the physical background that motivates the study of the thermal Hamiltonian;
secondly, we will present the mathematical problems and the main results achieved
in this work.

1.1. Physical motivations. The motion of an electron inside the matter, and sub-
jected to a static magnetic field B , is described by the (one-particle) Hamiltonian

H.A; V / WD K.A/C V (1.1)

where

K.A/ WD 1

2m

�

p � e

c
A

�2

: (1.2)

The parameters m and e describe the mass and the charge of the electron, respec-
tively. The constant c is the (in vacuum) speed of the light. The static (effective)
potential V takes care of the interaction of the electron with the atomic struc-
ture of the matter and causes only elastic scattering. The magnetic field enters
in the kinetic term K.A/ through its vector potential A according to the equation
B D r � A. In Quantum Mechanics the Hamiltonian H.A; V / is interpreted as
a differential operator acting on the Hilbert space L2.Rd /, where the differen-
tial part is provided by the momentum operator p WD �¯ i r, ¯ being the Planck

constant. The potentials V D V.x/ and A D A.x/ are functions of the position
operator x D .x1; : : : ; xd /, and act as multiplication operators.

The transport phenomena in the matter are analyzed by studying the response
of the system to an external perturbation F D F.x/ [18, 19]. In the stationary
regime, that is when all the transient effects due to the switching-on of the pertur-
bation are suppressed, the system reacts by generating a (stationary) drift current.
The latter can be computed (at least in the linear response regime, see e.g. [11])
starting from the full dynamics generated by the perturbed Hamiltonian

H.A; F; V / WD H0.A; F /C V : (1.3)

In (1.3) the “free” Hamiltonian

H0.A; F / WD K.A/C F (1.4)

describes the motion of an electron that moves in the empty space under the
influence of the (external) fields generated by A and F . The potential V in (1.3)
describes the interaction with the matter which generates elastic scattering of the
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particle. Once the “free” dynamics generated by H0.A; F / is known, one can
study the influence of the matter by means of the scattering theory [27, 31, 17] for
the pair of operators H0.A; F / and H.A; F; V /.

The best studied case concerns the response of the system to the perturbation
induced by a uniform electric fieldE D .E1; : : : ; Ed /. In this case the perturbation
is described by the electrostatic potential

FE .x/ WD � eE � x D � e.E1x1 C � � � CEdxd /

and the associate perturbed Hamiltonian takes the form

H.A; FE ; V / WD HStark.A/C V (1.5)

where the “free” part is given by

HStark.A/ WD K.A/ � eE � x (1.6)

according to (1.4). The operator HStark.A/ is known as (magnetic) Stark Hamil-

tonian. The non-magnetic caseHStark.A D 0/ D p2

2m
�eE �x has been extensively

studied since the dawn of the Quantum Mechanics. Among the vast literature,
we will refer to [4] for a concise and rigorous presentation of the spectral theory
of HStark.0/ and the related scattering theory when the background potential V is
taken in consideration. The spectral theory of HStark.A/ in presence of a uniform
magnetic field is discussed in [12, 2], among others.

In order to study the thermal transport in the matter, Luttinger proposed a
model which allows a “mechanical” derivation of the thermal coefficients [19].
Such a model has been then applied and generalized successfully by other authors
like in [29, 30]. The essential point of Luttinger’s model is that the effect of
the thermal gradient in the matter is replaced by a “fictitious” gravitational field,
which can be easily described by a perturbation of the Hamiltonian in the spirit
of (1.3) and (1.4). More precisely, one assumes that the particle is subject to
a force which has the direction of the thermal gradient r# (where # is the
distribution of temperature) and which is proportional to the local content of
energy divided by c2 (in view of the mass-energy equivalence). The latter is given
by the Hamiltonian (1.1) itself. Such a thermal-gravitational field is given by the
potential

FT WD 1

2

h�r#
c2

� x
�

H.A; V /CH.A; V /
�r#
c2

� x
�i

D r#
c2

� 1
2

¹H.A; V /; xº;
(1.7)
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where the anti-commutator ¹�; �º between H.A; V / and x is needed to make
FT formally self-adjoint (i.e., symmetric). The total perturbed Hamiltonian
H.A; FT ; V /, computed according to (1.3), can be written as

H.A; FT ; V / D HT .A/CW.V / (1.8)

where the “free” part, called (magnetic) thermal Hamiltonian,1 is given by

HT .A/ WD K.A/C r#
c2

� 1
2

¹K.A/; xº (1.9)

and the effective gravitational-matter potential reads

W.V / WD
�

1C r#
c2

� x
�

V : (1.10)

The thermal Hamiltonian HT .A/ is the analog of the Stark Hamiltonian when
the system is perturbed by the gravitational-thermal field instead of the electric
field. For this reason, it seems natural to look for the extension of the results valid
for the Stark Hamiltonian (e.g. [4, 12, 2]) to the case of the thermal Hamiltonian.
This consists of two consecutive problems: (i) the analysis of the spectral theory
of the “free” operator HT .A/; (ii) the study of the scattering theory for the pair
HT .A/ and H.A; FT ; V /. Both of these problems seem not to have been studied
yet in the literature, at least to the best of our knowledge. For this reason we devote
this work at the analysis of the questions (i) and (ii) above, in the one-dimensional
case. The multi-dimensional case will be treated in a future work.

1.2. Position of the spectral problem. In order to formulate the problems
sketched above in a rigorous mathematical setting we will make some simplifi-
cations. The most relevant concerns the absence of the magnetic field. From here
on, unless otherwise indicated, we will fix A D 0. It is worth mentioning that
this is not a major restriction as long as one is interested only the one-dimensional
regime. Indeed, in one spatial dimension the magnetic field is a pure gauge and
can be removed with a unitary transformation.2

As usual in mathematics, we will normalize all the physical units: 2m D ¯ D
c D e D 1. Moreover, we will denote with � WD jr#j > 0 the strength of
the thermal gradient and with  WD ��1r# 2 Sd�1 its direction. With these

1 An equivalently appropriate name forHT .A/ could be (magnetic) Luttinger Hamiltonian.

2 This fact can be interpreted as a consequence of the Stone–von Neumann theorem (see
e.g. [24]). Indeed, in one spatial dimension the pair x, �f WD p C f.x/ necessarily meets the
canonical commutation rule and so it is unitarily equivalent to the canonical pair x;p.
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simplifications the thermal Hamiltonian reads

HT � HT .�; / WD p2 C �

2
¹p2;  � xº: (1.11)

The expression (1.11) is formal without the specification of the domain of defini-
tion ofHT . However,HT is evidently well defined on the space of the compactly
supported smooth function C1

c .R
d / or on the Schwartz space S.Rd /. On these

dense domains the operator (1.11) acts as

.HT /.x/ WD � .1C � � x/.� /.x/ � �. � r /.x/ (1.12)

where � WD
Pd
jD1 @

2
xj

denotes the Laplacian and  � r WD
Pd
jD1 j@xj

. We can
simplify the last expression with the help of two unitary transformations of the
Hilbert space L2.Rd /. The first one is the rotation

.R /.x/ WD  .O�1
 x/;  2 L2.Rd / (1.13)

where the orthogonal matrixO meets the conditionO D .1; 0; : : : ; 0/. A short
computation shows that

.RHTR
�
 /.x/ D � .1C �x1/.� /.x/ � �

@ 

@x1
.x/;

where x1 denotes the first component of the position vector x D .x1; x?/ 2 Rd

and x? WD .x2; : : : ; xd / 2 Rd�1 is its orthogonal complement. Evidently, the
rotation O has the role of aligning the thermal-gravitational field along the
x1-xis.3 The second transformation is the translation

.S� /.x1; x?/ WD  
�

x1 � 1

�
; x?

�

;  2 L2.Rd / (1.14)

and a direct calculation provides

.S�RHTR
�
S

�
� /.x/ D �

�

� x1.� /.x/ � @ 

@x1
.x/

�

:

The operator on the brackets

.T /.x/ WD � x1.� /.x/ � @ 

@x1
.x/ (1.15)

agrees with the formal anti-commutator

T � 1

2
¹p2; x1º WD 1

2
.p2x1 C x1p

2/ (1.16)

3 Clearly, in dimension d D 1 the thermal-gravitational field is trivially aligned with the
only spatial axis and therefore R reduces to the identity.
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when evaluated on sufficiently regular functions like  2 S.Rd /. With a slight
abuse of notation, we will often use the representation (1.16) for the operator T ,
instead of the more precise definition (1.15).

The unitary equivalence between HT and T implies that the spectral theory
of the thermal Hamiltonian HT can be completely recovered from the spectral
theory of the operator T . For this reason, one is led to the problem of determining
if the operator T , initially defined by (1.15) on the dense domain S.Rd /, admits
self-adjoint extensions and, in that case, to compute the related spectra.

For technical reasons, it results easier to face the equivalent problems in the
Fourier space. Let F WL2.Rd / ! L2.Rd / be the Fourier transform defined (just
to fix the convention) by

.F  /.k/ WD 1

.2�/
d
2

Z

Rd

d x e� ik�x  .x/

on the dense subspace  2 L1.Rd / \ L2.Rd /. Let … WD F TF
� be the Fourier

transformed version of the operator (1.15). A direct computation shows that for
 2 S.Rd /

.… /.x/ WD i
h

x1 .x/C x2
@ 

@x1
.x/

i

; (1.17)

where x2 WD
Pd
jD1 x

2
j . The operator defined by (1.17) agrees with the formal

expression

… � � 1

2
¹x2; p1º WD � 1

2
.x2p1 C p1x

2/ (1.18)

on sufficiently regular functions.4
The representation (1.18) is quite intriguing if one compares the operator …

with the typical generator of C0-groups associated to C1-flows [1, Chapter 4].
At first glance, it would seem that the general theory of C0-groups applies to ….
However, a closer inspection to the R-flow associated to … shows that this is not
the case in general (see Section 2.4 for more details). Therefore, the question of
the self-adjointness of … needs to be investigated with other tools.

The first fundamental question is whether the operator …, initially defined
by (1.17) on S.Rd /, admits self-adjoint extensions or not. This is fortunately true
and easily demonstrable. Indeed, it is straightforward to check that …, as defined
by (1.17), is symmetric (hence closable) on S.Rd /, i.e.,

h… ; 'i D h ;…'i; for all  ; ' 2 S.Rd /:

4 Formula (1.18) can be formally derived from (1.16) by using the well-known transforma-
tions of the canonical operators F pj F � D xj and F xj F � D �pj for all j D 1; : : : ; d .



Spectral theory of the thermal Hamiltonian: 1D case 1421

This observation allows us to identify … with its closure (still denoted with the
same symbol) defined on the domain

D0 WD S.Rd /
k�k…

(1.19)

obtained by the closure of S.Rd / with respect to the graph-norm

k k2… WD k k2 C k… k2:

The existence of self-adjoint extensions of … is justified by von Neumann’s cri-
terion [26, Theorem X.3]. Let ‡ be the anti-unitary operator on L2.Rd / defined
by .‡ /.x/ D  .�x/. The domains C1

c .R
d / or S.Rd / are left unchanged by ‡

and a direct check shows that ‡… D …‡ on these domains. This is sufficient to
claim that:

Proposition 1.1. The closed symmetric operator… with domain D0 admits self-

adjoint extensions.

Proposition 1.1 allows a precise definition of the family of thermal Hamiltoni-
ans.

Definition 1.1 (thermal Hamiltonian). Let …� be a given self-adjoint extension
of the operator … with domain D.…� / � D0. Let F .�; / WD F S�R be the
unitary operator given by the product of the Fourier transform F , the translation
S� defined by (1.14), and the rotation R defined by (1.13). Then, the associated
thermal Hamiltonian is the self-adjoint operator

HT;�.�; / WD �F .�; /�…�F .�; /; � > 0;  2 Sd�1

defined on the domain D.HT;� / WD F .�; /�ŒD.…� /�.

Definition (1.1) reduces the question of the spectral theory of the thermal
Hamiltonian to the analysis of the self-adjoint realizations of the operator…. This
is usually done by studying the deficiency subspaces

K˙ WD Ker.i �…�/:

The existence of the conjugation ‡ for … implies the equality of the deficiency

indices n˙ WD dim.K˙/ (see [26, Theorem X.3]), which in turn ensures the
existence of self-adjoint extensions. In order to build the spaces K˙ and to
compute n˙, one needs to solve the equations …� D ˙ i which, in view
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of (1.17), is equivalent of finding the weak solutions [25, Section V.4] to the
differential equations

.x21 C x2?/
@ 

@x1
.x1; x?/C .x1 � 1/ .x1; x?/ D 0  2 L2.Rd / \ S

0.Rd /;

where S0.Rd / is the space of tempered distributions.5 This problem will be solved
for the one-dimensional case in Section 2.2.

