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Abstract. We consider a non-linear Hartree energy for bosonic particles in a symmetric
double-well potential. In the limit where the wells are far apart and the potential barrier is
high, we prove that the ground state and first excited state are given to leading order by an
even, respectively odd, superposition of ground states in single wells. The corresponding
energies are separated by a small tunneling term that we evaluate precisely.
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1. Introduction

Both as a non-linear analysis problem in its own right, and as a basic input to a
companion paper [20], we are interested in the low energy states of the bosonic
Hartree energy functional

EDWŒu� D
Z

Rd

jru.x/j2 dx C
Z

Rd

VDW.x/ju.x/j2 dx

C �

2

“

Rd �Rd

ju.x/j2w.x � y/ju.y/j2 dx dy;
(1.1)

with �;w > 0 a coupling constant and a repulsive pair interaction potential. The
crucial feature we tackle is that we take VDW to be a double-well potential defined
as (` and r stand for left and right)

VDW.x/ D min ¹V`.x/; Vr.x/º ; (1.2)

where for some s > 2

V`.x/ D jx C xjs and Vr .x/ D jx � xjs: (1.3)

Here x 2 R
d is of the form

x D
�L

2
; 0; : : : ; 0

�

(1.4)

for a large1 parameter L ! C1. Hence, VDW models a potential landscape with
two wells, both the distance and the energy barrier between them being large, and
becoming infinitely so in the limit.

In [23, 20] we are primarily concerned with the mean-field limit of the many-
boson problem in such a double-well potential. As input to the second paper [20]
we use crucially several properties of the ground state problem

EDW D inf

²

EDWŒu�

ˇ

ˇ

ˇ

ˇ

u 2 H 1.Rd / \ L2.Rd ; VDW.x/ dx/;

Z

Rd

ju.x/j2 dx D 1

³

(1.5)
and of the associated low energy states. Namely, let uC be the (unique modulo a
constant phase, fixed so as to have uC > 0) minimizer for (1.5) and

hDW WD ��C VDW C �w � juCj2 (1.6)

1 Chosen depending on a particle number N in [20].
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the associated mean-field Hamiltonian (functional derivative of EDW at uC). One
easily shows that hDW has compact resolvent, and we study its eigenvalues and
eigenfunctions.

The Euler–Lagrange variational equation for uC reads

hDWuC D �CuC

with

�C D EDW C �

2

“

R
d �Rd

juC.x/j2w.x � y/juC.y/j2 dx dy: (1.7)

Since hDW has a positive ground state (unique up to phase, see Section XIII.12
of [22]), and uC is chosen positive, it follows that �C is the lowest eigenvalue of
hDW, with corresponding eigenfunction uC.

We denote �� the smallest eigenvalue above �C, u� an associated eigenfunc-
tion, and �ex the third eigenvalue. We aim at proving

� that EDW, �C and �� are given to leading order in terms of the ground state
problem in a single well (left or right).

� asymptotics for the first spectral gap:

�� � �C ����!
L!1

0 (1.8)

with a precise rate (both as an upper and lower bound);

� asymptotics for the associated eigenfunctions: that they both converge to
superpositions of eigenfunctions of the single wells and that

jjjuCj � ju�jjj ����!
L!1

0 (1.9)

in suitable norms, and with a precise optimal rate;

� a L-independent lower bound to the second spectral gap:

�ex � �� > C independently of L: (1.10)

The spectral theory of Hamiltonians with multiple wells has a long and rich
history, selected references most relevant to the following being [19, 9, 5, 3, 13,
14, 16, 17, 24]. See also [10, 15] for reviews. Corresponding non-linear results
are also available [6, 7, 8], and more recently [4], but we have not found proofs of
the aforementioned bounds for the setting just described (dictated by the model of
interest in [23, 20]).
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Typically, and in particular regarding results with the level of precision we aim
at, the analysis in the aforementioned references is performed in a semi-classical
regime, namely one studies the spectral properties of

� „2�C V (1.11)

as „ ! 0, with V a fixed multi-well potential. Say the above, symmetric, VDW

but with L fixed. One obtains that at leading order the eigenvalues are grouped
in pairs around the eigenvalues corresponding to a single well (with appropriate
modifications for more than two wells, asymmetric wells, or degenerate one-well
eigenvalues). This corresponds to eigenfunctions being strongly suppressed in
the classically forbidden region far from the wells. The (small) splitting between
pairs of eigenvalues can be estimated with some precision, and corresponds to
the tunnel effect, due to quantum eigenfunctions being small but non-zero in
the classically forbidden region. That is, quantum mechanically, there is a flux
of particles through potential barriers, that is manifested in a lifting of classical
energy degeneracies.

In fact, if uj;C and uj;� are the eigenfunctions corresponding respectively to
the smallest and largest eigenvalue in the j-th pair, one has

uj;C ' uj;` C uj;rp
2

(1.12)

and

uj;� ' uj;` � uj;rp
2

; (1.13)

with uj;` and uj;r the j-th eigenfunction of (respectively) the left and right well.
The results on eigenvalues are a reflection of this fact.

Our main results (1.8)–(1.10) (stated more precisely below) are adaptations of
the above well-known findings to the case at hand, namely „ fixed andL ! 1. For
the applications in [20] we need the optimal rates in (1.8) and (1.9), i.e. to exactly
identify the order of magnitude of the tunneling term. To a large extent, the sequel
is an adaptation of known techniques, but we face two main new difficulties:

� the fact that we start from the non-linear Hartree problem;

� the lack of semi-classical WKB expansions for single-well eigenfunctions,
that are essentially fixed in our setting.

The second point is particularly relevant to the derivation of the optimal rates
in (1.8) and (1.9).
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2. Main results

We carry on with the previous notation, and also denote

V.x/ D jxjs ; (2.1)

with s > 2, our single-well potential, appropriately translated in (1.3), recalling
that

x D .L=2; 0; : : : ; 0/ 2 R
d :

As regards interactions, we consider them repulsive, i.e. assume � > 0 and let
w 2 L1.Rd /with compact support such that ( Ow stands for the Fourier transform)

w > 0; Ow > 0: (2.2)

Regularity assumptions could be relaxed to some extent, but we do not pursue
this.

We consider the Hartree functional in the double-well (1.1) The existence
of a minimizer for (1.5) follows from standard techniques [18, Theorem 11.8],
combined with the fact that VDW prevents mass losses at infinity. The uniqueness
of the minimizer uC up to a constant phase factor follows from the assumption
Ow > 0. Let uC be the unique minimizer. Being unique, it is even under reflections
across the x1 D 0 hyperplane. We also know that uC is the unique ground state
of the mean-field double-well Hamiltonian (1.6), i.e.

hDWuC D �CuC:

Due to the growth of VDW, the Hamiltonian hDW has compact resolvent. We
call u� and uex the eigenvectors whose corresponding energies �� and �ex are,
respectively, the first and second eigenvalue of hDW above �C. In other words

hDW D �CjuCihuCj C ��ju�ihu�j C �exjuexihuexj C
X

n>4

�njunihunj; (2.3)

where
�C < �� 6 �ex 6 �n; for all n;
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and
¹uC; u�; uex; u4; u5; : : : º form an o.n. basis:

Since juCj2 is symmetric under reflections across the x1 D 0 hyperplane, the
Hamiltonian hDW commutes with those. We can thus choose each eigenvector
uC; u�; uex; un, n > 4 to be either symmetric or anti-symmetric with respect to
such a reflection. In particular, uC being positive, it must be symmetric.

We will also consider Hartree functionals with external potential V` or Vr , that
is,

E`Œu� D
Z

R
d

jru.x/j2 dx C
Z

R
d

V`.x/ju.x/j2 dx

C �

2

“

Rd �Rd

w.x � y/ju.x/j2ju.y/j2 dx dy;
(2.4a)

Er Œu� D
Z

Rd

jru.x/j2 dx C
Z

Rd

Vr.x/ju.x/j2 dx

C �

2

“

R
d �Rd

w.x � y/ju.x/j2ju.y/j2 dx dy:
(2.4b)

We will use combinations of the minimizers of E` and Er to approximate the
function uC. To this end, we define minimal energies at mass 1=2

E` D inf

²

E`Œu�

ˇ

ˇ

ˇ

ˇ

u 2 H 1.Rd / \ L2.Rd ; V`.x/ dx/;

Z

Rd

ju.x/j2 dx D 1

2

³

;

(2.5a)

Er D inf

²

ErŒu�

ˇ

ˇ

ˇ

ˇ

u 2 H 1.Rd / \ L2.Rd ; Vr.x/ dx/;

Z

R
d

ju.x/j2 dx D 1

2

³

:

(2.5b)

As for the full double-well problem, our assumptions on V and w are sufficient
to deduce the existence and uniqueness of a minimizer using standard methods in
the calculus of variations. Since the functionals E` and Er coincide up to a space
translation of the external potential,

E` D Er D E`Œu`� D Er Œur �;

where u` and ur are, respectively, the unique positive ground states of

h` D ��C V` C �w � ju`j2; hr D ��C Vr C �w � jur j2 (2.6)
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with ground state energies �` D �r . Again, since the functionals coincide up to
a translation, the minimizers coincide up to a translation, i.e.,

u`.x/ D ur.x � 2x/ D u0.x � x/;

where u0 is the minimizer obtained by setting x D 0 in (2.4). We are adopting
here the normalization kurk2

L2 D ku`k2
L2 D 1=2, which implies

hu`; h`u`i D �`

2
; hur ; hrur i D �r

2
:

Next, we define the main small parameter (in the limit L ! 1) entering our
analysis. Associated to (2.1) is a semi-classical Agmon distance [2, 10, 15]

A.x/ D
jxj
Z

0

p

V.r 0/ dr 0 D 1

1C s=2
jxj1Cs=2: (2.7)

The above governs the decay at infinity of eigenfunctions of the single-well Hamil-
tonians (2.6). Accordingly, it sets the L-dependence of the tunneling term (split-
ting between eigenvalue pairs)

T WD e�2A. L
2

/ ����!
L!1

0: (2.8)

This is the energetic contribution of classically forbidden regions: e�A.L
2 / is the

order of magnitude of double-well wave-functions close to the potential barrier at
x1 D 0 (i.e. at distances L=2 from the potential wells). It has to be squared for
the tunneling term is essentially an overlap of two such wave functions. We will
express all our estimates in terms of the above parameter.

Similarly, one can associate a distance to the double-well potential (1.2)

ADW.x/ D
´

A.x � x/ if x1 > 0;

A.x C x/ if x1 6 0:
(2.9)

The value ADW.x/ represents the Agmon distance A between the point x and the
closest of the two bottoms of the wells, namely, either x or �x. In Section 5, we
will need to introduce a further refinement of ADW, namely the distance within
the potential landscape VDW between any two points.

We shall prove the following result, for space dimensions 1 6 d 6 3 (the upper
restriction only enters through the Sobolev embedding, and we certainly believe
it could be relaxed).
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Theorem 2.1 (Hartree problem in a double-well). Assume 1 6 d 6 3. We take
" > 0 to stand for an arbitrarily small number, fixed in the limit L ! 1. Generic
constants c"; C" > 0 only depend on this number. The following statements hold
true.

(i) Bounds on the first spectral gap:

c"T
1C"

6 �� � �C 6 C"T
1�": (2.10)

(ii) Bounds on the second spectral gap:

�ex � �� > C: (2.11)

independently of L.

