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Abstract. We derive upper bounds for the eigenvalues of the Kirchhoff Laplacian on a

compact metric graph depending on the graph’s genus g. These bounds can be further

improved if g D 0, i.e., if the metric graph is planar. Our results are based on a spectral

correspondence between the Kirchhoff Laplacian and a particular combinatorial weighted

Laplacian. In order to take advantage of this correspondence, we also prove new estimates

for the eigenvalues of the weighted combinatorial Laplacians that were previously known

only in the unweighted case.
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1. Introduction

The spectrum of quantum graphs – self-adjoint differential operators, typically

Schrödinger operators, defined upon metric graphs – has been studied very ac-

tively in recent years. In this article, we are in particular interested in the spectral

properties of the Kirchhoff Laplacian �. If the metric graph is equilateral, i.e.

all edges have the same length 1 the spectral properties of � are well-known: in

[39, 10] it was proved that the spectral problem of the Kirchhoff Laplacian on an

equilateral metric graph can be reformulated explicitly as a spectral problem of

the associated, so-called normalized Laplacian Lnorm. A detailed discussion of

the spectral properties of the normalized Laplacian can be found in [11]. For in-

stance, von Below proved that, if the metric graph is additionally connected and
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compact, the spectral gaps – the lowest positive eigenvalues – of � and Lnorm are

related via

�2.�/ D arccos.1 � �2.Lnorm//
2 (1)

if �2.Lnorm/ 2 Œ0; 2/. Unfortunately, the techniques leading to (1) cannot be

extended to arbitrary graphs and no analogous expression for non-equilateral

graphs is known. This is why one is particularly interested in estimates for the

eigenvalues of� on general compact metric graphs that depend on combinatorial

or metric quantities of the graph. Several bounds on the eigenvalues of � have

been shown for general graphs since the Faber–Krahn-type bounds proved in [32]

for the spectral gap and [14] for arbitrary eigenvalues: in [20] it was discussed

which combinations of specific metric and combinatorial quantities allow for

lower and upper bounds on the spectral gap of �; while many of these bounds

are sharp, it is known that improved bounds hold for special classes of graphs,

like trees [34], highly connected graphs [4, 6], or pumpkin chains [9].

In this article, we discuss the spectral properties induced by the lowest genus g

of an oriented and closed surface the metric graph can be embedded in: if for

instance g D 0, then the metric graph is planar, i.e., it can be drawn on the

surface of a ball, or equivalently the Euclidean plane without self-crossings. More

precisely, we are going to derive upper bounds for the eigenvalues of the Kirchhoff

Laplacian on metric graphs of arbitrary genus.

While planar graphs are fundamental objects of topological graph theory (see

for instance [28]), to the best of our knowledge the influence of planarity – or,

more generally, embedding features – on the spectrum of quantum graphs has

never been studied so far. This is in sharp contrast to the theory developed by

Spielman and Teng in [36] – we refer especially to their bound

�2.L/ � 8
dmax

jVG j
: (2)

on the spectral gap for the unweighted LaplacianL on combinatorial planar graphs

[35, Theorem 3.3] where dmax is the maximum degree of the vertices of G. Their

work had ground-breaking impact on numerical computing and machine learning

and was followed by a vast amount of research [18, 8, 19, 1] extending their

results to higher order eigenvalues and graphs of higher genus. As it is going

to be important for later discussion, we specifically single out the spectral bound

obtained by Amini and Cohen-Steiner in [1]: they proved existence of a generic

constant C > 0 so that

�k.Lnorm/ � C
dmax.g C k/

jVG j
; k D 1; : : : ; jVG j: (3)
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holds for the k-th ordered eigenvalue of the normalized Laplacian Lnorm on a

combinatorial graph of genus g and a generic constant C > 0 and – as we will

see in Remark 4.7 – their estimate can be seen as a normalized higher genus and

higher order analogue of the estimate (2).

Before we are going to state our main results, let us also remark that eigenvalue

bounds in dependence of the genus are also well-established in the spectral theory

of Laplacians on manifolds: following previous works [16, 40, 22], it was shown

by Hassannezhad [15] that the k-th eigenvalue of the Laplace–Beltrami operator

�M D �divM ı rM on a Riemannian surface .M; g/ of genus g admits the upper

bound

�k.�M / � C
.gC k/

Volg.M/
; (4)

where C > 0 is a generic constant and Volg.M/ denotes the measure of M with

respect to the Riemannian metric g.

1.1. Statement of the main results and structure of the article. Let G D .G; `/

be a compact and connected metric graph with underlying combinatorial graph

G D .VG ; EG/ and a weight function ` that assigns to each edge e 2 EG its

length `e . For a vertex v 2 VG let Ev denote the set of edges initiating and

terminating in v. The Kirchhoff Laplacian�G on G is the operator acting edgewise

as the negative second derivative on the space of functions that are continuous and

satisfy Kirchhoff conditions in every vertex v 2 VG ; see Section 2.1 for details.

We say that G is of (topological) genus g � 0 if so is its underlying combinatorial

graph G. If G is of genus g, we shall show that the first jVG j eigenvalues �k.�G/

of �G satisfy

�k.�G/ � C
d

Œ`�
max.g C k/

`2
minL

; k D 1; : : : ; jVG j; (5)

where C > 0 is some generic constant, `min D mine2EG
`e is the minimal edge

length of G,L D
P

e2EG
`e is the total length ofG and d `

max D maxv2VG

P

e2Ev
`e

is the maximal degree of the vertices of G with respect to the edge lengths. We

also derive an upper bound for the eigenvalues of �G of higher order: if G is of

genus g we shall show that

�k.�G/ � C
dmax.ˇ C k � 1/.g C k/

L2
; k �

L

`min
� ˇ C 1; (6)

where additionally to the previously mentioned combinatorial and metric quan-

tities dmax is the maximal combinatorial degree and ˇ is the first Betti number
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of G, i.e., the number of independent cycles in G. The estimates (5) and (6) can be

thought as quantum graph versions of the estimate (4) and, in fact, (4) will be an

important ingredient for the proof of the estimates. They are going to be proved

in Theorem 4.8 and Theorem 4.9 respectively.

We are particularly interested in the choice g D 0, i.e. G is planar. Section 3

will be mainly devoted to proving, in the planar case, the stronger bound

�2.�G/ � C
d

Œ��
max

L
(7)

for the spectral gap of�G. Here d
Œ��
max denotes the maximum degree of the vertices

of G with respect to the inverse weight � D 1
`
, that is d

Œ��
max WD maxv2V

P

e2Ev

1
`e

.

