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Spectrum of the semi-relativistic Pauli–Fierz model II

Takeru Hidaka, Fumio Hiroshima, and Itaru Sasaki

Abstract. We consider the ground state of the semi-relativistic Pauli–Fierz Hamiltonian

H D jp � A.x/j CHf C V.x/:

Here A.x/ denotes the quantized radiation field with an ultraviolet cutoff function and

Hf the free field Hamiltonian with dispersion relation jkj. The Hamiltonian H describes

the dynamics of a massless and semi-relativistic charged particle interacting with the

quantized radiation field with an ultraviolet cutoff function. In 2016, the first two authors

proved the existence of the ground state ˆm of the massive Hamiltonian Hm is proven.

Here, the massive Hamiltonian Hm is defined by H with dispersion relation
p

k2 Cm2

.m > 0/. In this paper, the existence of the ground state of H is proven. To this aim,

we estimate a singular and non-local pull-through formula and show the equicontinuity of

¹a.k/ˆmº0<m<m0
with somem0, where a.k/ denotes the formal kernel of the annihilation

operator. Showing the compactness of the set ¹ˆmº0<m<m0
, the existence of the ground

state of H is shown.

Mathematics Subject Classification (2020). Primary: 81Q10, Secondary: 47B25.

Keywords. Ground state, Pauli–Fierz model, pull-through formula, quantum field theory.

1. Introduction

1.1. Semi-relativistic Pauli–Fierz model. In this paper we are concerned with

the existence of the ground state of the so-called “semi-relativistic Pauli–Fierz

model” (abbreviated as SRPF model), which describes an interaction between a

semi-relativistic charged particle and the quantized radiation field. The existence

of a ground state of a model in quantum field theory is a fascinating problem: the

existence of the ground state of typical models including the non-relativistic Pauli–

Fierz model [29], the SRPF model with a massive particle, the Nelson model [28]

and spin-boson model has been proven. As far as we know, however, that of the

SRPF model with a massless particle has been left open so far.

https://creativecommons.org/licenses/by/4.0/
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The non-relativistic Pauli–Fierz Hamiltonian is given by

HPF D 1

2M
.p � A.x//2 CHf;m C V.x/;

where M denotes the mass of a charged particle, p the three-dimensional mo-

mentum operator, A.x/ D A O'.x/ the quantized radiation field with an ultravi-

olet cutoff function O', Hf;m the free field Hamiltonian with dispersion relation

!m.k/ D
p

k2 Cm2 with an artificial photon massm � 0 and photon momentum

k 2 R
3, and V.x/ an external potential. The spectrum of HPF has been studied,

e.g., in [5, 8, 24]; the Nelson model has been studied, e.g., in [4, 3, 32, 6, 7];

finally, the spin-boson model has been studied, e.g., in [31, 2]. The existence and

uniqueness of the ground state ofHPF are established for m � 0 under some con-

ditions on V and O'. In particular, in the case of m D 0 (which is a physically

reasonable case) the bottom of the spectrum ofHPF lies at the bottom of its essen-

tial spectrum, and then it is not discrete. See [1, 9, 17, 33] as a review for ground

states of models in quantum field theory.

The SRPF Hamiltonian is defined by HPF with kinetic term 1
2M
.p � A.x//2

replaced by a semi-relativistic version
p

.p � A.x//2 CM 2:

It is of the form

HM;m D
p

.p � A.x//2 CM 2 CHf;m C V.x/: (1.1)

It may also be further generalized to a model with N -charged particles for some

N�2. In the specific model studied here, we fix the number of the charged particle

to one. The SRPF Hamiltonian has two singularities:

zero photon mass: m D 0;

zero particle mass: M D 0.

So far, the SRPF Hamiltonian with .M;m/ 6D .0; 0/ has been studied in several

works. The Hamiltonian HM;0 with M > 0 is investigated in the series of papers

[21, 22, 20, 23, 26]. The SRPF Hamiltonian with a massless particle

Hm D H0;m D jp � A.x/j CHf;m C V.x/

is studied in [12] for m > 0. However, the analysis of the SRPF Hamiltonian with

.M;m/ D .0; 0/ has been left open. Thus, we focus on studying the Hamiltonian

with .M;m/ D .0; 0/:

H D jp � A.x/j CHf C V.x/: (1.2)
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The kinetic energy term jp � A.x/j is a non-local operator and has a singularity

in low energy part. In the next section we explain the details of technical improve-

ments needed to investigate H .

1.2. Technical improvements

1.2.1. Compactness arguments. In [12] it is shown that Hm (m > 0) has the

normalized ground state ˆm if the external potential satisfies that V.x/ ! 1 as

jxj ! 1. Take a subsequencemj such thatˆmj
weakly converges to some vector

ˆ0 as mj ! 0 with j ! 1. It is known that if ˆ0 ¤ 0, then ˆ0 is the ground

state of H . See [2, Lemma 4.9].

In order to establish ˆ0 ¤ 0, we improve methods developed by [6, 7, 8]. We

shall construct a compact operator C such that

s-lim
mj !0

Cˆmj
D Cˆ0 ¤ 0:

Let j 2 C1
0 .Œ0;1// be a function such that 0 � j.s/ � 1 and

j.s/ D
´

1 if 0 � s � 1;

0 if s � 2:
(1.3)

For R > 0, let

�1 D j.jxj=R/; �2 D j.jpj=R/; �3 D j.N=R/; �4 D j.Hf=R/

and

�5 D �.j.jirk=Rj//:
Here N denotes the number operator and�.j.jirk=Rj// is the second quantization

of j.jirk=Rj/. We can see that C D �1�2�3�4�5 is compact and

sup
j 2N

k.1� �`/ˆmj
k D o.R0/; ` D 1; : : : ; 5 (1.4)

as R ! 1. From this, we shall show that Cˆmj
! Cˆ0 ¤ 0 as mj ! 0, and

we conclude that H has the ground state. It is crucial to show (1.4) for ` D 3; 5;

lim
R!1

sup
j 2N

k.1� j.N=R//ˆmj
k D 0; (1.5)

lim
R!1

sup
j 2N

k.1� �.j.jirk=Rj//ˆmj
k D 0: (1.6)

We explain where the crucial part is and how to overcome the difficulties when

studying H .
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1.2.2. Non-local pull-through formula and infrared divergence. To prove

equation (1.5), we apply the pull-through formula and we have to reduce the

infrared divergence. The unperturbed Hamiltonian associated with Hm is given

by

H.0/ D jpj CHf;m C V.x/:

Hence, the interaction of Hm is the non-local operator of the form

HI D jp � A.x/j � jpj

and we have

Hm D H.0/CHI:

It is standard to apply the so-called “pull-through formula” to show (1.5):

a.k/ˆm D .Hm � Em C !m.k//
�1Œa.k/;HI�ˆm;

where Em D inf �.Hm/. It is however hard to estimate Œa.k/;HI�, since HI is

singular and non-local. It is also unclear how to specify the domains of both

kinetic term jp � A.x/j and commutator Œa.k/;HI�.

To reduce the infrared divergence, we combine several methods: Hirokawa’s

trick (5.4), functional integration (Proposition 3.3), diamagnetic inequality

(Lemma 3.4), Hardy’s inequality (3.6) and Hardy–Kato’s inequality (6.3) ([25,

Lemma 8.2] and [10]):

kjpj� 1
2 j‰jk2 � �

2
kjxj 1

2‰k2:

We give a comment on the reduction of the infrared divergence. The Pauli

transformationU.x/ D exp.ix�A.0//was useful to reduce the infrared divergence

of the non-relativistic Pauli–Fierz Hamiltonian HPF (see, e.g., [5]). The Pauli

transformation may be also applied to H , and on a certain domain we have

U�1.x/HmU.x/ D jp C A.0/ � A.x/j CHf;m C h.x/C V.x/; (1.7)

where

h.x/ D �i
Z

x � e.k/
O'.k/
p

jkj
.a�.k/ � a.k//dk C

X

j D1;2

k O'e.�; j / � xk2; (1.8)

and e.k/ D .e.k; 1/; e.k; 2// are polarization vectors. Since we need delicate

arguments to signify the domains of both sides of (1.7), it takes effort to justify

operator identity (1.7). Therefore, we apply an alternative method to reduce the

infrared divergence of the SRPF Hamiltonian H .
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1.2.3. Equicontinuity. To prove (1.6), we show that

¹a.k/ˆmº0<m<m0

(for somem0 > 0) is equicontinuous in Theorem 6.6. This is a Fock-space-version

of the Kolmogorov–Riesz–Fréchet theorem which proves that an equicontinuous

set D � Lp.Rd / is compact under some condition. See, e.g., [17, Theorem 2.13

and Corollary 2.14]. As far as we know, this result is new, and we do not require

extra regularity conditions on O'.

1.3. Previous results and organizations. The SRPF Hamiltonian is studied, for

instance, in [27, 26, 18, 12, 21, 22, 20, 23]. The existence of the ground state for

the SRPF Hamiltonian was first proven by Könenberg, Matte, and Stockmeyer [21]

forM > 0 andm D 0. In the non-relativistic Pauli–Fierz Hamiltonian, the bottom

of the spectrum of HM;0 coincides with that of its essential spectrum. The case

of M D 0, but m > 0, is investigated by Hidaka and Hiroshima [12], where

V.x/ ! 1.jxj ! 1/ is assumed and HVZ type theorem is shown. In particular,

for m > 0, there exists a strictly positive gap between the ground state energy and

the bottom of the essential spectrum of Hm, and hence the ground state ˆm of

Hm exists for eachm > 0. The decaying potential V.x/ is not investigated in [12].

The binding condition for the decaying potential is however proven in Hiroshima

and Sasaki [18]. Finally, the uniqueness of the ground state is shown in [16] for

arbitrary m � 0 and M � 0 by a functional integration.

This paper is organized as follows. In Section 2, we give the definition of

the SRPF Hamiltonian and state the main theorem. In Section 3, we discuss the

bound and domain of jp � A.x/j. In Section 4, we establish a singular and non-

local pull-through formula. In Section 5, we estimate kN
1
2ˆmk by the singular and

non-local pull-through formula. In Section 6, we prove the spatial localization of

ˆm by showing that ¹a.k/ˆmº0<m<m0
is equicontinuous. In Section 7, we prove

the main theorem by compactness argument.

2. Definition of SRPF model and main results

2.1. Definition of SRPF model. We define the Hamiltonian of the SRPF model

as a self-adjoint operator acting in a Hilbert space over the complex field. The

operator consists of a particle part and a quantum field part. We firstly introduce

the quantum field part.