1.3. Overview on the one-dimensional case. In Section 2.2, it is shown that the
differential operator (1.17), in one spatial dimension .d D 1/, admits a family of
self-adjoint realizations parametrized by the angle � 2 S1 (see Theorem 2.1). As
a consequence, the domains C1

c .R/ or S.R/ can not be cores for… (in contrast to
[1, Proposition 4.2.3]). However, it turns out that all these self-adjoint realizations
…� are equivalent in the sense that there are unitary operators L� such that
…� D L�…0L

�
�
. This fact immediately implies the independence of the spectrum

by the particular self-adjoint realization. In particular, it results that the spectrum
of every extension…� is purely absolutely continuous and coincides with the real
axis, i.e.,

�.…� / D �a.c..…� / D R; for all � 2 S1: (1.20)

We are now in position to state our first main result. Let us just recall that in
dimension d D 1 the only relevant parameter in the definition of the thermal
Hamiltonian is � > 0 since no rotation R is required (cf. note 3). Then,
according to Definition 1.1, we can define the family of one-dimensional thermal
Hamiltonians as

HT;�.�/ WD �.F S�/
�…� .F S�/; � > 0; � 2 S1:

In view of the unitary equivalence of the various realizations…� it follows that all
the one-dimensional thermal Hamiltonians with a given coupling constant � > 0
are unitarily equivalent. For this reason we can focus on the special realization
with � D 0.

Theorem 1.1 (spectral theory in d D 1). For every � > 0, and up to a unitary

equivalence, there is a unique one-dimensional thermal Hamiltonian on L2.R/

defined by

HT � HT .�/ WD �.F S�/
�…0.F S�/: (1.21)

5 Similarly, one can consider weak solutions inL2.Rd /\D
0.Rd /where D

0.Rd / � S
0.Rd /

is the space of distributions.
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The operator HT is self-adjoint on its domain D.HT / WD .F S�/
�ŒD.…0/� and

has purely absolutely continuous spectrum given by

�.HT / D �a.c..HT / D R

independently of � > 0.

The proof of Theorem (1.1) is a corollary Theorem 2.1 and of Definition 1.1.
For the determination of the spectrum one uses the invariance of the spectrum
under unitary equivalences and the spectral mapping theorem.

The operator HT , defined by (1.21), will be called the standard realization

of the one-dimensional thermal Hamiltonian (with coupling constant � > 0).
Theorem 1.1 expresses the fact that in dimension d D 1 there is a “unique” thermal
Hamiltonian, at least in the sense that all relevant physical quantities, which
by definition must be invariant under unitary equivalences, can be calculated
from HT .

Theorem 1.1 can be complemented with some more precise information. First
of all, it is possible to have a precise description of the domain D.HT / (cf.
Section 3.1). Let

Q.R/ WD
²

 2 L2.R/
ˇ

ˇ

ˇ

ˇ

Z

R

d xx2j .x/j2 < C 1
³

(1.22)

be the natural domain of the position operator. Let

.B� /.x/ WD
Z

R

dyB

�

x C 1

�
; y

�

 .y/ (1.23)

be the unitary operator with integral kernel

B.x; y/ WD i
sgn.x/ � sgn.y/

2
J0.2

p

jxyj/; (1.24)

where

sgn.x/ WD

8

<

:

x

jxj if x ¤ 0

0 if x D 0

is the sign function and J0 is the 0 Bessel function of the first kind,6 see [15].
Then, it holds true that

D.HT / D B�ŒQ.R/�:

6 The kernel (1.24) is reminiscent of the Hankel transform of order 0-th. This aspect is briefly
discussed in Section B.3.
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Moreover D.HT / contains a dense core for HT given by

D0.HT / WD S.R/C CŒ Q�0�
D ¹' 2 L2.R/ j ' D  C c Q�0;  2 S.R/; c 2 Cº

and on this core HT acts according to (cf. Proposition 3.1)

.HT . C c Q�0//.x/ WD � .1C �x/ 00.x/ � � 0.x/C c Q�1.x/ (1.25)

where the (normalized) functions Q�0 and Q�1 are explicitly given by

Q�0.x/ WD �
r

8

�
sgn

�

x C 1

�

�

kei
�

2

r

ˇ

ˇ

ˇx C 1

�

ˇ

ˇ

ˇ

�

;

Q�1.x/ WD
r

8

�
ker

�

2

r

ˇ

ˇ

ˇx C 1

�

ˇ

ˇ

ˇ

�

;

(1.26)

and kei.x/ and ker.x/ are the irregular Kelvin functions of 0-th order (see Sec-
tion B.2 and references therein). It is worth noting that the function Q�0 introduces
a jump discontinuity around the critical point xc D ���1. The Hamiltonian HT ,
acting on Q�0, produces the wavefunction Q�1 which shows a logarithmic divergence
around xc. A similar singular behavior around the critical point xc is detectable
also in the classical dynamics (cf. Section 4).

The unitary propagator UT .t / WD e� i tHT acts as an integral operator

.UT .t / /.x/ WD
Z

R

dyU�t

�

x C 1

�
; y C 1

�

�

 .y/; t 2 R n ¹0º (1.27)

with kernel given by (cf. Proposition 3.2)

U� .x; y/ WD sgn.x/C sgn.y/

i 2�
ei .xCy/

� J0

�2

�

p

jxyj
�

(1.28)

for all � 2 R n ¹0º. Finally, the knowledge of the unitary propagator allows to
compute the resolvent

R�.HT / WD .HT � �1/�1; � 2 C n R

by means of the Laplace transformation (see Section 3.3). It turns out that also
R� .HT / is an integral operator

.R�.HT / /.x/ WD 1

�

Z

R

dyZ �
�

�

x C 1

�
; y C 1

�

�

 .y/; (1.29)

with kernel Z˛.x; y/ given explicitly by the (long) formulas (3.7) and (3.8).
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Theorem (1.1) provides also the first step for the one-dimensional scattering
theory of the thermal Hamiltonian. Indeed, one infers from Theorem (1.1) thatHT
does not admit bounded states and so generate a “free-like” dynamics. In this work
only the scattering theory for a special type of convolution perturbations is dis-
cussed. The scattering theory for (physical) perturbations given by gravitational-
matter potentials of type (1.10) presents several technical complications and will
be treated in a separated work. By convolution perturbation we mean an integral
operator Wg acting on  2 L2.R/ as

.Wg /.x/ WD
Z

R

d yg.x � y/ .y/ (1.30)

where the kernel is chosen as g 2 L1.R/. Let us denote by

HT;g WD HT CWg (1.31)

the perturbed operator. As usual the wave operators for the pair .HT ; HT;g/ are
defined by

�˙
g WD s-lim

t!˙
ei tHT;g e� i tHT (1.32)

where s-lim denotes the limit taken with respect to the strong topology for bounded
operators. In Section 3.4 the following result will be proven.

Theorem 1.2 (scattering theory for convolution perturbations in d D 1). Let

g 2 L1.R/ and Wg the associated convolution perturbation defined by (1.30).
Then,

(i) the perturbed operator HT;g defined by (1.31) is self-adjoint with domain

D.HT / and

�.HT;g/ D �a.c..HT;g/ D R:

Let Og be the Fourier transform of g and assume that there are constants " > 0 and

C > 0 such that j Og.x/j 6 Cx
3
2 for all jxj < ". Then,

(ii) the wave operators�˙
g defined by (1.32) exist and are complete;

(iii) the S-matrix Sg WD .�C
g /

���
g is a constant phase given by

Sg D e� i
p

2�
�

R

R d s Og.s/

s2 :
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Structure of the paper. Section 2 is devoted to the study of the spectral theory
of the auxiliary operator… in the one-dimensional case. The spectral theory of the
one-dimensional thermal Hamiltonian HT is discussed in Section 3 along with a
subsection on the scattering theory by a convolution-type potentials. The classical
dynamics of the thermal Hamiltonian (in any dimension) is studied in Section 4.
Finally Appendix A and Appendix B contain some review material and some
technical computations needed to make the present work self contained.

Acknowledgements. Giuseppe De Nittis’ research is supported by the grant
Fondecyt Regular – 1190204. Giuseppe De Nittis and Vicente Lenz are indebted
to Claudio Fernández, Marius Măntoiu, and Serge Richard for many stimulating
discussions.

2. The spectral theory of the operator …

We already know from the general discussion in Section 1.2 that the operator
… defined by (1.17) (or formally by (1.18)) is symmetric and in turn closable.
Moreover, Proposition 1.1 ensures that … admits self-adjoint extensions. While,
on the one hand, these results are valid in every dimension, in this section we
will classify all the self-adjoint extensions of … in dimension d D 1 and we will
describe the the spectral theory for this family of operators.

2.1. Equivalence with the momentum operator. In dimensional d D 1 the
operator … is initially defined by

.… /.x/ D i
h

x .x/C x2
d 

dx
.x/

i

D i x
d

d x
Œx .x/�  2 S.R/: (2.1)

The last equality allows us to identify

… � � xpx

on sufficiently regular functions.
The operator (2.1) is symmetric, hence closable, and its closure (still denoted

with …) has domain D0 given by (1.19). In order to give a more precise charac-
terization of D0 we will benefit from the transformation

.I /.x/ WD 1

x
 

� 1

x

�

;  2 L2.R/:

Lemma 2.1. I is a unitary involution.
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Proof. A direct computation shows that

kI k2 D
Z

R

dx

x2

ˇ

ˇ

ˇ
 

� 1

x

�ˇ

ˇ

ˇ

2

D �
C1
Z

�1

d
� 1

x

�ˇ

ˇ

ˇ
 

� 1

x

�ˇ

ˇ

ˇ

2

D �
�1
Z

C1

d sj .s/j2 D k k2:

Then I , initially defined on every “good enough” dense domain, extends to an
isometry on the whole L2.R/. From its very definition, it follows that I 2 D .
This shows that I is an involution, and in particular it is invertible. As a conse-
quence I is also unitary. �

Instead of … let us consider the transformed operator

} WD I…I (2.2)

defined on the domain D.}/ WD I ŒD0�. We use the standard notation H k.�/ WD
W k;2.�/ � L2.�/ for the k-th Sobolev space7with respect to the open set� � R.
Let

H 1
0 .R/ WD ¹� 2 H 1.R/ j �.0/ D 0º

be the space of the Sobolev functions on R vanishing in x D 0. Let us point out
that the latter requirement makes sense since Sobolev functions on R are uniquely
identifiable with continuous functions [8, Theorem 8.2]. In view of this remark
we will tacitly identify Sobolev functions with their continuous representative so
that the following inclusions H 1

0 .R/ � H 1.R/ � C.R/ hold.

Proposition 2.1. The closed symmetric operator} defined by (2.2) coincides with

the momentum operator on H 1
0 .R/, namely

.}�/.x/ D � i�0.x/; � 2 D.}/ D H 1
0 .R/

where �0 is the weak derivative of �.

Proof. The unitarity of I implies that the graph norms of } and … are related by
k�k} D kI�k… for all � 2 D.}/. This gives

D.}/ D I ŒS.R/
k�k…

� D I ŒS.R/�
k�k}

:

7 For the theory of Sobolev spaces we refer the reader to [8, Chapters 8 and 9].
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Let � 2 I ŒS.R/�. Since I� 2 S.R/, one infers from (2.1) that

.…I�/.x/ D i x
d

d x
Œx.I�/.x/� D i x

d

d x

h

�
� 1

x

�i

D � i

x

d�

dx

� 1

x

�

:

Therefore

.}�/.x/ D .I.…I�//.x/ D � i
d �

d x
.x/

acts as the momentum operator on I ŒS.R/�. This implies that the domain of the
closed operator} is given by the closure of I ŒS.R/�with respect the Sobolev norm
k�k2

H1 WD k�k2 C k�0k2. Let C1
c .R n ¹0º/ be the set of smooth functions having

compact support separated from the origin. It holds true that

C
1
c .R n ¹0º/ � I ŒS.R/� � H 1

0 .R/: (2.3)

Indeed, let  2 C1
c .R n ¹0º/ supported in Œ�b;�a� [ Œa; b� and � WD I .