In the planar case, we are able to deliver an explicit estimate on C , see Theo-

rem 3.11. While our estimate on C is itself certainly not optimal, we show in

Remark 3.12 that the asymptotic bound

�2.�G/ D O
�d

Œ��
max

L

�

as
d

Œ��
max

L
!1

is sharp. Let us also point out that the maximum degree d
Œ��
max, which to our

knowledge has not yet been considered as a parameter in spectral estimates for

metric graphs, tends towards 1 when the length of one edge shrinks to 0. This

suggests that our spectral estimate (7) is rather rough when the graph’s edge

lengths vary strongly. However, in Section 3.3 we will discuss a number of

examples to show that, in fact, (7) qualitatively improves known spectral estimates

for some classes of metric graphs if the edge lengths are bounded from below.

In order to prove estimates (5), (6), and (7), we make use of a spectral corre-

spondence between the Kirchhoff Laplacian and a particular weighted combina-

torial Laplacian to reduce the spectral problem to the combinatorial case. This

correspondence has been studied very extensively by Exner, Kostenko, Malamud,

and Neidhardt [13] in the case of infinite graphs. Although, for non-equilateral

graphs, there this no explicit formula of the form (1) relating the eigenvalues of�G

and this combinatorial Laplacian, there are estimates comparing their eigenvalues.

Such an estimate was recently discovered by Kostenko and Nicolussi in [23] for

the bottom of the spectrum of the Kirchhoff Laplacian on infinite graphs and, in

fact, we will improve and extend their result in Section 2.3. This will allow us

to reduce the spectral estimates (5), (6) and (7) to spectral estimates for weighted

combinatorial Laplacians.

The combinatorial setting we are going to consider is the following: given a

finite graph G D .V; E/, the weighted combinatorial Laplacian Lm;� associated
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with a vertex weight m and an edge weight � on G is the operator given by

.Lm;�f /.v/ D
1

m.v/

X

eD¹u;vº2Ev

�.e/.f .v/� f .u//; v 2 V;

defined on the space of functions f WV ! C – see Section 2.2 for a short introduc-

tion to the weighted combinatorial Laplacian. We also refer to [5] for Cheeger-type

estimates, [25] for estimates in dependence of the graphs diameter and references

given therein for further recent research results on spectral estimates for weighted

combinatorial Laplacians. IfG is planar, we show in Theorem 3.9 that the spectral

gap �2.Lm;�/ satisfies the upper bound

�2.Lm;�/ � 8
d

Œ��
max

m.V /
(8)

provided m does not concentrate too strongly in small regions of G; more pre-

cisely, we have to assume that

2 .m.u/Cm.v// < m.V / (9)

holds for any pair of adjacent vertices u; v 2 V – here m.V / D
P

v2V m.v/ de-

notes the total measure of G and d
Œ��
max D maxv2V

P

e2Ev
�.e/ denotes the maxi-

mum degree of the vertices of G with respect to the weight �. The condition (9),

which we regard as a kind of smoothness of the weight function m, seems to be

new in the literature. We will see that a spectral bound (26) cannot hold for gen-

eral vertex weights (see Remark 3.10). However, in the special unweighted case

m � 1 and � � 1 – where the estimate (8) coincides with the estimate (2) by

Spielman and Teng [35, Theorem 3.3] – the condition (9) does not need to be

imposed, as we will discuss in Remark 3.10. The proof of (8), which is strongly

inspired by the techniques used in [35], uses a representation for planar graphs

via so-called circle packings (see Section 3.1) on the unit sphere in R
3. The main

idea in the proof is to deform this circle-packing using a conformal map on the

sphere to construct a sufficiently good test function in the Courant–Fischer theo-

rem for �2.Lm;�/. During this deformation process our main task is going to be

the identification of the condition (9) as a geometric condition for the existence of

a certain type of circle packing that represents the weighted graph structure of G

with the vertex weight m (see Lemma 3.5).

In the higher genus case – in Section 4 – we consider a special version of the

weighted Laplacian Lm;�: for an edge weight ! on G, we consider the weighted

normalized Laplacian on G given by

.L!
normf /.v/ D

1

d
Œ!�
v

X

eD¹u;vº2Ev

!.e/.f .v/� f .u//; v 2 V
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(where d
Œ!�
v D

P

e2Ev
! is the weighted degree of the vertex v with respect

to the edge weight !) and show in Theorem 4.5 that its ordered eigenvalues

0 D �1.L
!
norm/ < �2.L

!
norm/ � �jVG j.L

!
norm/ satisfy

�k.L
!
norm/ � C

d
Œ!�
max.gC k/

P

e2E !.e/
; k D 1; : : : ; jVGj; (10)

with the maximal degree d
Œ!�
max D maxv2V d

Œ!�
v and a generic constant C > 0.

In the proof of this estimate, we construct – inspired by the techniques used by

Amini and Cohen-Steiner in [1], and extending them to the weighted case – a

Riemannian metric on a closed and oriented surface of genus g and a certain

topological double cover of the surface, so that the vicinity graph associated with

this double cover (see Section 4.2 for details) reflects not only the combinatorial

structure of G but also the weighted structure induced by !. From there we can

exploit a transfer principle that was introduced in [1] to reduce the estimate (10)

to the estimate (4) by Hassannezhad. The main difference in the construction

compared with the one by Amini and Cohen-Steiner lies in the choice of the

Riemannian metric, as we need to make sure that the Riemannian measure of the

single double covering elements – which are chosen so that they are isomorphic

to compositions of Euclidean triangles – correspond of the weight ! while still

preserving a certain convexity condition of the covering elements – see Section 4.3

for this construction.

2. Preliminaries on combinatorial and metric graphs

2.1. Compact metric graphs. A compact metric graph G is the object obtained

after gluing the end points of a finite number of bounded intervals in a graph-

like way – see [30] for a rigorous definition. Usually, the set of intervals is

referred to as the edge set of G whereas the set of glued end points is referred

to as the vertex set of G. As this gluing process naturally defines a combinatorial

graph structure, we shall write G D .G; `/, where G D .VG ; EG/ is a connected

combinatorial graph with finite vertex set V D VG and finite edge set E D EG

and `WE ! .0;1/; e 7! `e is a length function that assigns the length `e to

a given edge e 2 E. We point out that this representation of G is not unique

since adding vertices on the edges changes the underlying combinatorial graph

whereas the metric graph remains the same. Throughout this paper we assume

that G is connected as a topological space since the study of disconnected graphs is

usually reduced to the study of its connected components. For notational purposes,
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we shall also fix an orientation on the combinatorial graph G – let us however

emphasize that the analytic and spectral properties of the objects considered in

this paper do not depend on the choice of this particular orientation. For a given

edge e 2 E, we write einit for its initial vertex and eterm for its terminal vertex and

for each vertex v 2 V let Ev
init and Ev

term be the sets of edges initiating from v and

terminating in v respectively. Then the metric degree d
Œ`�
v of a vertex v 2 V is

given by

d Œ`�
v WD

X

e2Ev
init

`e C
X

e2Ev
term

`e :

(Note that einit D eterm holds if and only if e is a loop, so loops incident to v are

counted twice in the sum above.) The Hilbert space of square-integrable functions

on G is

L2.G/ WD
M

e2E

L2.0; `e/

equipped with the scalar product given by

.';  /L2.G/ WD
X

e2E

le
Z

0

'e.xe/ N e.xe/ dxe

for ' D .'e/e2E and  D . e/e2E in L2.G/. The Kirchhoff Laplacian �G in

L2.G/ is the operator acting edgewise as the negative second derivative, i.e.