The single photon Hilbert space is defined by

W D L2.R3 � ¹1; 2º/



1784 T. Hidaka, F. Hiroshima, and I. Sasaki

endowed with the inner product

hf; gi D
Z

f .k/g.k/dk;

where
R

: : : dk D
P

j D1;2

R

R3 : : : dk with k D .k; j / 2 R
3 � ¹1; 2º. The boson

Fock space overW is given by

F D
1

M

nD0

.˝0
s W /;

where ˝n
s W denotes the symmetric tensor product of W and ˝0

s W D C. The

inner product on F is defined by

hˆ;‰i D
1

X

nD0

hˆ.n/; ‰.n/i˝n
s W :

Thus, ‰ 2 F can be identified with an `2-sequence .‰.n//1nD0 such that

1
X

nD0

k‰.n/k2
˝n

s W < 1:

The Fock vacuum is the sequence defined by

� D .1; 0; 0; : : :/ 2 F :

Let T be a densely-defined closable operator inW . The second quantization of T

is a closed operator in F , which is defined by

d�.T / D
1

M

nD0

T .n/;

where T .n/ D
Pn

j D1 1l ˝ � � � 1l ˝
j th

T ˝ 1l � � � ˝ 1l with T .0/ D 0 and xS denotes the

closure of closable operator S . If T is a non-negative self-adjoint operator in W ,

then d�.T / turns to be also non-negative and self-adjoint. We denote the spectrum

(resp. point spectrum) of T by �.T / (resp. �p.T /). The Fock vacuum � is an

eigenvector of d�.T / with associated eigenvalue 0, i.e., d�.T /� D 0. The

number operator is defined by N D d�.1l/. Note that �.N/ D N [ ¹0º. Let

!m.k/ D
p

k2 Cm2; k 2 R
3;

be a dispersion relation. It can be regarded as a multiplication operator inW . Here

m describes the mass of a single boson. Furthermore, the free field Hamiltonian

Hf;m is given by the second quantization of !m:

Hf;m D d�.!m/:
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We notice thatHf;m is a non-negative self-adjoint operator in F , and the spectrum

of Hf;m is given by

�.Hf;m/ D ¹0º [ Œm;1/; �p.Hf;m/ D ¹0º:

For m D 0, we write !.k/ D !0.k/ D jkj and Hf D d�.!/. The creation

operator a�.f / smeared by f 2 W is given by

.a�.f /‰/.n/ D
p
nSn.f ˝‰.n�1//; n � 1;

and

.a�.f /‰/.0/ D 0;

with domain

D.a�.f // D
°

‰ 2 F

ˇ

ˇ

ˇ

1
X

nD1

k
p
nSn.f ˝‰.n�1//k2

˝n
s W < 1

±

:

Here Sn is the symmetrization operator on ˝nW . The annihilation operator

smeared by f D f .k/ D f .k; j / 2 W is defined by the adjoint of a�. Nf /:
a.f / D .a�. Nf //�. Both a.f / and a�.f / are linear in f , and satisfy the canonical

commutation relations

Œa.f /; a�.g/� D
˝ Nf; g

˛

W
; Œa.f /; a.g/� D 0 D Œa�.f /; a�.g/�:

We informally write

a].f / D
Z

a].k/f .k/dk D
X

j D1;2

Z

R3

a].k; j /f .k; j /dk:

Let us introduce the finite particle subspace Ffin by

Ffin D L:H:¹�; a�.h1/ � � �a�.hn/� j hj 2 C1
0 .R3 � ¹1; 2º/; j D 1; : : : ; n; n � 1º;

where C1
0 .R3�¹1; 2º/ D C1

0 .R3/˚C1
0 .R3/. Note that Ffin is dense in F . Next,

we shall define the quantized radiation field A.x/ for each x 2 R
3. Let e.k; j /

be the polarization vectors defined by

e.k; 1/ D .k2; k1; 0/
q

k2
1 C k2

2

; e.k; 2/ D k

jkj � e.k; 1/:

Note that e.k; j /; j D 1; 2, satisfy

k � e.k; j / D 0; e.k; j / � e.k; j 0/ D ıjj 0 ; j; j 0 D 1; 2:
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We write

e.�/ D .e1.�/; e2.�/; e3.�//:
Note that e�.�; j / 2 C1.R3nL12/, where

L12 D ¹k D .k1; k2; k3/ 2 R
3 j k1 D k2 D 0º:

The quantized radiation field A.x/ D .A1.x/; A2.x/; A3.x// is defined by

A�.x/ D 1p
2

X

j D1;2

Z

R3

e�.k; j /
�

a�.k; j /�!.k/e
�ik�x

C a.k; j /�!.�k/eCik�x
�

dk;

where the function �! has the form

�!.k/ D O'.k/
p

!.k/
;

and O'.k/ is called an ultraviolet cutoff function. Let us introduce assumptions

on O':

(A1) O'.k/ D O'.�k/ and !� 1
2 O' 2 L2.R3/;

(A2) !�1 O' 2 L2.R3/ and !
3
2 O' 2 L2.R3/.

Remark 2.1. A physically relevant choice O'.k/ D 1l¹!�ƒº.k/ satisfies assump-

tions (A1) and (A2), where 1l¹!�ƒº is the indicator function of

¹k 2 R
3 j !.k/ � ƒº:

By assumption (A1), A�.x/ is essentially self-adjoint on Ffin for each x 2 R3.

We denote the closure of A�.x/ by the same symbol. Assumption (A2) will be

used for the self-adjointness of the total Hamiltonian.

Next, we explain the particle part. The Hilbert space for the particle is

L2.R3
x/ D L2.R3; dx/;

where x D .x1; x2; x3/ 2 R
3 denotes the position of the particle. Let p D

.p1; p2; p3/D �i.@x1
; @x2

; @x3
/ be the momentum operator of the particle. The

massless particle Hamiltonian under consideration is a semi-relativistic Schrö-

dinger operator given by

Hp D jpj C V.x/ D
p

��C V.x/;

The Hilbert space for the SRPF model is defined by

H D L2.R3
x/˝ F :
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If no confusion may arise, we use the following identification:

H Š L2.R3
xI F / Š

Z̊

R3

F dx:

Under this identification, we can define the constant fiber direct integral

Z̊

R3

A�.x/dx;

which is also denoted by A�.x/ for simplicity. Then, A�.x/; � D 1; 2; 3, are

self-adjoint operators in H . The interaction between the particle and quantized

radiation field is described by the minimal coupling, i.e., the interacting Hamil-

tonian is obtained by replacing p by p � A.x/. Thus, the total Hamiltonian of the

massless SRPF model is formally defined by

H D jp ˝ 1l � A.x/j C 1l ˝Hf C V.x/˝ 1l:

For notational convenience, in the sequel we will omit the symbol ˝. Thus, H

can be simply written as

H D jp � A.x/j CHf C V.x/:

Note that the definition of H is currently unclear, and we have to specify the

definition of jp � A.x/j and the conditions for V.x/. We use the notation

C1.T / D
1
\

nD1

D.T n/

for the operator T . By assumption (A2), the non-relativistic kinetic energy

TA D .p � A.x//2

is well defined on D.p2/\C1.N/, and the next proposition has been established.

Proposition 2.2 ([16, Proposition 3.4]). Assume (A1) and (A2). Then TA is

essentially self-adjoint on D.p2/ \ C1.N/.

We set

Hfin D C1
0 .R3/ y̋ Ffin;

where y̋ denotes the algebraic tensor product. Proposition 2.2 can be extended:
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Proposition 2.3. Assume (A1) and (A2). Then TA is essentially self-adjoint

on Hfin.

Proof. Set D1 D D.p2/ \ C1.N/. Then, by Proposition 2.2, TAdD1 is self-

adjoint. We use the fact that Hfin is a core for p2 C N. Let ‰ 2 D1. Then

‰ 2 D.p2 C N/, and hence there exists a sequence ¹‰nºn � Hfin such that

‰n ! ‰ and .p2 C N/‰n ! .p2 C N/‰ as n ! 1. On the other hand, for

ˆ 2 Hfin, we have

kTAˆk D k.p2 � 2A.x/ � p C A.x/2/ˆk � ak.p2 C N/ˆk C bkˆk (2.1)

for some a; b > 0. From (2.1), we know that ¹TA‰nºn is a convergent sequence.

Therefore, we have ‰ 2 D.TAdHfin/, which means that TAdD1 � TAdHfin.

Since the self-adjoint extension is unique, we have TAdHfin D TAdD1 which

is self-adjoint. �

We denote the closure of TA by the same symbol. The semi-relativistic kinetic

energy jp � A.x/j is defined through the spectral measure of TA, i.e.,

jp � A.x/j D
p

TA:

Definition 2.4. The massless SRPF Hamiltonian is defined by

H D
p

TA C V CHf : (2.2)

The Hamiltonian with a photon mass m is also defined by

Hm D
p

TA C V CHf;m: (2.3)

Obviously, Hm

ˇ

ˇ

mD0
D H .

2.2. The main results. We define two classes of external potentials.

Definition 2.5. (1)V 2 Vrel if and only if D.jpj/ � D.V / and there exist 0 � a < 1

and 0 � b such that kVf k � akjpjf k C bkf k for any f 2 D.jpj/.
(2) V 2 Vconf if and only if limjxj!1 V.x/ D 1, D.V / � D.jxj/, and

V 2 C 2.R3/ with @�V; @
2
�V 2 L1.R3/ for � D 1; 2; 3.

Examples of Vrel and Vconf are �Z=jxj 2 Vrel and hxi D
p
1C x2 2 Vconf .

Proposition 2.6 ([11, Theorem 1.9]). Assume (A1) and (A2). Suppose that V 2
Vconf [Vrel. Then, for anym � 0,Hm is self-adjoint on D.jpj/\ D.V /\ D.Hf;m/

and essentially self-adjoint on Hfin.
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We remark the following. Thought Hm depends on the choice of polarization

vectors, it can be shown that all Hm with measurable polarization vectors are

unitary equivalent. Hence, the spectrum of Hm is independent of the choice of

measurable polarization vectors. See [30, Appendix A].

If T is self-adjoint and bounded from below, then an eigenvector f such that

Tf D Ef with E D inf �.T / is called a ground state of T . The existence

and the uniqueness of the ground state of the massive Hamiltonian Hm has been

established:

Proposition 2.7 ([12, Theorem 2.8] and [16, Theorem 5.12 (2)]). Assume (A1)

and (A2). Suppose that V 2 Vconf . ThenHm has the normalized ground state ˆm

for each m > 0, and there exist C and c such that

sup
m>0

kˆm.x/kF � Ce�cjxj; x 2 R
3: (2.4)

Remark 2.8. In Proposition 2.7 it is assumed that V is a confining potential.

However, in [16, Theorem 5.12 (1)] a spatial decay of bound states of Hm with

a decaying potential is shown for m � 0. Let Hm‰ D Em‰. Suppose that V is

negative and limjxj!1Em � V.x/ < 0. Then

k‰.x/kF �
´

C hxi�3�1 if m D 0;

Cme
�cmjxj if m > 0;

with some constants cm; Cm, and C .

One common method to prove the existence of the ground state ofH is to show

that the weak limit of ˆm as m ! 0 is a non-zero vector ˆ0. In Proposition 2.7,

under some condition on V and cutoff, it is shown that Hm has the ground state

ˆm for each m > 0. Thus, we investigate the limit of ˆm under the following

general conditions:

(A3) for any m > 0, Hm has a normalized ground state ˆm;

(A4) there exists m0 > 0 such that sup0<m<m0
khxi2

ˆmk < 1.

The main result in this paper is the following:

Theorem 2.9. Assume (A1)–(A4) and V 2 Vconf [ Vrel. Then H has the unique

ground state.
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3. Domains and bounds of jp � A.x/j

In this section, we discuss domains and bounds of operators related to .p�A.x//2.

In the spectral analysis of H , we need to compute and estimate commutators

related to jp � A.x/j. Since jp � A.x/j is non-local, it is not obvious that

N
1
2 jp � A.x/j is well defined on a dense domain.

Let �.x/ D �� 1
4 e� 1

2
x2

. Obviously, in the case of one mode annihilation

operator and creation operator a D .xC d=dx/=
p
2 and a� D .x � d=dx/=

p
2 in

L2.R/, we have

jaC a�j� D
p
2�� 1

4 jxje� 1
2

x2

;

which is not twice differentiable, because of the singularity at x D 0. Namely,

ja C a�j� … D.a�a/ D D
�

� 1

2

d2

dx2
C 1

2
x2 � 1

2

�

:

From this observation, jp � A.x/j‰ 2 D.N/ may not be expected for ‰ 2 Hfin.

However, since we can see that

ja C a�j� 2 D..a�a/
1
2 / D D

� d

dx

�

\ D.x/;

we may expect that jp � A.x/j‰ 2 D.N
1
2 / for ‰ 2 Hfin. We can indeed show the

proposition below:

Proposition 3.1. Suppose (A1) and (A2). Then jp � A.x/j‰ 2 D.N
1
2 / for any

‰ 2 Hfin.

The proof will be given later in this section. The next lemma is a basic fact

about the domains related to TA and N.

Lemma 3.2. Assume (A1) and (A2). If ‰ 2 Hfin, then ‰ 2 D.T 2
A
/ and T 2

A
‰ 2

C1.N/.

