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Disjointness-preserving operators
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Abstract. The most commonly considered counterexamples to Kac’s famous question “can
one hear the shape of a drum?” – i.e., does isospectrality of two Laplacians on domains
imply that the domains are congruent? – consist of pairs of domains composed of copies
of isometric building blocks arranged in different ways, such that the unitary operator
intertwining the Laplacians acts as a sum of overlapping “local” isometries mapping the
copies to each other.

We prove and explore a complementary positive statement: if an operator intertwining
two appropriate realisations of the Laplacian on a pair of domains preserves disjoint
supports, then under additional assumptions on it generally far weaker than unitarity, the
domains are congruent. We show this in particular for the Dirichlet, Neumann, and Robin
Laplacians on spaces of continuous functions and on L2-spaces.
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1. Introduction

One cannot hear the shape of a drum. More than 25 years have elapsed since
Gordon, Webb and Wolpert [28] answered the famous question posed by Kac in
the negative: there exist pairs of planar domains �1; �2 � R

2 which are not
congruent to each other, but whose Dirichlet or Neumann Laplacians have the
same spectra and thus which “sound the same”; see [11, 12, 13, 14, 19, 20, 25, 27]
for further expositions of these domains as well as descriptions of the methods
used to construct isospectral domains and manifolds in general.

On the other hand, since Kac popularised the question in the 1960s [32],
a huge body of literature has developed around proving positive answers within
certain special classes of domains or manifolds, or for certain properties weaker
than congruence; we refer to the survey [23], the recent introduction [35], and
mention other interesting contributions from the last few years [29, 30, 36, 46],
as well as the references therein, for a glimpse into the current state of affairs.
A typical approach, following a broad scheme set out by Kac himself, is to extract
information from formulae such as heat and wave traces which relate normalised
sums or other combinations of eigenvalues to geometric properties of the domain.

Let us start with something simpler: what would a general positive answer look
like? Suppose �1 and �2 are two domains in R

d and ��i
is some realisation of

the Laplacian, i D 1; 2 (say, in the most natural setting of L2-spaces). Denote
by  n any normalised eigenfunction associated with the nth eigenvalue of ���1

,
listed in increasing order and repeated according to their multiplicities, and by 'n

their counterparts on �2. Then we may define a unitary operator

U WL2.�1/ �! L2.�2/

by

U n D 'n for all n � 1:

If �1 and �2 are isospectral for this realisation of the Laplacian, then U has
the additional property that it intertwines the respective Laplacians, as well as
the corresponding heat semigroups: if f is in the domain D.��1

/ of ��1
, then

Uf 2 D.��2
/, and

U.��1
f / D ��2

.Uf / for all f 2 D.��1
/I

in terms of the semigroups .et��i /t�0, this reads

U.et��1f / D et��i .Uf / for all f 2 L2.�1/ and all t > 0: (1.1)
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A corresponding statement must also hold mutatis mutandis for U�1. We also see
immediately that the existence of such an intertwining operator U is equivalent to
the isospectrality of the domains.

Thus Kac’s question is equivalent to asking whether the existence of a unitary
operator intertwining the Laplacians implies that the domains are congruent; in
other words, whether this mapping U must take the form

Uf D f ı � (1.2)

for all f in the domain of the Laplacian onL2.�1/ (and hence for all f 2 L2.�1/,
by density), for some isometry � WRd ! R

d for which1 �.�2/ D �.�1/.
While the answer is clearly no, our point of departure is the observation that

in all the planar counterexamples found two decades ago subsequent to the work
of Gordon et al [14, 19, 20, 28], the explicit intertwining operator U mapping
eigenfunctions on �1 to eigenfunctions on �2 always has a very special form: it
is always a finite sum of overlapping “local” isometries, each locally taking the
form (1.2). Let us explain this using the principal example (the “propellers”) of
Buser et al [19, Section 2], which was revisited in [7]. We start out with a basic
building block, a triangle T ; in the words of Bérard [12, 14] this is the brique

fondamentale.

Figure 1.1. The triangle T .

By reflecting the triangle in two different ways as in Figure 1.2, we obtain
two domains �1 and �2, each composed of seven copies of T as indicated; we
will call these copies T1; : : : ; T7, abbreviated to 1; : : : ; 7 in the figure. If T is a
general scalene triangle, then�1 and�2 are not congruent. Nevertheless, there is
a unitary operator U WL2.�1/ ! L2.�2/ intertwining the Dirichlet Laplacians

1 There is a slight technicality here: if �1 is an open set and �2 differs from it by a set

of capacity zero, then the Laplacians on L2.�1/ and L2.�2/ coincide without the sets being
congruent; see for example [4, Section 3]. We may ignore this by always selecting, among the
equivalence class of all open sets differing by a set of capacity zero, the one which is regular in
capacity.
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�1 �2

Figure 1.2. Two isospectral domains composed of seven isometric triangles, as used in [7]
and based on the “warped propeller” domains of [19].

on L2.�1/ and L2.�2/. We identify each of the spaces L2.�i /, i D 1; 2,
with L2.T /7 in a different way, by writing f D .f1; : : : ; f7/

T 2 L2.�i / if
fj 2 L2.Tj /, j D 1; : : : ; 7. Then U is given locally as a sum of isometries:
for each triangle subset of �2, U is given by mapping three given triangles
of �1 onto it, i.e., up to a normalising constant, U has the form .Uf /i D

.�1/j1fi1 C .�1/j2fi2 C .�1/j3fi3 for each i D 1; : : : ; 7, for appropriate numbers
i1; i2; i3 2 ¹1; : : : ; 7º and appropriate signs j1.i/; j2.i/; j3.i/ 2 ¹�1; 1º, which are
chosen in such a way that H 1

0 .�1/ is mapped into H 1
0 .�2/; cf. [7, Section 6],

[19, Section 2], or [25, Section II] for a more detailed explanation-cum-proof.
The same principle holds for all the other examples, for both the Dirichlet and
Neumann Laplacians, known from [14, 19, 20, 28] etc.; see [25, Section IV] and
also the classifications in [38, 43].

In the present contribution, we will explore a slight variant of Kac’s inverse
problem, which seems quite natural in light of the above observation, and which
was already raised in a similar form in the introduction to [7]. Namely, we ask
what happens if one expressly prohibits such an overlapping: we are interested in
operatorsU intertwining Laplacians on two domains�1; �2 � R

d which have the
additional property of preserving disjoint supports: if f; g are functions defined
on �1 such that

f � g D 0

pointwise everywhere (or almost everywhere) on �1, then we demand that

Uf � Ug D 0

on �2. Such operators were also considered extensively by Bérard in [12, 13].
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We will see that a unitary operator that intertwines the Dirichlet Laplacians on
L2 on two different domains and which is additionally disjointness-preserving
already forces the domains to be congruent (see Corollary 6.5). But now there is
no particular reason to assume unitarity: we shall attempt to explore systematically
the question of whether, and under what circumstances, a (general) disjointness-
preserving intertwining operator, which is not necessarily unitary, is in fact given
by an isometry. Of course, if U is not unitary, then it does not necessarily have
norm one, and so its “desired” form becomes not (1.2) but more generally

Uf D cf ı � (1.3)

for an isometry � W�2 ! �1 and a nonzero constant c 2 C. A further conse-
quence of dropping unitarity is that we are no longer restricted to L2-spaces (cf.
Proposition 2.9).

We will begin by defining the realisations of the Laplacian which are rele-
vant for us – the Dirichlet and Neumann Laplacians, both on spaces of continuous
functions (easier and more natural to work with) and on L2 spaces (more natu-
ral from the point of view of the abstract theory) – in Section 2, where we will
also define precisely what we mean by “disjointness-preserving” and “intertwin-
ing operators.” In Section 3 we will present two introductory results, which show
the effect of these two assumptions separately: roughly speaking, under the right
technical assumptions, a disjointness-preserving operator U (on spaces of con-
tinuous functions, say) always has the form Uf .y/ D h.y/f .�.y//, y 2 �2, for
locally continuous functions hW�2 ! C and � W�2 ! �1; see Lemma 3.1. If U
has this form and additionally intertwines the Laplacians (even just on the set of
test functions), then h is forced to be constant and � an isometry – but, again, this
is only “local” in a certain sense; see Lemma 3.3.

In order to achieve “global” results, more is needed, as simple examples at
the end of Section 3 show. So, in the subsequent sections, we consider concrete
realisations of the Dirichlet and Neumann Laplacians more carefully: we give
conditions under which a disjointness-preserving operator U intertwining Dirich-
let Laplacians defined on the space C0 (the closure of C1

c with respect to the sup
norm k � k1; see Definition 2.1) has the form (1.3), and in particular �1 and �2

are congruent, in Section 4: see Theorems 4.1 and 4.6 and Corollary 4.7. Corre-
sponding results for the Neumann and Robin Laplacians are obtained in Section 5;
see Theorems 5.5, 5.6 and 5.8 and Corollary 5.11 in particular. Let us state a the-
orem which summarises our results from Section 4 in somewhat simplified form
and under somewhat stronger assumptions.
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Theorem 1.1. Suppose �1; �2 � R
d are bounded, Lipschitz domains such that

�1 is connected and suppose U WC0.�1/ ! C0.�2/ is a bounded linear operator

satisfying

(a) the disjointness-preserving condition “f � g D 0 implies .Uf / � .Ug/ D 0,

for all f; g 2 C0.�1/”, and

(b) the intertwining property U.�f / D �.Uf / in the sense of distributions, for

all f 2 C1
c .�1/.

If in addition at least one of the following conditions is satisfied

(1) j�1j D j�2j, or

(2) U has dense range, or

(3) �2 is connected and the Dirichlet Laplacians on �1 and �2 have the same

first eigenvalue,

then �1 and �2 are congruent and U has the form (1.3).

We return to considering the Dirichlet Laplacian on L2-spaces in Section 6,
where we obtain similar results; although somewhat different techniques are re-
quired, see Theorem 6.2; and finish by showing that a disjointness-preserving
unitary operator which intertwines Dirichlet, Neumann or Robin Laplacians on
L2 does in fact have the form (1.2), in Corollary 6.5 and Theorem 6.6.

Thus we obtain a positive answer to versions of Kac’s question in vari-
ous settings under the additional assumption that our intertwining operators are
disjointness-preserving, complementing the counterexamples described above.
We also take this opportunity to recall that Kac’s problem seems to be completely
open for the Robin Laplacians: there are no known pairs of Euclidean domains
which are isospectral for the Robin Laplacian, say, for a common boundary con-
stant ˇ ¤ 0 (see the discussion in [7]), although very recently pairs of Robin and
Steklov isospectral manifolds were constructed in [26].