�G' D .�'
00
e /e2E

defined on the space of functions ' D .'e/e2E , so that 'e 2 H
2.0; le/ for all

e 2 E and the following two conditions are satisfied for every vertex v 2 V :

´

' is continuous at v;
P

e2Ev
term

'0
e.`e/ �

P

e2Ev
init
'0

e.0/ D 0:
(11)

The Kirchhoff Laplacian is a nonnegative self-adjoint operator in L2.G/ with

discrete spectrum. The constant functions lie in the null space of �G and, as G

is connected, 0 is an eigenvalue of �G of multiplicity 1. For a proof of these facts

and further information on the analytic properties of the Kirchhoff Laplacian, we

refer to the text books [7, 29]. We shall denote the ordered eigenvalues of �G,

counted with multiplicities, by

0 D �1.�G/ < �2.�G/ � �3.�G/ � � � � �! 1:
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The quadratic form QG associated with �G is given by

QG.'/ D
X

e2E

`e
Z

0

j'0
e.xe/j

2 dxe

and its domain is the space consisting of all functions ' D .'e/e2E with 'e 2

H 1.0; `e/ for all e 2 E that are continuous in every vertex v 2 V .

2.2. Weighted combinatorial graphs. Let G D .V; E/ be a connected graph

with finite edge and vertex sets. In the combinatorial setting we shall assume that

the graph G is simple. This assumption simplifies some notation and is actually

no restriction in the case of metric graphs, since – as we mentioned before – we

may always add “dummy” vertices on loops or parallel edges to obtain a simple

graph, which does not change the spectral properties of the Kirchhoff Laplacian

(see [7, Remark 1.4.2]). We may thus identify each edge e 2 E with the two

element set ¹u; vº of its incident vertices u; v 2 V . Suppose mWV ! .0;1/ is a

positive weight functions on the vertex set. We think of .V;m/ as a finite measure

space setting m.U / WD
P

u2U m.u/ for subsets U � V . Let `2
m.V / denote the

vector space of complex valued functions f WV ! C equipped with the weighted

scalar product given by

.f; g/`2
m.V / D

X

v2V

m.v/f .v/g.v/:

and its induced norm given by

kf k2
`2

m.V /
D

X

v2V

m.v/jf .v/j2: (12)

Moreover, let �WE ! .0;1/ be a positive weight function on the edge set. The

weighted degree of a vertex v 2 V with respect to � is d
Œ��
v D

P

e2Ev
�.e/ and

we set d
Œ��
max WD maxv2V d

Œ��
v . On `2

m.V / we consider the nonnegative, self-adjoint

operator Lm;� W `
2
m.V /! `2

m.V / given by

.Lm;�f /.u/ D
1

m.u/

X

eD¹u;vº2Ev

�.e/.f .u/� f .v// (13)

for u 2 V . We refer to Lm;� as the weighted combinatorial Laplacian. Its associ-

ated quadratic form qW `2
m.V /! Œ0;1/ is given by

q.f / D
X

eD¹u;vº2E

�.e/jf .u/� f .v/j2: (14)
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The ordered eigenvalues of Lm;�, counted with multiplicities, shall be denoted by

0 D �1.Lm;�/ < �2.Lm;�/ � �3.Lm;�/ � : : : � �jV j.Lm;�/:

(Note that 0 is an eigenvalue of L of multiplicity 1, as G is connected.) It will

also be convenient to consider vector-valued functions. For d 2 N let `2
m.V IC

d /

be the space of vector-valued functions f WV ! C
d . On `2

m.V IC
d / we consider

the norm k � k`2
m.V;Cd / and the quadratic form q given by the expressions in (12)

and (14), where we replace the absolute value on C with the Euclidean norm on

C
d respectively. For the spectral gap �2.Lm;�/ of Lm;� we have the formula

�2.Lm;�/ D inf
° q.f /

kf k2
`2

m.V ICd /

ˇ

ˇ

ˇ
f 2 `2

m.V IC
d / n ¹0º;

X

v2V

m.v/f .v/ D 0
±

:

(15)

For d D 1 this is the classical Courant–Fischer principle for the spectral gap

ofLm;�. Spielman and Teng [35, Lemma 3.1] proved that this variational principle

can be extended to vector-valued test functions in the unweighted case (m � 1;

� � 1) and their proof can easily be generalized to the weighted case.

2.3. Spectral correspondence between metric and combinatorial graphs.

For simplicity of notation we will again restrict ourselves to simple graphs in this

section. As we mentioned in the introduction, the proof of our main results in

this paper make use of the correspondence between Kirchhoff and a related com-

binatorial Laplacian. If the metric graph G is equilateral (` � 1), this duality is

well-known [39, 10], where the vertex and edge weights of the related Laplacian

– the unweighted normalized Laplacian – are given by m.v/ D dv D jEvj and

�.e/ D 1. For general connected and compact metric graphs we consider the

weighted combinatorial Laplacian Lm;� with the weight given by

m.v/ D d Œ`�
v D

X

e2Ev

`e �.e/ D
1

`e

: (16)

We can refer to [13, 23] for further details on the common analytical and spectral

properties of�G andLm;�. Our aim is to derive an optimal estimate that compares

the eigenvalues of these two operators. Our proof is based on the following abstract

result: it is probably already known, but we could not find an appropriate reference

for it.
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Proposition 2.1. SupposeH1; H2 are two Hilbert spaces and J WH1 ,! H2 is an

injective linear bounded operator. For j D 1; 2, let Aj be a lower semibounded

self-adjoint operator onHj with associated quadratic form qj and suppose thatA2

has discrete spectrum. Furthermore, we assume that there are constants ˛; ˇ > 0,

so that

(i) kJxk2H2
� ˛kxk2H1

for all x 2 H1,

(ii) Jx 2 D.q2/ and q2.J x/ � ˇq1.x/ for all x 2 D.q1/.

Then A1 has discrete spectrum and we have

�k.A2/ �
ˇ

˛
�k.A1/; k D 1; 2; : : : (17)

for the ordered eigenvalues �1.Aj / � �2.Aj / � � � �, counting multiplicities, of Aj

for j D 1; 2 respectively.