Proof. Note that Hfin � D.p2/ \ C1.N/ � D.TA/. By the properties of

polarization vectors, we know that A.x/ � p D p � A.x/, so

TA‰ D .p2 � 2A.x/ � p C A.x/2/‰

for ‰ 2 Hfin. By (A2), we have k2�! 2 L2.R3/, which means that A�.x/ˆ 2
D.p2/ ifˆ 2 D.p2/\D.N

1
2 /. Hence, p2‰;A.x/�p‰;A.x/2‰ 2 D.p2/. Clearly,

each vectors have finite photon number. Thus TA‰ 2 D.p2/\C1.N/ � D.TA/,

and TA‰ 2 D.TA/. It is clear that T 2
A
‰ 2 C1.N/. �
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In order to prove Proposition 3.1, we need some inequalities derived by the

functional integral representation. We consider the probabilistic representation.

Let .Bt /t�0 be the three-dimensional Brownian motion on a probability space

.W; B.W/; P x/. Here P x is the Wiener measure starting from x 2 R
3. Then we

can consider the partial isometry

L2.R3; dx/ �!
Z̊

R3

L2.W; dP x/dx;

f .x/ 7�! f .B0.w//; .x; w/ 2 R
3 � W:

(3.1)

Since B0.w/ D x a.s., the above identification is trivial. However, the semigroup

for the free particle can be described as

.e� t
2

p2

f /.x/ 7�! f .x C Bt .w//; .x; w/ 2 R
3 � W:

The expectation with respect to P x is simply denoted by E
xŒ: : :�. In the following,

we use this embedding (3.1) as an identification, and we simply useL2.R3�W/ to

denote
R ˚

R3 L
2.W; dP x/dx. Next, we introduce a probabilistic description for the

field. Let A.F / be the Gaussian random process indexed by F 2 ˚3L2.R3/ on a

probability space .Q;†; �/ such that E�ŒA.F /� D 0. The covariance is given by

E�ŒA.F /A.G/� D 1

2

3
X

�;�D1

h yF�; d��
yG�i;

where d�� D ı�� � k�k�=jkj2 and yF� denotes the Fourier transform of F�.

The unitary equivalence between L2.Q/ and F is established, and under this

equivalence it follows that, for F D F1 ˚ F2 ˚ F3 2 ˚3L2.R3/,

A.F / Š A.F /

D 1p
2

3
X

�D1

X

j D1;2

Z

R3

e�.k; j /
�

a�.k; j / yF�.k/C a.k; j / yF�.�k/
�

dk:
(3.2)

Namely, each Segal’s field operator can be considered as a Gaussian random

process. In the following, we use the identifications L2.R3; dx/ ! L2.R3 � W/

and F Š L2.Q/.

Proposition 3.3 ([15]). The Feynman–Kac formula of e� t
2

TA is given by

hˆ; e� t
2

TA‰i D
Z

R3

E
xŒhˆ.B0/; e

�iA.K/‰.Bt /iL2.Q/�dx; ‰;ˆ 2 H :
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Here

K.�/ D
3

M

�D1

t
Z

0

Q'.� � Bs/dB
�
s (3.3)

with Q' D .�!/LD . O'=p!/L.

Let N be the number operator in L2.Q/. For F 2 ˚3L2.R3/, the conjugate

momentum of A.F / is denoted by ….F /, namely, ….F / D i ŒN;A.F /� and the

corresponding field operator is

�.F / D ip
2

3
X

�D1

X

j D1;2

Z

R3

e�.k; j /.a
�.k; j / yF�.k/ � a.k; j / yF�.�k//dk:

Then the identity

Ne�iA.K/ D e�iA.K/.N �….K/ � �K/ (3.4)

holds, where �K is a stochastic process defined by

�K D 1

2

3
X

�;�D1

h yK�; d��
yK�iL2.R3/:

Note that yK� D
R t

0 �!.k/e
�ik�BsdB

�
s is anL2.R3

k
/-valued stochastic integral, and

hence �.K/ is an operator-valued stochastic integral in L2.R3 � W/˝ F . Let

P� D p� ˝ 1l C 1l ˝Pf�; � D 1; 2; 3

be the total momentum, where Pf� D d�.k�/ is the field momentum. The

corresponding filed momentum in L.Q/ is denoted by Pf�. The commutation

relation between Pf� and e�iA.K/ is given by

Pf�e
�iA.K/ D e�iA.K/.Pf� � A.@�K//;

where the last term is obtained from A.@�K/ D i ŒPf� ;A.K/�, and the correspond-

ing field operator is

A.@�K/ Š 1p
2

3
X

�D1

X

j D1;2

Z

R3

e�.k; j /
�

a�.k; j /.ik�
yF�/.k/

C a.k; j /.ik�
yF�/.�k/

�

dk:

Note that @� in the above expression means the derivative for the photon coordi-

nate.
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Let UF W F ! L2.Q/ be the unitary operator implementing the identification

F Š L2.Q/. Then .1l ˝UF /‰ .‰ 2 H/ is a function in L2.R3
x � Q/ and the

absolute value of‰ is defined under this identification. The following is a variation

of diamagnetic inequalities.

Lemma 3.4. Assume (A1) and (A2).

(1) For any ‰ 2 H ,

k.TA C s/�
1
2‰k � k.p2 C s/�

1
2 j‰jk; s > 0:

(2) If ‰ 2 D.jxj/, then ‰ 2 D.T
� 1

2

A
/ and it holds that

kT � 1
2

A
‰k � 2kjxj‰k:

(3) Let % D %.x/ be a measurable function such that j%.x/j < 1 a.e. and s > 0.

Suppose that k%.p2 C s/�1j‰jk < 1. Then .TA C s/�1‰ 2 D.%/ and it

holds that

k%.TA C s/�1‰k � k%.p2 C s/�1j‰jk: (3.5)

Proof. By Proposition 3.3, we have

k.TA C s/�
1
2‰k2 D 1

2

1
Z

0

e� ts
2 h‰; e� t

2
TA‰idt

D 1

2

1
Z

0

e� ts
2 dt

Z

R3

E
xŒh‰.B0/; e

�iA.K/‰.Bt /iL2.Q/�dx

� 1

2

1
Z

0

e� ts
2 dt

Z

R3

E
xŒhj‰.B0/j; j‰.Bt /jiL2.Q/�dx

D 1

2

1
Z

0

e� ts
2 hj‰j; e� t

2
p2 j‰jidt

D k.p2 C s/�
1
2 j‰jk2:

Thus (1) follows. Next we assume that ‰ 2 D.jxj/. Clearly j‰j 2 D.jxj/ and by

Hardy’s inequality, we have j‰j 2 D.jpj�1/ and

kjpj�1j‰jk � 2kjxjj‰jk D 2kjxj‰k: (3.6)
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By (1) and the monotone convergence theorem, we have ‰ 2 D.T
� 1

2

A
/ and

kT � 1
2

A
‰k D lim

s!C0
k.TA C s/�

1
2‰k � lim

s!C0
k.p2 C s/�

1
2 j‰jk � 2kjxj‰k;

which proves (2). Next we prove (3). By the Feynman–Kac formula (Proposi-

tion 3.3), we have

k%.x/.TA C s/�1‰k
D sup

ˆ2D.%�/;kˆkD1

jh%�ˆ; .TA C s/�1‰ij

D sup
ˆ2D.%�/;kˆkD1

ˇ

ˇ

ˇ

ˇ

1

2

1
Z

0

e� ts
2 dt

Z

R3

E
xŒh.%�ˆ/.B0/; e

�iA.K/‰.Bt /iL2.Q/�dx

ˇ

ˇ

ˇ

ˇ

� sup
ˆ2D.%�/;kˆkD1

1

2

1
Z

0

e� ts
2 dt

Z

R3

E
xŒhj.%�ˆ/.B0/j; j‰.Bt /jiL2.Q/�dx

D sup
ˆ2D.%�/;kˆkD1

1

2

1
Z

0

e� ts
2 hj%jjˆj; e� t

2
p2j‰jidt

D sup
ˆ2D.%�/;kˆkD1

hj%jjˆj; .p2 C s/�1j‰ji

� kj%j.p2 C s/�1j‰jk;

which proves (3). �

Lemma 3.5. Assume (A1) and (A2). Let K be ˚3L2.R3/-valued stochastic

integral given by (3.3). Suppose that ˆ 2 D.Nk/. Then, for k 2 N, there exists a

polynomial Pk D Pk.�/ of degree k such that

k.N � �.K/� �K/
kˆkF � Pk.j�K j/k.N C 1l/kˆkF : (3.7)

Proof. The proof is due to an induction with respect to k. In this proof, the symbol

k�k means the norm of F .

For k D 1, it can be seen that

k.N � �.K/� �K/ˆk � kNˆk C k�.K/ˆk C j�K jkˆk:

Since

k�.K/ˆk � C j�K j 1
2 k.N C 1l/

1
2ˆk;

(3.7) follows with P1.�/ D 1C .C 2 C �/C � .
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Next, we suppose that (3.7) is true for k D 1; : : : ; n. Then we have

k.N � �.K/� �K/
nC1ˆk � k.N � �.K/� �K/nNˆk

C k.N � �.K/� �K/n�.K/ˆk
C k.N � �.K/� �K/n�Kˆk:

By the induction hypothesis, it can be seen that

k.N � �.K/� �K/nNˆk � Pn.j�K j/k.N C 1l/nC1ˆk;
k.N � �.K/� �K/

n�Kˆk � Pn.j�K j/j�K jk.N C 1l/nˆk;
k.N � �.K/ � �K/n�.K/ˆk � Pn.j�K j/k.N C 1l/n�.K/ˆk:

By a simple computation, we have

.N C 1/�.K/.N C 1l/�1 D �.K/C ŒN; �.K/�.N C 1l/�1

D �.K/C iA.K/.N C 1l/�1;

and hence the operator norm of .N C 1l/n�.K/.N C 1l/�.nC1/ can be estimated as

k.N C 1l/n�.K/.N C 1l/�.nC1/k
� k.N C 1l/n�1�.K/.N C 1l/�nk C k.N C 1l/n�1A.K/.N C 1l/�.nC1/k
� k.N C 1l/n�1�.K/.N C 1l/�nk C k.N C 1l/n�1A.K/.N C 1l/�nk
:::

� 2n�1Ck�.K/.N C 1l/�1k C 2n�1CkA.K/.N C 1l/�1k � 2nC j�K j 1
2 :

Thus,

k.N � �.K/� �K/nC1ˆk � Pn.j�K j/.1C j�K j C 2n.C 2 C j�K j//k.N C 1l/nC1ˆk

and inequality (3.7) follows with PnC1.�/ D Pn.�/.1C � C 2n.C 2 C �//. �

Lemma 3.6. Assume (A1) and (A2). Let n 2 N be arbitrary. Then, for any

‰ 2 D.Nn/ and t � 0, we have e�tTA‰ 2 D.Nn/ and

kNne�tTA .N C 1l/�nk � Cn.t
n C 1/

for some constant Cn > 0.
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Proof. It is enough to show that

jhNnˆ; e� t
2

TA‰ij � Ckˆk; ˆ 2 Hfin; (3.8)

with

C D Cn.t
n C 1/k.N C 1l/n‰k:

By the Feynman–Kac formula (Proposition 3.3), the equivalence ….K/ Š �.K/

and (3.4), we have

jhNnˆ; e� t
2

TA‰ij

D
ˇ

ˇ

ˇ

ˇ

Z

R3

E
xŒhNnˆ.B0/; e

�iA.K/‰.Bt /iL2.Q/�dx

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

R3

E
xŒhˆ.B0/; e

�iA.K/.N �….K/ � �K/n‰.Bt /iL2.Q/�dx

ˇ

ˇ

ˇ

ˇ

:

By Lemma 3.5, we have

jhNnˆ; e� t
2

TA‰ij

�
Z

R3

kˆ.x/kL2.Q/E
xŒPn.j�K j/2� 1

2E
xŒk.N C 1l/n‰.Bt /k2

L2.Q/
�

1
2dx:

(3.9)

By the Burkholder–Davis–Gundy inequality [15, Theorem 4.6]

E
xŒj�K jm� � cmt

mk�!km; m 2 N;

holds with some constant cm independent of x. Then we get

E
xŒPn.j�K j/2� 1

2 < Cn.t
n C 1/

for some Cn > 0, and so the right-hand side of (3.9) is bounded by

Cn.t
n C 1/

Z

R3

kˆ.x/kL2.Q/E
xŒk.N C 1l/n‰.Bt /k2

L2.Q/
�

1
2dx

� Cn.t
n C 1/kˆk

Z

R3

E
xŒk.N C 1l/n‰.Bt /k2

L2.Q/
�

1
2dx

D Cn.t
n C 1/kˆkk.N C 1l/n‰k:

Hence, the proof is complete. �
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Set

Rs D .TA C s/�1:

Lemma 3.7. Assume (A1) and (A2). Let n 2 N and s > 0. Then it follows that

Ran.Rs.N
n C 1l/�1/ � D.Nn/, and

kNnRs.N
n C 1l/�1k � Cn.s

�n�1 C s�1/ (3.10)

holds for some Cn > 0.