A direct inspection shows that � is a smooth function supported in Œ�a�1;�b�1�[
Œb�1; a�1�. This allows to conclude that I ŒC1

c .R n ¹0º/� � C1
c .R n ¹0º/. By

exploiting the involutive character of I one gets I ŒC1
c .R n ¹0º/� D C1

c .R n ¹0º/ �
S.R/ and in turn C1

c .R n ¹0º/ � I ŒS.R/�. For the second inclusion let us take
� 2 I.S.R// so that �.x/ D x�1 .x�1/ for some  2 S.R/. Clearly, � is smooth
inRn¹0º and extends to a smooth function onR such that�.n/.0/ D 0 for alln 2 N.
In particular � 2 H 1

0 .R/, implying the second inclusion I ŒS.R/� � H 1
0 .R/. To

conclude the proof it is enough to show that the closure of the space C1
c .R n ¹0º/

with respect to the Sobolev norm k � kH1 is (identifiable with) H 1
0 .R/. Let

RC WD .0;C1/ and R� WD .�1; 0/ and observe that

C1
c .R n ¹0º/k�k

H1 D C1
c .R�/

k�k
H1 ˚ C1

c .RC/
k�k

H1

D W
1;2
0 .R�/˚W

1;2
0 .RC/ D H 1

0 .R/;
(2.4)

where the notation for W 1;2
0 .�/ was borrowed from [8, Section 8.3]. The last

equality in (2.4) is a consequence of the fact that every element ofW 1;2
0 .R˙/ can

be uniquely identified with a continuous function that vanishes on the boundary
x D 0 [8, Theorem 8.12]. The identification (2.4), along with the double inclu-

sion (2.3), implies the desired result D.}/ D I ŒS.R/�
k�k

H1 D H 1
0 .R/. �

The first consequence of Proposition 2.1 is a precise description of the domain
of the closed operator …, i.e.,

D0 D I ŒD.}/� D
°

 2 L2.R/
ˇ

ˇ

ˇ  .x/ D 1

x
�

� 1

x

�

; � 2 H 1
0 .R/

±

: (2.5)
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Unlike the functions in H 1
0 .R/, the elements of the domain D0 are generally not

continuous and can show singularities in x D 0. An example is the function

�.x/ WD .1 C x2/�
1
3 e� 1

x2 which is evidently an element of H 1
0 .R/. Its image

 .x/ WD .I�/.x/ D .x3 C x/�
1
3 e�x2

is divergent in x D 0. On the other hand
elements of D0 have a decay at infinity which is at least of order 1.

Proposition 2.2. Let  2 D0. Then it holds true that

lim
jxj!1

.x .x// D 0:

Proof. The claim follows from the characterization (2.5) which provides

lim
x!˙1

.x .x// D lim
t!0˙

�.t/ D �.0/ D 0:

In the last equality, the continuity of � 2 H 1
0 .R/ is used. �

2.2. Classification of self-adjoint extensions. We are now in position to study
the self-adjoint realizations of …. In view of the unitary transform I this is the
same of studying the self-adjoint realization of the singular momentum opera-
tor }. The latter is a classical problem strongly related with the study of singular
delta interactions for one-dimensional Dirac operators [16, 6, 9] (see also [3, Ap-
pendix J]).

Proposition 2.3. The closed symmetric operator } has deficiency indices equal

to 1. Therefore, the self-adjoint extensions of } are in one-to-one correspondence

with the angles � 2 S1 ' Œ0; 2�/. The self-adjoint extension }� has domain

D.}� / WD
°

' 2 L2.R/
ˇ

ˇ

ˇ ' D � C c�� ; � 2 H 1
0 .R/; c 2 C

±

;

where

�� .x/ WD e�jxj ei sgn.x/ �
2

and acts has

}� .� C c�� / WD � i�0 C c��C� : (2.6)

Finally, }0 agrees with the standard momentum operator p with domain H 1.R/.

Proof. Since C1
c .R n ¹0º/ D C1

c .R�/ ˚ C1
c .RC/ is dense (with respect to the

graph norm) in the domain of }, a standard argument shows that the adjoint
operator }� acts as the weak derivative on its domain D.}�/ WD H 1.R�/ ˚
H 1.RC/ (see e.g. [25, Section VII.2]). The eigenvalue equations }��˙ D ˙ i�˙
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for the deficiency subspaces correspond to the differential equations �0
˙ D ��˙

which admit in D.}�/ the unique (normalized) weak solutions

�C.x/ WD
´p

2 e�x if x > 0;

0 if x < 0;
��.x/ WD

´

0 if x > 0;
p
2 eCx if x < 0:

According to von Neumann’s theory for self-adjoint extensions (cf. [26, Sec-
tion X.1]) one has that the self-adjoint extensions of } are parametrized by the
unitary maps from KC D CŒ�C� ' C to K� D CŒ��� ' C. The later are iden-
tified by the angle � 2 S1 ' Œ0; 2�/ according to U��C WD e� i �  �. From the
general theory [26, Theorem X.2] one has that the domain of the self-adjoint ex-
tension }� is made by functions of the type �Cc0.�C Ce� i � ��/ D �Cc�� with
� 2 H 1

0 .R/ and c; c0 2 C suitable complex coefficients. The action of }� on the
elements of its domain is given by

}� .� C c0.�C C e� i � ��// D � i�0 C i c0.�C � e� i � ��/

which translates into equation (2.6) in terms of the function �� . Evidently, the
standard momentum operator p is a self-adjoint extension of } since H 1

0 .R/ �
H 1.R/. This extension corresponds to}0 in view of the fact that �0 2 H 1.R/. �

Although the symmetric operator} admits several self-adjoint realizations, all
these realizations are in a sense equivalent. To express this fact in a precise way
we need to introduce the family of unitary operators L� defined by

.L� /.x/ WD ei sgn.x/ �
2  .x/;  2 L2.R/:

Proposition 2.4. The unitary operatorsL� intertwine all the self-adjoint realiza-

tions of the operator }. More precisely one has that

}� D L�pL
�
� ; � 2 S1;

where p D }0 is the standard momentum operator. As a consequence one has

that

�.}� / D �a.c..}�/ D R; for all � 2 S1:

Proof. Let us show that D.}� / D L� ŒH
1.R/�. Every  2 H 1.R/ can be

decomposed as . �  .0/�0/C  .0/�0. Evidently � WD  �  .0/�0 2 H 1
0 .R/,

L�� 2 H 1
0 .R/ and L��0 D �� . Therefore, L� 2 D.}� / which implies

L� ŒH
1.R/� � D.}� /. On the other hand every ' 2 D.}� / can be decomposed as

' D L� .L��� C c�0/ whit L��� 2 H 1
0 .R/, and in turn .L��� C c�0/ 2 H 1.R/
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proving the inverse inclusion D.}� / � L� ŒH
1.R/�. Now, let ' 2 D.}� /. By

exploiting the decomposition used above one has

.L�pL
�
� /' D L� .pL��� C cp�0/ D � i�0 C c��C� ;

where we used .p�0/.x/ D �0.x/ ei sgn.x/�
2 and pL��� D L��p� in view of

� 2 H 1
0 .R/. Hence, a comparison with (2.6) shows that L�pL�

�
D }� on the

domain D.}� /. �

Remark 2.1. The unitary equivalence of the different realizations }� can be
understood in terms of the celebrated Stone–von Neumann theorem (see e.g. [24]).
Indeed, a direct computation shows that

.x}� � }�x/' D i'; ' 2 C
1
c .R n ¹0º/

and C1
c .R n ¹0º/ D C1

c .R�/ ˚ C1
c .RC/ is dense in L2.R�/ ˚ L2.RC/ D

L2.R/. Therefore, by continuous extension, one can unambiguously define the
commutation relation Œx; }� � D i 1 which means that the pair .x; }� / satisfies the
canonical commutation relation. As a result, the Stone–von Neumann theorem
ensures that }� is unitarily equivalent to the standard momentum p.

Proposition 2.3 provides the key result for the complete description of the self-
adjoint extensions of ….

Theorem 2.1 (self-adjoint extensions: one-dimensional case). The self-adjoint

extensions of the closed symmetric operator … initially defined by (2.1) are in

one-to-one correspondence with the angles � 2 S1. The self-adjoint extension…�

has domain

D.…� / WD ¹' 2 L2.R/ j ' D  C c�� ;  2 D0; c 2 Cº;

where

�� .x/ WD 1

x
e� 1

jxj ei sgn.x/ �
2

and acts has

…� . C c�� / WD … C c��C� :

All the self-adjoint realizations are unitarily equivalent, i.e., …� D L�…0L
�
�

for

all � 2 S1. Finally one has that

�.…� / D �a.c..…� / D R; for all � 2 S1:
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Proof. This is a direct consequence of the unitary equivalence established in
Proposition 2.1 which allows to define the self-adjoint realizations of … by
…� WD I}�I . Therefore, the statement is nothing more than a rephrasing of
Proposition 2.3 and Proposition 2.4. The formula …� D L�…0L

�
�

is justified
by the commutation relation L�I D IL� . �

In view of the unitary equivalence among all the self-adjoint realizations of…
we can focus the attention only in a “preferred” realization.

Definition 2.1 (standard realization). We will call…0 D …�D0 the standard self-
adjoint realization of the operator initially defined by (2.1).

2.3. Boundary triplets. The problem of the determination of the self-adjoint
realizations of } or … can be investigated also with the theory of the boundary

triplets [28, Chapter 14]. Let us start with the operator } and its adjoint }�.
According to [28, Definition 14.2], a boundary triplet for}� is a triplet .H; �0; �1/
made by an Hilbert space H and linear maps �0; �1 from D.}�/ to H that satisfy
the abstract Green’s identity

h}�';  i � h'; }� i D h�0'; �1 iH � h�1'; �0 iH; for all ';  2 D.}�/

and the mapping D.}�/ 3 ' 7! .�0'; �1'/ 2 H � H is surjective. Since the
operator }� acts as the weak derivative on its domain

D.}�/ WD H 1.R�/˚H 1.RC/;

an integration by parts provides

h}�';  i � h'; }� i D i.'.0�/ .0�/ � '.0C/ .0C//;

where '.0˙/ WD limx!0˙ '.x/ and similarly for  .0˙/. A comparison with
the abstract Green’s identity shows that the triplet .H; �0; �1/ can be fixed in the
following way: H WD C;

�0' WD '.0C/ � '.0�/

i
p
2

; �1' WD '.0C/C '.0�/p
2

:

The surjectivity condition is obviously satisfied. Observe that Ker.�0/\Ker.�1/ D
H 1
0 .R/ D D.}/. The self-adjoint extensions of } are in one-to-one correspon-

dence with the self-adjoint operators on H D C [28, Theorem 14.10]. More
precisely, the self-adjoint extensions of } can be parametrized by a real num-
ber  2 R [ ¹1º which defines a restriction } WD }�jD

where the domain
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D � D.}�/ is defined by

D WD ¹' 2 D.}�/ j �0' D �1'º

D ¹' 2 D.}�/ j e� i arctan. 1
 / '.0C/ D ei arctan. 1

 / '.0�/º:
(2.7)

A comparison with Proposition 2.3 shows that the self-adjoint extensions }� and
} are related by the equation �./ D arctan

�

1


�

. In particular, the standard
momentum is identified by  D 1 which corresponds to � D 0. Definition (2.7)
provides the description of the domain of }� in therms of boundary conditions.
The same can be done for the self-adjoint extensions …� with the help of the
unitary operator I . A direct computation shows that

D.…� / WD ¹' 2 I ŒD.}�/� j e� i �
2 .x'/.C1/ D eC i �

2 .x'/.�1/º;
where .x'/.˙1/ WD limx!˙1 x'.x/.

2.4. Unitary propagator. Let

V� .t / WD e� i t…� ; t 2 R (2.8)

be the unitary propagator defined by the self-adjoint operator…� on L2.R/. The
description of V� .t / is provided in the following theorem.