(iii) Convergence of lower eigenvectors:

kjuCj2 � ju�j2kL1 6 C"T
1�"; (2.12)

kjuCj � ju�jkL2 6 C"T
1=2�"; (2.13)

kjuCj � ju�jkL1 6 C"T
1=2�": (2.14)

A few comments. (1) As mentioned above, corresponding results for the semi-
classical setting have a long history [10, 15]. Obtaining the (almost) sharp lower
bound in (2.10) in this case usually relies on WKB expansions, unavailable in the
present context. We however need this sharp bound in [20] and have to come up
with an alternative method.

(2) The relevance of the definition (2.8) is vindicated by (2.10). With extra
effort one should be able to show that T gives the order of magnitude of the first
spectral gap up to at most logarithmic corrections.

(3) Item (iii) is also crucial in [20], in particular (2.12). It reflects the ex-
pectation (1.12)–(1.13), i.e. that uC and u� mostly differ by a sign change in a
half-space. This will be put on a rigorous basis later, following [16, 17]. With
a suitable choice of uj`; uj;r we indeed vindicate (1.12)–(1.13), with remainders
O.T 1C"/. Then (2.12) follows, using also decay estimates for the product uj;`uj;r .
The less sharp estimates (2.13)–(2.14) are mostly stated for illustration (and will
serve as steps in the proof ).

(4) The results in Theorem 2.1 do not depend, in their essence, on the particular
form w � juj2 of the non-linearity. A possible generalization, modulo a number
of adaptations in the proof, would include a cubic local (Gross–Pitaevskii) non-
linearity corresponding to w.x/ D ı.x/.
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The following statement on higher eigenvalues/eigenfunctions follows from
variants of the arguments establishing Theorem 2.1, as we quickly explain in Ap-
pendix B. We denote by�`

j ; j D 1; : : : ;1; the eigenvalues of the left Hamiltonian
h` (identical to those of hr ), m.j / their multiplicities and

M.k/ D
k

X

j D1

m.j /;

with the convention that M.0/ D 0.

Theorem 2.2 (higher spectrum). Assume 1 6 d 6 3. Let k > 1 and

�2M.k�1/C1; : : : ; �2M.k/

the ordered eigenvalues of hDW in a corresponding spectral window (counted with
multiplicities). The following statements hold true.

(i) Bounds on small spectral gaps: for all 2M.k � 1/C 1 6 j 6 2M.k/,

j�j � �`
k j ����!

L!1
0: (2.15)

(ii) Bounds on large spectral gaps: for all 2M.k � 1/C 1 6 j 6 2M.k/,

�2M.k/C1 � �j > Ck : (2.16)

for some constant Ck > 0 independent of L.

(iii) Convergence of higher eigenvectors: one can pick an eigenbasis

uC
1 ; u

�
1 ; : : : ; uC

m.k/
; u�

m.k/

of 1�2M.k�1/C16hDW6�2M.k/
hDW such that for all 1 6 m 6 m.k/,













u˙
m � u`

m ˙ ur
mp

2













L2

����!
L!1

0; (2.17)

where u`
1; : : : ; u

`
m.k/

form an orthonormal basis of 1h`D�`
k
h` and where

ur
1; : : : ; u

r
m.k/

are their reflections. Moreover,

kjuC
mj2 � ju�

mj2kL1 ����!
L!1

0; (2.18a)

kjuC
mj � ju�

mjkL2 ����!
L!1

0; (2.18b)

kjuC
mj � ju�

mkL1 ����!
L!1

0; (2.18c)

and
Z

x160

juC
m C u�

mj2 dx �! 0;

Z

x1>0

juC
m � u�

mj2 dx ����!
L!1

0: (2.19)
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We do not state convergence rates here, but believe the same rates as in
Theorem 2.1 can be achieved, for k fixed in the limit L ! 1 (or, better said, for
convergence rates whose k-dependence is left unspecified). We do not pursue the
details, nor the dependence on k, for we do not need this in our applications [20].
Certainly, if the eigenvalues are taken high enough in the spectrum (k ! 1 fast
enough as L ! 1) the two-mode approximation (1.12)–(1.13), on which the
result relies, breaks down.

The rest of the paper contains the proof of Theorem 2.1, organized as follows:

� Section 3: optimal bounds on the decay of eigenfunctions far from the
potential wells, and first consequences thereof;

� Section 4: proof of items (i) and (ii) in Theorem 2.1. The hardest part is the
lower bound on the first gap in item (i);

� Section 5: adaptation of techniques of Helffer–Sjöstrand [17] to deduce item
(iii) from the previous bounds;

� Appendix A: a collection of straightforward consequences of the decay esti-
mates of Section 3.

Finally, in Appendix B, we briefly sketch the additional ingredients needed for
the proof of Theorem 2.2.

3. Preliminary estimates

3.1. Regularity and uniformity results. We start by stating and proving in this
subsection a number of important properties of the eigenvectors and eigenvalues
of hMF, hr , and h`.

Lemma 3.1 (regularity). The functions uC; u�; uex; u`; ur , and un with n > 4,
belong to C1.Rd /.

Proof. We discuss the case of uC only. Define

W WD VDW C �w � juCj2 � �C:

Then uC then solves the elliptic equation with locally Lipschitz coefficients

��uC CWuC D 0: (3.1)

This means that we can apply [12, Theorem 8.8] and deduce that uC 2 H 2.K/

for every compact set K � R
d . In order to prove higher regularity we will use a

bootstrap argument.
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Recall that, for a sufficiently regular K,

kfgkH s.K/ 6 Ckf kH s1.K/ kgkH s2.K/

for s < s1 C s2 � d=2. The validity of the above formula if K is replaced by R
d

is well known, and to deduce it for compact domains one uses Stein’s extension
Theorem [1, Theorem 5.24]. Now, since uC 2 H 2.K/ and W 2 H 1.K/, the
above inequality proves in particular thatWuC 2 H 1.K/. Due to (3.1), this means
�uC 2 H 1.K/, and therefore uC 2 H 3.K/. We can now iterate the procedure,
because uC 2 H 3.K/ and W 2 H 1.K/ imply Wu 2 H 2.K/. In this way we
deduce that uC 2 H s.K/ for any s > 0. This implies that uC is C1 in any
sufficiently regular compact set, which means it is C1 on the whole of Rd . The
same argument can be repeated for all the other functions. �

Lemma 3.2 (uniform bound for the eigenvalues). For each j , the j-th eigenvalue
�j of 2 hMF satisfies

0 < �j 6 Cj ; (3.2)

for a constant Cj that does not depend on L.

Proof. First we observe that, as operators,

hMF 6 hr C C;

where hr is the one-well Hamiltonian from (2.6). Indeed, both w � juCj2 and
w � jur j2 are uniformly bounded by sup jwj, since juCj2 and jur j2 are L2-normal-
ized. Moreover, VDW 6 Vr by definition. By the min-max principle, this means
that the j-th (ordered) eigenvalue of hMF is bounded by the j-th (ordered) eigen-
value of hr plus a constant. However, the spectrum of hr does not depend on L,
because hr coincides with the translation (by �x) of a fixed Hamiltonian. �

We will also need an analogous result on the uniformity of Sobolev norms of
the eigenvectors of hMF. To this end, we start with the following

Lemma 3.3 (estimate on h2
DW). We have the quadratic form bound

1

2
.��/2 6 h2

DW C C;

for a constant C that does not depend on L.

2 We are adopting the convention �1 D �C, �2 D ��, and �3 D �ex.
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Proof. Let W D VDW C �w � juCj2. For  2 DŒh2
DW� with k kL2 D 1, after

expanding the square and integrating by parts, we get

h ; h2
DW i D h ;�2 i C h ;W 2 i C hr ; .rW / i

C 2hr ;W r i C h ; .rW /r i
> h ;�2 i C h ;W 2 i C hr ; .rW / i C h ; .rW /r i;

where for a lower bound we usedW > 0. By the Cauchy–Schwarz inequality, we
have

hr ; .rW / i C h ; .rW /r i > �h ; .��/ i � h ; jrW j2 i;

and the further inequality �� 6
1
2
�2 C 2 yields

h ; h2
DW i >

1

2
h ;�2 i C h .W 2 � jrW j2 � 2/ i:

The lemma follows from the claim

W 2 � jrW j2 > �C

that we now prove. Let us consider the half-space ¹x1 > 0º. Here,

W 2.x/ D jx � xj2s C .�w � juCj2/2 C 2�jx � xjsw � juCj2

and

jrW.x/j2 D s2jx � xj2s�2 C j2�w � .uCruC/j2

C 4�sjx � xN js�1 x � x

jx � xj �w � .uCruC/:

Let us consider the difference W 2 � jrW j2. For W 2 we will use the estimate

W 2.x/ > jx � xj2s :

For the �2-term in jrW j2 we have, by Young’s and Hölder’s inequalities,

�.2�w � .uCruC//
2

> �4�2kwk2
L1 kuCk2

L2 kuCk2
H 1 > �C;

because kuCk2
H 1 6 �C 6 C by Lemma 3.2. For the �-term in jrW j2 we use

the Cauchy–Schwarz inequality followed by the Young inequality and the Hölder
inequality to get

�4�sjx � xN js�1 x � x

jx � xj �w � .uCruC/ > �ıjx � xj2s�2 � Cı :

The three last inequalities imply

W 2.x/ � jrW.x/j2 > jx � xj2s � .s2 C ı/jx � xj2s�2 � Cı � C > �C 0:

This concludes the proof. �
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Lemma 3.4 (uniform Sobolev regularity). For each j , the j-th (normalized) ei-
genvector of hMF satisfies

kuj kH 2.Rd / 6 Cj ; kuj kL1.Rd / 6 Cj ; (3.3)

for a constant Cj that does not depend on L.

Proof. By the Sobolev embedding

kf kL1.Rd / 6 Ckf kH 2.Rd /;

that holds for d D 1; 2; 3, the second inequality follows from the first one. To
prove the first one, we recognize that

kuj k2
H 2 D k ��uj k2

L2 C kuj k2
L2 6 huj ; h

2
MFuj i C C;

where the second inequality follows from Lemma 3.3. Since uj is an eigenvector
of hMF, we have

kuj k2
H 2 6 �2

j C C 6 Cj ;

thanks to Lemma 3.2. �

3.2. Decay estimates. Key ingredients for all our estimates are the following
estimates on the decay of the eigenvectors of hDW far from x and �x.

Proposition 3.5 (decay estimates for eigenmodes). Let " be an arbitrarily small
parameter and ADW be as in (2.9).

� Integral bound. Let uj be any eigenvector of hDW, corresponding to eigen-
value �j and with normalization kuj kL2 D 1. There exists C";j > 0 (de-
pending on " and j but not on L) such that

Z

Rd

jr.e.1�"/ADWuj /j2 dx C
Z

Rd

e2.1�"/ADW juj j2 dx 6 C";j : (3.4)

� Pointwise bound. Let uj be as above. For R > 0 large enough, there exists
C";j > 0 such that

juj .x/j 6 C";j e
�.1�"/ADW.x/ (3.5)

for every x such that jx � xj; jx C xj > R.
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� Pointwise bound for one-well modes. For R > 0 large enough, there exists
C" such that

ur .x/ 6 C"e
�.1�"/A.x�x/ (3.6)

for jx � xj > R, and

u`.x/ 6 C"e
�.1�"/A.xCx/ (3.7)

for jx C xj > R.

We start the proof with the following Lemma.

Lemma 3.6 (integral decay bounds). Letˆ be locally Lipschitz and let its gradient
be defined as the L1 limit of a mollified sequence rˆ". Moreover, let u be an
eigenvector of hDW, corresponding to the eigenvalue � and with normalization
kukL2 D 1. Define the total potential W WD VDW C �w � juCj2 � � and assume
that W > jrˆj2 outside of a compact set. Then

Z

Rd

jr.eˆu/j2 dx C
Z

Rd

.W � jrˆj2/e2ˆjuj2 dx 6 0: (3.8)

This is very much in the spirit of [2, Theorem 1.5], [17, Lemma 2.3] or [15,
Theorem 3.1.1].