While motivated in large part by the above-mentioned observation about the
form of the known counterexamples, the current note also follows in the tradition
of earlier works of one of the present authors [3, 4, 6], which have also been
extended recently in other directions [33, 34]. In these works, as here, one
investigates operators having an intertwining property such as (1.1) but where
unitarity is replaced by some other property. For example, in [4], it is shown that if
there is an operator U which intertwines Dirichlet, Neumann or Robin Laplacians
and which is an order isomorphism on L2 (i.e., U WL2.�1/ ! L2.�2/ is linear,
bijective and Uf � 0 almost everywhere in �2 if and only if f � 0 almost
everywhere in �1), then �1 and �2 are congruent, and up to a multiplicative
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constant U has the form (1.2). This can be extended to p ¤ 2 if one replaces
order isomorphism with isometric isomorphism. Since under these assumptions
the intertwining order isomorphism maps positive solutions to positive solutions
of the associated heat equation, this may be interpreted as saying that “diffusion
determines the domain.”

These results are extended to smooth manifolds in [6], while [3] deals with
the corresponding question on the space of continuous functions vanishing at
the boundary and at infinity. In [33], a similar analysis was given on weighted
discrete graphs; this was extended recently in [34] to the much more general
abstract setting of pairs of Dirichlet forms intertwined by order isomorphisms on
L2-spaces under a wide variety of assumptions.

We will draw certain techniques and some background results from these
works, in particular [3, 4]. However, disjointness preservation is a much weaker
property than that of being an order isomorphism; indeed, the latter is easily seen
to imply the former. Moreover, in light of the nature of the known counterex-
amples, the former is also arguably more natural in the context of isospectrality.
Finally, most our principal results (Theorems 4.1 and 5.5, and their respective ex-
tensions and corollaries) do not actually require our operator U to intertwine the
Laplacians: it merely has to have this property on the much smaller space of test
functions C1

c .�1/. This is more than just a technicality: this space is not a core
for the Dirichlet or Neumann Laplacians; indeed, these are different self-adjoint
extensions of the Laplacian on C1

c .�1/. Thus this property does not imply that
the actual Dirichlet, Neumann or Robin Laplacians are intertwined; indeed, it sug-
gests that the congruence of the domains is appearing at a much more fundamental
level.

Note that here we are only considering the Euclidean case. On manifolds the
situation is different: there exist two compact manifolds together with a (non-
surjective) non-zero intertwining disjointness-preserving operator even though
the manifolds are not isometric [6, Example 4.7].

2. Notation and Definitions

Let � � R
d , d � 1, be an open set which will be fixed throughout this section.

We start out by defining the realisations of the Laplacian in which we will be
interested. We will consider a total of four: the Laplacians with Dirichlet and
Neumann boundary conditions, being realised either on the spaceL2.�/ or on an
appropriate space of continuous functions. We start with the function spaces we
will need.
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Definition 2.1. Suppose� � R
d is an open set.

(a) We set

C1
c .�/ WD ¹f j�W f 2 C1.Rd / and suppf is compactly contained in �º;

where suppf � R
d is the support of f , i.e., the closure in R

d of the set
¹x 2 R

d W f .x/ ¤ 0º.

(b) We define the space C0.�/ to be the closure of C1
c .�/ with respect to the

supremum norm k � k1, i.e. kuk1 D supx2� ju.x/j.

(c) We set Cb.�/ to be the space of bounded and continuous functions on �,
equipped with the supremum norm k � k1.

(d) The spaceL2.�/ is the Hilbert space of square integrable Lebesgue measur-
able functions on �, equipped with the usual inner product h � ; � i.

(e) The Sobolev space H 1.�/ is the Hilbert space of L2.�/-functions whose
distributional partial derivatives all lie in L2.�/; this space will also be
equipped with any of the usual equivalent inner products.

(f ) The space H 1
0 .�/ is the closure of C1

c .�/ with respect to any one of the
equivalentH 1-norms.

We observe that functions u 2 C0.�/ are, by construction, continuous on
x� and pointwise zero on @�, and satisfy limjxj!1 u.x/ D 0. In particular,
C0.�/ � Cb.�/. In terms of our operators, we will first consider the L2-case,
corresponding to the usual weak formulation.

Definition 2.2. Suppose � � R
d is an open set. We define the Dirichlet

Laplacian on L2.�/, which we shall denote by ��D
L2.�/

, to be the operator on

L2.�/ associated with the sesquilinear form

a.u; v/ WD

Z

�

ru � rv dx; (2.1)

for u; v 2 H 1
0 .�/. That is, �D

L2.�/
is given by

D.�D
L2.�/

/ D ¹u 2 H 1
0 .�/W there exists f 2 L2.�/

s.t. a.u; v/ D hf; vi for all v 2 H 1
0 .�/º;

�D
L2.�/

u D � f:
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We shall also write just �D or �D
� if there is no danger of confusion, and

observe that the choice of the space H 1
0 .�/ encodes the boundary condition in

the usual weak sense. It is a routine exercise to show that �D
L2.�/

is also given by

D.�D
L2.�/

/ D ¹u 2 H 1
0 .�/W�u 2 L2.�/º;

�D
L2.�/

u D �u;

where �f is interpreted in the distributional sense if f 2 L2.�/.
We next consider the corresponding operator on spaces of continuous func-

tions.

Definition 2.3. Suppose � � R
d is an open set. The Dirichlet Laplacian on

C0.�/, denoted by ��D
C0.�/

, is defined by

D.�D
C0.�// D ¹u 2 C0.�/W�u 2 C0.�/º;

�D
C0.�/u D �u;

where �u is again to be understood in the distributional sense.

If it is clear that we are in C0, then we shall sometimes write �D
� or just �D

for this operator. If � is bounded, then C0.�/ � L2.�/ and in fact �D
C0.�/

is the

part of �D
L2.�/

in C0.�/. This also means that D.�D
C0.�/

/ � H 1
0 .�/; see [3].

If � has finite measure then the operator ��D
L2.�/

has compact resolvent and
hence a sequence of eigenvalues of the form

0 < �1.��
D
L2.�/

/ � �2.��
D
L2.�/

/ � � � �

constituting the entirety of the spectrum �.��D
L2.�/

/, where each eigenvalue is
repeated according to its finite multiplicity (noting that algebraic and geometric
multiplicities are always equal) and the associated eigenfunctions may be chosen
to form an orthonormal basis of L2.�/.

Remark 2.4. A bounded open set� � R
d is called Dirichlet (or Wiener) regular

if for each g 2 C.@�/ there exists a function u 2 C 2.�/ \ C.x�/ such that
�u D 0 in � and uj@� D g. It turns out that the bounded open set � is Dirichlet
regular if and only if the first eigenfunction of�D

L2.�/
is in C0.�/; in this case, all

eigenfunctions are in C0.�/ and the spectra of �D
L2.�/

and �D
C0.�/

coincide. In

this case, we will just write �D
k
.�/ for these eigenvalues. Moreover, the resolvent

set of �D
C0.�/

is non-empty if and only if � is Dirichlet regular, and in this case

�D
C0.�/

generates a holomorphicC0-semigroup onC0.�/. See [5] for more details
and further information.



1480 W. Arendt and J. B. Kennedy

Similar assertions hold in the case of Neumann and Robin boundary con-
ditions. In the L2-setting, we replace the space H 1

0 .�/ with H 1.�/ and for a
bounded measurable function ˇ 2 L1.@�/ defined on @� we introduce the form

aˇ .u; v/ WD

Z

�

ru � rv dx C

Z

@�

ˇuv d� (2.2)

for u; v 2 H 1.�/, where � is surface measure on @�. Clearly, the forms a and a0

agree. We then define the operators associated with the forms a D a0 and aˇ on
H 1.�/ as follows.

Definition 2.5. Suppose� � R
d is an open set.

(a) For a function u 2 H 1.�/, we define its distributional outer normal deriva-
tive @u

@�
to be the unique function h 2 L2.@�/, if one exists, such that

Z

�

ru � rv C�u Nv d� D

Z

@�

h Nv dx

for all v 2 H 1.�/.

(b) The Neumann Laplacian on L2.�/, ��N
L2.�/

, is defined by

D.�N
L2.�/

/ D ¹u 2 H 1.�/W there exists f 2 L2.�/

s.t. a.u; v/ D hf; vi for all v 2 H 1.�/º

D
°

u 2 H 1.�/W�u 2 L2.�/;
@u

@�
exists in L2.�/ and D 0

±

;

�N
L2.�/

u D f D �u;

where a is given by (2.1).

(c) Given a function ˇ 2 L1.@�/, we define the Robin Laplacian associated

with ˇ on L2.�/, ��
ˇ

L2.�/
, by

D.��
ˇ

L2.�/
/ D ¹u 2 H 1.�/W there exists f 2 L2.�/

s.t. aˇ .u; v/ D hf; vi for all v 2 H 1.�/º

D
°

u 2 H 1.�/W�u 2 L2.�/;

@u

@�
exists in L2.�/ and D �ˇu

±

;

��
ˇ

L2.�/
u D f D �u;

where aˇ is given by (2.2).
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The Neumann Laplacian clearly coincides with the Robin Laplacian when
ˇ � 0, that is, �N

L2.�/
D �0

L2.�/
. Moreover, if it is clear which domain � we

mean, and that we are in the L2-setting, then we shall again simply write �N

and �ˇ for the Neumann and Robin Laplacians, respectively. If � satisfies a
moderate regularity property, for example, if it is bounded and Lipschitz (i.e.,
@� is locally given by the graph of a Lipschitz continuous function), then �N

L2.�/

and �ˇ

L2.�/
also have compact resolvent and their spectrum are of the same form

as the spectrum of �D
L2.�/

, namely

0 D �1.��
N
L2.�/

/ � �2.��
N
L2.�/

/ � � � � ;

�1.��
ˇ

L2.�/
/ � �2.��

ˇ

L2.�/
/ � � � � ;

with the eigenvalues having the same properties as before; in particular, the
eigenfunctions of each such operator may be chosen to form an orthonormal basis
of L2.�/ and so on (see, e.g., [18, Section 4.2]).