Theorem 2.2. Let V� .t / be the unitary group defined by (2.8). It holds true that

.V� .t / /.t/ D ei �
2 .1�sgn.1�tx// sgn.x/

1 � tx  
� x

1 � tx
�

;  2 L2.R/:

Proof. We can use the unitary equivalence …� D IL�pL
�
�
I proved in Sec-

tion 2.2. This implies that V� .t / D IL� e� i tp L�
�
I along with the well-known

fact .e� i tp  /.x/ D  .x � t /. The proof of the claim follows by a direct compu-
tation. �

For each t 2 R let us consider the map ft WR [ ¹1º ! R [ ¹1º defined by

ft .x/ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

x

1 � tx if x 2 R n ¹t�1º;

1 if x D t�1;

�t�1 if x D 1;

(2.9)

with the convention that ˙0�1 � 1. The family of these maps defines an R-flow

in the sense that the following relations hold:
8

ˆ

<

ˆ

:

f0 D Id;

ft1 ı ft2 D ft1Ct2 ;

f �1
t D f�t ;

for all t; t1; t2 2 R: (2.10)
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The flow ft allows to rewrite the action of V� .t / in the form

.V� .t / /.t/ D e
i
2 .1�sgn.1�tx//.sgn.x/�C�/ p

.@xft /.x/ .ft .x//: (2.11)

When � D � the exponential prefactor is 1 and equation (2.11) agrees with the
definition of the C0-group associated to the flow ft as defined in [1, Section 4.2].
It is interesting to notice that the flow ft is not of class C1 and the generator of
the flow

F.x/ WD d ft
d t

ˇ

ˇ

ˇ

tD0
.x/ D x2

has an unbounded first derivative. Therefore the flow ft doesn’t meet the condi-
tions of [1, Lemma 4.2.2 and Proposition 4.2.3]. The latter fact explains why [1,
Proposition 4.2.3] doesn’t apply to the operator… � �1

2
.pF.x/CF.x/p/ which

indeed is not essentially self-adjoint on C1
c .R/.

2.5. Resolvent and Green function. The resolvent of the of the operator…� can
be derived from the resolvent of the standard momentum operator p by exploiting
the various unitary equivalences described in Section 2.2. For every � 2 CnR the
resolvent of …� at � is defined as

R�.…� / WD .…� � �1/�1 D L�I.p � �1/�1IL�
� : (2.12)

The next results shows that R�.…� / is an integral operator.

Proposition 2.5. Let � WD �˙ i ı 2 C n R with ı > 0. The resolvent R� .…� / acts

as
�

R� .…� / 
�

.x/ D
Z

R

dyR
�
� .x; y/ .y/;  2 L2.R/

with kernel given by

R
�
�˙i ı.x; y/ WD ei.sgn.x/�sgn.y// �

2

� ixy
‚

�

˙
� 1

x
� 1

y

��

ei �. 1
x

� 1
y
/ e�ı

ˇ

ˇ 1
x � 1

y

ˇ

ˇ

where ‚ is the Heaviside function.8

8 The Heaviside function is defined by

‚.x/ WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if x > 0;

1

2
if x D 0;

0 if x < 0:
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Proof. The integral kernel R
0
�

of the resolvent of…0 can be obtained from Green’s
function G

0
�

of the standard momentum operator (see Appendix A.1). A direct
computation provides

.R�.…0/ /.x/ D .I.p � �1/�1I /.x/ D 1

x

Z

R

d yG
0
�

� 1

x
; y

� 1

y
 

� 1

y

�

:

The explicit expression of G
0
�

given in (A.1) and a change of variable in the integral
provide

R
0
� .x; y/ WD 1

xy
G
0
�

� 1

x
;
1

y

�

:

Since L� is a multiplication operator, the relation between the kernels for � D 0

and � ¤ 0 is simply given by

R
�
� .x; y/ WD ei.sgn.x/�sgn.y// �

2 R
0
� .x; y/ D ei.sgn.x/�sgn.y// �

2

xy
G
0
�

� 1

x
;
1

y

�

:

This concludes the proof. �

It is worth noting that along the diagonal one has

R
�
� .x; x/ D sgn.Im.�//

i

2x2

for all � 2 C n R and � 2 S1.

2.6. Spectral measure and density of states. Let�� be the spectral measure of
the operator…� associated with the normalized state  2 L2.R/. We know from
Theorem 2.1 that…� as a purely absolutely continuous spectrum which coincides
with R. This implies that the spectral measure�� is purely absolutely continuous.
More precisely one has that

�� .d �/ WD f � .�/ d �

with f � 2 L1.R/ a non-negative function. The next result provides a description

of f � .

Proposition 2.6. Let �� be the spectral measure of the operator …� associated

with the (normalized) state  2 L2.R/. Then, �� is absolutely continuous with

respect to the Lebesgue measure d � in R and

�� .d �/ WD j O�� .�/j2 d � (2.13)
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where O�� WD F .�� / is the Fourier transform of the function

�� .x/ WD .L�
�I /.x/ D e� i sgn.x/ �

2

x
 

� 1

x

�

:

Proof. From the unitary equivalence…� D IL�pL
�
�
I one gets

F � .�/ WD h ; .…� � �1/�1 i D h ; IL� .p � �1/�1L�
�I i D F

p
��
.�/:

Following the arguments in Appendix A.2 on gets

lim
ı!0C

1

�
Im.F � .� C i ı// D f

p
��
.�/ D j O�� .�/j2

where the last equality is justified by (A.3). This concludes the proof. �

In order to define the integrated density of states (IDOS) of …� let us start by
introducing the spectral projections P �� of …� defined by

P �� WD

8

<

:

�
Œ0;��

.…� / if � > 0;

�
Œ�;0�

.…� / if � < 0:

Let .Qƒ /.x/ D �
ƒ
.x/ .x/ be the projection which restricts the functions

 2 L2.R/ on the intervalƒ D Œa; b�. Let us introduce the function N�ƒ W R ! R

defined by

N
�
ƒ.�/ WD sgn.�/

jƒj Tr.P �� Qƒ/: (2.14)

Definition (2.14) is well posed in view of the following result:

Lemma 2.2. Let ƒ WD Œa; b� with ab > 0. The operator P �� Qƒ is trace class and

N
�
ƒ.�/ D 1

ab

�

2�

independently of � .

Proof. By combining the spectral theorem with the unitary equivalence between
…� and p one gets that P �� D L�IP�IL

�
�

where

P� WD

8

<

:

�
Œ0;��

.p/ if � > 0;

�
Œ�;0�

.p/ if � < 0:
(2.15)
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This means thatP �� Qƒ D L� .IP�IQƒ/L
�
�

D L�I.P�IQƒI /IL� . Thus, to prove
that P �� Qƒ is trace-class it is sufficient to prove that P�.IQƒI / is trace-class. Let
b > a > 0 or a < b < 0. A direct computation shows that

.IQŒa;b�I /.x/ D �
Œa;b�

� 1

x

�

 .x/ D �
Œb�1;a�1�

.x/ .x/;  2 L2.R/;

namely IQƒI D Qzƒ with zƒ WD Œb�1; a�1�. This implies that P�.IQƒI / D
P�Qzƒ is trace-class in view of [27, Theorem XI 20]. Moreover, one has that

N
�
ƒ.�/ D j zƒj

jƒj
sgn.�/

j zƒj
Tr.P �� Qƒ/ D a�1 � b�1

b � a N
p

zƒ.�/

where N
p

zƒ.�/ is the local density of states for the operator p in the region zƒ. The
proof follows by using Lemma A.2. �

The quantity N
�
ƒ.�/measures the volumetric density of states up to the energy

� localized in the regionƒ. States with negative energy are counted as “negative”
states. Lemma 2.2 shows that this number is not homogeneous in space. One
can ask how this number changes for fixed volume in function of the spatial
localization. Let ` > 0 and setƒx;` WD Œx; xC`�when x > 0 orƒx;` WD Œx�`; x�
when x < 0. Then

N
�
ƒx;`

.�/ WD 1

x2 C jxj`
�

2�
:

Since the density decreases as x�2 in function of the spatial localization and as `�1

in function of the volume one immediately concludes that the majority of states
are concentrated around x D 0 with a divergent density.

Ultimately, the spatial inhomogeneity of N�ƒ is a consequence of the fact that
…� breaks the invariance under spatial translations. To define a density of states
on the thermodynamic limit a precise prescription on how to carry out the spatial
average is necessary. Let us define the principal value integral density of states

(pv-IDOS) as

pv �N
� .�/ WD lim

L!1
L

2.L2 � 1/ sgn.�/Tr.P�Q
0
L/;

where Q0
L WD QŒ�L;L� �QŒ�L�1;L�1�. From Lemma (2.2) one immediately gets

that

pv �N
� .�/ WD �

2�
:
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3. The spectral theory of the thermal Hamiltonian

The thermal Hamiltonian HT is defined by equation (1.21) as the conjugation
of …0 through the unitary F S�. For this reason the spectral theory of HT
(summarized by Theorem 1.1) is equivalent to the spectral theory of …0 studied
in Section 2. The next section is mainly devoted to the translation of the results
obtained for …0 to HT by exploiting the precise form of the unitary F S�.

3.1. Description of the domain. By construction the domain ofHT is given by

D.HT / WD .F S�/
�ŒD.…0/� D .S�

�BF
�/ŒH 1.R/�

with B WD F
�IF . The last equality is justified by D.…0/ D I ŒD.}0/� and

D.}0/ D H 1.R/. It is known that the Fourier transform of H 1.R/ is the domain
of the position operator [26, Chapter IX] defined by (1.22). Therefore, the domain
HT is made by functions in Q.R/ transformed by the operator S�

�
B . The operators

B and B� WD S�
�
B have a description in terms of integral kernels.

Lemma 3.1. On the dense domain L2.R/\L1.R/ the operatorB D F
�IF acts

as an integral operator with kernel given by (1.24). As a consequenceB� WD S�
�
B

acts according to (1.23).

Proof. Let us start with the computation of the kernel of B acting on  2
L2.R/ \ L1.R/. Then F . / 2 L2.R/ \ C0.R/, namely F . / is a square-
integrable continuous function that vanishes at infinity. For every n 2 N, let
�
In

be the characteristic function of the interval In WD Œ�n;�n�1� [ Œn�1; n�
Since F . / � F . /�

In
D F . /�

Ic
n

, where I cn is the complement of In, one

can prove that F . /�
In

! F . / in the L2-topology when n ! C1. Thus, the

unitarity of the Fourier transform implies that  n !  in the L2-topology where
 n WD F

�.F . /�
In
/ D  � F

�.�
In
/ and � denotes the convolution. Since B

is a unitary operator one gets B n ! B with respect to the L2-topology. An
explicit computation provides

.B n/.x/ D .F �IF  n/.x/

D .F �IF . � F
��
In
//.x/

D .F �I.F  /�
In
/.x/

D 1p
2�

Z

R

du eiux 1

u
.F  /

�1

u

�

�
In

�1

u

�



Spectral theory of the thermal Hamiltonian: 1D case 1439

D 1

2�

Z

In

du eiux 1

u

� Z

R

d y e� i y
u  .y/

�

;

where in the last two equalities we used the fact that I.F  /�
In

and  are

L1-functions (this justifies the use of the integral representation of F and F
�) and

the equality �
In
.u�1/ D �

In
.u/. Since the function gx.y; u/ WD 1

u
eixu e

� i y
u  .y/

is absolutely integrable in R � In one can invoke the Fubini–Tonelli theorem to
change the order of integration. This provides

.B n/.x/ D 1

2�

Z

R

d y .y/

� Z

In

du
eixu e� i y

u

u

�

: (3.1)

Corollary B.1 says that

lim
n!1

Z

In

du
eixu e� i y

u

u
D 2�B.x; y/:

And
ˇ

ˇ

ˇ

ˇ

Z

In

du
eixu e� i y

u

u

ˇ

ˇ

ˇ

ˇ

6 4�

for all n > n0. In view of the bound above one can use Lebesgue’s dominated
convergence theorem in (3.1) providing the formula

lim
n!C1

.B n/.x/ D
C1
Z

�1

d yB.x; y/ .y/: (3.2)

Equation (3.2) says that B n converges pointwise to the integral in the right-hand
side. Since B n converges to B in the L2-topology it follows there exists a
subsequence B nk

which converges pointwise (almost everywhere) to B [8,
Theorem 4.9 (a)]. Then the unicity of the limit assures that B coincides with
the right-hand side of (3.2). The last part of the proof follows from the explicit
computation

.B� /.x/ D .B /
�

x C 1

�

�

D
Z

R

d yB

�

x C 1

�
; y

�

 .y/

which provides equation (1.23). �
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Remark 3.1. Lemma 3.1 states that B� can be expressed as an integral operator
only on the dense domain 2 L2.R/\L1.R/. For function in 2 L2.R/nL1.R/
in principle, we do not have the right to write B� using the integral kernel.
However, in the following, we will tacitly use the convention

.B� /.x/ � lim
R!1

CR
Z

�R

d yB

�

x C 1

�
; y

�

 .y/; if  2 L2.R/ n L1.R/:

This identification must be understood as follows: (i) the product R WD �
Œ�R;CR�

is in L2.R/ \ L1.R/ and so B� R can be computed (pointwise) through the in-
tegral formula; (ii)  R !  , and in turn B� R ! B� , in the L2-topology; (iii)
then, the identification above makes sense almost everywhere on subsequences [8,
Theorem 4.9 (a)].