Proof. To avoid a number of boundary terms that would arise after integration by
parts, let us introduce the sequence of smooth localization functions

�j .x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

1 if jxj 6 j;

0 if jxj > 2j;

e
1

1�jxj=j

e
1

1�jxj=j C e
j

jxj

if j 6 jxj 6 2j:

Since �j is obtained by dilating a fixed function by a factor j , we have

kr�j kL1.Rd / 6
C

j
; k��j kL1.Rd / 6

C

j 2
:

The localization function �j will tend to one pointwise as j ! 1, thus yielding
integrals on the wholeRd , while the terms depending on its derivatives will vanish
thanks to the above bounds. We further define, for k 2 N,

ˆk.x/ WD min¹ˆ.x/; kº:

This is a uniformly Lipschitz version of ˆk , which tends to ˆ as k ! 1.
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By definition the function u satisfies

.��CW /u D 0:

Recall that we fixed all phases so as to have only real-valued eigenvectors of hDW,
so u is real-valued. We multiply the above equation by �j e2ˆku, and integrate by
parts. We get

0 D
Z

R
d

�j e
ˆk r.eˆku/ � rudx C

Z

R
d

�j e
2ˆkurˆk � rudx

C
Z

R
d

e2ˆkur�j � rudx C
Z

R
d

�j e
2ˆk juj2W dx:

By using Leibniz rule in the first term in the right-hand side, we get

0 D
Z

Rd

�j jr.eˆku/j2 dx �
Z

Rd

�j e
ˆkur.eˆku/ � rˆk dx

C
Z

R
d

�j e
2ˆkurˆk � rudx C

Z

R
d

e2ˆkur�j � rudx C
Z

R
d

�j e
2ˆk juj2W dx

D
Z

Rd

�j jr.eˆku/j2 dx �
Z

Rd

�j e
2ˆku2jrˆkj2 dx

C
Z

Rd

e2ˆkur�j � rudx C
Z

Rd

�j e
2ˆk juj2W dx;

which is rewritten as
Z

Rd

�j jr.eˆku/j2 dx C
Z

Rd

�j .W � jrˆkj2/e2ˆk juj2 dx

D
Z

Rd

e2ˆkur�j � rudx:

We need to show that the term in the right-hand side converges to zero as j ! 1,
and that the quantity in the left-hand side is controlled when j ! 1 followed by
k ! 1.

First,
ˇ

ˇ

ˇ

ˇ

Z

Rd

e2ˆkur�j � rudx
ˇ

ˇ

ˇ

ˇ

6 Ckkr�j kL1.Rd /

Z

Rd

jruj juj dx 6
Ck

j
kukL2kukH 1 :
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This implies

lim
j !1

Z

R
d

�j jr.eˆku/j2 dx C
Z

R
d

�j .W � jrˆkj2/e2ˆk juj2 dx D 0;

which, by monotone convergence, means
Z

Rd

jr.eˆku/j2 dx C
Z

Rd

.W � jrˆk j2/e2ˆk juj2 dx D 0:

Sinceˆk ! ˆ pointwise as k ! 1, Fatou’s lemma yields the desired result. �

We are now ready to provide the

Proof of Proposition 3.5. We will apply Lemma 3.6 and show how to recover
inequality (3.4). We fix a constant � > 0, and consider the set

�� WD ¹x 2 R
d j .2" � "2/VDW � �j > �º

�
´

x 2 R
d

ˇ

ˇ

ˇ

ˇ

jx � xj > ..� C �j /=.2" � "2//1=s if x1 > 0

jx C xj > ..� C �j /=.2"� "2//1=s if x1 6 0

µ

;

�c
� D R

d n�� :

We also define, for any " < 1=2,

ˆ D .1� "/ADW;

so that

jrˆj2 D .1� "/2VDW:

Notice that the function .2" � "2/VDW � �j appearing in the definition of �� is
smaller thanW � jrˆj2, whereW D VDW C�w � juCj2 ��j . As a consequence,
W > � on the whole �� .

We thus have
Z

Rd

jr.eˆuj /j2 dx C �

Z

�k

e2ˆjuj j2 dx

6

Z

R
d

jr.eˆuj /j2 dx C
Z

�k

.W � jrˆj2/e2ˆjuj j2 dx

6

Z

R
d

jr.eˆuj /j2 dx C
Z

R
d

.W � jrˆj2/e2ˆjuj j2 dx

�
Z

�c
k

.W � jrˆj2/e2ˆjuj j2 dx;
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and, by Lemma 3.6 and the inequality W � jrˆj2 > ��j , we get
Z

Rd

jr.eˆuj /j2 dx C �

Z

�k

e2ˆjuj j2 dx 6 �j

Z

�c
k

e2ˆjuj j2 dx:

This in turn implies
Z

R
d

jr.eˆuj /j2 dx C �

Z

R
d

e2ˆjuj j2 dx 6 .�j C �/

Z

�c
k

e2ˆjuj j2 dx:

Since e2ˆ is easily seen to be bounded by a "-dependent constant on�c
� , the above

inequality implies (3.4) after choosing, for example, � D 1.
Let us now prove (3.5). The function juj j2 satisfies

�juj j2 D 2jruj j2 C 2.VDW C �w � juCj2 � �j /juj j2;

and therefore
�

�juj j2
�

.x/ > 0

for jx � xj; jxC xj > R with R large enough. Hence, by the mean value property
for subharmonic functions (see, e.g., [12, Theorem 2.1] or [18, Section 9.3]),

juj .x/j2 6
1

VolBx.1/

Z

Bx.1/

juj .y/j2 dy;

where Bx.1/ is the ball of radius 1 centered at x (assumeR is large enough so that
uj is subharmonic on the whole Bx.1/). We multiply and divide by e2.1�"/ADW

inside the integral and use the Taylor-like expansion

je�2.1�"/ADW.y/ � e�2.1�"/ADW.x/j 6 Ce�2.1�"0/ADW.x/; y 2 Bx.1/;

which holds for some " < "0 < 1=2 used to absorb the growth of the gradient.
This gives

juj .x/j2 6 Ce�2.1�"0/ADW.x/

Z

Bx.1/

juj .y/j2e2.1�"/ADW.y/ dy:

The remaining integral is bounded by a constant thanks to (3.4), and we thus get

juj .x/j 6 C";ue
�.1�"0/ADW.x/:

This is precisely of the form (3.5) after a redefinition of the constants. The
bounds for ur and u` are obtained through similar arguments, which we do not
reproduce. �

The above allows to efficiently bound most terms that have to do with the
tunneling effect in the sequel. A list of such is provided in Appendix A.
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3.3. First approximations. An important ingredient for the sequel is a first
approximation of uC in terms of functions localized in the left or right wells:

Proposition 3.7 (first properties of uC and u�). Let �x1>0; �x160 be a smooth
partition of unity such that

�2
x1>0 C �2

x160 D 1;

�x1>0.x/ D �x160.�x1; x2; : : : ; xd /;

�x1>0.x/ D 0 on ¹x1 6 �C º;

kr�x1>0k1 6 C:

Then, with u` and ur the left and right Hartree minimizers solving (2.5), and T
the tunneling parameter (2.8),

k�x1>0uC � urkL2 6 C"T
1=2�"; k�x160uC � u`kL2 6 C"T

1=2�"; (3.9)

and, for an appropriate choice of the phase of u�,

k�x1>0u� � urkL2 6 C"T
1=4�"; k�x160u� C u`kL2 6 C"T

1=4�": (3.10)

The approximation (3.10) has a worse rate than (3.9), and therefore it does not
allow to directly deduce (2.13) with the desired rate yet. It follows from the above
and standard elliptic regularity estimates that

�x1>0uC.x � x/ ����!
L!1

u0; (3.11a)

�x160uC.x C x/ ����!
L!1

u0; (3.11b)

�x1>0u�.x � x/ ����!
L!1

u0; (3.11c)

�x160u�.x C x/ ����!
L!1

�u0; (3.11d)

where u0 is the minimizer of the one-well Hartree functional (obtained by setting
x D 0 in the definition (2.4) of the left and right well functionals). For any fixed
smooth bounded set�, the convergence is strong in any Sobolev spaceH s.�/ and
(by Sobolev embeddings) in any Hölder space C

˛.�/. Indeed, repeatedly differ-
entiating the elliptic PDEs satisfied by uC and u� one obtains uniform bounds in
any Sobolev space. Using local compact embeddings one can then extract conver-
gent subsequences in these spaces, and the above Proposition uniquely identifies
the limit.
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We will prove Proposition 3.7 using energy inequalities, which requires the
following two lemmas.

Lemma 3.8 (stability inequality for gapped Hamiltonians). Let h be a self-adjoint
Hamiltonian with compact resolvent on a Hilbert space H. Let �0 be the ground
state energy with ground state u0 (with ku0kH D 1), and let G > 0 be the
gap between ground state and first excited state. Then, for any u 2 D.h/ with
kukH D 1,

hu; huiH > �0 C G

2
min

�2Œ0;2��
kei�u � u0k2

H
: (3.12)

The assumption of compactness of the resolvent is clearly not crucial for this
Lemma. We anyway keep it since that is the only case we will encounter. We also
remark that in the case G D 0, i.e., a degenerate ground state, the statement is
trivial.

Proof. By the assumptions we have the decomposition

h D �0ju0ihu0j C
X

n

�njunihunj

with �n > �0 CG for every n. Then,

hu; huiH > �0jhu0; uiHj2 C .�0 CG/.1� jhu0; uiHj2/
D �0 CG.1 � jhu0; uiHj2/:

On the other hand, we have

min
�2Œ0;2��

jei�u � u0j2
H

D 2 � 2 max
�2Œ0;2��

Re.ei�hu0; uiH/

D 2 � 2jhu0; uiHj:

Since

1 � jhu0; uiHj 6 1 � jhu0; uiHj2;

the last two equations yield the desired estimate. �

Lemma 3.9 (stability inequality for the one-well Hartree functionals). For a
generic u 2 H 2.Rd / \ L2.Rd ; Vr.x/dx/ with kuk2

L2 D 1
2
, the following stability

inequality holds:

Er Œu� > Er Œur �C C min
�2Œ0;2��

kei�u � urk2
L2 : (3.13)
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Proof. First, let us notice that an application of Lemma 3.8 for h D hr yields (the
different normalization has no effect since the whole inequality is homogeneous
with respect to an overall factor)

hu; hrui > hur ; hrur i C C min
�2Œ0;2��

kei�u � urk2
L2 : (3.14)

Indeed, hr is obtained from a L-independent Hamiltonian by a translation by x,
and therefore its spectrum does not depend onL. The properties of V andw imply
that hr must have a gap (see, e.g., [22, Theorem XIII.47]). The L-independence
of the spectrum implies that such a gap does not depend on L. We can therefore
apply Lemma 3.8 and consider G=2 as a fixed constant.