Finally, we wish to define a realisation of the Neumann and Robin Laplacians
on spaces of continuous functions, i.e., C.x�/. Here we will always assume that�
is bounded and Lipschitz, although many definitions can be given for more general
domains; and we will also suppose that ˇ 2 C.@�/. Under these assumptions, we
shall consider the part of �N

L2.�/
in C.x�/ and the part of�

ˇ

L2.�/
in C.x�/ (as was

done, for example, in [44, Section 3] and [37] for the Robin Laplacian under the
assumption ˇ � ˇ0 > 0; note however that the sign of ˇ does not enter into the
construction, see, e.g., [21]).

Definition 2.6. Suppose� � R
d is a bounded open set with Lipschitz boundary.

(a) The Neumann Laplacian on C.x�/, ��N

C. x�/
, is defined by

D.�N

C. x�/
/ D

°

u 2 H 1.�/ \ C.x�/W�u 2 L2.�/ \ C.x�/;

@u

@�
2 L2.@�/ and D 0

±

;

�N

C. x�/
u D �u;

where @u
@�

is as in Definition 2.5.

(b) Let ˇ 2 C.@�/. The Robin Laplacian on C.x�/, ��
ˇ

C. x�/
, is defined by

D.�
ˇ

C. x�/
/ D

°

u 2 H 1.�/ \ C.x�/W�u 2 L2.�/ \ C.x�/;

@u

@�
2 L2.@�/ and D �ˇu

±

;

�
ˇ

C. x�/
u D �u:
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If� is bounded and Lipschitz, then every eigenfunction of�N
L2.�/

and�ˇ

L2.�/

is also in C.x�/ (every eigenfunction is certainly in L1.�/, see, e.g., [22, Theo-
rem 2.5]; now [44, Theorem 2.2] or the arguments of [17, Lemma 2.1] imply that
they are also in C.x�/; this may also be deduced from [37], where it is shown that
�

ˇ

C. x�/
generates a holomorphic C0-semigroup on C.x�/ for such �). Hence the

spectra of �N
L2.�/

and �N

C. x�/
coincide, as do the spectra of �ˇ

L2.�/
and �ˇ

C. x�/
. In

this case, we will write �N
n .�/ and �ˇ

n .�/ for the corresponding Neumann and
Robin eigenvalues, respectively.

We next introduce the two key notions with which we will be working: the
notion of an intertwining operator, and the notion of a disjointness-preserving

operator.

Definition 2.7. Suppose X1 and X2 are Banach spaces, and A1WD.A1/ � X1 !

X1 and A2WD.A2/ � X2 ! X2 are linear operators. We say that U WX1 ! X2

intertwines the operators A1 and A2 if

x 2 D.A1/ H) Ux 2 D.A2/ and A2Ux D UA1x: (2.3)

In this case we call U an intertwining operator (for A1 and A2).

If A2 is closed, a simple density argument shows that U is intertwining when-
ever there exists a core2 D of A1 such that UD � D.A2/ and A2Ux D UA1x

for all x 2 D. Actually, we will often work with a weaker intertwining property,
namely that (2.3) holds for a subset of the operator domain which is not necessarily
a core.

Remark 2.8. If Aj generates a C0-semigroup Sj on Xj , j D 1; 2, then a bounded
linear operator U WX1 ! X2 intertwines A1 and A2 if and only if

S2.t /U D US1.t / for all t � 0:

We next give an elementary result characterising unitary intertwining opera-
tors, which will be very useful in the sequel. It also gives us a natural analogue
of them on spaces of continuous functions, where we can no longer talk about
unitary operators.

2 We recall that a core of an operator is a subset of its domain which is dense in that domain
with respect to the operator norm.



Disjointness-preserving operators and isospectral Laplacians 1483

Proposition 2.9. Let�1 � R
d1 and�2 � R

d2 be bounded open sets and consider

the Dirichlet Laplacians on L2.�i /, i D 1; 2. Denote by ¹.�D
k
.�i /;  k.�i//º

1
kD1

a sequence of eigenvalues and eigenfunctions forming an orthonormal basis of

L2.�i /, i D 1; 2. Then the following facts are equivalent:

(1) �D
k
.�1/ D �D

k
.�2/ for all k � 1;

(2) there exists a unitary intertwining operator U WL2.�1/ ! L2.�2/;

(3) there exists an invertible intertwining operator U WL2.�1/ ! L2.�2/.

This equivalence remains true for the Neumann and for the Robin Laplacians

on L2, if �1 and �2 are bounded and Lipschitz. Moreover, the implication

(3) H) (1) continues to hold for the Dirichlet Laplacians on C0 if �1 and �2

are Dirichlet regular.

Proof. (1) H) (2). Let U be the unitary operator given by U k.�1/ D  k.�2/

for all k � 1. One sees, for example by the spectral theorem, that UD.�D
L2.�1/

/ D

D.�D
L2.�2/

/ and �Uf D U�f for all f 2 D.�D
L2.�1/

/.

(2) H) (3). Trivial.

(3) H) (1). Let U WL2.�1/ ! L2.�2/ be invertible and intertwining; then
UD.�D

L2.�1/
/ D D.�D

L2.�2/
/ and �Uf D U�f for all f 2 D.�D

L2.�1/
/. More-

over, obviously also U�1D.�D
L2.�2/

/ D D.�D
L2.�1/

/, and if g 2 D.�D
L2.�2/

/,

say with g D Uf , then U�1�g D U�1�Uf D U�1U�f D �U�1g. Now let
 2 L2.�1/ and � 2 R. Then  2 D.�D

L2.�1/
/ and � D � if and only if

U 2 D.�D
L2.�2/

/ and �U D �U ; note that U ¤ 0 since U is invertible.

The same is also true of U�1. Thus � D �k.�
D
L2.�1/

/ for some k � 1 if and

only if � D �j .�
D
L2.�2/

/ for some j � 1. Since this holds for all � 2 R, we
see that k D j in the case of simple eigenvalues, or correspondingly in the case
of multiple eigenvalues the eigenspaces have the same dimension; and (1) holds.
The argument is exactly for the Dirichlet Laplacians on C0, and the Neumann and
Robin Laplacians if �1 and �2 are bounded and Lipschitz.

Note that if a domain is Dirichlet regular, then its Dirichlet Laplacian spectra
on L2 and C0 coincide (see [5, Theorem 2.3]); in particular, if (3) is satisfied for
the Dirichlet Laplacians on C0, then in (1) it does not matter whether we consider
the L2- or the C0-spectra. �

This is the setting of Kac’s original question: does the existence of such
a unitary intertwining operator imply that �1 and �2 are isospectral? Here,
however, we will replace unitarity with the following property.
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Definition 2.10. Suppose E1 and E2 are Banach lattices. A bounded, linear
operator U WE1 ! E2 is called disjointness-preserving if

jf j ^ jgj D 0 H) jUf j ^ jUgj D 0 for all f; g 2 E1; (2.4)

where we use the notation f ^ g D inf¹f; gº in the sense of Banach lattices.

In practice we will be interested (only) in the spaces L2.�/, C0.�/, Cb.�/

and C.x�/, where � � R
d is an open set, usually of finite Lebesgue measure; in

the case C.x�/ we even restrict to bounded open sets. In these cases, (2.4) can be
reformulated as

f � g D 0 H) .Uf / � .Ug/ D 0 for all f; g;

where the equalities should hold everywhere in C or almost everywhere in L2.
For more on disjointness-preserving operators, we refer to [1, 40, 42] and the
references therein.

3. Disjointness-preserving operators

In this section, we will present two key lemmata which show how the structural
assumptions on U , namely that it be disjointness-preserving and that it intertwine
Laplacians, force it to be at least locally an isometry. Here we will work exclu-
sively on spaces of continuous functions, as it is much easier to be able to work
with point evaluations.

Our first lemma shows that any disjointness-preserving operator U taking
continuous functions on some open set !1 to ones on another open set !2 is,
roughly speaking, locally of the formUf D hf ı� for continuous maps hW!2 ! C

and � W!2 ! !1 (for more, general, properties of disjointness-preserving operators
on Banach spaces, we refer to the volume [1]; see also [40] and [42]). The second
lemma shows how the additional property of intertwining Laplacians then forces
h to be locally constant and � to be locally an isometry.

Lemma 3.1. Suppose !1; !2 � R
d are open sets and U ¤ 0 is a bounded linear

mapping from C0.!1/ into Cb.!2/. Let

!0
2 WD ¹y 2 !2W there exists f 2 C0.!1/ such that .Uf /.y/ ¤ 0º:

If U satisfies the disjointness-preserving condition

f � g D 0 H) .Uf / � .Ug/ D 0 for all f; g 2 C0.!1/; (3.1)
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then there exist functions hW!0
2 ! C n ¹0º and � W!0

2 ! !1 such that

Uf .y/ D h.y/f .�.y// for all y 2 !0
2 and all f 2 C0.!1/: (3.2)

Moreover,!0
2 ¤ ; is open and h and � are continuous. If in additionU.C1

c .!1// �

C k.!2/ for some 0 � k � 1, then h; � 2 C k.!0
2/.

Remark 3.2. While the choice of the spaceC0.!1/ recalls the Dirichlet boundary
condition, the same conclusion is obviously true if U maps the whole of C. N!1/ or
Cb.!1/ into Cb.!2/. The space C0.!1/ is simply the smallest of these spaces, and
thus gives the weakest condition. If, for example, U WC. N!1/ ! C. N!2/ is bounded
and linear, and the disjointness-preserving condition (3.1) holds on C. N!1/, then
so too does (3.2), and with the same proof.

Proof of Lemma 3.1. The idea of the proof is already contained in [4, Proposi-
tion 2.4], albeit under somewhat different assumptions. The set !0

2 is open since
each Uf is continuous, and non-empty since U ¤ 0. Now suppose y 2 !0

2. Then
'y WD Uf .y/ defines a non-zero functional on C0.!1/. We claim that the support
of 'y is a singleton. Indeed, if x1; x2 2 supp'y , x1 ¤ x2, then by definition of
the support of a functional there exist functions f; g 2 C0.!1/ with disjoint sup-
port (i.e., f � g D 0 everywhere) such that f .x1/ ¤ 0, g.x2/ ¤ 0, 'yf ¤ 0 and
'yg ¤ 0. But by assumption

0 D .Uf /.y/ � .Ug/.y/ D 'yf � 'yg;

a contradiction. It follows that there exist 0 ¤ h.y/ 2 C and �.y/ 2 !1 such that

'y D h.y/ı�.y/;

where ı�.y/ is the delta distribution at the point �.y/. This means that

Uf .y/ D h.y/f .�.y//:

(Note in particular that �.y/ 2 @!1 is impossible since then f .�.y// D 0, meaning
Uf .y/ D 0 for all f 2 C0.!1/.) Since y 2 !0

2 was arbitrary, this also means that
h.!0

2/ � C n ¹0º, and (3.2) holds for all y 2 !0
2.