Lemma 3.1 allows to describe the domain of HT as follows:

D.HT / D
²

 2 L2.R/
ˇ

ˇ

ˇ

ˇ

 .x/ D
Z

R

dyB�.x; y/�.y/; � 2 Q.R/

³

:

An explicit computation (made of several changes of integration variable) shows
that the generic element  in D.HT / has the form

 .x/ D 1

x C 1
�

C1
Z

0

d sJ0.
p
s/�

� s

x C 1
�

�

; � 2 Q.R/:

From (1.19) and Theorem 2.1 one infers that S.R/ � D0 � D.…0/ and
S.R/ C CŒ�0� is a core for …0. Since .F S�/�ŒS.R/� D S.R/ in view of the
invariance of the Schwartz space under the Fourier transform and the translations,
it follows that

D0.HT / WD S.R/C CŒ Q�0�
is a core for HT , with Q�0 WD .B�F

�/�0 (the function �0 is described in Propo-
sition 2.3). Moreover, the unitary transform B�F

� and Proposition 2.3 also jus-
tify (1.25) with Q�1 WD .B�F

�/�� .

Proposition 3.1. The functions Q�0 and Q�1 are given by the formulas (1.26).

Proof. Let �0.x/ D e�jxj and ��.x/ D i sgn.x/ e�jxj. The inverse Fourier
transforms of these functions are given by

.F ��0/.x/ D
r

2

�

1

1C x2
; .F ���/.x/ D �

r

2

�

x

1C x2
:
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Since F
��0 2 L2.R/\L1.R/, the transformed functionBF

��0 can be computed
via the integral kernel of B . Then Lemma B.2 provides

.BF
��0/.x/ D � i

r

8

�
sgn.x/ kei.2

p

jxj/:

Since F
��1 2 L2.R/nL1.R/, the transformed functionBF

��1 as to be computed
according to the prescription of Remark 3.1. In this case one has

.BF
���/.x/ D �

r

2

�
lim

R!C1

CR
Z

�R

d y
B.x; y/y

1C y2
:

However, as shown in the proof of Lemma B.2, the integrand is absolutely inte-
grable for every values of x. This allows to forget the limit and one gets

.BF
���/.x/ D i

r

8

�
ker.2

p

jxj/:

Finally a translation by S�
�

and a multiplication by � i provide the formulas (1.26).
�

Remark 3.2 (other self-adjoint extensions). As for the operator … discussed in
Section 2, also the thermal HamiltonianHT admits a family of unitarily equivalent
self-adjoint extension parametrized by � 2 S1, and defined by

HT;� WD �.F S�/
�…� .F S�/:

Since …� D L�…0L
�
�

one obtains that HT;� is related to the standard thermal
Hamiltonian HT by the unitary equivalence

HT;� WD N�HTN
�
�

where N� WD .F S�/
�L� .F S�/. An explicit computation provides that

N� WD cos
��

2

�

1 � sin
��

2

�

H

where H denotes the Hilbert transform defined by

.H /.x/ WD 1

�

Z

R

d y
 .y/

x � y

over sufficiently regular functions  , and with the integral taken as a Cauchy
principal value.
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3.2. Unitary propagator. Let

UT .t / WD e� i tHT

the unitary propagator associated with the self-adjoint operator HT . Using the
various unitary equivalences that connectHT with the momentum operator p one
has that

UT .t / D B�.F
� e� i�tp

F /B�
� D S�

� .B ei�tx B/S�

where in the last equality we used F
�pF D �x. With the help of Lemma 3.1 we

can compute the integral kernel of UT .t /.

Proposition 3.2. On the dense domain L2.R/ \ L1.R/ the unitary propagator

UT .t / with (t ¤ 0) acts as an integral operator with kernel given by (1.27)
and (1.28).

Proof. Let us start by computing the kernel of A� WD B ei �x B , with � 2 R n ¹0º,
on  2 L2.R/ \ L1.R/,

.A� /.x/ WD lim
R!C1

CR
Z

�R

dy ei �y
B.x; y/

� Z

R

d sB.y; s/ .s/

�

:

The integral in the variable y is meant in the sense of a principal value in view of
Remark 3.1. For every x; � 2 R the function

g.x;�/.s; y/ WD ei �y
B.x; y/B.y; s/ .s/

is absolutely integrable in R � Œ�R;CR� since jg.x;�/j 6 jB.x; y/jj .s/j. Then,
we can invoke the Fubini–Tonelli theorem to change the order of integration

.A� /.x/ D lim
R!C1

Z

R

d sAR
� .x; s/ .s/; (3.3)

where

A
R
� .x; s/ WD

CR
Z

�R

dy ei �y
B.x; y/B.y; s/:

For xs ¤ 0 the change of variables u WD �xy provides

A
R
� .x; s/ WD sgn.s/C sgn.x/

2x

CRjxj
Z

0

du e� i �
x
u J0.2

p
u/J0

�

2

s

jsj
jxj

p
u

�

:
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By using formula [15, eq. 6.615] one gets

lim
R!C1

A
R
� .x; s/ D � i

sgn.s/C sgn.x/

2�
ei xCs

� I0

�

� i
2

�

p

jxsj
�

:

Finally, the well-known relations I0.˙ ix/ D J0.�x/ D J0.x/ valid for x > 0

provide
lim

R!C1
A
R
� .x; s/ D U� .x; s/; (3.4)

where the kernel U� is defined by (1.28). Equation (3.4) is valid also in the
singular cases xs D 0. For instance, for x D 0 on gets after the usual change
of coordinates

lim
R!C1

A
R
� .0; s/ D 1

2s

C1
Z

0

du e� i �
s u J0.2

p
u/ D U� .0; s/

where the last equality is justified by [15, eq. 6.614 (1)]. The case s D 0 is similar.
In view of (3.4) we have the pointwise convergence

lim
R!C1

A
R
� .x; s/ .s/ D U� .x; s/ .s/:

and since jU� .x; s/j 6 j� j�1 for all .x; s/ 2 R2 one has that the function s 7!
A
R
� .x; s/ .s/ is definitively dominated by the integrable function s 7! j� j�1 .s/

(provided � ¤ 0). This fact allows to use Lebesgue’s dominated convergence
theorem in (3.3), providing in this way

.A� /.x/ D
Z

R

d sU� .x; s/ .s/: (3.5)

Formula (1.27) is obtained by observing that UT .t / D S�
�
A�tS�. �

3.3. Resolvent and Green function. The resolvent of HT can be computed
as the Laplace transform of the unitary propagator UT .t / according to the well-
known formula [17, eq. (1.28), p. 484]. For every � 2 C n R let

R� .HT / WD .HT � �1/�1

be the resolvent of HT . Then, it holds true that

R� .HT / D i

C1
Z

0

d t ei �t UT .t /; Im.�/ > 0; (3.6)
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where the integral is interpreted as a strong Riemann integral lim�!C1
R �

0
. The

resolvent for Im.�/ < 0 can be obtained from the relation R�.HT / D R�.HT /
�.

The formula (3.6) is helpful to compute the integral kernel of R�.HT /.
One can take advantage of the unitary equivalence UT .t / D S�

�
A�tS� used in

Proposition 3.2 to obtain R�.HT / D ��1S�
�
Z �

�

S� with

Z˛ WD i

C1
Z

0

d � ei˛� A� ; Im.˛/ > 0:

Let  2 L2.R/\L1.R/. With the integral kernel of A� provided in (3.5) one can
write

.Z˛ /.x/ WD i lim
�!C1

�
Z

0

d � ei˛�
� Z

R

d sU� .x; s/ .s/

�

:

Since the J0.��1/ �
p
� if � ! 0 one can check that the function hx.�; s/ WD

ei˛�
U� .x; s/ .s/ meets the conditions of the Fubini–Tonelli theorem for the

change of the order of integration. Moreover, one can take care of the limit in
� with the help of Lebesgue’s dominated convergence theorem. At the end of
these manipulations one gets

.Z˛ /.x/ WD
Z

R

d sZ˛.x; s/ .s/

with kernel

Z˛.x; s/ WD i

C1
Z

0

d � ei˛�
U� .x; s/ D .sgn.x/C sgn.y//F˛.x; y/; (3.7)

where

F˛.x; y/ WD 1

2

C1
Z

0

d �
ei.˛�C .xCs/

� /

�
J0

�2

�

p

jxsj
�

:

Setting ˛ WD j˛j ei� , 0 < � < � , the last integral can be integrated case by
case using Macdonald’s and Nicholson’s formulas [13, Section 7.7.6] or [21,
Section III, p. 98]. A different way of calculating the kernel (3.7) is sketched
at the end of Appendix B.3. In both cases, after some tedious calculations, one
gets

F˛.x; y/ WD I0.2
p

j˛j min¹jxj; jyjº eiŒ�
2 � �

4 .sgn.x/C1/�/

�K0.2
p

j˛j min¹jxj; jyjº eiŒ�
2

� �
4
.sgn.x/C1/�/:

(3.8)



Spectral theory of the thermal Hamiltonian: 1D case 1445

It is also possible to check directly that the kernel Z˛.x; s/ inverts in a distribu-
tional sense the operator T � ˛1.

3.4. Scattering by a convolution potential. Let g 2 L1.R/ and consider the
associated convolution potential Wg defined by (1.30). Since Wg is a bounded
operator of norm kWgk D kgk1 the perturbed operatorHT;g WD HT CWg is well
defined as a self-adjoint operator on the domain D.HT / as a consequence of the
Kato–Rellich theorem [26, Theorem X.12]. The it makes sense to consider the
scattering theory of the pair .HT ; HT;g/.

In view of the unitary equivalence p D 1
�
IF S�HTS

�
�

F
�I between the

momentum operator and HT we can equivalently study the scattering theory of
the pair .p; pg/. where pg WD pCMg is the perturbation of the momentum given
by the potential

Mg WD 1

�
IF S�WgS

�
�F

�I :

Lemma 3.2. The potential Mg is the multiplication operator defined by

.Mg /.x/ WD
p
2�

�
Og
� 1

x

�

 .x/;  2 L2.R/:

where Og denotes the Fourier transform of g.

Proof. By construction the convolution is invariant under translations. This
means that S�WgS�

�
D Wg . Moreover the Fourier transform of a convolution

gives a multiplication operator

.FWgF
� /.x/ WD

p
2� Og.x/ .x/;  2 L2.R/

where Og denotes the Fourier transform of g. The proof is completed by observing
recalling the definition of the involution I . �

We are now in position to provide the proof of Theorem 1.2.

Proof of Theorem 1.2. Since g 2 L1.R/ then Og 2 C0.R/ (continuous func-
tions vanishing at infinity) in view of the Riemann–Lebesgue lemma [26, Theo-
rem IX.7]. This implies that the function x 7! Og

�

1
x

�

belongs toC.R/\L1.R/. As

a result the multiplicative potentialMg is bounded with norm kMgk D
p
2�
�

k Ogk1
and the conditions of [17, Example 3.1, p. 530] are satisfied. Then, one obtain
that p and pg are unitarily equivalent. This also implies the unitary equivalence
of HT and HT;g , and in turn item (i) of claim. In [17, Example 3.1, p. 530] it
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is also proven the existence and the completeness for the waves operators associ-
ated to the pair .p; pg/ under the assumption that of the existence of the improper
integrals

lim
x!0C

C1
Z

x

d s Og
�1

s

�

D lim
x!C1

x
Z

0

d s
Og.s/
s2

lim
x!0�

x
Z

�1

d s Og
�1

s

�

D lim
x!�1

0
Z

x

d s
Og.s/
s2

:

This requires that Og ! 0 fast enough when s ! 0˙. This is guaranteed by
the (not optimal) conditions required in the theorem statement. Invoking once
again the unitary equivalence between p andHT one obtain the existence and the
completeness for the waves operators associated to the pair .HT ; HT;g/, proving
in this way item (ii). Also for item (iii), in [17, Example 3.1, p. 530] is proven that
the S -matrix for the pair .p; pg/ is a complex number given by

Sg WD e
� i

p
2�
�

R

R

dx Og. 1
x
/

WD e
� i

p
2�
�

R

R

d s Og.s/

s2

:

Since a complex number is unchanged by unitary equivalences it follows that Sg
is also the S -matrix for the pair .HT ; HT;g/. �

4. The classical dynamics

In this last section we will study the classical dynamics induced by a thermal gra-
dient. The classic analogue of Luttinger’s model is provided by the Hamiltonian
function

HT .x; p/ WD .1C � � x/ p
2

2m
D K.p/C �T .x; p/; (4.1)

with parameters � > 0 and  2 Sd�1. The Hamiltonian HT can be seen as the
sum of the Hamiltonian of a free d -dimensional particle of mass m

K.p/ WD p2

2m
D 1

2m

N
X

jD1
p2j

coupled through the coupling constant � > 0 with the thermal potential

T .x; p/ WD . � x/K.p/ D
� p2

2m

�

d
X

jD1
jxj
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along the direction  2 Sd�1. The coupling constant has the dimension of the
inverse of a distance, namely � D `�1 with ` > 0 the typical length of the thermal
field. Therefore, the limit � ! 0 describes the situation in which the typical length
of the field is much larger than the typical length of the system (e.g. the size of
the particle). The potential T is an example of what is known as a generalized

potential, namely a potential which depends not only on the position but also on
the velocity.