To deduce (3.13), a simple computation gives

Er Œu� � Er Œur � D hu; hrui � hur ; hrur i

C �

2

Z

Rd

.w � jur j2/jur j2 dx � �

2

Z

Rd

.w � juj2/juj2 dx

C �

Z

R
d

.w � .juj2 � jur j2//juj2 dx

D hu; h`ui � hur ; h`ur i

C �

2

Z

Rd

.w � .jur j2 � juj2//.jur j2 � juj2/ dx:

Since Ow > 0, the last integral on the right-hand side is non-negative. We discard
it for a lower bound and get

Er Œu� � Er Œur � > hu; hrui � hur ; hrur i; (3.15)

which proves (3.13) thanks to (3.14). �

We are now ready to give the

Proof of Proposition 3.7. Let us first show the upper bound

EDWŒuC� 6 2Er Œur �C C"T
1�": (3.16)

The normalized state .ur Cu`/=kur Cu`kL2 is an admissible trial function for the
minimization of EDW at unit mass. Notice that, by positivity of ur and u`,

kur C u`k2
L2 D 1C 2Rehur ; u`i > 1;
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and hence we can ignore the norms in the denominator for an upper bound. We
have

EDWŒuC� 6 EDW

h ur C u`

kur C u`kL2

i

6

Z

R
d

jrur j2 dx C
Z

R
d

VDWjur j2 dx C �

2

Z

R
d

jur j2.w � jur j2/ dx

C
Z

Rd

jru`j2 dx C
Z

Rd

VDWju`j2 dx C �

2

Z

Rd

ju`j2.w � ju`j2/ dx

C 2

Z

Rd

ru` � rur dx C 2

Z

Rd

VDWu`ur dx

C �

2

“

Rd �Rd

w.x � y/
�

2u`.x/ur .x/jur .y/C u`.y/j2

C 2ju`.x/j2.jur .y/j2 C 2u`.y/ur .y//
�

dx dy:

(3.17)

In the first two lines in the right-hand side we can use, respectively, VDW 6 V`

and VDW 6 Vr . In this way the first line equals Er Œur � and the second one equals
E`Œu`�, which actually coincide by translation invariance. The terms in the third
line are remainders as follows from (A.4) and (A.7). We then deduce

EDWŒuC� 6 2Er Œur �C C"T
1�"

C �

2

“

Rd �Rd

w.x � y/
�

2u`.x/ur .x/ju`.y/C ur .y/j2

C 2ju`.x/j2.2u`.y/ur .y/C jur .y/j2/
�

dx dy:

To get rid of the last terms, involving w, we notice that by the Cauchy–Schwarz
and Young inequalities we have

ˇ

ˇ

ˇ

ˇ

“

R
d �Rd

w.x � y/u`.x/ur .x/g.y/ dx dy

ˇ

ˇ

ˇ

ˇ

6 kwkL1 kgkL1

Z

Rd

u`ur dx;

and the scalar product on the right is estimated using (A.1). The only remaining
term to estimate is

�

“

Rd �Rd

w.x � y/ju`.x/j2jur .y/j2dxdy;

which we bound using (A.14). We thus precisely obtain (3.16).
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Let us now prove the lower bound

EDWŒuC� > 2Er Œ�x1>0uC� � C"T
1�": (3.18)

Using the IMS localization formula we have

��C VDW D � �x1>0��x1>0 � �x160��x160

C VDW�
2
x1>0 C VDW�

2
x160 � .r�x1>0/

2 � .r�x160/
2:

Moreover,
Z

Rd

.w � juCj2/juCj2 dx D
Z

Rd

.w � j�x1>0uCj2/j�x1>0uCj2 dx

C
Z

R
d

.w � j�x160uCj2/j�x160uCj2 dx

C 2

Z

Rd

.w � j�x160uCj2/j�x1>0uCj2 dx:

The last summand in the right-hand side of the last equation is positive and we
will simply discard it for a lower bound. We thus have

EDWŒuC� > 2Er Œ�x1>0uC�C
Z

Rd

.VDW � Vr/�
2
x1>0juCj2 dx

C
Z

Rd

.VDW � V`/�
2
x160juCj2 dx

�
Z

R
d

.r�x1>0/
2juCj2 dx �

Z

R
d

.r�x160/
2juCj2 dx:

The first two integrals in the right-hand side are estimated in (A.9). The integrals
in the third line are smaller or equal than the quantities estimated in (A.2), because
jr�x1>0j and jr�x160j are by construction bounded by a constant and localized
in ¹�C 6 x1 6 C º. This proves (3.18).

Comparing (3.16) and (3.18) we deduce

Er Œ�x1>0uC� 6 Er Œur �C C"T
1�":
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On the other hand, a direct application of Lemma 3.9 with u D �x1>0uC (notice
that the property �2

x1>0 C �2
x160 D 1 together with the symmetry of uC imply

kuk2
L2 D 1=2) yields

Er Œ�x1>0uC� > Er Œur �C C min
�2Œ0;2��

kei��x1>0uC � urk2
L2

D Er Œur �C Ck�x1>0uC � urk2
L2 ;

having noticed that the minimum is attained at � D 0 since �x1>0uC and ur are
positive. The last two formulae imply the first estimate in (3.9). The second one
immediately follows since uC is symmetric under reflection across the x1 D 0

axis, while ur is mapped into u` by such a reflection.
Let us now prove (3.10). As a first ingredient, let us show the following

inequality:
ˇ

ˇ

ˇ

ˇ

“

R
d �Rd

w.x � y/jur .x/j2.juC.y/j2 � jur .y/j2/ dx dy
ˇ

ˇ

ˇ

ˇ

6 C"T
1=2�": (3.19)

Clearly, an analogous inequality holds if ur is replaced by u`. To prove (3.19), let
us decompose

“

Rd �Rd

w.x � y/jur .x/j2.juC.y/j2 � jur .y/j2/ dx dy

D
“

R
d �Rd

w.x � y/jur .x/j2.j�x1>0.y/uC.y/j2 � jur .y/j2/ dx dy

C
“

R
d �Rd

w.x � y/jur .x/j2j�x160.y/uC.y/j2 dx dy

D
“

Rd �Rd

w.x � y/jur .x/j2
�

�x1>0.y/uC.y/ � ur.y/
�

�

�x1>0.y/uC.y/C ur .y/
�

dx dy

C
“

R
d �Rd

w.x � y/jur .x/j2j�x160.y/uC.y/j2 dx dy:

The first term is estimated using Young’s inequality forw�jur j2, then the Cauchy–
Schwarz inequality in the y-integration, and then (3.9). The second term is
estimated by recognizing that

“

Rd �Rd

w.x � y/jur .x/j2j�x160.y/uC.y/j2 dx dy 6 C

Z

x16C

jur .x/j2 dx 6 C"T
1=2�"
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thanks to (A.8). This shows (3.19). Notice that the error estimate in the right-hand
side of (3.19) is worse than the one in (3.9). This is the reason why we will obtain
a similarly worse error estimate in (3.10).

Let us now proceed to the actual proof of (3.10). We aim at first proving an
upper bound of the form

�� 6 �r C C"T
1=2�": (3.20)

Recall that we have

�� D hu�; hDWu�i D inf¹hu; hDWui j kukL2 D 1; u ? uCº:

The function .ur �u`/=kur �u`kL2 is then a trial state for this minimization since,
by the even parity of uC,

hu`; uCi D hur ; uCi:
Moreover, using (A.1) we deduce

kur � u`k2
L2 D 1� 2Rehu`; uri > 1� C"T

1�":

Hence, by the variational principle, we have

�� 6
1

kur � u`k2
L2

hur � u`; hDW.ur � u`/i

6 hu`; h`u`i C hur ; hrur i

� 2

Z

Rd

ru`rur dx C
Z

`

V`jur j2 dx C
Z

r

Vr ju`j2 dx

� 2

Z

Rd

VDWu`ur dx �
Z

r

V`ju`j2 dx �
Z

`

Vr jur j2 dx

� �

“

Rd �Rd

w.x � y/u`.x/ur .x/juC.y/j2 dx dy

C �

2

“

R
d �Rd

w.x � y/ju`.x/j2.juC.y/j2 � ju`.y/j2/ dx dy

C �

2

“

R
d �Rd

w.x � y/jur .x/j2.juC.y/j2 � jur .y/j2/ dx dy

C C"T
1�":

(3.21)

In the right-hand side of (3.21), the first line equals 2hur ; hrur i. The second line
contains remainders that can be estimated using (A.4) and (A.12). The third and
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fourth lines are negative and we can safely discard them for an upper bound. The
fifth and sixth lines account for the presence ofw�ju`j2 andw�jur j2 in h` and hr ,
and their estimate was provided in (3.19). The only further term in the right-hand
side of (3.21) is the last line, which comes from the estimate of kur � u`k�2

L2 . We
therefore proved (3.20).

The lower bound

�� D hu�; hDWu�i > 2h�x1>0u�; hr�x1>0u�i C C"T
1=2�" (3.22)

is easily obtained using the IMS formula and proceeding as in the proof of (3.18),
using also (3.19), (A.2), and (A.5). Comparing (3.14), in which we choose
u D �x1>0u� (the symmetry of ju�j implies that kuk2

L2 D 1=2), with (3.20)
and (3.22) we deduce

min
�2Œ0;2��

k�x1>0u� � ei�urk2
L2 6 C"T

1=2�":

Repeating the arguments for the function �x160u� we also deduce

min
�2Œ0;2��

k�x160u� � ei�u`k2
L2 6 C"T

1=2�":

By continuity, the minimizations have to be realized at some �1 and �2 (that a-
priori depend on the distance L), i.e.,

k�x1>0u� � ei�1urk2
L2 6 C"T

1=2�"; k�x160u� � ei�2u`k2
L2 6 C"T

1=2�":

(3.23)
Moreover, since u� and ur are real-valued functions, we have

k�x1>0u� � ei�1urk2
L2 D 1 � cos �1

Z

Rd

�x1>0u�ur dx;

and similarly for the other norm. This shows that the minimization can occur for
�1 2 ¹0; �º and �2 2 ¹0; �º only, depending on the sign of the integral in the right-
hand side. Modulo a change of sign of u�, we can certainly assume that �1 D 0

for everyL. There remains to show that �2 D � for everyL. But this follows from

0 D hu�; uCi D h�x160u�; �x160uCi C h�x1>0u�; �x1>0uCi
D h.�x160u� � ei�2u`/; �x160uCi C h.�x1>0u� � ur /; �x1>0uCi

C e�i�2hu`; �x160uCi C hur ; �x1>0uCi:
Indeed, the first two scalar products in the right-hand side converge to zero due
to (3.23) (with the choice �1 D 0), while the second two scalar products converge
to one due to (3.9). This shows that �1 must converge to � as L tends to infinity.
Since it can only attain the values 0 and � by what discussed above, it must
coincide with � for L large enough. �
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4. Estimates on spectral gaps

In the present section we prove the claims (2.10) and (2.11) from our main result.
The proof of the lower bound in (2.10), being the most involved, requires an
extra amount of information on uC and u�, beyond the preliminary estimates of
Proposition 3.5. We discuss this in Subsection 4.2.

4.1. Upper bound on the first gap. To deduce the upper bound in (2.10) we
consider the function

v WD .�x1>0 � �x160/uC

k.�x1>0 � �x160/uCkL2

? uC

as a trial function for the minimization

�� D min¹hu; hDWui; kukL2 D 1; u ? uCº:

Here �x1>0 and �x160 are localization functions as in Proposition 3.7, and this
ensures

k.�x1>0 � �x160/uCk2
L2 D 1 � 2

Z

Rd

�x1>0�x160juCj2 dx > 1 � C"T
1�" (4.1)

thanks to (A.2). By the variational principle, we have

�� 6 hv; hDWvi D 2h�x1>0uC; hDW�x1>0uCi � 2h�x1>0uC; hDW�x160uCi
k.�x1>0 � �x160/uCk2

L2

:

The second term in the numerator is bounded in absolute value by C"T
1�" as can

be seen using (A.5), (A.11), and (A.13). For the first term we use IMS formula
which implies

huC; hDWuCi > 2h�x1>0uC; hDW�x1>0uCi � C"T
1�"; (4.2)

as can be seen using once again (A.5), (A.11), and (A.13). This, together with (4.1)
gives

�� 6 huC; hDWuCi C C"T
1�" D �C C CT 1�":

4.2. Further properties of uC and u�. We start with the following proposition,
which provides a lower bound analog to (3.5) for uC, vindicating the sharpness of
the latter estimate.
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Proposition 4.1 (Lower bound for uC). Let

˛ WD

8

ˆ

ˆ

<

ˆ

ˆ

:

2d � 2C s

4s
if s > 2;

2d � 2C s

4s
� �C

2s
if s D 2:

Then, there exists R > 0 independent of L such that, for every 0 < " < 1, there
exists a constant c" > 0, also independent of L, such that

uC.x/ > c"

e�ADW.x/

VDW.x/
˛CC"

(4.3)

for any x such that jx � xj; jx C xj > R.