Finally, we prove the regularity of � and h. Here the proof is essentially the
one given in [4, Proposition 2.4]. If � is not continuous on !0

2, then we can find
y; yn 2 !0

2 and " > 0 such that yn ! y but j�.yn/ � �.y/j � " for all n. If
we choose f 2 C0.!1/ such that f .�.y// D 1 and suppf � B".�.y//, then
f .�.yn// D 0 for all n, meaning Uf .yn/ D 0 for all n. But Uf .y/ D h.y/ ¤ 0.
This contradicts the continuity of Uf . Hence � is continuous on !0

2.
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Next, fix an arbitrary open set ! which is compactly contained in !0
2. Then

�. N!/ � !1 is compact since � is continuous. Choose f 2 C1
c .!1/ such that

f j�. N!/ D 1. Then Uf D h on N!. In particular, h 2 C. N!/. If Uf 2 C k , k � 1,
then the same argument shows that h 2 C k .

Finally, writing x D .x1; : : : ; xd / 2 Rd and similarly � D .�1; : : : ; �d /, if we
choose f 2 C1

c .!1/ such that f .x/ D xj on �. N!/ for some j D 1; : : : ; d , then

Uf .y/ D h.y/�j .y/:

Since Uf; h 2 C k , we therefore also have � 2 C k. N!/. �

Lemma 3.3. Suppose !1; !2 � R
d are open sets and hW!2 ! C n ¹0º and

� W!2 ! !1 are continuous. Define the linear mapping U WC1
c .!1/ ! C.!2/

by Uf .y/ D h.y/f .�.y// for all y 2 !2, and assume additionally that

�.Uf / D U.�f / for all f 2 C1
c .!1/; (3.3)

where�.Uf / is understood as a distribution. Then, on each connected component

N of !2, hjN is constant and � jN WN ! �.N / � !1 is an isometry.

Note in particular that the lemma also shows that Uf 2 C1.!2/ and (3.3) in
fact holds pointwise. Also observe that we do not actually need U to map into
C.!2/: any Lp.!2/-space could also be used, with the same proof.

The idea of Lemma 3.3 appeared implicitly in [4, steps (c)–(e) of the proof
of Proposition 2.4] under stronger regularity assumptions, and here the formal
argument is essentially the same; for the sake of completeness, we will reproduce
the calculations in slightly abridged form. However, we additionally need to
account for the fact that, unlike in [4], �.Uf / is initially only defined in the sense
of distributions.

Proof of Lemma 3.3. Let y0 2 !2. Choose an open neighbourhood B1 � !1 of
�.y0/ and an open neighbourhood B2 � !2 of y0 such that �.B2/ � B1. Now let
f 2 C1

c .!1/ such that f � 1 on B1. Then

�.h � f ı �/ D h � .�f / ı � D 0

on B2. In particular, �h D 0 on B2 in the sense of distributions. But this already
implies that h is harmonic and in particular an element of C1.B2/.

Next, fix j 2 ¹1; 2; : : : ; dº and choose f 2 C1
c .!1/ such that f .x/ WD xj on

B1 (where we recall that we are writing x D .x1; : : : ; xd / 2 R
d ). Similarly, write

� D .�1; : : : ; �d /. Then

�.h � �j / D �.h � f ı �/ D h � .�f / ı � D 0
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on B2. Thus h � �j is also harmonic and so in C1.B2/. In particular, since h ¤ 0,
also �j 2 C1.B2/.

Since this holds for an arbitrary open set B1 � !1 and since �.!2/ � !1, so
that any open set B2 compactly contained in !2 can be treated in this fashion, we
conclude h; �j 2 C1.!2/ for all j D 1; : : : ; d .

Now we may proceed formally as in the proof of [4, Proposition 2.4]. So fix
f 2 C1

c .!1/. Unpackaging the identity

�.h � f ı �/ D h � .�f / ı �;

which we now know to hold pointwise (indeed, both sides are C1), and using
�h D 0, we arrive at

2rh � r.f ı �/C h�.f ı �/ D h.�f / ı � on !2; (3.4)

for all f 2 C1
c .!1/. For such functions, since f ı � 2 C1.!2/, an elementary

calculation using the chain rule gives

�.f ı �/ D
h

d
X

j;kD1

� @2

@xj @xk

f
�

ı �
i

r�j � r�k C
h

d
X

kD1

� @

@xk

f
�

ı �
i

��k :

Inserting this into (3.4) and simplifying,

h

d
X

j;kD1

� @2

@xj @xk

f
�

ı �
i

r�j � r�k D .�f / ı �

pointwise on !2, for all f 2 C1
c .!1/. Fixing ! open, arbitrary, compactly

contained in !1, and choosing f 2 C1
c .!1/ such that f .x/ D 1

2
x2

j on !, we
obtain

r�j � r�j D 1 on !2; j D 1; : : : ; d;

while the choice of f .x/ D xjxk on ! for j ¤ k leads to

r�j � r�k D 0 on !2; j ¤ k:

These properties together imply that � is an isometry on each connected compo-
nent of!2 (a proof of this assertion is given in [4, Proposition 2.3]). Now choosing
f .x/ D xj on !, from (3.4) also follows

2rh � r�j C h��j D 0 on !2;

j D 1; : : : ; d . Since � is locally an isometry,��j D 0 for all j , so rh �r�j D 0 for
all j . Since the matrix of derivativesD� of � is an orthogonal matrix, we conclude
that rh D 0, that is, h is constant on each connected component of !2. �
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At this juncture, we observe that the existence of a disjointness-preserving
intertwining operator does not yet force the domains to be congruent.

Example 3.4. (a) Suppose �1 D .0; �/ � R and �2 D .0; 2�/. Define a
bounded, linear operator U WL2.�1/ ! L2.�2/ by

Uf .x/ WD

´

f .x/ if x 2 .0; ��;

�f .2� � x/ if x 2 .�; 2�/:

Thus U extends functions f on�1 to�2 by odd reflection in x D �; for example,
if f .x/ D sinx on .0; �/, then Uf .x/ D sinx on .0; 2�/. We see immediately
that U is disjointness-preserving. Moreover, if we set D1 WD H 2.�1/\H 1

0 .�1/,
the domain of definition of the Dirichlet Laplacian on �1, then we claim that
U.D1/ � D2 WD H 2.�2/ \H 1

0 .�2/. In fact, this is a standard argument using
that the domains are one-dimensional: by Sobolev embedding theorems, we have
D1 � C 1.x�1/ \ C0.�1/, meaning that if f 2 D1, then Uf is, in particular, in
C 1.x�2/ \ C0.�2/. Since it is also piecewise-H 2, it is also globally in H 2.�2/

and takes on the value 0 at 0 and 2. It now follows easily that U satisfies
the intertwining property (2.3) for the Dirichlet Laplacian; but �1 and �2 are
obviously not congruent.

(b) If in (a) we instead define U by

Uf .x/ WD

´

f .x/ if x 2 .0; ��;

f .2� � x/ if x 2 .�; 2�/;

that is, by even reflection, then we may show that U is a disjointness-preserving
operator from L2.�1/ to L2.�2/ which now intertwines the respective Neumann
Laplacians; in fact it is also positivity preserving: jUf j D U jf j for all f 2

L2.�1/. The same example works on spaces of continuous functions, i.e., if
U WC.x�1/ ! C.x�2/, in which case U is even norm-preserving.

(c) Let �1 � R
d be an arbitrary open set, let n 2 N [ ¹1º, and suppose

!1; : : : ; !n � R
d are pairwise disjoint copies of �1, i.e., for each i D 1; : : : ; n

there exists an isometry �i WR
d ! R

d such that �.!i / D �1. Take �2 to be any
open set containing all the !i and define U WC0.�1/ ! C0.�2/ by

Uf .x/ WD

´

f ı �i .x/ if x 2 !i ;

0 otherwise:

Then U is obviously disjointness-preserving, and one may check that U inter-
twines the Dirichlet Laplacians on C0.�1/ and C0.�2/.
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In all these examples, U is not an isometry, but it acts as a (disjoint) composi-
tion of isometries, as the above lemmata already suggest: say, the set

U.�1/ WD ¹x 2 �1W there exists f 2 C0.�1/ with Uf .x/ ¤ 0º

is isometric to a finite number of disjoint copies of�2. In the next section, we shall
see that any disjointness-preserving operator intertwining Dirichlet Laplacians on
C0 has this property. In particular, if we make further assumptions on U – for
example, that U is unitary, but in practice we need much less – then U is in fact
an isometry. A formalisation of this observation in different settings, namely the
Dirichlet and Neumann Laplacians on spaces of continuous functions or L2, will
be the subject of the coming sections.

4. Disjointness-preserving operators

intertwining Dirichlet Laplacians on C0

We start with the space C0 (see Definition 2.1). Our first theorem shows that
Example 3.4(c) essentially characterises all disjointness-preserving operators in-
tertwining the Dirichlet Laplacians �D

C0.�/
on C0, up to constants.

Theorem 4.1. Suppose that �1; �2 � R
d are open sets, that �1 is connected,

and that 0 ¤ U WC0.�1/ ! C0.�2/ is a bounded, linear operator such that

(a) f � g D 0 implies .Uf / � .Ug/ D 0 for all f; g 2 C0.�1/; and

(b) U.�f / D �.Uf / in the sense of distributions, for all f 2 C1
c .�1/.

Then there exist pairwise disjoint, connected open sets !i � �2, i 2 I � N,

together with isometries �i WR
d ! R

d such that �i .!i/ D �1 and constants

ci 2 C, not all zero, i 2 I , such that for all f 2 C0.�1/,

Uf .x/ D

´

cif ı �i .x/ if x 2 !i ;

0 otherwise:

Remark 4.2. (a) We observe explicitly thatC1
c .�1/ is not a core for the Dirichlet

Laplacian on C0.�1/. Thus the assumptions do not require that U intertwine the
Laplacians on a core; this is another sense in which this is a generalisation of
previous results, cf. [4, Theorem 2.2] or [3, Section 3].

(b) It is clear that the set I is at most countable, and in fact finite whenever�2

is bounded.
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(c) The converse of Theorem 4.1 is also true. Let �1; �2 � R
d be open sets

and assume that�1 is connected, and that !i are open sets in�2, i 2 I , which are
pairwise disjoint and isometric to �1. Let �i be isometries such that �i .!i / D �1

for i 2 I and let ci 2 C, i 2 I . Then

.Uf /.x/ WD

´

cif ı �i .x/ if x 2 !i ;

0 otherwise

defines a disjointness-preserving operator U WC0.�1/ ! C0.�2/ which also
satisfies the intertwining property (b).