Proof. Using the formula .AC s/�1 D
R 1

0
e�t.ACs/dt , we have, for anyˆ 2 Hfin

and ‰ 2 D.N/,

jhNnˆ;Rs‰ij �
1

Z

0

e�tskˆkkNne�tTA.Nn C 1l/�1kk.Nn C 1l/‰kdt:

By Lemma 3.6, we have

jhNnˆ;Rs‰ij �
1

Z

0

e�tsCn.t
n C 1/kˆkk.Nn C 1l/‰kdt:

Thus, (3.10) follows. �

We set

TA;M D TA CM 2:

Note that D.
p

TA;M / D D.
p
TA/, since

p

TA;M �
p
TA is bounded.

Lemma 3.8. Assume (A1) and (A2). Let M > 0. Then T
� 1

2

A;M
‰ 2 D.N/ for any

‰ 2 D.N/, and

kNT
� 1

2

A;M .N C 1l/�1k � C1

1C 2M 2

2M 3
; (3.11)

where C1 is the constant in Lemma 3.7.

Proof. By the integral expression of T
� 1

2

A;M ,

T
� 1

2

A;M D 2

�

1
Z

0

R�2CM 2d�;
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we have

jhNˆ; T � 1
2

A;M‰ij � 2

�

1
Z

0

kˆkkNR�2CM 2‰kd�

� 2C1

�
kˆkk.N C 1l/‰k

1
Z

0

..�2 CM 2/�2 C .�2 CM 2/�1/d�

by Lemma 3.7. Therefore T
� 1

2

A;M‰ 2 D.N/ and (3.11) hold. �

Lemma 3.9. Assume (A1) and (A2).

(1) For all ‰ 2 D.NTA/ \ D.N/ \ D.NT 2
A
/, T

3
2

A
‰ 2 D.N/ and the bound

kNT
3
2

A
‰k � C.kNTA‰k C k.N C 1l/‰k C k.N C 1l/T 2

A‰k/

holds for some C independent of ‰.

(2) For any ‰ 2 Hfin,

lim sup
M !C0

kNT 2
AT

� 1
2

A;M
‰k < 1:

Proof. By the integral expression of T
1
2

A
, we have, for any ˆ 2 Hfin,

jhNˆ; T
3
2

A
‰ij � 2

�

1
Z

0

jhNˆ;R�2T 2
A‰ijd�C 2

�

1
Z

1

jhNˆ;R�2T 2
A‰ijd�:

First, we estimate the integral
R 1

0 : : : d�. Since TAR�2 D 1l � �2R�2 , we have

hNˆ;R�2T 2
A‰i D hNˆ; TA‰i � �2hNˆ;R�2TA‰i

D hNˆ; TA‰i � �2hNˆ; .1l � �2R�2/‰i;

and hence

1
Z

0

jhNˆ;R�2T 2
A‰ijd�

� kˆkkNTA‰k C
1

Z

0

�2kˆkkN‰kd�C
1

Z

0

�4kˆkkNR�2‰kd�:
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By Lemma 3.7, we see that the last integral becomes finite and the bound

1
Z

0

jhNˆ;R�2TA‰ijd� � Ckˆk
�

kNTA‰k C k.N C 1l/‰k
�

holds for some C > 0. Next, we consider the second part
R 1

1
d�. By Lemma 3.7

again, we get the bound

2

�

1
Z

1

ˇ

ˇhNˆ;R�2T 2
A‰i

ˇ

ˇd� � 2

�
kˆk

1
Z

1

C1.�
�4 C ��2/k.N C 1l/T 2

A‰kd�

D Ckˆkk.N C 1l/T 2
A‰k

for some C > 0.

Since ˆ 2 Hfin is arbitrary, these inequalities imply that T
3
2

A
‰ 2 D.N/ and

kNT
3
2

A
‰k � C.kNTA‰k C k.N C 1l/‰k C k.N C 1l/T 2

A‰k/

for some C > 0. This shows (1). The proof of (2) is similar to the proof of (1). By

Lemma 3.2, Hfin � D.NTA/\D.N/\D.NT 2
A
/. Thus, as above, one can similarly

show that

sup
0<M <1

kNT 2
AT

� 1
2

A;M
‰k � C.kNTA‰k C k.N C 1l/‰k C k.N C 1l/T 2

A‰k/;

where C is a constant independent of ‰ and M . Thus (2) holds. �

We are in the position to prove Proposition 3.1.

Proof of Proposition 3.1: Let ‰ 2 Hfin. Set

T D TA and TM D TA;M

for simplicity. We will show that

lim sup
M !0

kN
1
2T

� 1
2

M T‰k < 1: (3.12)

By Lemma 3.2, we have ‰ 2 D.T 2/, in particular ‰ 2 D.T
3
2 /. Since T T

� 1
2

M ‰ 2
D.T /, there exists a sequence ¹ ĵ ºj � Hfin, such that

ĵ �! T T
� 1

2

M ‰ and T ĵ �! T 2T
� 1

2

M ‰ as j ! 1:
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Then we have

kN
1
2T

� 1
2

M T‰k2 D hT T � 1
2

M ‰;NT T
� 1

2

M ‰i D lim
j !1

h ĵ ;NT T
� 1

2

M ‰i

D lim
j !1

h.ŒT;N�C NT / ĵ ; T
� 1

2

M ‰i:
(3.13)

The commutator ŒN; T � can be computed as follows

ŒN; T � D i.p � A.x// � � C i� � .p � A.x//;

where � D .�1; �2; �3/ is defined by

�� D i ŒN; A�.x/� D ip
2
.�a.g�.x//C a�.g�.x///;

with g�.x/ D e��!e
�ik�x 2 W . Since

P3
�D1ŒA�.x/; ��� D 2ik�!k2, we have

ŒN; T � D 2i� � .p � A.x//C 2k�!k2:

Thus, (3.13) becomes

lim
j !1

.�2ih ĵ ;� � .p � A.x//T
� 1

2

M ‰i � 2k�!k2h ĵ ; T
� 1

2

M ‰i C hT ĵ ;NT
� 1

2

M ‰i/

D �2ihT T � 1
2

M ‰;� � .p � A.x//T
� 1

2

M ‰i � 2k�!k2hT T � 1
2

M ‰; T
� 1

2

M ‰i

C hT 2T
� 1

2

M ‰;NT
� 1

2

M ‰i

� �2ihT T � 1
2

M ‰;� � .p � A.x//T
� 1

2

M ‰i C hT 2T
� 1

2

M ‰;NT
� 1

2

M ‰i:

Hence, by the Schwarz inequality, we have

kN
1
2T

� 1
2

M T‰k2 � 2
�

3
X

�D1

k��T T
� 1

2

M ‰k2
�

1
2
�

3
X

�D1

k.p� � A�.x//T
� 1

2

M ‰k2
�

1
2

C kNT 2T
� 1

2

M ‰kkT � 1
2

M ‰k:

Noting
P3

�D1.p� � A�.x//
2 D T and

3
X

�D1

k��ˆk2 � 4k�!k2k.N C 1l/
1
2ˆk2

for ˆ 2 D.N
1
2 /, we have the bound

kN
1
2T

� 1
2

M T‰k2 � 4k�!kk.N C 1l/
1
2T T

� 1
2

M ‰kk‰k C kNT 2T
� 1

2

M ‰kkT � 1
2

M ‰k:
(3.14)
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By Lemma 3.9, we have

lim sup
M !0

kNT 2T
� 1

2

M ‰k < 1; lim sup
M !0

k.N C 1l/
1
2T 2T

� 1
2

M ‰k < 1: (3.15)

On the other hand, since ‰ 2 D.jxj/, by Lemma 3.4, we have ‰ 2 D.T � 1
2 / and

lim
M !0

kT � 1
2

M ‰k D kT � 1
2‰k � 2kjxj‰k < 1: (3.16)

Therefore, from (3.14)–(3.16), we conclude that (3.12) holds. By Lemma 3.2

T‰ 2 D.N/, and hence

T T
� 1

2

M ‰ D T
� 1

2

M T‰ 2 D.N/

by Lemma 3.8. Thus, N
1
2T

� 1
2

M T‰ 2 H . By (3.12), for any ˆ 2 Hfin, we see that

ˇ

ˇhT 1
2‰;N

1
2ˆi

ˇ

ˇ D lim
M !0

jhT T � 1
2

M ‰;N
1
2ˆij D lim

M !0
jhN 1

2T T
� 1

2

M ‰;ˆij

� .lim sup
M !0

kN
1
2T T

� 1
2

M ‰k/kˆk:

Since Hfin is a core for N
1
2 , the above bound implies T

1
2‰ 2 D..N

1
2 /�/ D D.N

1
2 /,

which completes the proof of Proposition 3.1. �

4. Singular and non-local pull-through formulae

Throughout we assume that (A1)–(A4) hold. For 0 < m < m0, recall that ˆm

is the normalized ground state of Hm. For each function ‰.nC1/ 2 ˝nC1
s W , the

map R
3 � ¹1; 2º 3 k 7! ‰.nC1/.k; : : :/ is a ˝n

s W -valued function, and

Z

k‰.nC1/.k; : : :/k2
˝n

s W dk D k‰.nC1/k2

˝nC1
s W

holds. Thus, for each ‰ 2 F and almost every k, one can define the function

.a‰/.k/ D .
p
nC 1‰.nC1/.k; �//1nD0 2

1
X

nD0
.˝n

s W /;

where X denotes the Cartesian product. We write a.k/‰ for .a‰/.k/. We can

check that ‰ 2 D.N
1
2 / if and only if

(1) a.k/‰ 2 F a.e. k and

(2)
R

ka.k/‰k2
F
dk < 1.
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If ‰ 2 D.N 1
2 /, then

kN
1
2‰k2

F
D

Z

ka.k/‰k2
F
dk;

hˆ; a.f /‰iF D
Z

f .k/hˆ; a.k/‰iF dk

hold for all ˆ 2 F and f 2 W . For ‰ 2 H D L2.R3
x/˝ F , we can define

a.k/‰ by a.k/‰ D ‰.x; k; : : :/. In this section, we will establish the pull-through

formula

a.k/ˆm D �!.k/.Hm �Em C !m.k//
�1J.k/ˆm; (4.1)

where J.k/ is an operator valued function. In the case of M D 0, it is crucial to

consider the operator domain in the derivation of (4.1).