A pointwise lower bound for u� and uex is not to be expected, since excited
eigenfunctions have to change sign.

Proof. For a number ˇ 2 R, define the function

f .x/ D e�ADW.x/VDW.x/
�ˇ=s D

8

<

:

e�.1Cs=2/�1jx�xj1Cs=2jx � xj�ˇ if x1 > 0;

e�.1Cs=2/�1jxCxj1Cs=2jx C xj�ˇ if x1 6 0:

Using the fact that f only depends on jx � xj for x1 > 0 or jxC xj for x1 6 0, we
compute

�f .x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

�

jx � xjs C
�

2ˇ � s

2
� d C 1

�

jx � xjs=2�1

C .ˇ2 C 2ˇ � dˇ/jx � xj�2
�

f .x/ for x1 > 0;

�

jx C xjs C
�

2ˇ � s

2
� d C 1

�

jx C xjs=2�1

C .ˇ2 C 2ˇ � dˇ/jx C xj�2
�

f .x/ for x1 > 0:

(4.4)

Notice that for x1 D 0 the Laplacian is defined in a distributional sense only. Since
w�juCj2��C is uniformlyL1-bounded (by Young’s inequality and Lemma 3.2),
picking ˇ D s˛C C " we deduce

.��C VDW.x/C �w � juCj2.x/ � �C/f .x/ 6 0 (4.5)

for jx � xj > R and jx C xj > R with R large enough and independent on L, and
away from x1 D 0. Notice that, in the case s D 2, the existence of such an R is
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ensured by the fact thatw�juCj2 decays at infinity with a rate that does not depend
on L, as follows from the upper bound in (3.5). Moreover, again for jx � xj > R

and jx C xj > R with R large enough and independent on L,

VDW.x/ > �C � �w � juCj2.x/: (4.6)

Consider now a function flow which is equal to f (with ˇ D s˛C C ") outside of
Bx.R/ [ B�x.R/ and smoothly extended to a function bounded away from zero
inside Bx.R/ [ B�x.R/. Since, by construction, f is a L-independent function
of jx � xj or jx C xj, flow can be chosen to be L-independent as well. Define the
(a priori L-dependent) constant

c" D min
jx�xj<R
jxCxj<R

uC.x/

flow.x/
:

Since uC > 0, we have3 that c" > 0. Let us consider the continuous function

g D uC � c"flow:

We will prove that g is positive. Then (4.3) follows thanks to

c" >

minjx�xj<R
jxCxj<R

uC.x/

maxjx�xj<R
jxCxj<R

flow
> CkuCkL1.Bx.R/[B�x.R//:

Here we used Harnack’s inequality [11, Section 6.4.3] for the setBx.R/[B�x.R/

(the resulting constant depends only on R, not on L). The right-hand side of the
above is bounded away from 0 as L ! 1, for otherwise uC would converge to
0 in L2 .Bx.R/[ B�x.R//, contradicting Proposition 3.7. Thus, c" is bounded
away from zero as L ! 1 and there only remains to prove that g is positive.

The function g, being continuous and decaying at infinity, could have either of
the three following behaviors:

(i) it attains a global minimum inside Bx.R/ [ B�x.R/,

(ii) it attains a global minimum outside of Bx.R/ [ B�x.R/, or

(iii) it has no global minimum and is everywhere positive.

In the latter case, (iii), there is nothing to prove. In case (i), the proof is complete
because g is by construction positive inside Bx.R/ [ B�x.R/. Finally, consider
case (ii). g attains a global minimum at some

.y1; : : : ; yd / D y … Bx.R/[ B�x.R/:

3 This is the place where the argument ceases to apply to u� or uex.
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We can exclude the possibility that y1 D 0. Indeed, on the hyperplane ¹x1 D 0º,
uC has (by parity) a x1-directional critical point where (by smoothness) ruC

vanishes. On the other hand, flow has by construction a x1-directional minimum
there, with @x1

flow making a jump between two different non-zero values. Hence,
in the x1 direction, uC converges at least quadratically to its value at x1 D 0,
while flow decays as � jx1j to its value on the hyperplane. It follows that g has a
x1-directional maximum on the hyperplane x1 D 0. Thus the global minimum y

must belong to a region where g is smooth, implying �g > 0 at y. We then use
the eigenvalue equation for uC and (4.5) to deduce

.��C VDW.y/C �w � juCj2.y/ � �C/g.y/

D �c".��C VDW.y/C �w � juCj2.y/ � �C/flow.y/ > 0

and hence
.VDW.y/C �w � juCj2.y/ � �C/g.y/ > 0:

Thanks to (4.6) we finally deduce g.y/ > 0, which concludes the proof. �

We also state the following lemma, containing properties of u�.

Lemma 4.2 (symmetry and sign of u�). The function u� is odd with respect to
reflections across the x1 D 0 plane, i.e.,

u�.�x1; x2; : : : ; xd / D �u�.x1; x2; : : : ; xd /: (4.7)

Moreover, assume that we pick for u� the same phase as in Proposition 3.7. Then
u�.x/ > 0 almost everywhere for x1 > 0.

Proof of Lemma 4.2. Since u� must be either odd or even, the fact that it is odd
is a consequence of (3.10). To prove that u�.x/ > 0 for x1 > 0, let us first notice
that by the odd symmetry

�� D min¹hu; hDWui; kukL2 D 1; u ? uCº
D min¹hu; hDWui; kukL2 D 1; u oddº:

Thus, �� must coincide with the ground state energy of the Dirichlet Hamiltonian

H D ��.D/
x1>0 C VDW C �w � juCj2;

where �.D/
x1>0 is the Dirichlet Laplacian in the half-space ¹x1 > 0º. Using the

Trotter product formula [21, Theorem VII.31] and VDW C �w � juCj2 > 0, it is
easy to see that e�tH is positivity improving for all t > 0. On the other hand
H has compact resolvent, and hence the bottom of its spectrum is an eigenvalue.
Using [22, Theorem XIII.44] completes the proof. �
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4.3. Lower bound for the first gap. We now provide the proof of the lower
bound in (2.10), following [24]. We start with the following lemma.

Lemma 4.3 (expression for the first gap). For any smooth f such that f uC 2
H 1.Rd /, we have

hf uC; .hMF � �C/f uCi D 1

2
kuCrf k2

L2 : (4.8)

Proof. The proof (from [25, 24]) follows from the equality

Œf; Œf; hMF � �C�� D
h

f;
h

f;�1
2
�

ii

D �.rf /2

after taking the expectation on uC. �

In order to prove the lower bound, we apply the above with f D u�=uC, and
drop the integration in the right-hand side outside of a hyper-rectangle. Notice
that f is smooth since both uC and u� are, and uC is strictly positive (see, e.g.,
[22, Theorem XIII.47]). This gives

�� � �C D 1

2

Z

R
d

jrf j2juCj2 >
1

2

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

x1DL=2�R
Z

x1D�L=2CR

jrf j2juCj2 dx1 : : : dxd ;

where K is an arbitrary fixed positive number, and R is large enough so that one
can apply Proposition 4.1, which we do. For a lower bound on uC we use (4.3)
and evaluate ADW at its minimum x D 0 in the right-hand side. This gives

�� � �C > C"T
1C"

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

x1DL=2�R
Z

x1D�L=2CR

jrf j2 dx1 : : : dxd :

For the gradient of f we use the trivial inequality

jrf j2 > j@1f j2;

as well as the Cauchy–Schwarz inequality in the form

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

x1DL=2�R
Z

x1D�L=2CR

j@1f j2 dx1 : : : dxd

>
1

CL

�

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

x1DL=2�R
Z

x1D�L=2CR

@1f dx1 : : : dxd

�2
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D 1

CL

�

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

�

f .L=2�R; x2; : : : ; xd /

� f .�L=2CR; x2; : : : ; xd /
�

dx2 : : : dxd

�2

D 2

CL

�

x2DK
Z

x2D�K

� � �
xd DK
Z

xd D�K

f .L=2� R; x2; : : : ; xd / dx2 : : : dxd

�2

:

The last step follows from the fact that f D u�=uC is odd under reflection around
the x1 D 0 axis, since u� is odd (see Lemma 4.2) and uC is even. Since the
L�1 factor can be absorbed inside T 1C" with a slight modification of ", we only
have to show that the integral in the right-hand side is bounded away from zero
uniformly in L. This is a consequence of (3.11) and of the Sobolev embedding
(see the discussion after Proposition 3.7), which imply that uC and u� converge
in L1 to the same function in B.x; R/ for R fixed. This completes the proof.

4.4. Lower bound on the second gap. To prove (2.11), recall that uex is the first
excited state above u�, i.e., �ex D huex; hDWuexi. A lower bound for �ex follows
from the IMS formula and reads

�ex > 2h�x1>0uex; hDW�x1>0uexi � C"T
1�";

having used (A.6) and (A.3). Here �x1>0 and �x160 are localization functions as
in Proposition 3.7. We further argue that (A.10) and (3.19) allow to replace hDW

with hr , i.e.,
�ex > 2h�x1>0uex; hr�x1>0uexi � C"T

1=2�": (4.9)

We now want to bound from below the right-hand side using (a suitable modifi-
cation of ) �x1>0uex as a trial state for the minimization problem

�r;ex WD inf¹hu; hrui j kukL2 D 1; u ? urº:

Define then

v WD �x1>0uex � 2hur ; �x1>0uexiur

k�x1>0uex � 2hur ; �x1>0uexiurkL2

:

By construction v is orthogonal to ur (since kurk2
L2 D 1=2), which makes it a

trial function for the �r;ex minimization. We want to estimate the norm in the
denominator. Recall that uex must be either even or odd under reflection across
the ¹x1 D 0º hyperplane. Assume it is even. Then,

0 D huC; uexi
D h�x1>0uC; �x1>0uexi C h�x160uC; �x160uexi
D 2h�x1>0uC; �x1>0uexi;
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which implies

k�x1>0uex � 2hur ; �x1>0uexiur k2
L2 D 1

2
� 2jhur ; �x1>0uexij2

D 1

2
� 2jh.ur � �x1>0uC/; �x1>0uexij2

>
1

2
� C"T

1�";

where the inequality follows by the Cauchy–Schwarz inequality and by approxi-
mation of uC that we deduced in (3.9). If, on the other hand, uex is odd, then we
can repeat the same calculation with uC replaced by u�. The variational principle
then implies

�r;ex 6
h�x1>0uex; hr�x1>0uexi � 2�r jhur ; �x1>0uexij2

k�x1>0uex � 2hur ; �x1>0uexiurk2
L2

6 2h�x1>0uex; hr�x1>0uexi C C"T
1�";

having ignored the second term in the numerator because it is negative. Compar-
ing this with (4.9), we find

�ex > �r;ex � C"T
1=2�":

Now, we know that the spectrum of hr does not depend on L, since hr coincides
with the translation of a fixed Hamiltonian. Hence, the gap between �r and �r;ex

is a fixed constant. Moreover, by (3.20), we have

�r > �� � C"T
1=2�":

This gives

�ex > �r;ex � C"T
1=2�"

> �r C C � C"T
1=2�"

> �� C C � C"T
1=2�";

which proves (2.11).