Proof. After restricting ourselves to the closed subspace zH2 WD J.H1/ and the

self-adjoint operator zA2 associated with the quadratic form Qq2 WD q2jD.q2/\ zH2
on

zH2 we may assume that J is surjective and, thus, an isomorphism by (i). (Note

that passing to zH2 and zA2 preserves the discreteness of the spectrum and only

increases the eigenvalues of A2.)

Then, by (i) and (ii),

.D.q1/; k � kq1
/ .D.q2/; k � kq2

/

.H1; k � kH1
/ .H2; k � kH2

/

 - !
JjD.q1/

 
-

! I1  
-

! I2

 

!
�

J

is a commutative diagram of linear bounded operators, where k � kqj
denotes the

norm induced by the quadratic form qj as well as the scalar product on D.qj /

and Ij WD.qj / ! Hj is the canonical embedding for j D 1; 2 respectively. As

A2 has discrete spectrum, I2 is a compact embedding. This implies – using the

commutativity of the diagram above and the fact that J is an isomorphism –

that I1 is compact, which in turn implies that A1 has discrete spectrum. Finally,

the eigenvalue estimate (17) follows from the Courant–Fischer theorem for the

eigenvalues of A1 and A2 and the injectivity of J . �
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Corollary 2.2. Let G D .G; `/ be a connected, simple and compact metric graph.

Let Lm;� be the weighted combinatorial Laplacian onG with respect to the vertex

weight m and the edge weight � defined in (16). Then the eigenvalues of �G and

Lm;� satisfy the inequality

�k.�G/ �
�2

2
�k.Lm;�/; k D 1; : : : ; jV j: (18)

Proof. We consider the linear embedding J W `2
m.V / ,! L2.G/ that assigns a given

function f 2 `2
m.V / the edgewise trigonometric function Jf D .'e/e2E 2

D.QG/ given by

'e.xe/ D
f .einit/C f .eterm/

2
C
f .einit/ � f .eterm/

2
cos

�xe�

`e

�

for e 2 E and xe 2 Œ0; `e�. After deriving the respective L2-norms of 'e and '0
e

one obtains

kJf k2
L2.G/

D
X

e2E

`e

8
.3jf .eterm/j

2 C 2Re.f .eterm/f .einit//C 3jf .einit/j
2/

�
1

4

X

e2E

`e.jf .eterm/j
2 C jf .einit/j

2/

D
1

4

X

v2V

d Œ`�
v jf .v/j

2 D
1

4
kf k`2

m.V /

and

QG.Jf / D
�2

2

X

e2E

1

`e

jf .eterm/ � f .einit/j
2 D

�2

8
q.f /:

We can hence apply Proposition 2.1 with the operators A1 D Lm;� and A2 D �G,

and applying (17) with ˛ D 1
4

and ˇ D �2

8
proves the claim. �

Remarks 2.3. (i) Our estimate (18) is in line with von Below’s formula (1). As

arccos.1 � �/2 � �2

2
� holds for each � 2 Œ0; 2�, (1) implies that �2.�G/ �

�2

2
�2.Lnorm/ if G is equilateral.

(ii) A slightly weaker version of (18) was recently proved by Kostenko and

Nicolussi [23, Lemma 2.10] in the setting of infinite metric graphs: they have

showed that the estimates

inf �.�F
G / � 6 inf �.LF

m;�/ and inf �ess.�
F
G / � 6 inf �ess.L

F
m;�/
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hold for the bottom of the (essential) spectra of the Friedrichs extensions�F
G

and

LF
m;� of compactly supported versions of the Kirchhoff Laplacian and discrete

Laplacian respectively. To obtain this result they have chosen edgewise linear

functions in the Courant–Fischer theorem, rather than edgewise trigonometric

functions. Our proof also applies to this case. Indeed, it can be shown that the

estimates

inf �.�F
G / �

�2

2
inf �.LF

m;�/ and inf �ess.�
F
G / �

�2

2
inf �ess.L

F
m;�/

hold. Furthermore, the statement of Corollary 2.2 also holds for the eigenvalues

of �F
G

and LF
m;� on infinite graphs if �F

G
has discrete spectrum.

(iii) The estimate (18) is in fact sharp for all k. In order to see this, we consider

the equilateral star graph Sn with n edges of constant length ` � 1. The smallest

nC1 eigenvalues of�Sn
are 0, �2

4
(of multiplicity n�1) and �2. The eigenvalues

of the corresponding normalized Laplacian are 0, 1 (of multiplicity n � 1) and 2.

Thus, equality is achieved in (18) for k D nC 1.

3. Eigenvalue bounds for planar graphs

3.1. A technical tool: circle packings for planar graphs. We recall that a fi-

nite graph G D .V; E/ is called planar if there exists a drawing of G in the plane,

such that every edge in E is represented by a Jordan curve and any two of these

Jordan curves only intersect at their respective endpoints if the associated edges

are incident. Although this classical definition of planarity is based on topological

concepts, a purely combinatorial characterization of planarity is available: Kura-

towski’s theorem [24] states that a finite graph G D .V; E/ is planar if and only

if a subgraph of G is a subdivision of the complete graph K5 or of the complete

bipartite graph K3;3. Here, a subdivision of some graph G is a graph obtained af-

ter successively inserting vertices on the edges of G. A different, more geometric

concept to characterize planar graphs is stated in the circle packing theorem by

Koebe, Andreev, and Thurston [21, 2, 3, 37]:

Theorem 3.1. A simple, finite graphG is planar if and only if there exists a family

.Dv/v2V of closed disks Dv � R
2, such that the following holds for any two

vertices v ¤ u in V :

(i) if v and u are adjacent, the disks Dv and Du intersect in exactly one point;

(ii) if v and u are not adjacent, the disks Dv and Du are disjoint.

In this case, we call .Dv/v2V a univalent circle packing of G in the plane.
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An example of a circle packing for the complete graph K4 is depicted in

Figure 1. Let us transfer the concept of circle packings to the unit sphere:

Definition 3.2. A subset k of the unit sphere S2 � R
3 is called a circular line, if

it is the non-trivial intersection of S2 with a hyperplaneH � R
3. (By non-trivial

we mean that k is neither empty nor just one point). A connected, closed subset

C � S2 is called a spherical cap, if its boundary in S2 is a circular line.

Figure 1. A univalent circle packing for the complete graph K4.

Remark 3.3. If C is a spherical cap bounded by a circular line k, there exists

exactly one point p.C / 2 C with equal Euclidean distance to any point in k. We

call p.C / the center and r.C / the radius of C . Let us emphasize that r.C / is the

Euclidean distance in R
3, not the geodesic distance on the sphere. The surface

area of C is given by � � r.C /2.

The notation introduced in Definition 3.2 and Remark 3.3 is depicted in Fig-

ure 2.