4.1. Hamiltonian formalism and Newton equation. The Hamilton equations
associated to (4.1) read

8

ˆ

ˆ

<

ˆ

ˆ

:

Px D CrpHT D .1C � � x/
m

p;

Pp D �rxHT D � � p
2

2m
:

(4.2)

The first equation can be inverted out of the critical plane

„c WD ¹x 2 Rd j  � x C ` D 0º (4.3)

and provides

p.x; Px/ D m

1C � � x Px: (4.4)

One can restore the usual relation p D mT Px between momentum and velocity by
introducing the position-dependent mass (PDM)

mT .x/ WD m

1C � � x :

It is interesting to notice that the Hamiltonian (4.1) can be rewritten as

HT .x; p/ D p2

2mT .x/
; (4.5)

namely as the Hamiltonian of a free particle with a PDM. The second equation
of (4.2) can be rewritten as

Pp D � �rxT : (4.6)

A straightforward computation allows to derive Newton’s laws from (4.2):

m Rx D �. � Px/p � �.1C � � x/ p
2

2m
:

After introducing (4.4) in the last expression one obtains Newton’s equation

m Rx D �FT .x; Px/
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where the thermal force (which has the dimensions of a force times a distance) is
given by

FT .x; Px/ D mT .x/
h

. � Px/ Px � Px2
2


i

: (4.7)

A way of interpreting this Newton’s equation is to say that the motion of the PDM-
particle is influenced by the effect of its own internally self-produced force field
generated by the spatial dependence of the mass. The relation between the force
FT and the potential T can be deduced by observing that

� �rxT D � �mT .x/
2

m

Px2
2
 (4.8)

in view of the (4.6), (4.2), and (4.4), respectively. After some manipulation and
the use of equation (4.4) one gets

FT .x; p/ D � rxT .x; p/CRT .x; p/ (4.9)

which shows that the thermal force is not simply given by �rxT , as for ordinary
conservative forces, but it includes an extra reacting term

RT .x; p/ WD d

d t
. � x/p D m

d

d t
.rpT .x; p// (4.10)

which is generally not aligned with the direction  of the field.

4.2. Qualitative analysis. Let us start with the analysis of the qualitative behav-
ior of the solution of the Hamiltonian system (4.1). To simplify the study let us
fix convenient notations. The unit vector  can be completed to an orthonormal
basis by adding other d � 1 orthonormal vectors e1; : : : ; ed�1. This allows to fix
the generalized coordinates x0 WD  � x, xj WD ej � x, and the generalized mo-
menta p0 WD  � p, pj WD ej � p with j D 1; : : : ; d � 1. In this coordinates the
Hamiltonian (4.1) reads

HT .x0; p1; : : : ; pd / D .1C �x0/
p2

2m
(4.11)

and the Hamilton equations (4.2) become
8

ˆ

ˆ

<

ˆ

ˆ

:

Pxj D .1C �x0/
pj

m
;

Ppj D � ı0;j�
p2

2m
;

j D 0; : : : ; d � 1: (4.12)

The integration of the equations for the “orthogonal” components of the momen-
tum immediately leads to

pj .t / D }j D const.; j D 1; : : : ; d � 1:



Spectral theory of the thermal Hamiltonian: 1D case 1449

This can be seen as a consequence of Noether’s theorem applied to the invariance
under translations of the Hamiltonian HT along all the directions orthogonal to
 . Let us introduce the constant of motion

}? WD
�

d�1
X

jD1
}2j

�
1
2

which quantifies the momentum in the orthogonal plane to the direction of the
thermal field. The square of the momentum at any time takes the form

p2.t / D p20.t /C }2?: (4.13)

The value of the parameter }? strongly determines the behavior of the solu-
tions of the system (4.12). To see this, one can observe that the Hamiltonian HT
is time-independent and therefore Noether’s theorem provides a further constant
of motion, i.e., the (total) energy

E0 WD .1C �%0/
}20 C }2?
2m

which is completely specified by the initial conditions

%0 WD x0.t D 0/; }0 WD p0.t D 0/:

The constraint
HT .x.t/; p.t//D E0; for all t 2 R (4.14)

can be used to obtain the equation

x0.t / D 1

�

�2mE0

p2.t /
� 1

�

D
}20 C }2?
p20.t /C }2?

� 1

�
C %0

�

� 1

�
; (4.15)

which provides the time evolution of x0 once it is known the form of p20.t /
and the initial conditions %0 and }0; }1; : : : ; }N�1. In addition to this, the con-
straint (4.14) also provides useful information for a qualitative study of the trajec-
tory x.t/ of the particle. A comparison between (4.11) and (4.14) shows that the
sign of E0 only depends on the quantity 1C �%0. More precisely, one has that

˙E0 > 0 H) ˙ %0 > � `:

Thus, the critical plane„c � RN separates the space into two regions labelled by
the sign of the energyE0. The full trajectory x.t/ of the particle is fully contained
in only one of these two half-spaces according to the initial position %0 along
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the direction  at the initial time t D 0. Moreover, the trajectory can touch the
critical plane only at the cost of a divergence in the value of the total momentum,
p2 ! 1.

The existence of this critical impenetrable plane can be justified on the basis
of Newton’s law m Rxj D �FT;j where the force (4.7) is given for components by

FT;j D

8

ˆ

ˆ

<

ˆ

ˆ

:

E0

2
� .1C �x0/

}2?
m

if j D 0;

.1C �x0/
p0}j

m
if j D 1; : : : ; d � 1:

(4.16)

In the derivation of (4.16) from (4.7) we made use of (4.5) along with mT Px D p

and the conservation laws (4.13) and (4.14). The component FT;0 is proportional
to E0 very close to the critical plane (1C �x0 � 0) and force the particle to stay
inside the half-space where the particle was at the initial time. When }2? ¤ 0 the
component FT;0 changes sign sufficiently far from the critical plane and begins to
attract the particle towards „c. This suggests that the motion of the particle must
be bounded in the direction  provided that the momentum has a non-vanishing
component orthogonal to  at the initial time. The components FT;1; : : : ; FT;d�1
are due to the reaction term RT (4.10). The conservation of the energy implies
that jp0j / j1 C �x0j�

1
2 for x0 ! �`. Therefore the orthogonal components of

FT vanish when the particle approaches the critical plane.

4.3. Exceptional solutions. The Hamilton equations (4.12) (or, equivalently,
equations (4.2)) admit the exceptional family of solutions p.t/ D 0 and x.t/ D %

for all t 2 R parametrized by all the possible initial positions % 2 Rd n „c not
belong to the critical plane. In this case the particle is at every moment at rest in a
configuration of total zero energy E0 D 0. This is not surprising even though the
particle is immersed in the thermal field. In fact the force FT produced by the field
vanishes when p D 0. If at the initial time one has }j D 0 for all j D 0; : : : ; d �1
and %0 ¤ �`, then p2 D 0 for all t 2 R (as a consequence of energy conservation)
and therefore the particle is not subject to any force. This allows the particle to
stay in equilibrium forever at the position %.

Another family of exceptional solutions is again described by x.t/ D % for all
t 2 R with the initial positions % 2 „c. Also in this case the particle remains at
rest in a configuration of total zero energy E0 D 0. However, since the particle
lies in the critical plane the total momentum is not forced to be zero. While the
component of the momentum orthogonal to  is constant and quantified by }? the
component p0.t / evolves in time according to the Hamilton equation (4.12) (with
solutions (4.24) if }? D 0 or (4.17) when }? ¤ 0).



Spectral theory of the thermal Hamiltonian: 1D case 1451

4.4. The general solution. Let us derive the general solution of the Hamiltonian
system (4.12) under the generic assumption }? ¤ 0. In this case the differential
equation for p0 reads

Pp0 D � �p
2
0 C }2?
2m

and is solved by

p0.t / D }? tan
�

� � �}?
2m

t
�

; (4.17)

where � WD arctan
�

}0

}?

�

is determined by the initial conditions. Equation (4.17)

shows that p0.t / diverges periodically at the critical times t .n/c WD tc CnT , n 2 Z,
where

tc WD .2� � �/
`m

}?
; T WD 2�

`m

}?

and ` D ��1.
From (4.17) and (4.13) one immediately gets

p2.t / D
}2?

cos
�

� � �}?
2m
t
�2

and after some manipulations, equation (4.15) provides

x0.t / D %0 C A�

h

cos
�

� � �
}?
2m

t
�2

� cos.�/2
i

(4.18)

where we the amplitude A� is given by

A� WD `
2mE0

}2?
D `C %0

cos.�/2
:

Equation (4.18) shows that the motion along the direction  is bounded and more
precisely is confined between the critical plane „c which is reached periodically
at the critical times t .n/c and the extremal plane

„e WD
°

x 2 Rd
ˇ

ˇ

ˇ  � x D %0 C
� }0

}?

�2

.`C %0/
±

(4.19)

which is reached periodically at the extremal times t .n/e WD te C nT where
te WD 2� `m

}? .
By inserting the solution (4.18) in the differential equations for the other

components of the position one gets

Pxj .t / D �
}j

m
A� cos

�

� � �}?
2m

t
�2

; j D 1; : : : ; d � 1:
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For each j , the corresponding differential equation is integrated by

xj .t / D %j C �
}j

2m
A�t � A�

2

}j

}?

h

sin
�

2� � �
}?
m
t
�

� sin.2�/
i

: (4.20)

Evidently the motion in the directions ej is unbounded when }j ¤ 0 due to
the linear term in t which describes a uniform motion with constant velocity
vj;� WD �A�

}j

2m
.

Let us introduce the unit vector � WD }�1
?

Pd�1
jD1 }j ej . By construction � is

orthogonal to  and } WD }0 C }?� describes the initial momentum of the
particle at t D 0. From (4.18) and (4.20) one gets that

x.t/ D %C A�.f0.t / C f?.t /�/; (4.21)

with % WD % C
Pd�1
jD1 �j ej the initial position and

f0.t / WD cos
�

� � �
}?
2m

t
�2

� cos.�/2;

f?.t / WD �
}?
2m

t � 1

2

h

sin
�

2� � �
}?
m
t
�

� sin.2�/
i

:

Equation (4.21) shows that the motion of the particle is essentially two-dimen-
sional. In fact the orbit x.t/ lies entirely in the affine plane spanned by � and �
and passing through the initial position �.

Remark 4.1 (2D-case). In view of (4.21) the general motion of a particle in the
thermal field is a two-dimensional motion provided that the initial momentum is
not aligned with the direction of the field. Therefore, one can always identify the
direction  of the field and the direction � of the orthogonal component of the
initial momentum with the x-axis and the y-axis of R2, respectively. This allows
us to use the “cozy” notation x.t/ and y.t/ for the two projections of the trajectory
along the direction  y �, respectively. Let } D .}x; }y/ be the components of
the initial momentum projected along the two coordinate direction  and �. Let
us consider here the special situation in which the total momentum is completely
orthogonal to  . This means that }0 D }x D 0 and }? D j}yj D j}j. This also
implies that � D arctan.0/ D 0 andA� D `C%x with %x D %0 is the x-component
of the initial position % D .%x ; %y/. In this case the equations of motion for the
position simplify to

x.t/ D %x C .`C %x/
h

cos
�

�
j}j
2m

t
�2

� 1
i

;

y.t/ D %y C .`C %x/
h

�
j}j
2m

t C 1

2
sin

�

�
j}j
m
t
�i

:

(4.22)
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The time evolution of the momentum is described by the equations px.t / D
�j}j tan

�

� j}j
2m
t
�

and py.t / D }y .