5. Refined estimates, following Helffer–Sjöstrand

The aim of this section is to prove (2.12), (2.13), and (2.14). The optimal rate in
(2.12) will follow from a careful choice of approximating quasi-modes inspired
by [16, 17].
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Let us denote by u.D/
r the (normalized) ground state of the Dirichlet problem

8

<

:

.��C VDW C �w � juCj2/u D �u;

u.x/ D 0 for x1 6 �L
2

C c
(5.1)

with eigenvalue �.D/. Let us, in turn, denote by u.D/

`
the (normalized) ground

state of the Dirichlet problem

8

<

:

.��C VDW C �w � juCj2/u D �u;

u.x/ D 0 for x1 > �L
2

C c:
(5.2)

By symmetry across the ¹x1 D 0º hyperplane we have u.D/

`
.�x1; x2; : : : ; xd / D

u
.D/
r .x/ and therefore the eigenvalue corresponding to u.D/

`
coincides with �.D/.

The cutoff distance c > 0will eventually be chosen to depend (non-uniformly)
on the parameter " appearing in the right-hand side of (2.12), which we will take
arbitrarily small. As a consequence, since most quantities depends on c, they will
implicitly depend on ". We will however not keep track of such a dependence.

5.1. Agmon decay estimates. The first step in the proof of (2.12) is to show
suitable decay estimates for u.D/

r and u.D/

`
. These will be more refined that what

we have proved so far.

We start by defining the double-well Agmon distance between two points
x; y 2 R

d ,

dDW.x; y/

D inf

 piecewise C 1 curve

²

1
Z

0

p

VDW.
.t//j
 0.t /j dt
ˇ

ˇ

ˇ

ˇ


.0/ D x; 
.1/ D y

³

:
(5.3)

The exponentials of the functions dDW. � ;x/ and dDW. � ;�x/will model the decay
of, respectively, u.D/

r and u.D/

`
. The following general properties are well-known

(see, e.g., [15, equations (3.2.1) and (3.2.2)])

dDW.x; y/ 6 dDW.x; z/C dDW.z; y/ for x; y; z (triangular inequality) (5.4)

jrxdDW.x; y/j2 6 VDW.x/ for all x; y: (5.5)

Furthermore, we have the following Lemma.
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Lemma 5.1 (properties of the double-well Agmon distance). dDW. � ;x/ satisfies
the three following properties, with A the single-well Agmon distance (2.7) and c
the constant in (5.1)–(5.2):

(i) First estimate in the half-space:

dDW.x;x/ > A.jx � xj/ x1 > 0;

dDW.x;�x/ > A.jx C xj/ x1 6 0:
(5.6)

(ii) Estimate at .x2; : : : ; xd/ D 0:

dDW..x1; 0; : : : ; 0/;x/ >

8

ˆ

<

ˆ

:

A
�ˇ

ˇ

ˇx1 � L

2

ˇ

ˇ

ˇ

�

; x1 > 0

2A
�L

2

�

� A
�
ˇ

ˇ

ˇ

L

2
C x1

ˇ

ˇ

ˇ

�

; �L
2

C c 6 x1 6 0:

(5.7a)

dDW..x1; 0; : : : ; 0/;�x/ >

8

ˆ

<

ˆ

:

A
�ˇ

ˇ

ˇx1 C L

2

ˇ

ˇ

ˇ

�

; x1 6 0

2A
�L

2

�

� A
�ˇ

ˇ

ˇ

L

2
� x1

ˇ

ˇ

ˇ

�

; 0 6 x1 6
L

2
� c:
(5.7b)

(iii) Second estimate in the half space:

� for �L
2

C c 6 x1 6 0,

dDW..x1; x2; : : : ; xd /;x/ > 2A
�L

2

�

� A
�ˇ

ˇ

ˇ

L

2
C x1

ˇ

ˇ

ˇ

�

I (5.8a)

� for 0 6 x1 6
L
2

� c,

dDW..x1; x2; : : : ; xd /;�x/ > 2A
�L

2

�

� A
�ˇ

ˇ

ˇ

L

2
� x1

ˇ

ˇ

ˇ

�

: (5.8b)

Proof. For each of the three points we will only prove the property for dDW. � ;x/,
since the one for dDW. � ;�x/ can be then deduced by reflection symmetry.

(i) First, notice that, in the x1 > 0 region, VDW only depends on the radial
coordinate jx� xj. Hence, the same must be true for dDW. � ;x/, and thus, without
loss of generality, we can assume x D .x1; 0; : : : ; 0/, the general case being then
deduced from

dDW.x;x/ D dDW..jjx � xj � L=2j; 0; : : : ; 0/;x/:

Let us now prove that, in order to compute dDW
�

.x1; 0; : : : ; 0/;x
�

for x1 > 0 we
can reduce ourselves, in the definition of dDW. � ;x/, to curves supported on the
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line x2; : : : ; xd D 0 only. Indeed, for any piecewise C 1 curve 
 W Œ0; 1� ! R
d

such that 
.0/ D x and 
.1/ D .x1; 0; : : : ; 0/, let us define the curve projected
onto the x2; : : : ; xd D 0 line


1.t / WD .
.t/1; 0; : : : ; 0/:

Then, by definition,

j
 0
1.t /j 6 j
 0.t /j:

Since VDW.y/ > VDW
�

.y1; 0; : : : ; 0/
�

for any y 2 R
d , we find

1
Z

0

p

VDW.
.t//j
 0.t /j dt >

1
Z

0

p

VDW.
1.t //j
 0
1.t /j dt:

This shows that it is always favorable to only consider paths restricted to the
line. Let then Q
 W Œ0; 1� ! R be a piecewise C 1 curve such that Q
.0/ D L=2 and
Q
.1/ D x1. We have

A.jx � xj/ D 1

1C s
2

ˇ

ˇ

ˇx1 � L

2

ˇ

ˇ

ˇ

1C s
2

D 1

1C s
2

1
Z

0

d

dt

ˇ

ˇ

ˇ
Q
.t/� L

2

ˇ

ˇ

ˇ

1C s
2

dt

6

1
Z

0

ˇ

ˇ

ˇ Q
.t/ � L

2

ˇ

ˇ

ˇ

s=2

j Q
 0.t /j dt

D
1

Z

0

q

VDW
�

. Q
.t/; 0; : : : ; 0/
�

j Q
 0.t /j dt:

Considering the infimum over all such curves Q
 (which we proved above to
coincide with the infimum over all curves), we deduce (5.6).

(ii) The claim for x1 > 0 already follows from (5.6). We concentrate on x1 6 0.
By repeating the arguments used above, one easily sees that in order to compute
dDW..x1; 0; : : : ; 0/;x/ for x1 6 0 it is again convenient to restrict to curves sup-
ported on x2; : : : ; xd D 0. Let then Q
 W Œ0; 1� ! R be any piecewise C 1 curve
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such that Q
.0/ D L=2 and Q
.1/ D x1. Since x1 6 0, there exists a time t Q
 ,
depending on the choice of the curve, such that Q
.t Q
 / D 0. We then write

2A
�L

2

�

� A
�ˇ

ˇ

ˇ

L

2
C x1

ˇ

ˇ

ˇ

�

D
t Q


Z

0

d

dt
A

�ˇ

ˇ

ˇ
Q
.t/ � L

2

ˇ

ˇ

ˇ

�

dt C
1

Z

t Q


d

dt

�

2A
�L

2

�

� A
�ˇ

ˇ

ˇ

L

2
C Q
.t/

ˇ

ˇ

ˇ

��

dt

6

t Q

Z

0

ˇ

ˇ

ˇ
Q
.t/� L

2

ˇ

ˇ

ˇ

s=2

j Q
 0.t /j dt C
1

Z

t Q


ˇ

ˇ

ˇ
Q
.t/C L

2

ˇ

ˇ

ˇ

s=2

j Q
 0.t /j dt

D
1

Z

0

p

VDW. Q
.t//j Q
 0.t /j dt:

Taking the infimum over all such curves Q
 yields the result.

Finally, (iii) is deduced by arguing, as done above, that projecting a curve onto
the x2; : : : ; xd D 0 line cannot increase dDW. � ;x/. �

The following proposition gives decay estimates for u.D/
r and u.D/

`
.

Proposition 5.2 (decay estimates for the Dirichlet modes). For every " > 0 there
exist C" > 0 and c" > 0 such that

ke.1�"/dDW. � ;x/u.D/
r kH 1 D ke.1�"/dDW. � ;:�x/u

.D/

`
kH 1 6 C" (5.9)

and

ke.1�"/dDW. � ;x/ru.D/
r kL2 D ke.1�"/dDW. � ;�x/ru.D/

`
kL2 6 C"; (5.10)

where u.D/
r , respectively u.D/

`
, is the ground state of (5.1), respectively (5.2),

(extended to zero outside of its domain of definition) for c D c".

The importance of this result is the following: even though in a region at
distance of order 1 from �x the total potential VDW C �w � juCj2 is of order 1,
nonetheless u.D/

r is as small as the exponential of minus the Agmon distance
from x. Compared to the estimates proved previously, it confirms that u.D/

r does
not see the left well at all. This is the key to prove (2.12) with such a good rate.

We need the following well-known lemma, which vindicates the importance
of (5.5):
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Lemma 5.3 (Computing with the Agmon distance). Let � � R
d be open with

regular boundary, v 2 C 0.x�;R/,ˆW x� ! R locally Lipschitz and u 2 C 2.x�;R/
with uj@� D 0 (including limjxj!1 u.x/ D 0 if � is unbounded). Let rˆ be
defined in L1 as the limit of a mollified sequence rˆ". Define also

h WD ��C v:

Then,
Z

�

jr.eˆu/j2 dx C
Z

�

.v � jrˆj2/e2ˆjuj2 dx D
Z

�

e2ˆu .hu/ dx:

Moreover, assume v � jrˆj2 D F 2
C � F 2

� with FC; F� > 0, and define

F WD FC C F�:

Then,
Z

�

ˇ

ˇr
�

eˆu
�ˇ

ˇ

2
dx C 1

2

Z

�

ˇ

ˇFCe
ˆuj2 dx

6

Z

�

ˇ

ˇF�1eˆhu
ˇ

ˇ

2
dx C 3

2

Z

�

ˇ

ˇF�e
ˆu

ˇ

ˇ

2
dx:

(5.11)

This is similar to Lemma 3.6. See [2, Theorem 1.5], [17, Lemma 2.3] or [15,
Theorem 3.1.1]. We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2. We will estimate the norms containing u.D/
r only, since,

by reflection symmetry, the identities in (5.9) and (5.10) are trivial. We will
apply (5.11) with the following choices (recall that c is the constant that appears
in (5.1), its choice will be specified later on):

� D
°

x
ˇ

ˇ

ˇ x1 > �L
2

C c
±

;

v D VDW C �w � juCj2 � �.D/;

ˆ D .1� "/dDW. � ;x/;

u D u.D/
r :

We now explain how to choose the functions FC; F� and the constant c. The main
idea is to defineF 2