A circle packing in S2 is a family C D .Cv/v2V of spherical caps in Cv � S
2

over some finite index set V . It is called univalent if the interiors of the caps in

C are mutually disjoint. Given a circle packing C D .Cv/v2V in S2 we define its

intersection graph as the simple graph G D .V; E/ with edge set

E D
®

¹u; vº j u; v 2 V; u ¤ v and Cu \ Cv ¤ ;
¯

:
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C
r.C/

p.C/

k

Figure 2. A spherical cap on S2.

The stereographic projection maps disks in the plane to spherical caps in

the sphere and vice versa (see Section 3.1.1). Therefore, the Koebe–Andreev–

Thurston theorem can be reformulated by means of circle packings in the sphere

in the following way:

Corollary 3.4. A simple, finite graph is planar if and only if it is the intersection

graph of a univalent circle packing in the unit sphere.

This reformulation of the circle packing theorem is a strong tool in the con-

struction of good separators for planar graphs (see [26, 27]). In our case we will

use the circle packing representation to construct a test function in the Courant–

Fischer theorem (15). Note that the circle packing C in Corollary 3.4 is certainly

not unique, since any bijective and conformal map f WS2 ! S2 maps C to a differ-

ent circle packing with the same intersection graph G. We will benefit from this

non-uniqueness, as it enables us to adjust the circle packing to the vertex weight

m. The main task of this subsection will be the proof of the following technical

lemma:

Lemma 3.5. Let C D .Cv/v2V be a univalent circle packing in S2 and let

mWV ! .0;1/ be a positive weight function on V with

2.m.u/Cm.v// < m.V / for all u; v 2 V with Cu \ Cv ¤ ;: (19)
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Then there exists a homeomorphism f WS2 ! S2, that maps spherical caps to

spherical caps, such that the (univalent) image circle packing zC D .f .Cv//v2V

satisfies

X

v2V

m.v/p.f .Cv// D 0: (20)

3.1.1. Circle-preserving maps and the proof of Lemma 3.5. The aim of this

section is to prove Lemma 3.5. We begin by introducing some notation: for ˇ 2 S2

let Hˇ denote the affine hyperplane in R
3 tangential to the unit sphere S2 at the

point ˇ, that is

Hˇ WD ¹y 2 R
3 j hy � ˇ; ˇi D 0º:

Furthermore, let �ˇ WHˇ ! S2 n ¹�ˇº be the stereographic projection ofHˇ onto

S2, that is

�ˇ .y/ D
4

jˇ C yj2
.ˇ C y/ � ˇ

for y 2 Hˇ and

��1
ˇ .z/ D

1

1C hz; ˇi
.ˇ C z/ � ˇ

for z 2 S2n¹�ˇº. Here h�; �i denotes the Euclidean scalar product on R
3. With the

usual convention �ˇ .1/ D �ˇ the projection �ˇ extends to a homeomorphism

�ˇ WHˇ [ ¹1º ! S2. The stereographic projection is circle-preserving in the

following sense:

(1a) if k is a circular line in Hˇ , then �ˇ .k/ is a circular line in S2;

(1b) if g is a straight line in Hˇ , then �ˇ .g/ [ ¹�ˇº is a circular line in S2;

(2) if k0 is a circular line in S2, then either �ˇ .k
0/ is a circular line in S2, if

�ˇ … k0, or �ˇ .k
0/ n ¹1º straight line in Hˇ , if �ˇ 2 k0.

A geometric proof of these facts can be found in [17, §36]. Additionally, for � > 0

we consider the dilation D�
ˇ

on Hˇ with centre ˇ and factor �, i.e.

D�
ˇ .y/ D ˇ C �.y � ˇ/

for y 2 Hˇ . Again we extend D�
ˇ

to a homeomorphism

D�
ˇ WHˇ [ ¹1º �! Hˇ [ ¹1º
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via D�
ˇ
.1/ D 1, that maps straight lines to straight lines and circular lines to

circular lines. For arbitrary � > 0 and ˇ 2 S2 we set

g�
ˇ WD �

�1
ˇ ıD

�
ˇ ı �ˇ WS

2 �! S2:

Then g�
ˇ

is a homeomorphism, that maps circular lines to circular lines. Moreover,

the map

.0;1/� S2 � S2 �! S2; .�; ˇ; z/ 7�! g�
ˇ .z/

is continuous.

Next, we shall study the behavior of g�
ˇ

as �! 0:

� for ˇ; z 2 S2 with z ¤ �ˇ and for sequences .ˇn/n � S
2; .zn/n � S

2 and

.�n/n � .0;1/ with

.ˇn; �n; zn/! .ˇ; 0; z/;

we have

g
�n

ˇn
.zn/! ˇ

as n!1;

� contrariwise, for z D �ˇ we have g�
ˇ
.z/ D �ˇ for all � > 0.

Therefore we define the limit map g0
ˇ
WS2 ! S2 for ˇ 2 S2 by

g0
ˇ .z/ D

´

�ˇ if z D �ˇ;

ˇ else,

for z 2 S2. With this extension the map Œ0;1/�S2�S2 ! S2; .�; ˇ; z/ 7! g�
ˇ
.z/

is continuous on the relatively open subset Œ0;1/�S2�S2n¹.0; ˇ;�ˇ/ j ˇ 2 S2º.

An immediate conclusion of this continuity is the following

Lemma 3.6. Let K;L � S2 be compact subsets, such that z ¤ �ˇ holds for all

.ˇ; z/ 2 K � L, and let " > 0. Then there exists a ı 2 .0; 1/ with

jg�
ˇ .z/ � ˇj < "

for all .�; ˇ; z/ 2 Œ0; ı��K � L.

As we are primarily interested in circle packings in S2, our next step will be

to study the behavior of g�
ˇ

on a fixed circular cap C � S2. First, note that g�
ˇ
.C /

is a circular cap for � > 0, since g�
ˇ

is a circle-preserving homeomorphism,

and therefore the centre p.g�
ˇ
.C // is well-defined. Because of the continuous
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dependence of g�
ˇ

on .�; ˇ/ 2 .0;1/ � S2 the centre p.g�
ˇ
.C // also depends

continuously on .�; ˇ/. Moreover, applying Lemma 3.6 to K D C and L D ¹ˇº

yields p.g�
ˇ
.C //! ˇ as �! 0 for ˇ 2 S2 with �ˇ … C . That is why we define

p.g0
ˇ .C // WD

´

ˇ if � ˇ … C;

�ˇ if � ˇ 2 C:

With this convention the map

Œ0;1/� S2 �! S2; .�; ˇ/ 7�! p.g�
ˇ .C //

is continuous on the set Œ0;1/�S2 n .¹0º��C/. Let us finally consider the maps

f˛ D

´

g
1�j˛j

˛=j˛j
if ˛ ¤ 0;

IdS2 if ˛ D 0:

for ˛ 2 B3. The corresponding result for g�
ˇ

yields that ˛ 7! p .f˛.C // is

continuous on B3 n .�C/. Also note that

p .f˛.C // D

´

˛ if � ˛ … C;

�˛ if � ˛ 2 C;
(21)

for ˛ 2 S2. The main tool of the proof of Lemma 3.5 is the following conclusion

of the fixed-point theorem of Brouwer.