Let f 2 C1
0 .R3 � ¹1; 2º/ and ‰ 2 Hfin. By Proposition 3.1, we have

T
1
2

A
‰ 2 D.N

1
2 / � D.a�.f // and a�.f /‰ 2 Hfin � D.Hm/

follows. From these facts, we can verify the following calculations:

h.Hm �Em/‰; a. Nf /ˆmi
D ha�.f /.Hm � Em/‰;ˆmi
D hŒa�.f /;Hm �Em�‰;ˆmi C h.Hm �Em/a

�.f /‰;ˆmi
D hŒa�.f /;Hm�‰;ˆmi:

Since

Œa�.f /;Hm� D Œa�.f /;
p

TA� � a�.!mf /

holds on Hfin, we have

h.Hm �Em/‰; a. Nf /ˆmi
D hŒa�.f /;

p

TA�‰;ˆmi � h‰; a.!m
Nf /ˆmi

D h
p

TA‰; a. Nf /ˆmi � ha�.f /‰;
p

TAˆmi � h‰; a.!m
Nf /ˆmi

D 2

�

1
Z

0

�

hTARt2‰; a. Nf /ˆmi � ha�.f /‰; TARt2ˆmi
�

dt � h‰; a.!m
Nf /ˆmi

D 2

�

1
Z

0

hŒa�.f /; TARt2 �‰;ˆmidt � h‰; a.!m
Nf /ˆmi;

(4.2)
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where we used the formula

p
S D 2

�

1
Z

0

S

S C t2
dt; S � 0: (4.3)

We shall compute the commutator in the integrand of (4.2). It is enough to

consider the case t > 0. Note thatRt2‰ 2 D.N/ by Lemma 3.7. By S=.SC t2/ D
1l � t2=.S C t2/ and the resolvent equation, we have

hŒa�.f /; TARt2 �‰;ˆmi D �t2hŒa�.f /; Rt2 �‰;ˆmi
D �t2hŒTA; a

�.f /�Rt2‰;Rt2ˆmi:

The commutator above is easily seen to be

ŒTA; a
�.f /�

D .p � A.x// � Œp � A.x/; a�.f /�C Œp � A.x/; a�.f /� � .p � A.x//

D �
p
2.p � A.x// � he�ik�xe�!; f iW ;

where

.e�ik�xe�!/.k; j / D e�ik�x�!.k/.e1.k/; e2.k/; e3.k//:

Thus,

hŒa�.f /; TARt2 �‰;ˆmi
D

p
2t2hhe�ik�xe�!; f iRt2‰; .p � A.x//Rt2ˆmi

D
p
2t2

Z

f .k/�!.k/heik�xRt2‰; e.k/ � .p � A.x//Rt2ˆmidk

D
p
2t2

Z

f .k/�!.k/heik�xRt2‰; Ve.k/Rt2ˆmidk;

(4.4)

where, for w 2 R
3, we introduced the operator

Vw D w � .p � A.x//: (4.5)

Therefore, the first term in (4.2) becomes

2

�

1
Z

0

hŒa�.f /; TARt2 �‰;ˆmidt

D 2
p
2

�

1
Z

0

t2dt

Z

f .k/�!.k/heik�xRt2‰; Ve.k/Rt2ˆmidk:
(4.6)
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Although the iterated integral in (4.6) converges, the total integrability is not clear,

especially around t D 0. In order to use Fubini’s lemma, we have to show the total

integrability of (4.6).

We show several properties on Vw in the next lemma.

Lemma 4.1. Assume (A1) and (A2). Then, for any w 2 R
3, Vw is essentially self-

adjoint on Hfin. We use the same symbol for its closure. Moreover, the following

hold:

(1) if ‰ 2 D.T
1
2

A
/, then ‰ 2 D.Vw/ and kVw‰k � jwjkT

1
2

A
‰k;

(2) if ‰ 2 D.T
1
4

A
/, then ‰ 2 D.jVwj 1

2 / and kjVwj 1
2‰k � jwj 1

2 kT
1
4

A
‰k;

(3) for all k 2 R
3 with .k1; k2/ ¤ .0; 0/, Ve.k/ strongly commutes with e�ik�x.

Proof. The essential self-adjointness follows from Nelson’s commutator theorem

with auxiliary operator p2 C N C 1l. For ‰ 2 D.T
1
2

A
/, by the Schwarz inequality,

kVw‰k2 �
3

X

�;�D1

jw�w�jjh.p� � A�.x//‰; .p� � A�.x//‰ij

�
�

3
X

�D1

jw�jk.p� � A�.x//‰k
�2

� jwj2
3

X

�D1

k.p� � A�.x//‰k2;

which implies (1). Statement (2) can be derived from the Löwner–Heinz inequality

[19, Theorem 2]. Finally, we prove (3). Note that e�ik�x is a unitary operator.

Noting k � e.k/ D 0, we can show that

eik�xe.k/ � .p � A.x//e�ik�x D e.k/ � .p � k � A.x// D e.k/ � .p � A.x//

on Hfin. Taking the closure on both sides, we have eik�xVe.k/e
�ik�x D Ve.k/. Thus

(3) is proven. �

The next lemma shows that the integral in (4.6) is absolutely convergent.

Lemma 4.2. For k D .k; j / 2 R
3 � ¹1; 2º with .k1; k2/ ¤ .0; 0/ and ‰;ˆ 2 H ,

the bound

1
Z

0

jheik�xRt2‰; Ve.k/Rt2ˆijt2dt � �

4
k‰kkˆk (4.7)
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holds, and

t2jf .k/�!.k/heik�xRt2‰; Ve.k/Rt2ˆij
is integrable in .k; t / 2 .R3 � ¹1; 2º/� Œ0;1/.

Proof. Note that Rt2ˆ;Rt2‰ 2 D.Ve.k// for all t > 0 and ‰;ˆ 2 H . For t > 0

and k 2 R
3nL12, we have

jheik�xRt2‰; Ve.k/Rt2ˆij

D jhjVe.k/j
1
2 eik�xRt2‰; sgn.Ve.k//jVe.k/j

1
2Rt2ˆij

� kjVe.k/j
1
2 eik�xRt2‰kkVe.k/j

1
2Rt2ˆk

� kjVe.k/j
1
2Rt2‰kkVe.k/j

1
2Rt2ˆk

� kT
1
4

A
Rt2‰kkT

1
4

A
Rt2ˆk;

(4.8)

where we used Lemma 4.1 and the fact that e.k/ is a normalized vector. Thus,

1
Z

0

ˇ

ˇheik�xRt2‰; Ve.k/Rt2ˆmi
ˇ

ˇt2dt

�
�

1
Z

0

kT
1
4

A
Rt2ˆk2dt

�
1
2
�

1
Z

0

kT
1
4

A
Rt2‰k2t2dt

�
1
2

:

Since
R 1

0 kT
1
4

A
Rt2‰k2t2dt D .�=4/k‰k2, (4.7) follows. �

As a consequence of Lemma 4.2, we can apply Fubini’s lemma to (4.6), and

we have

(4.6) D 2
p
2

�

Z

f .k/�!.k/dk

1
Z

0

heik�xRt2‰; Ve.k/Rt2ˆmit2dt: (4.9)

Thus, we obtain the following result.

Corollary 4.3. For each k D .k; j / 2 R
3 � ¹1; 2º with .k1; k2/ ¤ .0; 0/, the

integral

J.k/ D 2
p
2

�

1
Z

0

Rt2e�ik�xVe.k/Rt2 t2dt (4.10)

defines a bounded operator on H with the operator norm

kJ.k/k � 1p
2
:
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Proof. This is a direct consequence of Lemma 4.2. �

Now we can state the main proposition in this section.

Proposition 4.4 (singular and non-local pull-through formula). Assume condi-

tions (A1)–(A4). For all m > 0 and a.e. k D .k; j / 2 R
3 � ¹1; 2º, it follows

that

a.k/ˆm D �!.k/.Hm �Em C !m.k//
�1J.k/ˆm: (4.11)

Proof. Combining (4.9) and Corollary 4.3, we have the identity

Z

f .k/h.Hm � Em/‰; a.k/ˆmidk C
Z

f .k/!m.k/h‰; a.k/ˆmidk

D
Z

f .k/�!.k/h‰; J.k/ˆmidk

for all f 2 C1
0 .R3 � ¹1; 2º/ and ‰ 2 Hfin. Thus

h.Hm �Em C !m.k//‰; a.k/ˆmi D �!.k/h‰; J.k/ˆmi (4.12)

holds for all ‰ 2 Hfin and k D .k; j / 2 .R3 �¹1; 2º/nN‰ with some null setsN‰.

Since Hfin is dense and we can take a countable dense subset D of Hfin, (4.12)

holds for ‰ 2 D for k 2 .R3 � ¹1; 2º/n
�
S

ˆ2DNˆ

�

:

.Hm � Em C !m.k//a.k/ˆm D �!.k/J.k/ˆm

for k 2 .R3 � ¹1; 2º/n
�
S

ˆ2DNˆ

�

. Therefore (4.11) follows. �

5. Photon number localization

Our goal in this section is to prove the following result.

Proposition 5.1. Assume (A1)–(A4). Let 0 < m < m0. Then, there exists a

constant C > 0 independent of m such that

ka.k/ˆmk2 � C
j O'.k/j2
!.k/

.1C jkj/2 (5.1)

for a.e. k D .k; j / 2 R
3 � ¹1; 2º.

We can show the uniform photon number localization of ˆm as a corollary of

Proposition 5.1:



Spectrum of the semi-relativistic Pauli–Fierz model II 1807

Corollary 5.2. Assume (A1)–(A4). Then

sup
0<m<m0

kN
1
2ˆmk < 1:

Proof. By Corollary 4.3, we have the bound

ka.k/ˆmk2 � j�!.k/j2k.Hm �Em C !m.k//
�1k2kJ.k/k2 � j O'.k/j2

2!.k/
3
2

: (5.2)

Combining (5.1) and (5.2), we get the bound

ka.k/ˆmk2 � j O'.k/j2
2!.k/

min¹2C.1C k2/; !.k/�
1
2 º: (5.3)

By (5.3), we get

kN
1
2ˆmk2 �

Z

R3

j O'.k/j2
2!.k/

min¹2C.1C k2/; !.k/�
1
2 ºdk < 1:

Take sup0<m<m0
on both sides above. Thus the corollary follows. �

Remark 5.3. The right-hand side of (5.2) has a singularity at k D 0, and then the

right-hand side of (5.2) is not integrable if O'.0/ ¤ 0. This type of singularity is

often referred to as an infrared divergence.

To derive (5.1) we use a method due to [13, p. 214] and [14, (7.7)]. We

decompose J.k/ into three terms:

J.k/ D 2
p
2

�
.L1.k/ hxi2 C L2.k/ hxi C L3.k//; (5.4)

where

L1 D L1.k/ D
1

Z

0

Rt2Ve.k/.e
�ik�x � 1/Rt2 hxi�2

t2dt;

L2 D L2.k/ D
1

Z

1

Rt2Ve.k/.e
�ik�x � 1/Rt2 hxi�1

t2dt;

L3 D L3.k/ D
1

Z

0

Rt2Ve.k/Rt2 t2dt:

Note that the velocity operator Ve.k/ commutes with e�ik�x.
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5.1. Estimate on L1. In order to prove that L1.k/ is bounded, we introduce an

operator Z by

Z D
1

Z

0

hxi�2
.t2 C p2/�1x2.t2 C p2/�1 hxi�2

t3dt: (5.5)

Lemma 5.4. The operator Z is non-negative, bounded and kZk � 6.