4.5. The one-dimensional case. As discussed at the end of Section 4.4 (see Re-
mark 4.1) the general motion of a particle in the thermal field is two-dimensional
whenever }? ¤ 0. Therefore the condition }? D 0, }0 ¤ 0 corresponds to
considering the one-dimensional case. In fact, under these conditions, one imme-
diately gets from (4.12) that pj .t / D }j D 0 for all j D 1; : : : ; d � 1. This in turn
implies Pxj D 0 for j D 1; : : : ; d � 1 and so

xj .t / WD %j D const.; j D 1; : : : ; d � 1:

This means that the only possible motion could take place exclusively in the
direction  , namely it is one-dimensional.

Without loss of generality let us assume that %1 D � � � D %d�1 D 0 which
means that xj .t / D 0 D pj .t / for all j D 1; : : : ; d � 1. Given that, the only
interesting degrees of freedom are x0 and p0 and we can simplify the notation
identifying x0 with x and p0 with p. With this notation the (non-trivial) one-
dimensional system of Hamilton equations reads

8

ˆ

<

ˆ

:

Px D .1C �x/
p

m
;

Pp D � � p
2

2m
:

(4.23)

The equation for the momentum immediately integrated by

p.t/ D `
}

}
2m
t C `

(4.24)

with } D p.0/ the initial momentum. Notice that the value of the momentum
diverges at the critical time tc WD �`2m

}
.

The time evolution of the position can be derived directly from equation (4.15)
which, after some algebraic manipulation, provides

x.t/ D `C %

`2

� }

2m
t C `

�2

� ` (4.25)

with % D x.0/ the initial position. The long time behavior of the trajectory is
determined by the sign of the coefficient of t2 in (4.25), namely by the sign of
`C %. It follows that

lim
jt j!1

x.t/ D ˙ 1 if ˙ % > � `:
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The turning time in which the velocity changes sign is determined by Px.t/ D 0

and a simple computation shows that this time coincides with the critical time tc.
Moreover, one has that x.tc/ D �` independently of the initial value %0 ¤ �`.
In conclusion the critical plane „c separates the space into two regions and the
trajectory x.t/ is fully contained in only one of these two half-spaces according
to the initial position %. Moreover, the trajectory can touch the critical plane only
once at the critical time tc. These results are in accordance with the qualitative
analysis of Section 4.2.

4.6. The Lagrangian Formalism. By using the Legendre transformation

LT .x; Px/ D Px � p �HT .x; p/

one can compute the Lagrangian of the system:

LT .x; Px/ WD 1

2

m

1C � � x Px2 D mT .x/
Px2
2
: (4.26)

Expressions of the type (4.26) are well studied in the literature under the name
of quasi-free PDM Lagrangian (see [20, 7, 22] and references therein). The
canonical momentum

p.x; Px/ WD r PxLT .x; Px/ D mT .x/ Px

is exactly that given by equation (4.4). To compute the Euler–Lagrange equations
of motion we need also

rxLT .x; Px/ D rxmT .x/
Px2
2

D � �mT .x/
2

m

Px2
2
:

A comparison with (4.8) shows that

rxLT D Pp D � rxHT

and this assures that the Euler–Lagrange equation

d

d t
.r PxLT / D rxLT

is equivalent to the Hamilton system (4.2). An explicit computation provides

d

d t
.r PxLT / D mT .x/ Rx C d

d t
.mT .x// Px

D mT .x/ Rx � �
mT .x/

2

m
. � Px/ Px
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and putting all the pieces together one gets

mT .x/ Rx D �
mT .x/

2

m
. � Px/ Px � �mT .x/

2

m

Px2
2
 (4.27)

which is equivalent to Newton’s equation m Rx D �FT with the force (4.7).
In the one-dimensional it is useful to use the change of Lagrangian coordinates

.x; Px/ 7! .q; Pq/ implemented by

x.q/ WD e�q � 1

�
; Px.q; Pq/ WD � e�q Pq:

The inverse is given by

q.x/ WD 1

�
log

�

x C 1

�

�

and shows that the change of coordinates between x and q is one-to-one only when
x > �`. However, as seen in Section 4.2, this is exactly the range of values of
interest for the problem. With this change of coordinates the Lagrangian becomes

L
0
T .q; Pq/ WD m� e�q

Pq2
2
: (4.28)

and the associated Euler–Lagrange equation reads

Rq WD � �
Pq2
2
:

This equation immediately provides the time-behavior of the generalized velocity

Pq.t/ WD Pq0
1C Pq0�

2
t

and a further integration gives

q.t/ WD q0 C 2

�
log

�

1C Pq0�
2
t
�

where q0; Pq0 are the initial conditions. By coming back to the original variable
one can recover the expression (4.25) for x.t/.

Appendices

A. Spectral theory of the momentum operator

Let p D � i d
dx be the momentum operator with domain H 1.R/ � L2.R/, and

purely absolutely continuous spectrum �.p/ D �a.c..p/ D R.
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A.1. Green’s function. With the help of the Fourier transform F one gets [26,
Theorem IX.29]

..p � �1/�1 /.x/ D
Z

R

dyG
0
� .x; y/ .y/

where Green’s function of p is given by

G
0
� .x; y/ WD 1p

2�
F

�
h 1

k � �
i

.x � y/:

A straightforward computation involving contours integrals in the complex plane
provides

G
0
�˙i ı.x; y/ D ˙ i‚.˙.x � y// ei �.x�y/ e�ıjx�yj (A.1)

with � 2 R and ı > 0.

A.2. Spectral measure. Let �A be the spectral measure of the self-adjoint
operator A associated with the state  2 L2.R/. The function F A WC n R ! C

defined by the scalar product

F A .�/ WD h ; .A � �1/�1 i D
Z

R

d�A .�/
1

� � �

is called the Borel–Stieltjes transformation of the finite Borel measures �A . Since

Im.F A .�// D Im.�/
Z

R

d�A .�/
1

j� � �j2

it follows that F A WCC ! CC is a holomorphic map from the upper half plane CC

into itself. Such functions are called Herglotz or Nevanlinna functions (see [10,
Section 1.4] or [5, Appendix]). A classical result by de la Vallée-Poussin assures
that the limit FA .�/ WD limı!0C FA .� C i ı/ exists and is finite for Lebesgue-
almost every � 2 R. Moreover, the absolutely continuous part of the spectral
measure �A can be recovered from the imaginary part of FA .�/ according to the
classical formula [10, Theorem 1.4.16.]

�A ja.c..d �/ D f A .�/ d �

with

f A .�/ WD lim
ı!0C

1

�
Im.FA .� C i ı//: (A.2)
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In the case A D p is the standard momentum operator one knows that the
spectral measure is purely absolutely continuous, i.e., �p D �

p
 ja.c.. By the help

of the Fourier transform F one obtains that

F
p
 .� C i ı/ WD h ; .p � .� C i ı/1/�1 i D

Z

R

d k
j O .k/j2

.k � �/ � i ı

where O WD F . / is the Fourier transform of  . The application of the for-
mula (A.2) provides

f
p
 .�/ D lim

ı!0C

Z

R

d k
1

�

ı

.k � �/2 C ı2
j O .k/j2 D j O .�/j2

where in the last equality one used that 1
�

ı
x2Cı2 converges in the distributional

sense to ı.x/ when ı ! 0C. In this way one recovers the well-known result

�
p
 .d �/ D j O .�/j2 d �: (A.3)

A.3. Density of states. For � 2 R let P�, be the spectral projection of p associ-
ated with the energy � according to (2.15). Let .QL /.x/ D �

Œ�L;L�.x/ .x/ be

the projection which restricts the functions  2 L2.R/ on the set Œ�L;L�. The
quantity

N
p
L.�/ WD sgn.�/

2L
Tr.P�QL/

is well defined since P�QL is trace-class in view of [27, Theorem XI 20].

Lemma A.1. For every � 2 R and L > 0 it holds true that

N
p
L.�/ D �

2�
:

Proof. By introducing the local Fourier basis supported in Œ�L;L�

 Ln .x/ WD
�
Œ�L;L�.x/p

2L
ei� n

L
x ; n 2 Z

one obtains that

N
p
L.�/ D sgn.�/

2L

X

n2Z
h Ln ; P� Ln i D 1

2L

X

n2Z

�
Z

0

�
p

 L
n

.d �0/

D 1

2L

X

n2Z

�
Z

0

d �0j O Ln .�0/j2 D
�

Z

0

d �0gL.�
0/

(A.4)



1458 G. De Nittis and V. Lenz

where

gL.�/ WD 1

2L

X

n2Z
j O Ln .�/j2 D 1

2�

X

n2Z

�sin.�L � �n/
�L � �n

�2

D 1

2�

�sin.�L/

�

�2 X

n2Z

��L

�
� n

��2
:

(A.5)

Observe that the exchange between the sum and the integral in the last equal-
ity of (A.4) is justified by the monotone convergence theorem and the compu-
tation (A.5). The formula

P

n2Z.a � n/�2 D . �
sin.a/ /

2 [] provides gL.�/ D 1
2�

independently of L. �

The integrated density of states (IDOS) Np W R ! R is defined by the limit

N
p.�/ WD lim

L!C1
N
p
L.�/:

From Lemma A.1 one gets that

N
p.�/ D �

2�
D

�
Z

0

d �0g.�0/

where the last equality emphasizes the fact that Np can be obtained by integrating
the constant density of states (DOS) g.�/ WD 1

2�
.

The definition of the IDOS can be generalized allowing sequences of increas-
ing sets less symmetric than Œ�L;L�. This essentially boils down on the invariance
of p under translations.

Lemma A.2. For every � 2 R and every intervalƒ WD Œa; b� � R of finite volume

jƒj D b � a it holds true that

N
p
ƒ.�/ WD sgn.�/

jƒj Tr.P�Qƒ/ D �

2�

where Qƒ is the projection on ƒ.

Proof. Set L WD b�a
2

and d WD �aCb
2

. Let Ud be the unitary operator defined by
.Ud /.x/ WD  .x � d/. A simple calculation provides UdQƒU

�
d

D QŒ�L;L� �
QL. From the invariance of the trace under unitary equivalences and the fact that
P� and Ud commute one gets

N
p
�.�/ D sgn.�/

jƒj Tr.UdP�QƒU
�
d / D sgn.�/

2L
Tr.P�QL/ D N

p
L.�/:

The claim follows from Lemma A.1. �
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Remark A.1 (DOS of the Laplacian). The IDOS of the momentum p and of the
Laplacian p2 are easily related by observing that �

Œ0;��
.x2/ D �

Œ�p
�;

p
��
.x/. From

this relation one deduces

N
p2

.�/ D N
p.

p
�/ � N

p.�
p
�/ D 2Np.

p
�/ D

p
�

�
; � > 0:

The last equality allows to recover the well-known formula for the DOS of the
Laplacian which is given by g.2/.�/ WD 1

2�
1p
�
.

B. Technical tools

B.1. Some principal value integrals. The central argument of this appendix is
the study of the following principal value integral

P

Z

R

duf .u/ WD lim
R!C1
r!0C

Z

IR;r

duf .u/

where IR;r WD Œ�R;�r�[ ŒCR;Cr� for all R > r > 0.

Lemma B.1. Let

G˙
s .u/ WD ei s.u˙ 1

u /

u
; s 2 R:

Then the principal value of G˙
s is given by

P

Z

R

duG˙
s .u/ D i.1˙ 1/� sgn.s/J0.2jsj/; (B.1)

where J0 is the 0-th Bessel function of the first kind.