Lemma 3.7. Let ˆWB3 ! R
3 be a continuous map and assume that for any

˛ 2 S2 the imageˆ.˛/ lies on the ray initiating at the origin and passing through

˛. Then there exists some Ǫ 2 B3 with ˆ. Ǫ / D 0.

Proof. If there were no such Ǫ , the map � ˆ
jˆj
WB3 ! B3 would be well-defined

and continuous, but because of our assumptions on ˆ it would not have any fixed

point in B3 – a contradiction to the fixed-point theorem of Brouwer. �

Given a weight function mWV ! .0;1/ and a univalent circle packing C D

.Cv/v2V we would like to apply this Lemma to the map ˆ given by

ˆ.˛/ D
X

v2V

m.v/p.f˛.Cv//; ˛ 2 B3; (22)

and, in fact, one easily checks that ˆ satisfies the ray condition required in the

previous lemma provided that (19) holds; but unfortunately ˆ will be discontin-

uous on �Cv for v 2 V . This is why we will smoothen ˆ close to the caps �Cv
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without changingˆ too much in the interior of B3. The following lemma ensures

that we have some kind of control of the behavior of the caps f˛.Cv/ for ˛ near

S2. Roughly speaking, it states that ’most’ of the caps converge in some sense

uniformly to ˛=j˛j as ˛ gets closer to the boundary of B3. To classify what we

mean by ’most’ we shall define the system

VC WD
°

U � V
ˇ

ˇ

ˇ

\

v2U

Cv ¤ ;
±

:

Note that, since the circle packing is univalent, VC only consist of the one element

subsets of V and the two element subsets ¹u; vº � V with Cu \ Cv ¤ ;. In

particular, (19) is equivalent to

2 �m.U / < m.V / for all U 2 VC: (23)

Lemma 3.8. Let " 2 .0; 1/. Then we find some ı 2 .0; 1/, so that for any ˛ 2 B3

with 1 � ı < j˛j < 1 we have

V 2
˛ WD V n V

1
˛ 2 VC;

where

V 1
˛ WD ¹v 2 V j f˛.Cv/ � B".˛=j˛j/º:

Proof. For arbitrary ˇ 2 S2 let Wˇ � V be the set of v 2 V with �ˇ … Cv and

let Lˇ be the union of all the caps Cv with v 2 Wˇ . Note, that V n Wˇ 2 VC.

Since Lˇ is compact we find an open neighbourhood Uˇ � S2 of ˇ 2 Uˇ with

.�Uˇ / \ Lˇ D ;. We Lemma 3.6 to Lˇ and Kˇ D Uˇ to find some ıˇ 2 .0; 1/,

such that g�
 .Lˇ / � B"./ for all � 2 .0; ıˇ / and all  2 Uˇ . In particular,

f˛.Cv/ � B".˛=j˛j/ holds for v 2 Wˇ and for all ˛ 2 R
3 with 1 � ıˇ < j˛j < 1

and ˛=j˛j 2 Uˇ .

Using the compactness of S2 we find finitely many ˇi 2 S
2, so that S2 is

the union of the associated neighbourhoods Uˇi
. We set ı D mini ıi . Now, for

arbitrary ˛ 2 R
3 with 1 � ı < j˛j < 1 there is some ˇi with ˛=j˛j 2 Uˇi

. By

construction

Wˇi
� ¹v 2 V j f˛.Cv/ � B".˛=j˛j/º D V

1
˛

holds. Since V 2
˛ D V n V 1

˛ is a subset V n Wˇi
2 VC, the set V 2

˛ is also in the

system VC. �

Proof of Lemma 3.5. Let .Cv/v2V be a circle packing and mWV ! .0;1/ be a

positive function. We assume that (19) holds. As mentioned before, the main
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strategy of the proof is to insert a term in (22), that properly smoothness ˆ close

to the boundary of B3, and then apply Lemma 3.7 to this new function.

For (a yet to be chosen) " 2 .0; 1/ choose ı 2 .0; 1/ as in Lemma 3.8. For

v 2 V we consider the maximum distance function given by

dist.˛; Cv/ D max
z2Cv

j˛ � zj for ˛ 2 B3:

Moreover, we define the continuous function wvWB
3 ! Œ0; 1� given by

wv.˛/ D

8

<

:

2� dist.˛; Cv/

ı
if dist.˛; Cv/ � 2� ı;

1 else:

Obviously the distance function can be bounded using

dist.˛; Cv/ � 1C j˛j (24)

for any ˛ 2 B3 n ¹0º and, more precisely, equality holds in (24), if and only if

�˛=j˛j is in Cv. Thuswv.˛/ D 0 for ˛ 2 B3, if and only if�˛ 2 Cv. In particular,

wv vanishes in the discontinuity points of the bounded map ˛ 7! p .f˛.Cv//.

Therefore, the assignment

˛ 7! wv.˛/p .f˛.Cv// ; ˛ 2 B
3

defines a continuous map on B3 for any v 2 V and the mapˆWB3 ! R
3 given by

ˆ.˛/ D
X

v2V

m.v/wv.˛/p .f˛.Cv// ; ˛ 2 B
3;

is continuous. Using (21) we get

ˆ.˛/ D
X

v2V
�˛…Cv

m.v/wv.˛/˛

for all ˛ 2 S2, so ˆ.˛/ ¤ 0 is on the ray starting in 0 and passing through ˛.

Applying Lemma 3.7 we conclude that there exists some ˛ 2 R
3 with j˛j < 1 and

0 D ˆ.˛/ D
X

v2V

m.v/wv.˛/p .f˛.Cv// :

Now, we shall prove that ˛ satisfies j˛j � 1 � ı if we choose " sufficiently small

since – if this holds – we obtain

dist.˛; Cv/ � 1C j˛j < 2 � ı
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and thus wv.˛/ D 1 for all v 2 V . Using (24) this would imply

0 D
X

v2V

m.v/p .f˛.Cv// ;

so choosing f D f˛ would prove Theorem 3.5.