Proof. SinceZ is symmetric and non-negative, it is enough to show that jhu;Zuij �
Ckuk2; u 2 L2.R3/ for some C > 0. We use the commutation relation:

x�.t
2 C p2/�1 D .t2 C p2/�1x� C �2ip�

.t2 C p2/2
:

For u 2 L2.R3/, we have

jhu;Zuij D
3

X

�D1

1
Z

0

kx�.t
2 C p2/�1 hxi�2

uk2t3dt

D
3

X

�D1

1
Z

0

k.t2 C p2/�1x� hxi�2 uk2t3dt

C 4 Im

1
Z

0

hp � x hxi�2
u; .t2 C p2/�3 hxi�2

uit3dt

C
3

X

�D1

1
Z

0

k�2ip�.t
2 C p2/�2 hxi�2

uk2t3dt:

Note that

1
Z

0

t3

.t2 C p2/2
dt D 1

2

�

log
�

1C 1

p2

�

� 1

1C p2

�

<
1

2p2
;

1
Z

0

t3

.t2 C p2/3
dt D 1

4p2.1C p2/2
� 1

4p2
;

1
Z

0

t3

.t2 C p2/4
dt D 1

12jpj4.1C p2/2
C 1

6p2.1C p2/3
� 1

12jpj4 :
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Thus,

jhu;Zuij � 1

2

3
X

�D1

kjpj�1x� hxi�2
uk2 C

3
X

�D1

kx� hxi�2
uk










p�

p2
hxi�2

u









C 1

3
kjpj�1 hxi�2

uk2

� 1

2

3
X

�D1

kjpj�1x� hxi�2uk2 C khxi�1 ukkjpj�1hxi�2 uk

C 1

3
kjpj�1 hxi�2

uk2:

By Hardy’s inequality, we have

jhu;Zuij � 2kx2 hxi�2 uk2 C 2khxi�1 ukkjxj hxi�2 uk C 4

3
kjxj hxi�2 uk2

� 16

3
kuk2 � 6kuk2

for all u 2 L2.R3/. Then the proof is complete. �

Lemma 5.5. For every k 2 R
3 � ¹1; 2º, operator L1.k/ is bounded and

kL1.k/k � 2jkj: (5.6)

Proof. For any ‰;ˆ 2 H , we have

jh‰;L1.k/ˆij

�
1

Z

0

kVe.k/Rt2‰kkk � xRt2 hxi�2
ˆkt2dt

� jkj
1

Z

0

kT
1
2

A
Rt2‰kkjxj.p2 C t2/�1 hxi�2 jˆjkt2dt

� jkj
�

1
Z

0

kT
1
2

A
Rt2‰k2tdt

�
1
2
�

1
Z

0

kjxj.p2 C t2/�1 hxi�2 jˆjk2t3dt

�
1
2

:

Here we used Lemma 4.1 and the diamagnetic inequality (Lemma 3.4 (3)) for the

second inequality, and the Schwarz inequality for the third inequality. Since













1
Z

0

TA

.TA C t2/2
tdt













D









1

2.TA C 1/








 � 1

2
;
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we have

jh‰;L1.k/ˆij � 1p
2

jkjk‰khjˆj; Zjˆji 1
2 :

This estimate and Lemma 5.4 imply (5.6). �

5.2. Estimate on L2. We shall estimate L2.k/. Set

TA�k D .p C k � A.x//2; Rt2.k/ D .TA�k C t2/�1:

We have the identities

.e�ik�x � 1/Rt2 D Rt2.k/.e�ik�x � 1/C Rt2.TA � TA�k/Rt2.k/;

TA � TA�k D �2Vk � k2:

We then have

.e�ik�x � 1/Rt2 D Rt2.k/.e�ik�x � 1/ � 2Rt2VkRt2.k/ � k2Rt2Rt2.k/:

According to above identity, we decompose L2.k/ into three terms:

L2.k/ D L21.k/C L22.k/C L23.k/; (5.7)

where

L21.k/ D
1

Z

1

Rt2Ve.k/Rt2.k/.e�ik�x � 1/ hxi�1
t2dt;

L22.k/ D �2
1

Z

1

Rt2Ve.k/Rt2VkRt2.k/ hxi�1 t2dt;

L23.k/ D �k2

1
Z

1

Rt2Ve.k/Rt2Rt2.k/ hxi�1
t2dt:

In order to estimate L21, we show the next lemma.

Lemma 5.6. If ‰ 2 D.T
1
2

A�k
/ and ˆ 2 D.T

1
4

A�k
/, then

kVe.k/‰k � kT
1
2

A�k
‰k (5.8)

and

kjVe.k/j
1
2ˆk � kT

1
4

A�k
ˆk (5.9)

hold for k D .k; j / 2 R
3 � ¹1; 2º.
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Proof. Note that e.k/ ? k and Ve.k/ D e.k/ � .p C k � A.x// hold. Thus, the

proof is the same as that of Lemma 4.1. �

Lemma 5.7. For k D .k; j / 2 R
3 � ¹1; 2º, we have

kL21.k/k � jkj: (5.10)

Proof. Write Ve.k/ D sgn.Ve.k//jVe.k/j. By the Schwarz inequality, Lemmas 4.1,

and 5.6, we have

jh‰;L21.k/ˆij

�
1

Z

1

ksgn.Ve.k//jVe.k/j
1
2Rt2‰kkjVe.k/j

1
2Rt2.k/.e�ik�x � 1/ hxi�1

ˆkt2dt

�
�

1
Z

0

kT
1
4

A
Rt2‰k2t2dt

�
1
2
�

1
Z

0

kT
1
4

A�k
Rt2.k/.e�ik�x � 1/ hxi�1ˆk2t2dt

�
1
2

D
��

4
k‰k2

�
1
2
��

4
k.e�ik�x � 1/ hxi�1

ˆk2
�

1
2

;

where we used
1

Z

0

at2=.a2 C t2/2dt D �=4 for a > 0.

Since j.e�ik�x � 1/ hxi�1 j � jkj and �=4 < 1, (5.10) follows. �

Bounds for L22.k/ and L23.k/ are given in the following.

Lemma 5.8. For k D .k; j / 2 R
3 � ¹1; 2º,

kL22.k/k � 2jkj and kL23.k/k � k2:

Proof. We have

kL22.k/k � 2

1
Z

1

kt2Rt2kkVe.k/R
1
2

t2kkR
1
2

t2VkkkRt2.k/ hxi�1kdt:

By Lemma 5.6, kVe.k/R
1
2

t2k � 1 and kR
1
2

t2Vkk D kVkR
1
2

t2k � jkj. Thus,

kL22.k/k � 2

1
Z

1

jkj � t�2dt D 2jkj:
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Similarly,

kL23.k/k � k2

1
Z

1

kt2Rt2kkVe.k/Rt2kkRt2.k/ hxi�1kdt

� k2

1
Z

1

t�3dt � k2: �

5.3. Estimate on L3. We shall estimate L3.k/. A crucial property of L3.k/ is

the identity

L3.k/ D i�

4
ŒT

1
2

A
; e.k/ � x� D i�

4
ŒHm � Em; e.k/ � x�;

which will enable us to obtain an infrared regular bound for L3.k/. This is due to

[13, p. 214] and [14, (7.7)]. Given two operators A and B , we define the quadratic

form ŒA; B�w as

ŒA; B�w.u; v/ D hAu;Bvi � hBu;Avi; u; v 2 D.A/ \ D.B/:

We also write this as hu; ŒA; B�wvi.

Lemma 5.9. For ‰ 2 Hfin and ˆ 2 D.Hm/ \ D.jxj/,

h‰;L3.k/ˆi D i�

4
h‰; ŒHm � Em; e.k/ � x�wˆi:

In particular, e.k/ � xˆm 2 D.Hm/ and it holds that

L3.k/ˆm D i�

4
.Hm �Em/.e.k/ � x/ˆm:

Proof. By the definition of L3,

h‰;L3.k/ˆi D
1

Z

0

hRt2‰; Ve.k/Rt2ˆit2dt:

We note that, by Lemma 3.4, Rt2‰;Rt2ˆ 2 D.jxj/ for t > 0. Since TARt2 D
1l � t2Rt2 , we have

TARt2‰; TARt2ˆ 2 D.jxj/:
For any  2 Hfin, we have

Ve.k/ D i

2
ŒTA; e.k/ � x� :
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Thus, for ' 2 D..e.k/ � x/TA/, it follows that

h ; Ve.k/'i D i

2
.hTA ; e � x'i � h ; .e � x/TA'i/: (5.11)

Since Hfin is a core for TA, (5.11) can be extended for all  2 D.TA/ \ D.jxj/.
Hence,

hRt2‰; Ve.k/Rt2ˆi D i

2
.hTARt2‰; .e � x/Rt2ˆi � hRt2‰; .e � x/TARt2ˆi/

D i

2
.he � x‰;Rt2ˆi � hRt2‰; e � xˆi/

D i

2t2
.�he � x‰; TARt2ˆi C hTARt2‰; e � xˆi/:

By the formula (4.3),

h‰;L3.k/ˆi D i�

4
h‰; ŒT

1
2

A
; e � x�wˆi D i�

4
h‰; ŒHm �Em; e � x�wˆi: �

5.4. Proof of Proposition 5.1

Proof of Proposition 5.1: By the singular and non-local pull-through formula

(4.11) and the decomposition (5.4), we have

ka.k/ˆmk � j�!.k/j
2
p
2

�

�

!m.k/
�1kL1.k/kkhxi2

ˆmk

C !m.k/
�1kL2.k/kkhxiˆmk

C k.Hm �Em C !m.k//
�1L3.k/ˆmk

�

;

where we used the inequality

k.Hm �Em C !m.k//
�1k � !m.k/

�1:

By Lemmas 5.5, 5.7, 5.8 and (5.7), we have

kL1.k/k � 2jkj and kL2.k/k � jkj C 2jkj C k2 (5.12)

Moreover, by Lemma 5.9, we have

k.Hm �Em C !m.k//
�1L3.k/ˆmk

� �

4
k.Hm �Em C !m.k//

�1.Hm �Em/.e.k/ � x/ˆmk

� �

4
kjxjˆmk:

(5.13)
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By assumption (A4), the bounds

sup
0<m<m0

kjxjˆmk < 1; sup
0<m<m0

khxi2ˆmk < 1 (5.14)

hold. Therefore, by (5.12)–(5.14), we have

ka.k/ˆmk � C j�!.k/j
� jkj C k2

!m.k/
C 1

�

� C
j O'.k/j
!.k/

1
2

.2C jkj/; 0 < m < m0;

for some C > 0. This immediately implies (5.1). The integrability of ka.k/ˆmk2

follows from the assumption (A2). �

6. Equicontinuity and spatial localization of photon

In this section we show that the photons of the massive ground state ˆm are

spatially localized uniformly in 0 < m < m0. Throughout this section, we assume

(A1)–(A4).

6.1. Continuity of J.k/. We shall show the continuity of k 7! J.k/ in this

section. We decompose J.k/ � J.k0/ as follows

J.k/ � J.k0/ D �J1 C�J2;

with

�J1 D
1

Z

0

Rt2.Ve.k/ � Ve.k0//e
�ik�xRt2 t2dt;

�J2 D
1

Z

0

Rt2Ve.k0/.e
�ik�x � e�ik0�x/Rt2 t2dt:

Lemma 6.1. Let k D .k; j / and k0 D .k0; j /. For anyˆ 2 D.jxj 1
2 / it follows that

k�J1ˆk � je.k/ � e.k0/j.kˆk C jkj 1
2 kjxj 1

2ˆk/: (6.1)

Proof. Set e D e.k/ and e0 D e.k0/. Since

Ve � Ve0 D .e � e0/ � .p � A.x// D Ve�e0 D sgn.Ve�e0/jVe�e0 j;
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for any ‰ 2 H , we have

jh‰;�J1ˆij �
1

Z

0

kjVe�e0 j 1
2Rt2‰kkjVe�e0 j 1

2 e�ik�xRt2ˆkt2dt

� je � e0j
1

Z

0

kT
1
4

A
Rt2‰kkT

1
4

A
e�ik�xRt2ˆkt2dt;

(6.2)

where we used Lemma 4.1. We note that

kT
1
4

A
e�ik�xRt2ˆk2 D kT

1
4

ACk
Rt2ˆk2

D hRt2ˆ; jp � A.x/� kjRt2ˆi
� hRt2ˆ; jp � A.x/jRt2ˆi C jkjhRt2ˆ;Rt2ˆi

D kT
1
4

A
Rt2ˆk2 C jkjkRt2ˆk2:

Thus, (6.2) is bounded by

je � e0j
�

1
Z

0

kT
1
4

A
Rt2‰k2t2dt

�
1
2
�

1
Z

0

�

kT
1
4

A
Rt2ˆk2 C jkjkRt2ˆk2

�

t2dt

!
1
2

D je � e0j
��

4
k‰k2

�
1
2
��

4
kˆk2 C �

4
jkjkT � 1

4

A
ˆk2

�
1
2

:

From the diamagnetic inequality and Hardy–Kato’s inequality we have

kT � 1
4

A
ˆk2 � kjpj� 1

2ˆk2 � �

2
kjxj 1

2ˆk2: (6.3)

Therefore, we have the bound

k�J1ˆk D sup
k‰kD1

jh‰;�J1ˆij � �

4
je � e0j

�

kˆk2 C �

2
jkjkjxj 1

2ˆk2
�

1
2

� je � e0j.kˆk C jkj 1
2 kjxj 1

2ˆk/;

which implies (6.1). �

We decompose�J2 into two terms:

�J2 D �J21 C�J22;
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with

�J21 D
1

Z

0

Rt2Ve.k0/.e
�ik�x � e�ik0�x/Rt2 t2dt;

�J22 D
1

Z

1

Rt2Ve.k0/.e
�ik�x � e�ik0�x/Rt2 t2dt:

Lemma 6.2. For any ˆ 2 D.x2/,

k�J21ˆk � 2jk � k0jkhxi2
ˆk:

Proof. The proof is similar to that of Lemma 5.5. �

Lemma 6.3. Let k D .k; j / and k0 D .k0; j /. For any ˆ 2 D.jxj 1
2 / it holds that

k�J22ˆk � 2jk � k0j.1C jk0j/kˆk C jk02 � k2jkˆk C jk � k0jkjxjˆk: (6.4)

Proof. Recall that

Rt2.k/ D e�ik�xRt2eik�x D ..p � A.x/C k/2 C t2/�1:

Then,

.e�ik�x � e�ik0�x/Rt2

D .Rt2.k/ �Rt2.k0//e�ik�x CRt2.k0/.e�ik�x � e�ik0�x/

D Rt2.k0/.TA�k0 � TA�k/Rt2.k/e�ik�x CRt2.k0/.e�ik�x � e�ik0�x/

D 2Rt2.k0/Vk0�kRt2.k/e�ik�x C .k02 � k2/Rt2.k0/Rt2.k/e�ik�x

CRt2.k0/.e�ik�x � e�ik0�x/:

According to this decomposition,�J22 can be furthermore decomposed into three

terms:

�J22 D �J221 C�J222 C�J223 (6.5)

with

�J221 D
1

Z

1

Rt2Ve.k0/2Rt2.k0/Vk0�kRt2.k/e�ik�xt2dt;

�J222 D
1

Z

1

Rt2Ve.k0/.k
02 � k2/Rt2.k0/Rt2.k/e�ik�xt2dt;
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�J223 D
1

Z

1

Rt2Ve.k0/Rt2.k0/.e�ik�x � e�ik0�x/t2dt:

We can estimate �J221 as

k�J221ˆk

� 2

1
Z

1

kt2Rt2kkVe.k0/Rt2.k0/
1
2 kkRt2.k0/

1
2Vk0�kkkRt2.k/e�ik�xˆkdt

� 2

1
Z

1

jk0 � kj.1C jk0j/t�2kˆkdt D 2jk0 � kj.1C jk0j/kˆk;

(6.6)

where we used bounds below:

kt2Rt2k � 1;

kRt2.k/e�ik�xˆk � t�2kˆk;

kVe.k0/Rt2.k0/
1
2 k D kVe.k0/e

�ik0�xR
1
2

t2e
ik�xk D kVe.k0/R

1
2

t2k � 1;

kRt2.k0/
1
2Vk0�kk D kVk0�kRt2.k0/

1
2 k

D k.k0 � k/ � .p � A.x//e�ik0�xR
1
2

t2e
ik0�xk

D k.k0 � k/ � .p � A.x/� k0/R
1
2

t2k

� jk0 � kj
�

kjp � A.x/jR
1
2

t2k C jk0j
�

� jk0 � kj.1C jk0j/:

Next, we estimate �J222 as

k�J222ˆk � jk02 � k2j
1

Z

1

kt2Rt2kkVe.k0/Rt2.k0/kkRt2.k/kkˆkdt

� jk02 � k2jkˆk:

(6.7)

Finally, we estimate �J223. We see that

k�J223ˆk D sup
k‰kD1

jh‰;�J223ˆij

� sup
k‰kD1

1
Z

1

kjVe0 j 1
2Rt2‰kkjVe0 j 1

2Rt2.k0/.e�ik�x � e�ik0�x/ˆkt2dt



1818 T. Hidaka, F. Hiroshima, and I. Sasaki

� sup
k‰kD1

1
Z

1

kT
1
4

A
Rt2‰kkjVe0 j 1

2Rt2.e�i.k�k0/�x � 1/ˆkt2dt

� sup
k‰kD1

1
Z

1

kT
1
4

A
Rt2‰kkT

1
4

A
Rt2.e�i.k�k0/�x � 1/ˆkt2dt

� sup
k‰kD1

�

1
Z

0

kT
1
4

A
Rt2‰k2t2dt

�
1
2

�
�

1
Z

0

kT
1
4

A
Rt2.e�i.k�k0/�x � 1/ˆk2t2dt

�
1
2

D �

4
k.e�i.k�k0/�x � 1/ˆk � jk � k0jkjxjˆk: (6.8)

Combining estimates (6.6), (6.7), and (6.8), we get (6.1). �

Lemma 6.4. For almost every k; k0 2 R
3 � ¹1; 2º, it follows that

sup
0<m<m0

k.J.k/ � J.k0//ˆmk � je.k/ � e.k0/j.1C jkj 1
2D/C 2Djk � k0j

C 2jk � k0j.1C jk0j/C jk02 � k2j C jk � k0jD;

where D is a constant defined by D D sup0<m<m0
khxi2

ˆmk.

Proof. This is a consequence of Lemmas 6.1, 6.2 and 6.3. �

6.2. Equicontinuity of ¹a.k/ˆmº. In this section we show that ¹a.k/ˆmº0<m<m0

is equicontinuous. In order to investigate a more general setting on equicontinu-

ity we introduce domain D�. For any 0 < � � 1, we define a measurable set

D� � R
3 so that, for any � 2 L2.R3/,

lim
�!C0

Z

D�

j�.k/j2dk D 0:

Example 6.5. An example of D� is given by

D� D ¹k 2 R
3 j k2

1 C k2
2 � �º [ ¹k 2 R

3 j jkj � 1=�º (6.9)

For simplicity, the set ¹k D .k; j / j k 2 D�; j D 1; 2º is also denoted by D�.
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Theorem 6.6 (equicontinuity). Assume (A1)–(A4). Then,

sup
0<m<m0

Z

Dc
�

ka.k/ˆm � a.k � s/ˆmk2dk �! 0 .jsj ! 0/; (6.10)

where D� is given by (6.9).

Proof. We fix � > 0 arbitrarily. Note that D� satisfies

(d1) D� � D�0 for � < �0,

(d2) dist.Dc
�; D �

2
/ � �

2
.

By the definition, e.k; j /; j D 1; 2 are uniformly continuous in Dc
� . For k D

.k; j / 2 Dc
� , we set k0 D .k � s; j /. By (d2), jsj < �

2
implies k0 2 Dc

�
2

, and hence

!.k/; !.k0/ � �
2
. We decompose a.k/ˆm � a.k0/ˆm into three terms:

a.k/ˆm � a.k0/ˆm D A1 C A2 C A3;

where

A1 D �!.k/.Hm �Em C !m.k//
�1.J.k/ � J.k0//ˆm;

A2 D �!.k/
®

.Hm �Em C !m.k//
�1 � .Hm �Em C !m.k

0//�1
¯

J.k0/ˆm;

A3 D .�!.k/ � �!.k
0//.Hm �Em C !m.k

0//�1J.k0/ˆm:

By Lemma 6.4, we can estimate the norm of A1 as follows:

kA1k � j�!.k/j!m.k/
�1k.J.k/ � J.k0//ˆmk

� j�!.k/j
2

�
k.J.k/ � J.k0//ˆmk

� C j�!.k/j
�

je.k; j /� e.k � s; j /j C jsj
�

;

where C is a constant independent of k; s and m. Thus,

lim
jsj!0

Z

Dc
�

kA1k2dk D 0: (6.11)

Next, we consider A2. By Corollary 4.3,

kA2k � j�!.k/j!m.k/
�1!m.k

0/�1j!m.k/ � !m.k
0/jkJ.k0/k

� j�!.k/j
4

�2
jk � k0j 1p

2

D 2
p
2

�2
j�!.k/jjsj:
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Thus,

lim
jsj!0

Z

Dc
�

kA2k2dk D 0: (6.12)

The norm of A3 can be similarly estimated as follows:

kA3k � j�!.k/ � �!.k � s/j
p
2

�
:

Since �! 2 L2.R3
k
/, the shift s 7! �!.� � s/ is strongly continuous, and hence

lim
jsj!0

Z

Dc
�

kA3k2dk D 0: (6.13)

Therefore, by (6.11), (6.12) and (6.13), we can show (6.10). �

6.3. Spatial localization of photon. Let B.K/ be the set of bounded operator

on K. For T 2 B.W / with kT k � 1, we define the second quantization of T ,

�.T / 2 B.F /, by

�.T / D
1

M

nD0

.˚nT /:

We set ˚0T D 1l. Let j 2 C1
0 .Œ0;1// be a function such that 0 � j.s/ � 1 and

j.s/ D
´

1 if 0 � s � 1;

0 if s � 2:

For R > 0, we set

�.y/ D j.jyj/ and �R D �.irk=R/;

and

�R D �.�R/ D 1lW ˝�.�R/:

In this section we shall prove the proposition below:

Proposition 6.7 (spatial localization of photon). Assume (A1)–(A4). Then it holds

that

lim
R!1

sup
0<m<m0

k.1l � �R/ˆmk D 0: (6.14)
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The proof of Proposition 6.7 is given after general lemmas stated below. For

f 2 L2.R3/, it holds that

�Rf D .2�/�
3
2

Z

R3

O�.s/f .� �R�1s/ds: (6.15)

Note that O� is a rapidly decreasing smooth function. We can extend this type

formula to the state in H .

Lemma 6.8. For ˆ 2 D.N
1
2 /, we have

kd�.�R/
1
2ˆk2 D .2�/�

3
2

Z

R3

ds

Z

O�.s/ha.k/ˆ; a.k �R�1s/ˆidk; (6.16)

where k �R�1s D .k �R�1s; j / with k D .k; j / 2 R
3 � ¹1; 2º, and the integral

(6.16) is absolutely convergent.