C to be equal to the function v�jrˆj2 on the set where v�jrˆj2
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is larger than some fixed arbitrary positive constant �, and to be identically equal
to the same � on the set where v � jrˆj2 6 �. To this end, notice first that

v.x/ � jrˆ.x/j2 D VDW.x/C �w � juCj2.x/ � �.D/ � .1 � "/2jrdDW.x;x/j2

> .2" � "2/VDW.x/ � �.D/;

having used (5.5) and w > 0 in the second step. This shows that v � jrˆj2
can be smaller than a fixed constant only in the regions close to x and �x. As a
consequence, for every " > 0, there exists c" > 0 such that v.x/ � jrˆ.x/j2 > �

for �L=2 C c" 6 x1 6 0. We pick c equal to such a c" in the definition (5.1)
of u.D/

r . The only other region in which v � jrˆj2 can be small is the region of
small jx � xj. We take care of this by defining

F 2
C.x/ WD

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

v.x/ � jrˆ.x/j2; jx � xj >

�� C �.D/

2" � "2

�1=s

and x1 > �L
2

C c";

�; jx � xj 6

�� C �.D/

2" � "2

�1=s

:

Correspondingly, we define

F 2
�.x/ D F 2

C.x/ � v.x/C jrˆ.x/j2

and we have

F 2
�.x/ D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

D 0 if jx � xj >

�� C �.D/

2" � "2

�1=s

and x1 > �L
2

C c";

6 � if jx � xj 6

�� C �.D/

2" � "2

�1=s

:

It is then straightforward to verify that, by construction,

F 2
C > �; F 2

� 6 �; supp.F�/ �
°

x
ˇ

ˇ

ˇ jx � xj 6

�� C �.D/

2" � "2

�1=s±

:

We are then ready to apply (5.11), which yields (recall that hu D 0)
Z

¹x1>�L=2Cc"º

jr.e.1�"/dDW. � ;x/u.D/
r /j2 dx C �

2

Z

¹x1>�L=2Cc"º

je.1�"/dDW. � ;x/u.D/j2 dx

6
3�

2

Z

®

jx�xj6
�

�C�.D/

2"�"2

�1=s¯

je.1�"/dDW. � ;x/u.D/
r j2 dx:
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As proven in Lemma 5.1, the function dDW.x;x/ for x1 > 0 depends on the radial
coordinate jx�xj only. As a consequence, the integral in the right-hand side does
not depend on L, and therefore it is estimated by a ("-dependent) constant. This
completes the proof of (5.9).

In order to prove (5.10) we write

ke.1�"/dDW. � ;x/ru.D/
r k2

L2 6 ke.1�"/dDW. � ;x/u.D/
r k2

H 1

C k.rdDW. � ;x//e.1�"/dDW. � ;x/u.D/
r k2

L2

6 k
p

VDWe
.1�"/dDW. � ;x/u.D/

r k2
L2 C C";

where the second inequality follows from (5.5) and (5.9). Using Lemma 5.1,
dDM. � ;x/ has at least polynomial growth, and therefore one deduces that, for
every ı > 0, there exists Kı > 0 such that

p

VDW 6 Kı e
ı dDW. � ;x/:

We then deduce

ke.1�"/dDW. � ;x/ru.D/
r k2

L2 6 K2
ı ke.1�"Cı/dDW. � ;x/u.D/

r k2
L2 C C" 6 K2

ıC"�ı C C";

which proves (5.10) if we fix ı < ". �

5.2. Quasi-modes construction and proof of L1 and L2 estimates . Now
we use linear combinations of u.D/

r and u.D/

`
as quasi-modes for the mean-field

Hamiltonian hDW. A proper smoothing (around respectively x1 D �L=2C c" and
x1 D L=2� c") is required. To this end, define a smooth localization function �r

such that

�r.x/D 0; x1 6 �L
2

C 2c";

�r.x/D 1; x1 > �L
2

C 3c";

0 6 �r.x/ 6 1;

and the corresponding �`.x/ D �r.�x1; x2; : : : ; xd /. Define then

 r WD �ru
.D/
r ;  ` WD �`u

.D/

`
; (5.12)

and
rr WD .hDW � �.D// r ; r` WD .hDW � �.D// `: (5.13)

A direct calculation gives

rr D �2r�r � ru.D/
r � .��r/u

.D/
r ; (5.14)
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and therefore

supp .rr/ � ¹x j 2c" 6 jx C xj 6 3c"º:

This means that  r and  ` are quasi-modes for hDW, the only error coming from
the region where, respectively, �r and �` differ from zero and one.

Lemma 5.4 (estimates for quasi-modes). We have, with T the tunneling parame-
ter (2.8),

krrkL2 D kr`kL2 6 C"T
1�"; (5.15)

jh r ;  ri � 1j D jh `;  `i � 1j 6 C"T
2�"; (5.16)

jh r ; rrij D jh `; r`ij 6 C"T
2�"; (5.17)

0 6 h r ;  `i 6 C"T
1�": (5.18)

Proof. As usual, we can consider only the right functions. To prove (5.15), let us
start from (5.14). Multiplying and dividing by e.1�"/dDW. � ;x/ we find

krrkL2 6 ke�.1�"/dDW. � ;x/.��r/e
.1�"/dDW. � ;x/u.D/

r kL2

C 2ke�.1�"/dDW. � ;x/.r�r/e
.1�"/dDW. � ;x/ru.D/

r kL2

6 C
�

ke.1�"/dDW. � ;x/u.D/
r kL2 C ke.1�"/dDW. � ;x/ru.D/

r kL2

�

� sup
2c"6x1CL=263c"

e�.1�"/dDW.x;x/:

The two norms inside the parenthesis were estimated in Proposition 5.2. To
estimate the supremum, we deduce from (5.8) that

sup
2c"6x1CL=263c"

e�.1�"/dDW.x;x/
6 sup

2c"6x1CL=263c"

e�.1�"/.2A. L
2

/�A.j L
2

Cx1j//

6 C"e
�2.1�"/A. L

2
/;

and this proves (5.15).

To prove (5.16) let us notice that

jh r ;  ri � 1j D
Z

Rd

.1� �2
r /ju.D/

r j2 dx 6

Z

2c"6x1CL=263c"

ju.D/
r j2 dx: (5.19)

We then argue as above by multiplying and dividing by e.1�"/dDW. � ;x/. The same
can be done to prove (5.17).
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Finally, let us prove (5.18) (notice that the positivity of the scalar product is
trivial). We write

h r ;  `i D
Z

�r�`u
.D/
r u

.D/

`
dx

6 sup
�L=2C2c"6x16L=2�2c"

e�.1�"/dDW.x;x/�.1�"/dDW.x;�x/

�
Z

�r�` e
.1�"/dDW. � ;x/u.D/

r e.1�"/dDW. � ;�x/u
.D/

`
dx:

Using the Cauchy–Schwarz inequality and then (5.9) we see that the integral
in the right-hand side is estimated by an "-dependent constant. To estimate the
supremum we write

sup
�L=2C2c"6x16L=2�2c"

e�.1�"/dDW.x;x/�.1�"/dDW.x;�x/

6 sup
�L=2C2c"6x160

e�.1�"/dDW.x;x/�.1�"/dDW.x;�x/

C sup
06x16L=2�2c"

e�.1�"/dDW.x;x/�.1�"/dDW.x;�x/

6 sup
�L=2C2c"6x160

e�.1�"/.2A. L
2

/�A.jL=2Cx1j/CA.jxCxj//

C sup
06x16L=2�2c"

e�.1�"/2A L
2

�A.jL=2�x1j/CA.jx�xj/;

where the last inequality follows from (5.6) and (5.8). However, since the function
A is monotone increasing, we have

A.jL=2C x1j/ 6 A.jx C xj/ and A.jL=2� x1j/ 6 A.jx � xj/;

and therefore we find

sup
�L=2C2c"6x16L=2�2c"

e�.1�"/dDW.x;x/�.1�"/dDW.x;�x/
6 e�2.1�"/A. L

2
/;

which completes the proof. �

Let us now define the orthogonal projections

P˙ WD juCihuCj C ju�ihu�j and P?
˙ D 1 � P˙:

Our aim is an estimate for the norm of P?
˙ r and P?

˙ `. Let us start with the
following

Lemma 5.5 (further bounds on �C). We have

j�C � �.D/j 6 C"T
1�":
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Proof. An upper bound is deduced by taking  r as trial function for the �C-min-
imization problem:

�C 6
1

h r ;  rih r ; hDW r i D �.D/ C h r ; rri
h r ;  ri 6 �.D/ C C"T

2�";

where the second inequality follows from (5.17) and (5.16). A suitable lower
bound, in turn, was already proven in (4.2), i.e.,

�C > 2h�x1>0uC; hDW�x1>0uCi � C"T
1�"

> �.D/ � C"T
1�";

where the second inequality follows once again by the variational principle for the
Dirichlet minimization. �

As a consequence of Lemma 5.5, and of our main results on the gaps (2.10)
and (2.11), we see that �.D/ is asymptotically close to �C (and therefore to ��),
and hence it is separated from the rest of the spectrum of hDW by a gap of order
one. We can then write

P?
˙ r D � 1

2�i

I

�

� 1

�.D/ � z
� 1

hDW � z
�

dz  r ;

where � is a closed contour in the complex plane that encircles �C, ��, and�.D/,
staying at a finite distance both from them and from the rest of the spectrum.
A simple calculation yields

P?
˙ r D � 1

2�i

I

�

1

.�.D/ � z/.hDW � z/
dz rr : (5.20)

By our choice of the contour we have

j�.D/ � zj�1
6 C; and k

�

hDW � z
��1kop 6 C

uniformly for z 2 �. Hence, recalling (5.15), we find

kP?
˙ rkL2 6 C"T

1�" and kP?
˙ `kL2 6 C"T

1�": (5.21)

Now, define

 C WD  r C  `

k r C  `kL2

and  � WD  r �  `

k r �  `kL2

: (5.22)
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We have
ˇ

ˇk r C  `k2
L2 � 2

ˇ

ˇ 6
ˇ

ˇk rk2
L2 C k `k2

L2 � 2C 2h r ;  `i
ˇ

ˇ 6 C"T
1�";

where the last inequality follows from (5.16) and (5.18). Similarly,
ˇ

ˇk r �  `k2
L2 � 2

ˇ

ˇ 6 C"T
1�":

Hence the norms in the denominators of (5.22) satisfy

k r C  `kL2 D
p
2CO.T 1�"/ and k r �  `kL2 D

p
2CO.T 1�"/;

and combining with (5.21) we deduce

 C D auC C bu� COL2.T 1�"/

for complex numbers a; b. But, since  C; uC are even under reflections across
x1 D 0 and u� is odd, this must reduce to

 C D uC COL2.T 1�"/:

Similarly
 � D u� COL2.T 1�"/:

These are our vindications of (1.12)–(1.13), as in [17]. We deduce from the above
that

juCj2 � ju�j2 D 2 ` r COL1.T 1�"/

and (2.12) then follows from (5.18).
To deduce (2.13) let us first recall that, if x1 > 0, then u�.x/ is positive by

Lemma 4.2, and uC.x/ is positive by general arguments. This allows to write
Z

R
d

jjuCj � ju�jj2 dx

D 2

Z

x1>0

juC � u�j2 dx

6 6

Z

x1>0

juC �  Cj2 dx C 6

Z

x1>0

j C �  �j2 dx C 6

Z

x1>0

j � � u�j2 dx:

The estimates for the first and third summand follow already from what we dis-
cussed above. For the second summand we write

Z

x1>0

j C �  �j2 dx 6
�

k r C  `k�1
L2 � k r �  `k�1

L2

�2
Z

x1>0

j r j2 dx

C
�

k r C  `k�1
L2 C k r �  `k�1

L2

�2
Z

x1>0

j `j2 dx:
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The first square bracket in the right-hand side is smaller than C"T
1�" by the

estimates above. For the integral of  ` we write

Z

x1>0

j `j2 dx 6

Z

x1>0

ju.D/

`
j2 dx

6 sup
06x16L=2�c"

e�2.1�"/dDW.x;�x/ke.1�"/dDW. � ;�x/u
.D/

`
k2

L2

6 C"T
1�";

where the last inequality follows from Lemma 5.1 and Proposition 5.2. This proves
inequality (2.13).