Let us contrarily assume that 1�ı < j˛j < 1 holds. Recall that V 2
˛ D V nV

1
˛ 2

VC by the choice of ı in Lemma 3.8, where

V 1
˛ D ¹v 2 V j f˛.Cv/ � B" .˛=j˛j/º:

By definition of the sets V 1
˛ and V 2

˛ we have dist.˛; f˛.Cv// � dist.˛; f˛.Cu//

for v 2 V 1
˛ and u 2 V 2

˛ . Now, it can be seen that dist.˛; Cv/ � dist.˛; Cu/. This

follows from the fact that f˛ corresponds to a dilation on the hyperplane tangential

to S2 at ˛=j˛j. We thus obtain wv.˛/ � wu.˛/ for v 2 V 1
˛ and u 2 V 2

˛ . Setting

C˛ WD min
v2V 1

˛

wv.˛/ > 0;

we obtain wv.˛/ � C˛ � wu.˛/ for v 2 V 1
˛ and u 2 V 2

˛ . Note that
ˇ

ˇ

ˇ

ˇ

˛

j˛j
� p .f˛.Cv//

ˇ

ˇ

ˇ

ˇ

� "

holds for all v 2 V 1
˛ , so we may estimate

ˇ

ˇ

ˇ

X

v2V 1
˛

m.v/wv.˛/p .f˛.Cv//
ˇ

ˇ

ˇ

�
X

v2V 1
˛

m.v/wv.˛/ �
ˇ

ˇ

ˇ

X

v2V 1
˛

m.v/wv.˛/
� ˛

j˛j
� p.f˛.Cv//

�ˇ

ˇ

ˇ

� .1 � "/
X

v2V 1
˛

m.v/wv.˛/ � C˛.1 � "/
X

v2V 1
˛

m.v/

D C˛.1� "/m.V
1

˛ /

and
ˇ

ˇ

ˇ

X

v2V 2
˛

m.v/wv.˛/p .f˛.Cv//
ˇ

ˇ

ˇ � C˛

X

v2V 2
˛

m.v/ D C˛m
�

V 2
˛

�

:

The previous two estimates yield

jˆ.˛/j �
ˇ

ˇ

ˇ

X

v2V 1
˛

m.v/wv.˛/p.f˛.Cv//
ˇ

ˇ

ˇ �
ˇ

ˇ

ˇ

X

v2V 2
˛

m.v/wv.˛/p.f˛.Cv//
ˇ

ˇ

ˇ

� C˛..1 � "/m.V
1

˛

�

�m
�

V 2
˛ //

� C˛.m.V / � 2m.V
2

˛ / � "m.V //:
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We shall finally choose

" WD min
U 2VC

m.V / � 2m.U /

2m.V /
> 0:

Indeed, " is positive due to the assumption (19). Using V 2
˛ 2 VC we conclude

jˆ.˛/j �
C˛"m.V /

2
> 0

in contradiction to ˆ.˛/ D 0. This completes the proof. �

3.2. Bounds on planar combinatorial graphs. We are now in a position to

prove the estimate (8):

Theorem 3.9. Let G D .V; E/ be a finite, simple, connected and planar graph.

Let mWV ! .0;1/ be a vertex weight

2 .m.u/Cm.v// < m.V / (25)

for any pair of adjacent vertices u; v 2 V . Then, for any edge weight �WE !

.0;1/, the spectral gap �2.Lm;�/ of the weighted combinatorial Laplacian Lm;�

associated with the weights m and � admits the spectral bound

�2.Lm;�/ � 8
d

�
max

m.V /
: (26)

Proof of Theorem 3.9. Since G is planar and the condition (25) is satisfied, we

can apply Lemma 3.5 to choose a univalent circle packing C D .Cv/v2V , so that

G is the intersection graph of G and
X

v2V

m.v/pv D 0

is satisfied for the centre points pv of Cv for v 2 V . For v 2 V let rv be the radius

of Cv . We define the function f WV ! S2 by means of f .v/ D pv . Then, f is a

viable test function in (15). It remains to estimate the quotient q.f /=kf k2
`2

m.V IC3/
:

First of all, since every centre point pv is in S2, we have

kf k2
`2

m.V IC3/
D

X

v2V

m.v/jpvj
2 D m.V /:

Moreover, if v and u are adjacent, the caps Cv and Cu intersect, so jpv � puj �

ru C rv holds by triangle inequality. Using the Young inequality implies jpv �

puj
2 � 2.r2

u C r
2
v / and thus

q.f / D
X

eD¹u;vº2E

�.e/jpu � pvj
2 � 2

X

v2V

X

e2Ev

�.e/r2
v � 2d

Œ��
max

X

v2V

r2
v : (27)
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To estimate the last term we recall that the surface area of a cap Cv is equal to

� r2
v . Furthermore, C is univalent, so the sum of the surface areas of the caps in C

is at most equal to the total surface area of the unit sphere, i.e.
P

v2V �r
2
v � 4�:

Plugging this into (27) yields q.f / � 8d
Œ��
max and altogether we obtain

�2.Lm;�/ �
q.f /

kf k2
`2

m.V IC3/

� 8
d

Œ��
max

m.V /
:

This proves the claim. �

Remark 3.10. (i) The estimate (2) by Spielman and Teng in the unweighted case

� � 1 and m � 1 is included in Theorem 3.9. In that case (19) states that G has

at least 5 vertices. If G however has less then 5 vertices, (2) is trivially satisfied,

since

�2.L/ �
2jEj

jV j � 1
�
dmaxjV j

jV j � 1
� 8

dmax

jV j

for jV j D 2; 3; 4. Therefore, Spielman and Teng neither had to impose the

condition (19) nor had to consider it in their proof in [35], whereas it plays an

important role in our proof of Lemma 3.5.

(ii) Note that not every graph satisfies the condition (25): indeed, consider the

edge and vertex weights � and m associated with the (unweighted) normalized

Laplacian on G, i.e. �.e/ D 1 and m.v/ D dv D jEvj for e 2 E and v 2 V .

Then (25) means that dvCdu � jEj holds for any pair of adjacent verticesu; v 2 V

which, for instance, is not satisfied for star graphs with at least two edges.

(iii) The following example shows that the condition (25) cannot be omitted:

let K4 be the complete graph with vertex set VK4
D ¹v1; v2; v3; v4º, constant edge

weight � � 1 and the vertex weight m given by m.v1/ D a for some constant

a � 1 andm.vj / D 1 for j ¤ 1. The corresponding Laplacian has the eigenvalues

�1 D 0; �2 D
aC3

a
; �3 D 4; �4 D 4. Note that m.V / D 3C a and d

Œ��
max D 3, so

for an estimate of the form (26) to hold, there must exist some constant C > 0 so

that aC3
a
� C 3

3Ca
for all a � 1. Obviously such C does not exist. And, in fact, the

condition (25) is not satisfied since 2.m.v1/Cm.v2// D 2aC 2 � aC 3 D m.V /

holds.