Proof of Theorem 4.1. Applying Lemma 3.1 on !1 D �1 and !2 D �2 and then
Lemma 3.3 on �1 and the non-empty open set

�0
2 WD ¹y 2 �2W there exists f 2 C0.�1/ with Uf .y/ ¤ 0º � �2;

we obtain that on each connected component ! of �0
2 there exist a constant

c D c.!/ 2 C n ¹0º and an isometry � W! ! �.!/ � �1 (which extends
canonically to an isometry � WRd ! R

d ), such that .Uf /j! D cf ı � j! . Then,
by continuity, .Uf /j N! D cf ı � j N! for the same constant c and the same isometry
� , for all f 2 N! (or equivalently all f 2 C.x�1/). We need to show that in fact
�.!/ D �1.

We claim that �.@!/ � @�1. Indeed, suppose y0 2 @!. Then �.y0/ 2 x�1,
since � is continuous on N! and �.!/ � �1. Now suppose for a contradiction that
�.y0/ 2 �1. Choose f 2 C1

c .�1/ such that f .�.y0// D 1. As noted above,
continuity of U implies that Uf .y0/ D c. But in fact Uf .y0/ D 0, since either

(i) y0 2 @! \ @�2, in which case Uf .y0/ D 0 as Uf 2 C0.�2/, or

(ii) y0 2 @! \�2 D @�0
2 \�2, in which case y0 62 �0

2 since the latter is open.
Thus Uf .y0/ D 0 by definition of �0

2.

This contradiction proves the claim. To summarise, we have �.!/ � �1, and
@�.!/ D �.@!/ � @�1 (where the equality follows since � is an isometry). Since
�1 is connected, �.!/ D �1, as required. �

Our next theorem will give additional conditions under which �1 and �2 are
isometric. We first need a couple of technical results.

Definition 4.3. (a) An open set � � Rd is said to be regular in topology if
int x� D �, equivalently, if B.z; r/ n� has non-empty interior for all z 2 @� and
all r > 0.

(b) An open set � � R
d is regular in measure if jB.z; r/ n �j > 0 for all

z 2 @� and all r > 0.
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Lemma 4.4. Let �;! � R
d be open sets such that ! � �.

(a) If ! is regular in topology and � n ! has empty interior, then ! D �.

(b) If ! is regular in measure and j� n !j D 0, then ! D �.

This is easy to see; we also refer to [4, Section 3] for more information on this
notion. Regularity in topology is (strictly) stronger than regularity in measure;
moreover, Lipschitz boundary implies regularity in topology.

We also need the following result, which states that under minimal regularity
conditions, if one domain is contained in another and the two share a kth Dirichlet
Laplacian eigenvalue for some k � 1, then the two domains are actually equal.
This may be considered as a very special case of Kac’s problem, and to date seems
only to be known for k D 1 (see [24] or [8]).

Theorem 4.5. Let !1; !2 � R
d be open sets such that !1 is regular in topology,

!1 � !2, and j!2j < 1. If there exists k � 1 such that �k.��
D
L2.!1/

/ D

�k.��
D
L2.!2/

/, then !1 D !2.

For brevity, in what follows we will always write �D
k
.�/ for �k.��

D
L2.�/

/, for

a domain � � R
d .

Proof. Suppose that �D
k
.!1/ D �D

k
.!2/. By the standard Courant–Fischer mini-

max formula,

�D
k .!i / D min

X�H 1
0

.!i /

dim XDk

max
u2X

kuk
L2.!i /

D1

Z

!i

jruj2 dx; (4.1)

for i D 1; 2. Moreover, if X is a k-dimensional subspace of H 1
0 .!i / realising

the minimum in (4.1), then X contains an eigenfunction corresponding to �D
k
.!i/

(see [15, Lemma 4.1(1)]).
Now let X � H 1

0 .!1/ be a minimising subspace for �D
k
.!1/, dimX D k. For

every u 2 X we set Qu 2 H 1
0 .!2/ to be the function u extended by 0 on !2 n !1.

Then zX WD ¹ QuWu 2 H 1
0 .!1/º is a k-dimensional subspace ofH 1

0 .!2/ ; moreover, it
follows from the assumption that �D

k
.!1/ D �D

k
.!2/ that zX realises the minimum

in (4.1) for i D 2. Hence there exists an eigenfunction Q 2 X of the operator
��D

L2.!2/
. In particular, Q is real analytic on !2.

On the other hand, by construction Q j!2n!1
D 0. Therefore, int.!2 n !1/ D ;.

Thus !2 n N!1 D ;, and so !2 � N!1, whence !2 � int. N!1/. Using the topological
regularity of !1, we conclude that !1 D !2. �
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We are now in a position to state our second main theorem, which gives
conditions under which the domains of Theorem 4.1 are indeed congruent.

Theorem 4.6. Adopt the assumptions of Theorem 4.1 and assume that one of the

following further conditions is satisfied:

(a) �1 is regular in measure and j�1j D j�2j < 1; or

(b) �1 is regular in topology, j�1j; j�2j < 1, and there exists k � 1 such

that �D
k
.�1/ D �D

k
.�2/, i.e., the two L2-Dirichlet Laplacians share an

eigenvalue; or

(c) U WC0.�1/ ! C0.�2/ has dense range; or

(d) �2 is regular in measure, j�2j < 1 and there exists another operator
zU WC0.�2/ ! C0.�1/ satisfying the assumptions of Theorem 4.1, with the

roles of �1 and �2 interchanged.

Then there exist an isometry � WRd ! Rd with �.�2/ D �1 and a constant

c 2 C n ¹0º such that

Uf D cf ı � for all f 2 C0.�1/:

In particular,�1 and �2 are congruent.

Proof. We adopt the notation from the proof of Theorem 4.1.

(a) If j�1j D j�2j, then I D ¹i0º is a singleton. Since �i0.!i0/ D �1, also
!i0 � �2 is regular in measure. But j!i0 j D j�1j D j�2j by hypothesis; thus
j�2 n!i0j D 0. It follows from Lemma 4.4 that !i0 D �2. Now the claim follows.

(b) Note that since j�1j; j�2j < 1, the respective L2-Dirichlet spectra are
discrete. Now consider any i 2 I . Since �i .!i/ D �1 for all i , we have
�D

k
.�2/ D �D

k
.�1/ D �D

k
.!i /. Since �1 is regular in topology, so is !i . It

now follows from Theorem 4.5 that !i D �2, which implies the claim.

(c) Assume that I has at least two elements, say i1; i2 2 I , i1 ¤ i2. Since
�i1.!i1/ D �i2.!i2/ D �1, we can find y1 2 !1, y2 2 !2 and z 2 �1 such that
�i1.y1/ D �i2.y2/ D z. Then .Uf /.y1/ D c1f .z/, while .Uf /.y2/ D c2f .z/ for
all f 2 C0.�1/. Choose ˛; ˇ 2 R, not both zero, such that ˛c1 C ˇc2 D 0. Then
˛g.y1/ C ˇg.y2/ D 0 for all g in the range of U , meaning that this range is not
dense.

Thus the assumption (c) implies that I is a singleton ¹i0º. Assume now that
�2 n !i0 ¤ ; and choose y0 2 �2 n !i0 . Then .Uf /.y0/ D 0 for all f 2 C0.�1/,
which implies that U does not have dense range. We conclude that �2 D !i0 .
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(d) We know already that there exist a subset ! of �2 and an isometry � such
that �1 D ��1.!/; in particular, j�1j � j�2j < 1. By assumption, there now
exist Q! � �1 and an isometry Q� such that �2 D Q��1. Q!/. The only possibility is
that j�1j D j�2j, and the claim follows from (a). �

Finally, we return to the types of intertwining operators corresponding to
Kac’s problem (see Proposition 2.9 and the discussion around it). If we combine
Theorem 4.6 with the additional assumption that the intertwining operator in
question is invertible, then we obtain a positive result.

Corollary 4.7. Suppose �1 � R
d1 and �2 � R

d2 , d1; d2 � 1, are two bounded

open sets which are Dirichlet regular (cf. Remark 2.4), such that�1 is connected.

Suppose also that U WC0.�1/ ! C0.�2/ is an invertible disjointness-preserving

operator which intertwines Dirichlet Laplacians on C0.�1/ and C0.�2/ in the

sense of Definition 2.7. Then

d1 D d2 DW d

and there exist an isometry � WRd ! R
d with �.�2/ D �1 and a constant

c 2 C n ¹0º such that

Uf D cf ı � for all f 2 C0.�1/:

Proof. By assumption, condition (3) of Proposition 2.9 holds for the Dirichlet
Laplacians �D

C0.�1/
and �D

C0.�2/
on C0. Since �1 and �2 are Dirichlet regular,

Proposition 2.9 yields that the spectra of �D
C0.�1/

and �D
C0.�2/

coincide. But
Dirichlet regularity of �1 and �2 also guarantees that in each case the Dirichlet
Laplacian has the same spectrum on C0 as it does on L2 (as already noted in the
proof of that proposition; again, see [5, Theorem 2.3]). We may thus conclude
that the spectra of �D

L2.�1/
and �D

L2.�2/
coincide. We next recall Weyl’s law in

the form

lim
�!1

Ni .�/

�di =2
D
!di

j�i j

.4�/di =2
; (4.2)

i D 1; 2, where Ni .�/ D #¹n � 1W�D
n .�i / � �º is the eigenvalue counting

function associated with ��D
L2.�i /

and !di
is the volume of the ball of unit radius

in R
di . (See [9, Section 1.6] or [16, Theorem 1.11] for a proof of (4.2) valid under

our regularity assumptions.) Since N1.�/ D N2.�/, formula (4.2) implies that
d1 D d2 DW d , since the limit can be finite and non-zero for at most one choice of
di . We may now invoke Theorem 4.6(c) to complete the proof. �
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5. Disjointness-preserving operators

intertwining Neumann and Robin Laplacians

on spaces of continuous functions

We now wish to perform an analysis similar to the one of Section 4, but where our
operator U intertwines Neumann or Robin Laplacians in a suitable weak sense.
To keep things as non-technical as possible, in this section we work with domains
satisfying a modest regularity condition: we will assume unless explicitly stated
otherwise that �1; �2 � R

d , d � 2 are bounded, connected open sets with
Lipschitz boundary, or bounded open intervals in dimension d D 1. To keep
the notation simpler, in this section we will also write �N

� for �N

C. x�/
and �ˇ

�

for �ˇ

C. x�/
, as we will be working only on C .

We suppose throughout that U WC.x�1/ ! C.x�2/ is a bounded linear operator
satisfying the following disjointness preservation and intertwining assumptions:

(a) f � g D 0 implies .Uf / � .Ug/ D 0 for all f; g 2 C.x�1/; and

(b) U.C1
c .�1// � D.�

ˇ
�2
/ for some ˇ 2 C.@�2/, and U.�f / D �.Uf / for all

f 2 C1
c .�1/.