Proof. The particle part is irrelevant to this result, so, for simplicity, we only

consider the field part. For each n-particle part ˆ.n/, from (6.15), we have

.�R ˝ 1l˝n�1
s W /ˆ

.n/.k1; : : : ; kn/

D .2�/�
3
2

Z

R3

O�.s/ˆ.n/.k1 �R�1s; k2; : : : ; kn/ds;

which is a strong integral in ˝n
s W . Thus by the symmetry of the state and the

definition of a.k/, we have

.�
.n/
R ˆ.n//.k1; : : : ; kn/

D n.2�/�
3
2

Z

R3

O�.s/ˆ.n/.k1 �R�1s; k2; : : : ; kn/ds

D
p
n.2�/�

3
2

Z

R3

O�.s/.a.k1 � R�1s/ˆ/.n�1/.k2; : : : ; kn/ds:

Since ˆ.n/.k; �/ D n� 1
2 .a.k/ˆ/.n�1/.�/, we have

hˆ.n/; �
.n/
R ˆ.n/i

D .2�/�
3
2

Z

R3

ds

Z

O�.s/h.a.k/ˆ/.n�1/; .a.k � R�1s/ˆ/.n�1/i˝n�1
s W dk;
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for n D 1; 2; : : : , and

1
X

nD1

Z

R3

ds

Z

j O�.s/j
ˇ

ˇh.a.k/ˆ/.n�1/; .a.k �R�1s/ˆ/.n�1/i˝n�1
s W

ˇ

ˇdk < 1:

Thus, by Fubini’s lemma,

kd�.�R/
1
2ˆk2

D
1

X

nD1

hˆ.n/; �
.n/
R ˆ.n/i

D .2�/�
3
2

Z

R3

ds

Z

O�.s/
1

X

nD1

h.a.k/ˆ/.n�1/; .a.k �R�1s/ˆ/.n�1/i˝n�1
s W dk:

Thus (6.16) follows. �

Lemma 6.9. Let ¹‰mº0<m<m0
be normalized vectors in H so that

(c1) ¹‰mº0<m<m0
� D.N

1
2 / and sup

0<m<m0

kN
1
2‰mk < 1,

(c2) for s D .s; j / and k � s D .k � s; j /,

lim
jsj!0

sup
0<m<m0

Z

ka.k/‰m � a.k � s/‰mk2dk D 0:

Then ¹‰mº0<m<m0
satisfies

lim
R!1

sup
0<m<m0

kd�.1l � �R/
1
2‰mk D 0: (6.17)

Proof. By Lemma 6.8 and .2�/�
3
2

R

R3 O�.s/ds D �.0/ D 1, we have

kd�.1l � �R/
1
2‰mk2

D kN
1
2‰mk2 � kd�.�R/

1
2‰mk2

D .2�/�
3
2

Z

R3

ds

Z

O�.s/ha.k/‰m; a.k/‰m � a.k � R�1s/‰midk

� .2�/�
3
2 k O�k

1
2

L1kN
1
2‰mk

� Z

R3

dsj O�.s/j
Z

ka.k/‰m � a.k �R�1s/‰mk2dk

�
1
2

� .2�/�
3
2 k O�k

1
2

L1C

� Z

R3

j O�.s/jFm.R
�1s/ds

�
1
2

;
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where C D sup0<m<m0
kN

1
2‰mk and

Fm.R
�1s/ D

Z

ka.k/‰m � a.k � R�1s/‰mk2dk:

By condition (c1), we have Fm.R
�1s/ � 4C 2 for allm. By condition (c2), for any

" > 0, there exists M > 0 such that, for all R > M and jsj < R
1
2 , it holds that

sup0<m<m0
Fm.R

�1s/ < ". Thus,

sup
0<m<m0

Z

R3

j O�.s/jFm.R
�1s/ds �

Z

jsj<R
1
2

j O�.s/j"ds C
Z

jsj>R
1
2

j O�.s/j4C 2ds

� "k O�kL1 C 4C 2

Z

jsj>R
1
2

j O�.s/jds:

Therefore,

lim sup
R!1

�

sup
0<m<m0

Z

R3

j O�.s/jFm.R
�1s/ds

�

� "k O�kL1 :

Since " > 0 is arbitrary, the lemma follows. �

We extend Lemma 6.9.

Lemma 6.10. Let ¹‰mº0<m<m0
be normalized vectors in H so that

(a) there exists g 2 W such that

sup
0<m<m0

ka.k/‰mk � jg.k/j for a.e. kI

(b) for any 0 < � � 1,

lim
jsj!0

sup
0<m<m0

Z

Dc
�

ka.k/‰m � a.k � s/‰mk2dk D 0;

where k D .k; j /; k � s D .k � s; j /.

Then (6.17) holds.

Proof. From condition (a), the condition (c1) in Lemma 6.9 follows. We shall

show (c2) in Lemma 6.9. By condition (a), we have

sup
0<m<m0

Z

ka.k/‰m � a.k � s/‰mk2dk

� sup
0<m<m0

Z

Dc
�

ka.k/‰m � a.k � s/‰mk2dk C
Z

D�

jg.k/j2dk:
(6.18)
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By condition (b), the first term in (6.18) vanishes as s ! 0. Thus

0 � lim sup
jsj!0

sup
0<m<m0

Z

ka.k/‰m � a.k � s/‰mk2dk �
Z

D�

jg.k/j2dk

holds for all � > 0. By the definition of D�, the right-hand side of this inequality

converges to zero as � ! C0. Therefore, the condition (c2) in Lemma 6.9 is

satisfied, and (6.17) holds. �

We are in the position to prove Proposition 6.7.

Proof of Proposition 6.7: It is shown that

lim
R!1

sup
0<m<m0

kd�.1l � �R/
1
2ˆmk2 D 0

implies (6.14) by [6, equation (IV.13)]. Hence, it is sufficient to show that condi-

tions (a) and (b) in Lemma 6.10 are satisfied with ‰m replaced by ˆm. Proposi-

tion 5.1 yields that

sup
0<m<m0

ka.k/ˆmk � C
j O'.k/j
!.k/

1
2

.1C jkj/; a.e. k;

and the right-hand side above is square integrable in k by (A2). Thus condition (a)

holds. Condition (b) is shown in Theorem 6.6. �

7. Proof of the main theorem

We show two general lemmas below. For a self-adjoint operator A, we denote the

form domain of A by Q.A/, and . � ; A � / denotes the quadratic form associated

with A. If A is bounded from below, we set E0.A/ D inf �.A/. For self-

adjoint operators A;B , we denote A � B if and only if Q.A/ � Q.B/ and

.‰; A‰/ � .‰; B‰/ for all ‰ 2 Q.A/. We use the following fact.

Lemma 7.1. Let A;Aj ; j D 1; 2; : : :, be self-adjoint operators bounded from

below such that A1 � A2 � � � � � A. Assume that there exists a subspace

D � Q.A1/ such that D is a form core for A and limj !1.ˆ; Ajˆ/ D .ˆ; Aˆ/

for ˆ 2 D. Then limj !1E0.Aj / D E0.A/.



Spectrum of the semi-relativistic Pauli–Fierz model II 1825

Proof. By the variational principle, we have E0.A/ � E0.Aj / � .ˆ; Ajˆ/ for

any normalized ˆ 2 D. Since E0.Aj / is monotone decreasing in j , it has a limit

as j ! 1. Since D is a form core for A, we have

E0.A/ � lim
j !1

E0.Aj / � inf
ˆ2D;kˆkD1

.ˆ; Aˆ/ D E0.A/:

Therefore, E.Aj / ! E.A0/ as j ! 1. �

Lemma 7.2. Let A;Aj ; j D 1; 2; : : : , be self-adjoint operators bounded from

below such that A1 � A2 � � � � � A. Assume that limj !1E0.Aj / D E0.A/. Let

ĵ 2 Q.Aj /; j D 1; 2; : : : , be a normalized sequence such that

h ĵ ; Aj ĵ i � E0.Aj /C o.j 0/;

and ĵ weakly converges to some ˆ as j ! 1. Then ˆ 2 D.A/ and

Aˆ D E0.A/ˆ

holds. In particular, if ˆ ¤ 0, ˆ is a ground state of A.

Proof. Since ĵ 2 Q.Aj / � Q.A/, we have

0 � . ĵ ; .A �E0.A// ĵ /

� . ĵ ; .Aj �E0.A// ĵ /

� E0.Aj / �E0.A/C o.j 0/ �! 0 as j ! 1.

Thus, k.A �E0.A//
1
2 ĵ k ! 0 as j ! 1. For any ‰ 2 Q.A/,

h.A � E0.A//
1
2‰;ˆi D lim

j !1
h.A �E0.A//

1
2‰; ĵ i

D lim
j !1

h‰; .A � E0.A//
1
2 ĵ i D 0:

This implies that ˆ 2 Q.A/ and .A � E0.A//
1
2ˆ D 0, and therefore ˆ 2 D.A/

and .A �E0.A//ˆ D 0. �

We need a bound to show the main theorem.

Lemma 7.3. Assume (A1)–(A4) and V 2 Vconf [ Vrel. Then, for all m � 0,

kjpj‰k2 C kHf;m‰k2 � C.kHm‰k2 C k‰k2/; ‰ 2 D.Hm/ (7.1)

holds for some C independent of m � 0.
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Proof. In the case of V 2 Vconf , the lemma was proven by [11]. Since the proof

for the case of V 2 Vrel is similar, we briefly give an outline of the proof. By the

definition of Vrel, there exist constants 0 < a < 1 and 0 < b such that

kV ‰k � akjpj‰k C bk‰k; ‰ 2 D.Hm/: (7.2)

Set H 0 D jp � A.x/j CHf;m and take an arbitrary ‰ 2 Hfin. It is shown that for

an arbitrary � > 0,

kH 0‰k2 � .1� �/kjp � A.x/j‰k2 C .1� �/kHf;m‰k2 � C�k‰k2

� 1� �
1C �

.kjpj‰k2 C kHf;m‰k2/ � C 0
�k‰k2;

(7.3)

with some constants C� and C 0
� (see [11]). Thus, by (7.2), (7.3), and

kH 0‰k � kHm‰k C kV ‰k; (7.4)

we have (7.1) for all ‰ 2 Hfin. Since Hfin is a core for Hm, the lemma follows by

a limiting argument. �

Now we are in the position to prove the main theorem.

Proof of Theorem 2.9. The uniqueness of the ground state is shown in [16, Corol-

lary 6.2]. We shall show the existence of the ground state. We can choose a sub-

sequence ¹ˆmj
ºj such thatmj # 0 as j ! 1 andˆmj

weakly converges to some

vector ˆ0 2 H . Applying Lemmas 7.1 and 7.2 under the identifications

A D H; Aj D Hmj
; ĵ D ˆmj

; D D Hfin; ˆ D ˆ0;

we can see that ˆ0 2 D.H/ and

Hˆ0 D E0ˆ0; E0 D inf �.H/: (7.5)

Now we shall show that ˆmj
strongly converges to ˆ0. We first claim that the

following bounds hold:

sup
j 2N

kjxjˆmj
k < 1; (7.6)

sup
j 2N

kjpjˆmj
k < 1; (7.7)

sup
j 2N

kHfˆmj
k < 1; (7.8)

sup
j 2N

kN
1
2ˆmj

k < 1; (7.9)

lim
R!1

sup
j 2N

k.1l � �R/ˆmj
k D 0: (7.10)
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By assumption (A4), bound (7.6) holds. By Lemma 7.3 and kHf‰k � kHf;m‰k,

we have both bounds (7.7) and (7.8). Bound (7.9) is shown by Corollary 5.2

and (7.10) by Proposition 6.7. From (7.6)–(7.10), we have

sup
j 2N

k.1� �`/ˆmj
k D o.R0/; ` D 1; : : : ; 5

as R ! 1, where

�1 D j.jxj=R/; �2 D j.jpj=R/;
�3 D j.N=R/; �4 D j.Hf=R/;

�5 D �R:

Here j.�/ is the smooth function defined by (1.3). This fact implies that

sup
j 2N

k.1 � �1�2�3�4�5/ˆmj
k

� sup
j 2N

�

k.1 � �1/ˆmj
k C k�1.1 � �2/ˆmj

k C k�1�2.1 � �3/ˆmj
k

C k�1�2�3.1 � �4/ˆmj
k C k�1�2�3�4.1� �5/ˆmj

k
�

� sup
j 2N

5
X

`D1

k.1� �`/ˆmj
k

� o.R0/:

(7.11)

Since �1�2�3�4�5 is compact in H for all R > 0, �1�2�3�4�5ˆmj
strongly

converges to �1�2�3�4�5ˆ0 as j ! 1. Thus, by (7.11), we have

kˆ0k D lim
R!1

k�1�2�3�4�5ˆ0k

D lim
R!1

lim
j !1

k�1�2�3�4�5ˆmj
k

� lim sup
R!1

lim sup
j !1

.1� k.1� �1�2�3�4�5/ˆmj
k/

� lim sup
R!1

.1� o.R0// D 1:

We conclude that ˆmj
strongly converges to ˆ0. In particular, ˆ0 ¤ 0. By (7.5),

ˆ0 is a normalized ground state of H . Then the proof is complete. �

We give an example of the existence of the ground state.

Example 7.4. Suppose (A1) and (A2), and V 2 Vconf . Then Hm has the ground

state for each m > 0 by [12]. In this case, (A3) and (A4) are satisfied. Then H

also has the ground state.
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