5.3. Proof of the L1 estimate. In order to prove the L1 proximity in (2.14) we
will improve the L2 result (2.13) to an estimate for the H 2 norms. Notice that, in
the notations of Proposition 3.7, the L2 convergence (2.13) implies

k�x1>0.uC�u�/k2
L2 6 C"T

1�" and k�x160.uCCu�/k2
L2 6 C"T

1�"; (5.23)

which also means that (3.10) holds with an improved rate. We will improve this
result to a higher Sobolev norm.

Proposition 5.6 (H 2 convergence). We have

k�x1>0.uC � u�/k2
H 2 6 C"T

1�"; (5.24)

and

k�x160.uC C u�/k2
H 2 6 C"T

1�": (5.25)

TheL1 estimate (2.14) is an immediate consequence of Proposition 5.6 thanks
to the Sobolev embedding

kf kL1.Rd / 6 Ckf kH 2.Rd /;

that holds for d D 1; 2; 3. In order to prove Proposition 5.6 we start with a Lemma.

Lemma 5.7 (commuting hDW and �x1>0).

khDW�x1>0.uC � u�/k2
L2 6 k�x1>0hDW.uC � u�/k2

L2 C C"T
1�":
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Proof. We have

h�x1>0.uC � u�/; h
2
DW�x1>0.uC � u�/i

D h�x1>0hDW.uC � u�/; �x1>0hDW.uC � u�/i
C hŒhDW; �x1>0�.uC � u�/; ŒhDW; �x1>0�.uC � u�/i
C 2hŒhDW; �x1>0�.uC � u�/; hDW�x1>0.uC � u�/i

D h�x1>0hDW.uC � u�/; �x1>0hDW.uC � u�/i
C 3hŒhDW; �x1>0�.uC � u�/; ŒhDW; �x1>0�.uC � u�/i
C 2hŒhDW; �x1>0�.uC � u�/; �x1>0.�CuC � ��u�/i:

We then have to estimate

Err1 D 3hŒhDW; �x1>0�.uC � u�/; ŒhDW; �x1>0�.uC � u�/
˛

;

Err2 D 2hŒhDW; �x1>0�.uC � u�/; �x1>0.�CuC � ��u�/i:

Since
ŒhDW; �x1>0� D ��x1>0 C 2.r�x1>0/ � r;

we deduce, using (A.2) and (A.5),

jErr1j 6

Z

j.��x1>0 C 2.r�x1>0/ � r/.uC � u�/j2

6 2

Z

j��x1>0j2 juC � u�j2

C 4

Z

jr�x1>0j2 jr.uC � u�/j2

6 C"T
1�":

The estimate of Err2 is similar, and this completes the proof. �

Proof of Proposition 5.6. Using Lemma 3.3 and then Lemma 5.7, we have

k��x1>0.uC � u�/k2
L2

6 khDW�x1>0.uC � u�/k2
L2 C Ck�x1>0.uC � u�/k2

L2

6 k�x1>0hDW.uC � u�/k2
L2 C Ck�x1>0.uC � u�/k2

L2 C C"T
1�"

D k�x1>0.�CuC � ��u�/






2

L2 C Ck�x1>0.uC � u�/






2

L2 C C"T
1�":

(5.26)

The norm k�x1>0.uC � u�/k2
L2 was already estimated in (5.23). To estimate the

first term in the right-hand side, we expand

k�x1>0.�CuC � ��u�/k2
L2 D �C C ��

2
� 2�C��h�x1>0uC; �x1>0u�i:
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Since (5.23) implies

�2h�x1>0uC; �x1>0u�i 6 �1C C"T
1�";

we deduce

k�x1>0.�CuC � ��u�/k2
L2 6

�C C ��

2
� �C�� C C"T

1�"

D 1

2
.�� � �C/

2 C C"T
1�"

6 C"T
1�";

where the last step follows from the upper bound in (2.10). This proves (5.24).
A reflection across the ¹x1 D 0º hyperplane sends the point �x1>0.uC � u�/ into
�x160.uC C u�/ and thus (5.25) also follows. �

Appendices

A. Tunneling terms

Here we deduce a variety of useful bounds from the decay estimates of Section 3.2:

Proposition A.1 (bounds on tunneling terms). Let R > 0 be a fixed number. For
any " > 0 there exist c"; C" such that, for L large enough,

Z

R
d

u`ur dx 6 C"T
1�"; (A.1)

Z

�R6x16R

ju˙.x/j2 dx 6 C"T
1�"; (A.2)

Z

�R6x16R

juex.x/j2 dx 6 C"T
1�"; (A.3)

Z

R
d

ru` � rur dx 6 C"T
1�"; (A.4)

Z

�R6x16R

jru˙.x/j2 dx 6 C"T
1�"; (A.5)

Z

�R6x16R

jruex.x/j2 dx 6 C"T
1�"; (A.6)



The Hartree functional in a double well 1773
Z

Rd

VDWu`ur dx 6 C"T
1�"; (A.7)

Z

x1>�R

ju`.x/j2dx D
Z

x16R

jur .x/j2 dx 6 C"T
1�"; (A.8)

Z

�R6x16R

ju˙.x/j2.Vr .x/ � VDW.x// dx

D
Z

�R6x16R

ju˙j2.V`.x/ � VDW.x// dx 6 C"T
1�";

(A.9)

Z

�R6x16R

juex.x/j2.Vr.x/ � VDW.x// dx 6 C"T
1�"; (A.10)

Z

�R6x16R

VDW.x/juC.x/j2 dx 6 C"T
1�"; (A.11)

Z

x1>�R

Vr ju`j2 dx D
Z

x16R

V`jur j2 dx 6 C"T
1�"; (A.12)

Z

�R6x16R

juC.x/j2.w � juCj2.x// dx 6 C"T
1�"; (A.13)

“

Rd �Rd

w.x � y/ju`.x/j2jur .y/j2 dx dy 6 C"T
1�": (A.14)

Proof. Inequality (A.1) was already proven in [23, Proposition (3.3)]. The main
point is to use the upper bounds in (3.6) and (3.7) in order to reduce the aim to
estimating an integral of the form

Ia D
Z

Rd

e�ajx�xj1Cs=2�ajx�xj1Cs=2

dx (A.15)

with a D .1C s=2/�1 � ", the " being used to absorb any polynomial correction
due to V . As said, the estimate of Ia can then be found in [23, Proposition (3.3)].
The integrals in (A.2) and (A.3) can in the same way be bounded by an integral
of the type Ia.

To prove (A.4) we write
Z

Rd

ru`rur dx D �
Z

Rd

u`�ur dx D
Z

Rd

u`.�r � Vr � �w � jur j2/ur dx:
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We can then reduce ourselves to an integral of the form (A.15) by slightly changing
the value of " in order to absorb the corrections coming from Vr and �w � jur j2.
The same holds for every other term from (A.5) to (A.13).

To prove (A.14) we use the fact that w is bounded with compact support to
write

“

R
d �Rd

w.x � y/ju`.x/j2jur .y/j2 dx dy

6 C

“

¹jx�yj6C º

ju`.x/j2jur .y/j2 dx dy

D C

“

¹jx�yj6C º\¹x160º

ju`.x/j2jur .y/j2 dx dy C C

“

¹jx�yj6C º\¹x1>0º

ju`.x/j2jur .y/j2 dx dy:

The second summand is bounded by C
R

x1>0 ju`j2, and hence a bound for it
follows from (A.8). For the first summand we write

“

¹jx�yj6C º\¹x160º

ju`.x/j2jur .y/j2dxdy 6

“

¹jx�yj6C º\¹x160º\¹y16C º

ju`.x/j2jur .y/j2dxdy:

The right-hand side is estimate by C
R

x160
jur j2, for which we can again use (A.8).

�

B. Higher spectrum

Most of the proof of Theorem 2.2 consists of suitable adaptations of the arguments
already used to derive Theorem 2.1. We only discuss the modifications due to the
fact that higher eigenvalues of the left and right wells are typically degenerate (see
[15, 10] and references therein for more general situations). We do not pursue
convergence rates nor the dependence on k (i.e. we only deal with energies O.1/
apart from the ground state when L ! 1).

The case k D 1 of Theorem 2.2 follows from the proof of Theorem 2.1). We
proceed by induction and sketch the proof that the same statements holds for k
provided we know it does for all smaller integers. The necessary bounds on the
decay of eigenfunctions are similar to what was discussed previously and shall not
be reproduced.

Using the induction hypothesis one can construct a trial state

u`
k

C ur
kp

2
C correction;
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where u`
k

is an eigenfunction corresponding to the k-th eigenvalue of h` and
ur

k
its reflection. The correction term can be made very small, and renders the

above orthogonal to all eigenfunctions of hDW corresponding to eigenvalues below
�2M.k�1/C1. Evaluating the energy of the trial state using decay estimates as in
the main text yields

�2M.k�1/C1 6 �`
k C o.1/:

Localizing the corresponding eigenfunction in the left and right wells as in the
main text one deduces that u2M.k�1/C1 converges in the left well to U `

k
, an

eigenfunction corresponding to the k-th eigenvalue of h`. In view of the symmetry
of the double-well Hamiltonian we are at liberty to assume that u2M.k�1/C1 is even
or odd with respect to reflections across the potential barrier. Hence u2M.k�1/C1

converges in the right well to ˙ the reflection of U `
k
. We assume it converges

to U `
k
, with obvious modifications in the sequel if it is the other way around.

Next one can construct a trial state of the form

U `
k

� U r
kp

2
C correction,

where U `
k

is the eigenfunction h` that u2M.k�1/C1 converges to in the left well
and U r

k
is its reflection. As above this yields an upper bound to �2M.k�1/C2 and

allows to deduce that a corresponding eigenfunction must converge in the left well
to some Qu`

k
, an eigenfunction corresponding to the k-th eigenvalue of h`. Using the

symmetry with respect to reflections and what has just been proved for u2M.k�1/C1

we deduce that either Qu`
k

? U `
k

and u2M.k�1/C2 converges to ˙ its reflection in
the right well or Qu`

k
D U `

k
and u2M.k�1/C2 converges to � its reflection in the right

well.
Assume the latter situation occurs, again with appropriate modifications to the

sequel if it is the former. One can then bound �2M.k�1/C3 from above with a trial
state of the form

v`
k

C vr
kp

2
C correction,

where v`
k

is an eigenfunction of h` orthogonal to the U `
k

just found, and vr
k

its
reflection. Similarly as above we deduce that u2M.k�1/C3 must converge to some
V `

k
in the left well and to ˙ its reflection in the right well, with V `

k
? U `

k
an eigen-

function for the k-th eigenvalue of h`. The process can then be repeated induc-
tively, and the claimed results follow. The induction stops when all possibilities of
constructing mutually orthogonal even/odd trial states for the double-well Hamil-
tonian out of the eigenstates of the single wells have been exhausted, that is after
m.k/ iterations. One thus obtains items (i) and (iii) of the Theorem by arguments
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similar to the main text. Item (ii) then follows as in Section 4.4 by localizing the
next eigenfunction of hDW in the left/right wells. Since said eigenfunction must
be orthogonal to all lower eigenfunctions of hDW, we deduce from what has been
proved so far that the localizations must to leading order be orthogonal to the sub-
space of the single wells Hamiltonians corresponding to all eigenvalues up to the
k-th one. The claimed energy gap follows.
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