We emphasise that �ˇ
�2

reduces to the Neumann Laplacian �N
�2

if ˇ � 0; and
indeed if U intertwines the Neumann Laplacians in the sense of Definition 2.7,
then it satisfies (b) with ˇ � 0. But in fact, as in Section 4, this condition
is considerably weaker, since C1

c .�1/ is certainly not a core for the Neumann
Laplacian (or any Robin Laplacian) on C.x�1/. For example, if U intertwines
any two Robin Laplacians, �ˇ1

�1
on �1 and �ˇ2

�2
on �2, where ˇ1 2 C.@�1/,

ˇ2 2 C.@�2/, then it satisfies (b) with ˇ D ˇ2.
To (a) and (b) we add the weak non-degeneracy assumption

(c) there exists f 2 C1
c .�1/ such that Uf ¤ 0.

As in Section 4, we set

�0
2 WD ¹y 2 �2W there exists f 2 C.x�1/ with Uf .y/ ¤ 0º � �2;

which is open, and non-empty by assumption (c). We also set h WD U1 2 C.x�2/.
Our first result is a direct application of Lemma 3.1 and Lemma 3.3.

Lemma 5.1. Under the above assumptions (a), (b), and (c), there exists a unique

continuous mapping � W�0
2 ! x�1 such that for all f 2 C.x�1/,

Uf .y/ D

´

h.y/f .�.y// if y 2 �0
2;

0 if y 2 �2 n�0
2;

(5.1)
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and �0
2 D ¹y 2 �2W h.y/ D 0º. Moreover, �0

2 \ ��1.�1/ is nonempty and

open, and if ! is any connected component of �0
2 \ ��1.�1/, then there exists

an isometry N� WRd ! R
d and a constant c 2 C n ¹0º such that � j! D N� j! and

hj! D c.

Proof. We start by applying Lemma 3.1 in the form of Remark 3.2 to obtain (5.1)
together with the continuity of � ; that the h of Lemma 3.1 equals U1 simply
follows from setting f D 1 in (5.1). Now it is possible that �.�0

2/ \ @�1 ¤ ;;
we have to show that �.�0

2/ 6� @�1. Indeed, suppose the opposite. Then, for
any f 2 C1

c .�1/, since f .@�1/ D 0, we would have Uf D 0. But this
contradicts assumption (c). Thus�0

2 \ ��1.�1/ has a non-empty, open connected
component ! as claimed. We may now apply Lemma 3.3 to it to obtain the other
conclusions. �

If we now make more careful use of the condition on the domains contained
in assumption (b), we can show that ! is actually isometric to�1. In doing so, we
also make direct use of the assumption that �2 has Lipschitz boundary, although
we expect that with more effort this assumption could be weakened. Actually, the
following lemma is the only place in this section (apart from Corollary 5.11) where
the assumption (b), that UC1

c .�1/ � D.�N
�2
/ or D.�ˇ

�2
/, enters explicitly.

Lemma 5.2. With the assumptions and notation of Lemma 5.1, �.!/ D �1.

Proof. 1. Suppose �.!/ ¤ �1. Since by definition! � ��1.�1/, i.e., �.!/ � �1,
this can only be the case if there exists some z 2 @! such that N�.z/ 2 �1.

2. We claim that z 2 @�2. To see this, take ! 3 zn ! z; then

Uf .z/ D lim
n!1

cf .�.zn// D cf . N�.z//

for all f 2 C1
c .�1/. If z 2 �2, then this implies z 2 �0

2 (and �.z/ D N�.z/).
Since also z 2 ��1.�1/ by assumption and ! is open and closed in�0

2 \��1.�1/,
we conclude z 2 !. But this contradicts the fact that ! is open (in R

d ), and thus
z 2 @! as claimed.

3. Since N�.z/ 2 �1, there exists r > 0 small such that N�.B.z; r// � �1.
Set B1 WD B.z; r/ and observe that N�.B1/ D B. N�.z/; r/ DW B2. Also note that
f 7! cf ı N� defines a bijective map from C1

c .B1/ to C1
c .B2/. But Uf D cf ı N� 2

D.�
ˇ
�2
/ for all f 2 C1

c .B1/. This means that g 2 D.�
ˇ
�2
/ for all g 2 C1

c .B2/.
But by Step 2, @�2 \ B2 ¤ 0, and in fact this intersection must have positive

surface measure (since @�2 is closed and Lipschitz). It now follows that rg � � D

�ˇg �-a.e. on @�2 \ B2 for all g 2 C1
c .B2/, where � is the outer unit normal
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to �2 and � the surface measure on @�2. This is a contradiction; hence the
assumption that �.!/ ¤ �1 is false. �

Thus the assumptions (a), (b) and (c) together imply that there exists a copy
of �1 in �2 such that � maps �1 isometrically onto this copy in �2. However,
these hypotheses by themselves are too weak to allow us to say much more, as the
following example shows.

Example 5.3. Let�1 WD ¹x 2 R
2W jxj < 1º and�2 WD ¹x 2 R

2W jxj < 2º, and set

�.x/ WD

´

x if jxj < 1;

x
jxj

if jxj � 1:

Now let hW x�2 ! R be any continuous function such that hj�1
� 1. If we define

U WC.x�1/ ! C.x�2/ by Uf .y/ WD h.y/f .�.y//, then U acts on C1
c .�1/ by

extension by zero to �2 n �1 and thus satisfies conditions (b) (for any valid ˇ)
and (c). One may also check that it satisfies (a), since � preserves disjoint supports.
Here, we have ! D �1, and � is the identity on !. The set �0

2 depends on the
particular choice of h and may thus be any open set which compactly contains�1.

In the sequel, we will thus strengthen assumption (c) to the following non-
degeneracy condition.

(d) Let ! � �2 be open. If .Uf /j! D 0 for all f 2 C1
c .�1/, then ! D ;.

This holds if, for example, for every y 2 �2 there exists some f 2 C1
c .�1/ with

Uf .y/ ¤ 0, or if U is an invertible intertwining operator.

Lemma 5.4. Under assumptions (a), (b), and (d),�0
2 \ ��1.�1/ is dense in �2.

Proof. Let ! � �2 be an open set such that !\�0
2 \��1.�1/ D ;. Then, writing

Uf D hf ı � as in (5.1), for y 2 ! we have either y 62 �0
2 and thus h.y/ D 0,

or y 2 �0
2 n ��1.�1/ and thus �.y/ 2 @�1. In either case, if f 2 C1

c .�1/ is
arbitrary, then we have Uf .y/ D 0. This contradicts (d). �

We can now give a characterisation of U under these assumptions, which we
repeat for ease of reference.

Theorem 5.5. Assume �1 and �2 are bounded, connected Lipschitz domains in

Rd , d � 2, or bounded open intervals if d D 1. Let U WC.x�1/ ! C.x�2/ satisfy

the assumptions

(a) f � g D 0 implies .Uf / � .Ug/ D 0 for all f; g 2 C.x�/; and
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(b) U.C1
c .�1// � D.�

ˇ
�2
/ for some ˇ 2 C.@�2/, and U.�f / D �.Uf / for all

f 2 C1
c .�1/; and

(c) if ! � �2 is open and Uf j! D 0 for all f 2 C1
c .�1/, then ! D ;.

Then there exist a constant c 2 C n ¹0º, pairwise disjoint, connected open

sets !1; : : : ; !n � �2 and isometries N�1; : : : ; N�nWRd ! R
d , n � 1, such that

N�i .!i/ D �1 for all i D 1; : : : ; n,
Sn

iD1 !i is dense in �2, and

Uf .y/ D cf . N�i .y// for all y 2 N!i , for all i D 1; : : : ; n:

We emphasise that the constant c does not depend on i D 1; : : : ; n.

Proof. The set �0
2 \ ��1.�1/ is open and, by Lemma 5.4, dense in �2. Now

Lemma 5.2 can be applied to each connected component ! of �0
2 \ ��1.�1/. In

particular, since�2 is bounded and each component is congruent to�1, there can
be only finitely many, call them !1; : : : ; !n. Together with Lemma 5.1, this also
yields isometries N�i such that N�i .!i/ D �1 and constants ci ¤ 0, i D 1; : : : ; n,
such that Uf .y/ D cif . N�i .y// for all y 2 !i .

Since �0
2 \ ��1.�1/ is the disjoint union of !1; : : : ; !n and is dense in �2,

it follows that h.x�2/ � ¹c1; : : : ; cnº, where h is as in Lemma 5.1. In particular,
�0

2 D �2. Since�2 is connected and h�1.¹ciº/ is open and closed in �2 for each
i D 1; : : : ; n, it follows that c1 D � � � D cn DW c. �

Example 3.4(b) shows that n � 2 is possible in Theorem 5.5; in fact, by
modifying the example via repeated even reflection to�1 D .0; �/,�2 D .0; n�/,
i.e., so that U has the form

Uf .x/ WD

´

f .x � 2k�/ if x 2 .2k�; .2k C 1/��;

f ..2k C 2/� � x/ if x 2 ..2k C 1/�; .2k C 2/�/;

k D 0; : : : ; n=2� 1, we can construct an example for any n � 1 even, with an easy
variant for n odd. However, under certain additional assumptions on �1 and �2,
or U , we can conclude that n D 1.

Theorem 5.6. Suppose, in addition to the assumptions of Theorem 5.5, that one

of the following conditions holds:

(d) j�1j D j�2j; or

(e) U WC.x�1/ ! C.x�2/ has dense range.
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Then there exist an isometry � WRd ! R
d with �.�2/ D �1 and a constant

c 2 C n ¹0º such that

Uf D cf ı � for all f 2 C.x�1/:

In particular,�1 and �2 are congruent.

Remark 5.7. In contrast to Theorem 4.6(b), to conclude that n D 1 it is not enough
that, say, the Neumann Laplacians on L2.�1/ and L2.�2/ share an eigenvalue: 0
is always an eigenvalue, with eigenfunction 1, on any bounded, connected open
set.