Proof. For the trivial case s D 0 one has that G˙
0 .u/ D u�1 and

Z

IR;r

du

u
D 0; for all R > r > 0

since the function u�1 is odd and the integration domain IR;r is symmetric with
respect the origin. It follows that the principal value of G˙

0 is identically zero
according to (B.1). For s ¤ 0 we one has the symmetry

G˙
�jsj.u/ D �G˙

jsj.�u/
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which provides

P

Z

R

duG˙
�jsj.u/ D P

Z

R

d.�u/G˙
jsj.�u/ D � P

Z

R

duG˙
jsj.u/: (B.2)

The relation (B.2) guarantees that we can focus only on the case s > 0. In
this case the computation of the principal value of G˙

s requires Cauchy’s residue
theorem. The function G˙

s has a holomorphic extension to every bounded open
subset of C n ¹0º and has a singularity in 0. Let us start by computing the residue
of G˙

s . From the formula of the generating function for Bessel functions [15,
eq. 8.511 (1)] one obtains the Laurent series

G�
s .u/ D

X

n2Z
Jn.i 2s/u

n�1 D
X

n2Z
in In.2s/u

n�1

where the Jn are the Bessel function of the first kind and the In.z/ WD .� i/nJn.i z/
are the modified Bessel functions of the first kind. The Laurent series for GC

s can
be derived from the relation

GC
s .u/ D iG�

� i s.iu/

and provides
GC
s .u/ D

X

n2Z
in Jn.2s/u

n�1:

By definition, the residue ofG˙
s is the coefficient of its Laurent series for n D �1.

This provides

ResuD0.G
�
s / D I0.2s/; ResuD0.G

C
s / D J0.2s/:

From Cauchy’s residue theorem one gets

i 2� ResuD0.G
˙
s / D

I

�R;r

d zG˙
s .z/ D

� Z

IR;r

C
Z

C
C
R

C
Z

C�
r

�

d zG˙
s .z/

where �R;r is a positively (counterclockwise) oriented simple closed curve com-
posed by the union of the domain IR;r on the real line, the semicircle C�

r WD
¹r ei � j � 2 Œ��; 0�º in the lower half-plane and the semicircle CC

R WD ¹R ei � j
� 2 Œ0; ��º in the upper half-plane. An explicit computation provides

Z

C
C
R

d zG˙
s .z/ D i

C�
Z

0

d � ei s.R˙R�1/ cos� e�s.R�R�1/ sin � ;



Spectral theory of the thermal Hamiltonian: 1D case 1461

and consequently one has the following estimate:

ˇ

ˇ

ˇ

ˇ

Z

C
C
R

d zG˙
s .z/

ˇ

ˇ

ˇ

ˇ

6

C�
Z

0

d � e�s.R�R�1/ sin � :

Since e�s.R�R�1/ sin � ! 0 when R ! C1 for all � 2 .0; �/, it follows from
Lebesgue’s dominated convergence theorem that

lim
R!C1

Z

C
C
R

d zG˙
s .z/ D 0: (B.3)

A similar computation for the integral along C�
r provides

Z

C�
r

d zG˙
s .z/ D i

0
Z

��

d � ei s.r˙r�1/ cos� e�s.r�r�1/ sin � :

After the change of coordinate � 7! �� one gets

ˇ

ˇ

ˇ

ˇ

Z

C�
r

d zG˙
s .z/

ˇ

ˇ

ˇ

ˇ

6

C�
Z

0

d � e�s.r�1˙r/ sin � :

The latest inequality along with Lebesgue’s dominated convergence theorem pro-
vides

lim
r!0C

Z

C�
r

d zGC
s .z/ D 0; (B.4)

but we didn’t get a similar result for G�
s .z/. Putting together (B.3), (B.4), and the

formula of the residue theorem one gets

P

Z

R

duGC
s .u/ D i 2�J0.2s/; s > 0: (B.5)

Finally, from both estimates and the residue the following uniform bound for
r < 1 < R is obtained

ˇ

ˇ

ˇ

ˇ

Z

IR;r

d zGC
s .z/

ˇ

ˇ

ˇ

ˇ

6 4�

For the case s < 0, the relation (B.2) immediately provides

P

Z

R

duGC
s .u/ D � i 2�J0.2jsj/; s < 0: (B.6)
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Equations (B.5) and (B.6) together provide the proof of the formula (B.1) for GC
s

(which automatically includes also the case s D 0 discussed at the beginning).
The case of G�

s can be managed by the following application of Cauchy’s residue
theorem:

0 D
I

†R;r

d zG�
s .z/ D

� Z

IR;r

C
Z

C
C
R

�
Z

C
C
r

�

d zG�
s .z/;

where †R;r is a positively (counterclockwise) oriented simple closed curve
composed by the union of the domain IR;r on the real line the semicircles
CC
R WD ¹R ei � j � 2 Œ0; ��º and CC

r WD ¹r ei � j � 2 Œ0; ��º both in the upper
half-plane. The zero on the right-hand side is justified by the fact that †R;r does
not enclose the singularity of G�

s .z/ and the negative sign on the last integral is
due to the fact that the semicircle CC

r ha the opposite orientation with respect to
CC
R . Equation (B.3) takes care of the integral over CC

R . The integral over CC
r can

be controlled by observing that

ˇ

ˇ

ˇ

ˇ

Z

C
C
r

d zG˙
s .z/

ˇ

ˇ

ˇ

ˇ

6

�
Z

0

d � e�s.rCr�1/ sin � :

and, in turn

lim
r!0C

Z

C
C
r

d zG�
s .z/ D 0; s > 0; (B.7)

as a consequence of Lebesgue’s dominated convergence theorem. Putting to-
gether (B.3) and (B.7) in Cauchy’s residue formula one gets

P

Z

R

duG�
s .u/ D 0; s > 0: (B.8)

Similarly to case (a), an analogous bound can also be obtained. Combining both
results we have

ˇ

ˇ

ˇ

ˇ

Z

IR;r

d zG˙
s .z/

ˇ

ˇ

ˇ

ˇ

6 4�: (B.9)

These same results also hold also for s < 0 in view of the relation B.2. �

Corollary B.1. The formula

P

Z

R

du
eixu e� i y

u

u
D i 2�

�sgn.x/ � sgn.y/

2

�

J0.2
p

jxyj/
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holds true for all .x; y/ 2 R2. Moreover the uniform bound
ˇ

ˇ

ˇ

ˇ

Z

IR;r

du
eixu e� i y

u

u

ˇ

ˇ

ˇ

ˇ

6 4� (B.10)

is valid for all x; y 2 R.

Proof. Let us start by considering the singular situations xy D 0. The case
x D 0 D y corresponds to

P

Z

R

du

u
D 0;

as proved at the beginning of Lemma B.1. The case y D 0 is proportional to the
(well-known) Fourier transform of the function u�1 and provides

P

Z

R

du
eixu

u
D �

p
2�F

�1

u

�

D i� sgn.x/:

The case x D 0 can be treated with the change of variables u 7! �v�1 which
provides

P

Z

R

du
e� i y

u

u
D � P

Z

R

d v
eiyv

v
D � i� sgn.y/:

The non singular situation xy ¤ 0 can be separated in two different cases:
(a) xy > 0, and (b) xy < 0.

Case (a). Let a WD p
xy. Then, after the change of variables v WD a

jyju, one has

Z

IR;r

du
eixu e� i y

u

u
D

Z

IR0;r0

d v
ei xjyj

a
v e� i sgn.y/a

v

v
D

Z

IR0;r0

d vG�
s .v/;

where R0 WD ajyj�1R, r 0 WD ajyj�1r and s D a sgn.y/. Then, Lemma B.1
provides

P

Z

R

du
eixu e� i y

u

u
D P

Z

R

d vG�
s .v/ D 0:

Case (b). Let b WD
p

jxyj. Then, after the change of variables v WD b
jyju, one

has
Z

IR;r

du
eixu e� i y

u

u
D

Z

IR0;r0

d v
ei xjyj

b
v e� i sgn.y/b

v

v
D

Z

IR0;r0

d vGC
s .v/;
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where R0 WD bjyj�1R, r 0 WD bjyj�1r and s D �b sgn.y/. Again Lemma B.1
provides

P

Z

R

du
eixu e� i y

u

u
D P

Z

R

d vGC
s .v/ D � i 2� sgn.y/J0.2

p

jxyj/:

The observation that �2 sgn.y/ D sgn.x/ � sgn.y/ when xy < 0 completes this
case. The uniform bound (B.10) is deduced directly from (B.9) and the particular
case x D y D 0 �

B.2. Irregular Kelvin functions. A reference for the (irregular) Kelvin func-

tions is [23, Chapter 55]. Here we are interested only on the irregular functions of
0-th order

ker.x/ WD ker�D0.x/; kei.x/ WD kei�D0.x/:

We are interested in the behavior of these functions on the half line RC WD
Œ0;C1/. Both ker.x/ and kei.x/ have an exponential decay of the type �
q

�
2x

e
� xp

2 when x ! C1. The function kei.x/ is regular in the origin where

it takes the value kei.0/ D ��
4
. The function ker.x/ diverges at the origin as

� � log.x/. In particular one has that both the Kelvin functions are in L2.RC/.
The importance of the Kelvin functions for the present work is related to the next
result.

Lemma B.2. Let B.x; y/ the kernel (1.24). Then, the following formulas hold

true:
Z

R

d y
B.x; y/

1C y2
D � i 2 sgn.x/ kei.2

p

jxj/;

Z

R

dy
B.x; y/y

1C y2
D � i 2 ker.2

p

jxj/:

Proof. After the change of variable s WD xy one gets

I1.x/ WD
Z

R

dy
B.x; y/

1C y2
D i x

0
Z

�1

d s
J0.2

p

jsj/
x2 C s2

:



Spectral theory of the thermal Hamiltonian: 1D case 1465

A second change of variable s WD �t2 provides

I1.x/ D i 2x

C1
Z

0

d t t
J0.2t/

x2 C t4

D i 2 sgn.x/

C1
Z

0

d
� t

p

jxj

�� t
p

jxj

�J0.2
p

jxj tp
jxj /

. tp
jxj/

4 C 1

D � i 2 sgn.x/ kei.2
p

jxj/;

where the last equality is justified by [23, eq. 55:3:6].
The second formula can be proved with similar changes of variable and one gets

I2.x/ WD
Z

R

dy
B.x; y/y

1C y2
D i

0
Z

�1

d s
J0.2

p

jsj/s
x2 C s2

D � i 2

C1
Z

0

d t t3
J0.2t/

x2 C t4

D � i 2

C1
Z

0

d
� t

p

jxj

�� t
p

jxj

�3J0.2
p

jxj tp
jxj /

. tp
jxj/

4 C 1

D � i 2 ker.2
p

jxj/;

where the last equality comes from [23, eq. 55:3:5]. �

B.3. Bessel equation and Hankel transform. According to (1.15), the eigen-
value equation associated to the one-dimensional version of the operator T is

x
d2  

dx2
.x/C d 

d x
.x/ D � k .x/; k 2 R: (B.11)

The change of coordinates x.u; k/ WD u2

4k
produces

d2 �

du2
.u/C 1

u

d�

du
.u/C �.u/ D 0 (B.12)

where �.u/ WD  .x.u; k//. The (B.12) are the Bessel equations of order 0 and
the solutions are the function J0.u/ and Y0.u/ in the standard case andK0.u/ and
I0.u/ in the modified case. The only solution which has no singularity is the J0.
With this information, a physical (a.k.a. non singular) solution of (B.11) in the
case k > 0 is

 k>0.x/ WD �
Œ0;C1/

.x/J0.2
p

jkxj/;
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while in the opposite case k < 0 is

 k<0.x/ WD �
.�1;0�

.x/J0.2
p

jkxj/;

where �
I

is the characteristic function of the interval I. In the case k D 0 the
general solution of (B.11) is c1 log.jxj/ C c2, then the physical solution can be
chosen as the constant solution

 kD0.x/ WD 1:

These solutions are not in L2.R/ but they meet the (generalized) normalization
condition

Z

R

dx k.x/ k0.x/ D ı.k � k0/

in view of [15, 6.512 (8)]. Letf 2 L1.R/ and define the generalized eigenfunction
expansion

 f .x/ WD
Z

R

d k k.x/f .k/

D �
.�1;0�

.x/.H�f /.x/C �
Œ0;C1/

.x/.HCf /.x/

where

.H˙f /.x/ WD
C1
Z

0

d kJ0.2
p

jkxj/f .˙k/

are (a variant of ) the Hankel transform of f , see [14, p. 3]. For f 2 L2.R/ it is
possible to prove that  f 2 L2.R/. In this way the Hankel transform can be used
to generalize the Fourier theory for the operator (1.16).

As a final remark, it is worth observing that the kernel (3.7) of the resolvent
.T � ˛1/�1 can be obtained by the expansion on the basis  k according to

Z˛.x; y/ D
Z

R

d k
 k.x/ k.y/

k � ˛ ; ˛ 2 C n R:

The last expression can be integrated by means of the formulas [15, eq. 6.541 (1)].
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