Proof of Theorem 5.6. We take the assumptions and setup of Theorem 5.5: we
merely have to show that n D 1. In case (d) this is obvious.

So assume (e), and assume that n � 2. Let y1 2 !1 be arbitrary; then
y2 WD N��1

2 ı N�1.y1/ 2 !2, and so y1 ¤ y2. However, for all g 2 U.C.x�1//

we have g.y1/ D g.y2/; to see this, let f 2 C.x�1/ be such that g D Uf . Then
g.y1/ D cf . N�1.y1// D cf . N�2.y2// D g.y2/. Thus the range ofU is not dense. �

We next give another result where the main assumption concerns the regularity
of �1.

Theorem 5.8. Suppose in addition to the assumptions of Theorem 5.5 that d � 2

and�1 is of classC 1. Then there exist an isometry � WRd ! Rd with �.�2/ D �1

and a constant c 2 C n ¹0º such that

Uf D cf ı � for all f 2 C.x�1/:

In particular,�1 and �2 are congruent.

We recall that all the known counterexamples to Kac’s original conjecture are
Lipschitz but not C 1, being formed by repeated reflection of a given building
block, cf. the introduction; and it seems reasonable to expect Kac’s conjecture
to hold for C 1 domains, cf. the discussion in [7]. Although the setting here
is somewhat different, in Theorem 5.5 we can, in the same way, have multiple
identical copies of a domain glued together; Theorem 5.8 shows that this is indeed
only possible if corners and thus reflections are allowed.

The proof of Theorem 5.8 is a direct consequence of the following statement.

Proposition 5.9. Let !1; : : : ; !n be pairwise disjoint bounded isometric open sets

in R
d , d � 2, of class C 1, and let � � R

d be open. Assume that

x� D

n
[

iD1

N!i :

Then � is not a Lipschitz domain.
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For simplicity, we will give the proof in the special case that n D 2. We first
need the following lemma.

Lemma 5.10. With the assumptions and notation of Proposition 5.9 (and assum-

ing that n D 2) we have

(1) @!1 \�2 D @!2 \�;

(2) @!1 \ @!2 ¤ ;;

(3) there exists a connected component � of @� such that @!1 \ � ¤ ; and

@!2 \ � ¤ ;;

(4) there exists a point z 2 @!1 \ @!2 \�, where � is the connected component

of @� from (3).

If n > 2, then (1) may be modified to read z 2 � \
Sn

iD1 @!i if and only if
z 2 @!i for at least two i (which may depend on z); and there still exist !1 and
!2 such that (2), (3) and (4) all hold for this pair.

Proof. (1) Suppose for a contradiction that z 2 .@!1 \�/n @!2. Since !1 and !2

are open and disjoint, also @!1 \ !2 D ; and thus z 2 .@!1 \ �/ n N!2. Choose
" > 0 such thatB.z; "/ � �n N!2 and set V WD B.z; "/\.�n N!1/; then V ¤ ; since
z 2 @!1. Thus V is an open and non-empty subset of�, and V \ . N!1 [ N!2/ D ;,
contradicting � � N!1 [ N!2.

(2) By (1), it suffices to prove that @!1 \ � ¤ ;. But if @!1 \ � D ; and
!1 � �, then!1 D � since the latter is connected, a contradiction to ; ¤ !2 � �.

(3) We let � be the outermost component of @�, that is, denoting by diamV D

sup¹dist.x; y/W x; y 2 V º the diameter of an arbitrary set V � R
d , we set � to be

the connected component of @� for which diam� D diam� D diam @�. Now
since !1 [ !2 is dense in � by Theorem 5.5 (and the assumption that n D 2),
we have N!1 [ N!2 D x� and hence at least one of @!1 and @!2 has non-empty
intersection with �; say @!2 \ � ¤ ;.

Suppose now that @!1 \ � D ;. This means, firstly, that � � @!2, and so
diam!2 D diam�. But it also forces N!1 to be compactly contained in the unique
bounded open set whose boundary is �, and hence diam!1 < diam�. Hence !1

and !2 cannot be congruent, a contradiction since they are isometric.

(4) The set � is closed and connected and, since N!1 [ N!2 D x�, we have in
particular that � � @!1 [ @!2. Since @!1 and @!2 are also closed sets, we must
have @!1 \ @!2 \ � ¤ ;. �

Proof of Proposition 5.9 and hence of Theorem 5.8. Let z 2 @!1 \ @!2 \ @�.
Then @!1 and @!2 are locally C 1 manifolds passing through z which cannot cross
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transversally (since otherwise !1 and !2 would have non-empty intersection);
more precisely, fixing " > 0 sufficiently small and setting Mj WD B.z; "/ \ @!j ,
j D 1; 2, which are C 1-manifolds inside B.z; "/, for the tangent spaces TzMj at
z we have TzM1 D TzM2. We claim that @� cannot be Lipschitz at z: indeed,
@� \ B.z; "/ D @.Rd n�2/ \ B.z; "/, and .Rd n�2/ \ B.z; "/ has a singularity
(cusp) at z, being contained inB.z; "/n.!1[!2/ and having z 2 @� as a boundary
point. Thus @� cannot be Lipschitz at z, as it does not satisfy the outer cone
condition there. �

We conclude this section by giving a positive result for the Neumann and
Robin Laplacians on C.x�/ under the assumption that there is a disjointness-
preserving invertible intertwining operator, analogous to Corollary 4.7 (cf. also
Proposition 2.9 and the discussion around it).

Corollary 5.11. Suppose �1 � R
d1 and �2 � R

d2 are two bounded, open

sets with Lipschitz boundary, such that �1 is connected, and ˇ1 2 C.@�1/,

ˇ2 2 C.@�2/. Suppose also thatU WC.x�1/ ! C.x�2/ is an invertible disjointness-

preserving operator intertwining the Robin Laplacians ��
ˇ1

�1
on C.x�1/ and

��
ˇ2

�2
on C.x�2/ in the sense of Definition 2.7. Then d1 D d2 DW d , there exist an

isometry � WRd ! Rd with �.�2/ D �1 and a constant c 2 C n ¹0º such that

Uf D cf ı � for all f 2 C.x�1/;

and ˇ2 D ˇ1 ı � j@�2
.

Proof. First observe that �ˇ1

�1
and �ˇ2

�2
are isospectral, as Proposition 2.9 shows.

Now, as in the proof of Corollary 4.7, the Weyl asymptotic formula (4.2), also valid
for the Neumann and Robin Laplacians (see [31] or [41], or cf. [9, eq. (1.7)]),
implies that d1 D d2 and j�1j D j�2j. Moreover, since U is invertible, it
satisfies assumption (d) (and (c)), in addition to (a) and (b). We may thus apply
Lemma 5.1 and Lemma 5.2. But since j!j D j�1j D j�2j and all sets have
Lipschitz boundary, we conclude that ! D �2.

It remains to show that ˇ2 D ˇ1 ı � j@�2
. To this end, observe that � induces

a bijective correspondence between D.�ˇ1

�1
/ and D.�ˇ2

�2
/, f 2 D.�

ˇ1

�1
/ if and

only if f ı � 2 D.�
ˇ2

�2
/. For any such f , we have that @f

@�
C ˇ1f D 0 �-almost

everywhere on @�1, whence also

@.f ı �/

@�
C .ˇ1 ı �/.f ı �/ D 0

�-almost everywhere on @�2. By the above correspondence, this says exactly that
any g 2 D.�

ˇ2

�2
/, which by definition satisfies the Robin condition @g

@�
Cˇ2g D 0
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almost everywhere, also satisfies @g
@�

C .ˇ1 ı �/g D 0 almost everywhere on @�2.
This implies that ˇ1 ı � D ˇ2 almost everywhere and hence everywhere on @�2,
since ˇ1 and ˇ2 were assumed continuous. �

6. Disjointness-preserving operators intertwining Laplacians on L2

We now wish to state similar results for L2-spaces, principally but not exclusively
for the Dirichlet Laplacian. Since the techniques involved are somewhat different
from the C0-case, we will also need a slightly different set of assumptions. In this
section we will write�D

� for the operator�D
L2.�/

introduced in Definition 2.2, and

�D
k
.�/, k � 1, for its eigenvalues. We start with the following definition (see [4,

Sections 1 and 3]).

Definition 6.1. An open set� � R
d is called regular in capacity if for all x 2 @�

and r > 0,
cap.� n B.z; r// > 0;

where the capacity cap.A/ of a set A � R
d is defined by

cap.A/ D inf¹kuk2
H 1.Rd /

Wu 2 H 1.Rd /; u � 1 in a neighbourhood of Aº:

We have the hierarchy

Lipschitz boundary

H) regular in topology

H) regular in measure

H) regular in capacity.

Lebesgue’s cusp is regular in capacity but not Dirichlet regular.

Theorem 6.2. Suppose �1; �2 � R
d are bounded and connected open sets,

which are regular in capacity, and there exists a bounded, linear mapping 0 ¤

U WL2.�1/ ! L2.�2/ such that U.D.�D
�1
// � D.�D

�2
/, and

(a) f � g D 0 implies .Uf / � .Ug/ D 0 for all f; g 2 L2.�1/, and

(b) U.�f / D �.Uf / for all f 2 D.�D
�1
/.

Suppose in addition that �D
1 .�1/ D �D

1 .�2/. Then there exist an isometry

� WRd ! R
d with �.�2/ D �1 and a constant c 2 C n ¹0º such that

Uf D cf ı � for all f 2 L2.�1/:
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By Proposition 2.9, the condition �D
1 .�1/ D �D

1 .�2/ is much weaker than
invertibility of U . The condition of regularity in capacity is optimal for results of
this kind. Indeed, to each open set� � R

d there exists a unique open set z� � R
d

which is regular in capacity and such that � � z� and cap. z� n �/ D 0. This
implies that L2.�/ D L2. z�/ and �D

�1
D �D

�2
. In particular, as in Theorem 4.6

and Corollary 4.7, we may drop the assumption of regularity in capacity at the
cost of allowing ��1.�1/ and �2 to differ by a set of capacity zero.

The proof of Theorem 6.2 will be based on a more abstract result which will
also allow us to treat the Neumann and Robin Laplacians (albeit under stronger
assumptions than those of Theorem 6.2; more precisely, in place of the condition
�D

1 .�1/ D �D
1 .�2/ we will require the invertibility of U ).

The idea of the proof consists showing that the modulus operator jU j of U
exists and satisfies the same conditions. Since this operator is positive, we may
then apply a previous result of one of the authors [3, Theorem 2.1] to obtain the
conclusion for jU j. A theorem due to Zaanen [45] linking a modulus operator
acting via multiplication to the original operator will finally yield the result for U .
For convenience of reference, we reproduce [3, Theorem 2.1] here.

Theorem 6.3 ([3], Theorem 2.1). Suppose�1; �2 � R
d are open, connected and

regular in capacity. Assume that there exists a linear operator 0 ¤ AWL2.�1/ !

L2.�2/ satisfying

(a) jAf j D Ajf j for all f 2 L2.�1/, and

(b) Aet�D
�1 D e

t�D
�2A for all t � 0.

Then there exist an isometry � WRd ! R
d and a constant c > 0 such that

�.�2/ D �1 and Af D cf ı � .

In order to give the promised abstract result, we first need some preparation.
For j D 1; 2 we let �j � R

d be bounded and connected open sets and we
suppose that Aj are self-adjoint operators on L2.�j / which are bounded from
below and have compact resolvent. We denote by .�n.Aj //n2N the eigenvalues of
Aj ordered as an increasing sequence and repeated according to their necessarily
finite multiplicities; we thus have limn!1 �n.Aj / D 1.

Denote by Sj the semigroup generated by �Aj , j D 1; 2. In addition to
the above assumptions on Aj , we suppose that Sj is positive and irreducible.
This means that Sj .t / � 0 for all t � 0, j D 1; 2;, and that Sj does not
leave invariant any non-trivial closed ideal J of L2.�j /. (Here J is called
a closed ideal of L2.�j / if there exists a measurable set ! � �j such that
J D ¹f 2 L2.�j /W f j! D 0º; J D 0 and L2.�/ are the trivial closed ideals.)
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A consequence of this assumption is that �1.Aj / is a principal eigenvalue, that is,
that the eigenspace belonging to �1.Aj / is one-dimensional, �1.Aj / < �2.Aj /,
and that there is a unique eigenfunction  j 2 D.Aj / such that  j > 0 and
k j kL2.�j / D 1, j D 1; 2. Moreover,  j >> 0, by which we mean that  j .x/ > 0

almost everywhere, j D 1; 2. We call  j the principal eigenfunction of Aj .
Now let U WL2.�1/ ! L2.�2/ be a disjointness-preserving operator. Then, as

intimated above, there exists a unique positive operator jU jWL2.�1/ ! L2.�2/

such that jU jf D jUf j for all f � 0. This modulus operator jU j is a lattice
homomorphism (see [2, 3] for these properties).

With this background we can now formulate and prove the following result
from which congruence will later follow. See Remark 2.8 concerning the follow-
ing intertwining property (6.1).

Proposition 6.4. For j D 1; 2 let�jR
d be a bounded and connected open set and

let Aj be a self-adjoint operator on L2.�j / which is bounded from below and has

compact resolvent. Assume that the semigroup generated by �Aj is positive and

irreducible, j D 1; 2, and that �1.A1/ D �1.A2/. Let 0 ¤ U WL2.�1/ ! L2.�2/

be a disjointness-preserving operator such that

US1.t / D S2.t /U for all t � 0: (6.1)

Then jU jS1.t / D S2.t /jU j for all t � 0. If in addition there exist c > 0 and an

isometry � WRd ! R
d such that �.�2/ D �1 and

jU jf D cf ı � for all f 2 L2.�1/; (6.2)

then there exists a constant c1 2 C such that

Uf D c1f ı � for all f 2 L2.�1/:

Proof. 1. Let  1 be the principal eigenfunction of A1. We claim that U 1 DW  2

is an eigenfunction of A2 for the eigenvalue �1.A2/ D �1.A1/ DW �1. Indeed,

S2.t / 2 D S2.t /U 1 D US1.t / 1 D e�1tU 1 D e�1t 2: (6.3)

Assume for a contradiction that  2 D 0; then j 2j D jU j 1 D 0. Now
let 0 � f 2 L2.�1/. Since  1 >> 0, we have that f D limn!1 f ^ n 1,
where f ^ n 1 WD inf¹f; n 1º. But jU j.f ^ n 1/ � njU j 1 D 0, whence
jU jf D limn!1 jU j.f ^ n 1/ D 0. This means that jU j D 0, and hence also
U D 0, contradicting our assumptions. This shows that  2 ¤ 0, and so (6.3)
implies that  2 is indeed an eigenfunction for the principal eigenvalue �1 of A2.
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Replacing U by c2U for some c2 2 C if necessary, we may assume that  2 is the
principal eigenfunction of A2; in particular,  2 >> 0.

2. We claim that jU jS1.t / D S2.t /jU j for all t � 0. To see this, we observe
that for any 0 � f 2 L2.�1/ and any t � 0 we have

jU jS1.t /f D jUS1.t /f j D jS2.t /Uf j � S2.t /jU jf

since S1.t /; S2.t / � 0. Thus the operatorR.t/ WD S2.t /jU j � jU jS1.t / is positive,
i.e., R.t/ � 0. In order to show that R.t/ D 0, we recall that  1 >> 0 and
 2 D U 1 >> 0 are eigenfunctions for �1 and compute, using the self-adjointness
of S2.t /,

hR.t/ 1; U 1i D hS2.t /jU j 1; U 1i � hjU jS1.t / 1; U 1i

D hjU j 1; S2.t /U 1i � e�1t hjU j 1; U 1i D 0;

where h�; �i is the L2-inner product, in this case on L2.�1/. This shows that
hR.t/ 1; U 1i D 0, where U 1 >> 0. It follows that R.t/ 1 D 0. Now we
argue as in Step 1 to deduce that R.t/f D 0 for all 0 � f 2 L2.�1/; and so
R.t/ D 0, proving the claim.

3. Now assume that (6.2) holds for some isometry � for which �.�2/ D �1

and some c > 0. We wish to show that U is of the same form (possibly for a
different constant). Define ˆWL2.�2/ ! L2.�1/ by f̂ WD f ı ��1. Then
‰ WD ˆ ı U 2 L.L2.�1//, and, by assumption on the form of jU j,

j‰f j D jUf ı ��1j D jU jjf ı ��1j D cjf ı ��1 ı � j D cjf j

(in the sense of lattices). Hence ‰ is local, i.e., ‰f .x/ D 0 for almost every
x 2 ¹y 2 �1W f .y/ D 0º, for all f 2 L2.�1/. A theorem of Zaanen ([45], see also
[10, Proposition 1.7]) now yields the existence of a function k 2 L1.�1/ such
that jkj D c almost everywhere and ‰f D kf for all f 2 L2.�1/. Appealing to
the definition of ‰,

Uf .��1.x// D k.x/f .x/ for all x 2 �1 and f 2 L2.�1/;

equivalently,

Uf .y/ D k.�.y//f .�.y// for all y 2 �2 and f 2 L2.�1/;

where now h WD k ı � 2 L1.�2/ with jhj D jkj D c almost everywhere. Finally,
the argument of Lemma 3.3 applied to !1 D �1 and !2 D �2 implies that h is
constant. �
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Proof of Theorem 6.2. Condition (b) implies that

US1.t / D S2.t /U

for all t � 0, where S1.t / WD e
t�D

�1 and S2.t / WD e
t�D

�2 . Now clearly both op-
erators ��D

�j
, j D 1; 2, are self-adjoint, bounded from below and have com-

pact resolvent; moreover, Sj .t / � 0 and the semigroups Sj are irreducible (see,
e.g., [39]).

Thus by Proposition 6.4 we have jU jS1.t / D S2.t /jU j for all t � 0. Now
Theorem 6.3 implies that jU j has the desired form. An application of the second
part of Proposition 6.4 finally shows that U also has the desired form. �

This allows us to give a positive result for disjointness-preserving invertible
operators in the nature of Corollary 4.7, but for operators onL2 in place ofC0. We
recall that the existence of an invertible intertwining operator on L2 is equivalent
to the existence of a unitary intertwining operator, cf. Proposition 2.9.

Corollary 6.5. Suppose �1 � R
d1 and �2 � R

d2 are two open, bounded and

connected sets which are regular in capacity. Suppose also that U WL2.�1/ !

L2.�2/ is an invertible disjointness-preserving operator intertwining the Dirich-

let Laplacians on L2.�1/ and L2.�2/ in the sense of Definition 2.7. Then

d1 D d2 DW d , and there exist an isometry � WRd ! R
d with �.�2/ D �1

and a constant c 2 C n ¹0º, such that

Uf D cf ı � for all f 2 L2.�1/:

Proof. By Proposition 2.9, the Dirichlet Laplacians on L2.�1/ and L2.�2/ have
the same spectrum. In particular, �D

1 .�1/ D �D
1 .�2/, and the Weyl asymptotics

imply that d1 D d2. Hence we may apply Theorem 6.2. �

It is remarkable that the analogous result to Theorem 6.3 does not hold for
manifolds [6, Example 4.7], and it is unknown for Neumann or Robin boundary
conditions in the Euclidean case. However, it is true for invertible U . Thus, while
it is unclear whether Theorem 6.2 continues to hold for the Neumann and Robin
Laplacians, we can obtain a version of Corollary 6.5 for them. For this we assume
that �1; �2 � R

d are two bounded Lipschitz domains, take 0 � ˇ 2 L1.@�j /,

j D 1; 2, and define ��
ˇj

�j
WD ��

ˇj

L2.�j /
, j D 1; 2, as in Definition 2.5(c) (where

we again recall that ǰ � 0 corresponds to the Neumann Laplacian). We also

recall that the operators ��
ˇj

�j
are self-adjoint and bounded from below, and have

compact resolvent; moreover, their semigroups S
ˇj

j .t / WD e
�t�

ǰ
�j are positive and

irreducible (see [39]).
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Theorem 6.6. Under the above assumptions on�j and ǰ , j D 1; 2, suppose that

there exists an invertible disjointness-preserving operator U WL2.�1/ ! L2.�2/

such that

S
ˇ2

2 .t /U D US
ˇ1

1 .t / for all t � 0:

Then there exist an isometry � WRd ! R
d such that �.�2/ D �1 and a constant

c 2 R n ¹0º such that

Uf D cf ı � for all f 2 L2.�1/:

In particular,�1 and �2 are congruent. Moreover, ˇ2 D ˇ1 ı � j@�2
.

Proof. In view of Proposition 6.4 and the above remarks, this follows from [4,
Theorem 3.21]. �
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