3.3. Bounds on planar metric graphs. Using the results of the previous section

and Corollary we can finally prove our main theorem in the planar setting:
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Theorem 3.11. Let G D .G; `/ be a connected, finite and compact metric graph,

whose underlying combinatorial graph G D .V; E/ is planar. Then, the first pos-

itive eigenvalue �2.�G/ of the Kirchhoff Laplacian satisfies the spectral estimate

�2.�G/ �
Cd

Œ��
max

L
: (28)

Here L WD
P

e2E `e is the total length of G, d
�
max is the maximal weighted degree

corresponding to the inverse weight of `, that is

d Œ��
max WD max

v2V

X

e2Ev

1

`e

; (29)

and C > 0 is a generic constant that does not depend on the metric graph G. In

fact, we may choose C D 16�2 for general planar metric graphs and C D 2�2 if,

additionally, G is simple and

d Œ`�
v C d

Œ`�
u < L (30)

holds for every pair of adjacent vertices u; v 2 V .

Proof. Let us first assume that G is simple and satisfies the inequality (30) for

all pairs of adjacent vertices u; v 2 V . We consider the combinatorial Laplacian

Lm;� associated with the weight functions given by (16). Note that we have

m.V / D
X

v2V

d Œ`�
v D 2L

with this choice of weights by the handshaking lemma. We conclude that the

inequality 2.m.v/Cm.u// < m.V / is equivalent to d
Œ`�
v C d

Œ`�
u < L for u; v 2 V .

So, we may apply Theorem 3.9 to Lm;�. Together with Lemma 18, we obtain

�2.�G/ �
�2

2
�2.Lm;�/ � 4�

2 d
Œ��
max

m.V /
D 2�2d

Œ��
max

L
:

This proves the statement of Theorem 3.11 if G is simple and (30) is satisfied.

Now consider an arbitrary metric graph G, that is not necessarily simple or

does not necessarily satisfy (30). Without loss of generality we may assume that

G has at least two edges. Otherwise G is either an interval or a loop. Then the

spectral gap would be either

�2

L2
D �2d

Œ��
max

L
or

4�2

L2
D 2�2d

Œ��
max

L

and in both cases (28) holds for C D 16�2.
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Now, let G0 D .G0; `0/ be the (metric) subdivision graph obtained after dividing

each edge of G into four edges of equal length (see Figure 3). We shall write

VG0 D Vold [ Vnew;

where Vold is the set of old vertices coinciding with VG and Vnew is the set of new

vertices that are added on the interior of the edges.

Figure 3. Subdivision of a non-simple graph. The old vertices are marked black, whereas

the newly added vertices are marked white.

Note, thatG0 is simple. Moreover, the total length of the graph and the spectral

gap of the Kirchhoff Laplacian remain the same after subdividing the graph, since

we only add vertices of degree 2. For v 2 VG we have

d Œ`0�
v D

8

ˆ

ˆ

<

ˆ

ˆ

:

d
Œ`�
v

4
if v 2 Vold;

`e

2
if v 2 Vnew and v is on the edge e:

Since G has at least two edges, this implies d
Œ`0�
v C d

Œ`0�
u < L for any adjacent

vertices u; v 2 VG0 , thus G satisfies the condition (30). We conclude that G0

satisfies (28) for C D 2�2, i.e.

�2.�G0/ � 2�2d
Œ�0�
max

L

where �0 is the inverse weight of `0. Also, note that

d Œ�0�
v D

8

<

:

4d Œ��
v if v 2 Vold;

8

`e

if v 2 Vnew and v is on the edge e;

which yields d
Œ�0�
max � 8d

Œ��
max. Using this and the spectral bound for G0 we conclude

�2.�G/ D �2.�G0/ � 16�2d
Œ��
max

L
;

which completes the proof. �
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Let us finish this section by considering a number of examples to discuss the

spectral estimate (28) and to compare it with other known results.

Example 3.12 (star graphs). The spectral gap of the Kirchhoff Laplacian on an

equilateral star graph of total length L > 0 with n edges is

�2.�Sn
/ D

�2n2

4L2
:

The maximal degree associated to the inverse weight is attained at the center vertex

of the star and is given by

d Œ��
max D

n2

L
;

thus

�2.�Sn
/ D

�2d
Œ��
max

4L
:

Therefore, for equilateral star graphs, the growth rate in (28) with respect to d
Œ��
max
L

is correct up to the constant in front of the metric quantities on the right hand-side.

Example 3.13 (complete graphs). For n 2 N let Kn be the equilateral, complete

graph on n vertices with edge weight l � 1. By Kuratowski’s theorem [24] the

underlying combinatorial graph is not planar for n � 5. The combinatorial graph

has n.n�1/
2

edges and, since the metric graph is equilateral, its total length is equal

to the number of edges. Moreover, the degree of every vertex is n � 1. The first

positive eigenvalue of the associated normalized Laplacian is n
n�1

for n � 2, so

we may use von Below’s formula (1) to derive the spectral gap of the Kirchhoff

Laplacian:

�2.�Kn
/ D arccos

�

�
1

n � 1

�2

�!
�2

4
; as n!1:

However,

d
Œ��
max

L
D
2

n
�! 0; as n!1: (31)

Therefore an estimate of the form (28) cannot hold for general metric graphs.

More precisely, there exists no C > 0, so that (28) holds for any finite, compact

and connected metric graph.

Example 3.14 (trees). Rohleder [34] has proved that the spectral gap of a compact

metric tree T – a compact metric graph without cycles – admits the estimate

�2.�T/ �
�2

diam.T/2
;
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where diam.T / denotes the metric diameter of the graph, which is the maxi-

mal distance between two points in T. To compare this estimate with our spec-

tral estimate (28) we restrict ourselves to binary trees of exponential volume

growth/decay.

LetBh denote the (combinatorial) complete rooted binary tree of height h 2 N,

i.e. Bh is simple, Bh has only one vertex o 2 VBh
of degree 2, the so called root of

Bh and every other vertex v 2 VBh
has either degree 1 or degree 3 and is connected

to o via a unique path in Bh whose (combinatorial) length is at most h. The length

of this path is called the generation gen.v/ of v. The level of v is equal to h, if v

has degree 1, and it is strictly less than h, if v has degree 3. If an edge e 2 EBh

connects two vertices of generation k � 1 and k we set gen.e/ D k. Note that Bh

has exactly 2k edges of level k for k D 1; : : : ; h.

We consider two edge weights on Bh. First, let Bh D .Bh; `/ be the associated

metric graph of equilateral length ` � 1. In this case the diameter of Bh is

diam.Bh/ D 2h, the total length is L D 2.2h � 2/ and the maximal degree is

d
Œ��
max D 3, so estimate (31) gives the upper bound �1.�Bh

/ � �2

4h2 ; whereas our

estimate (28) yields �2.�Bh
/ � 36

2h�2
: So, our estimate gives asymptotically a

much sharper bound in the equilateral case.

Now, we consider the edge weight l given by l.e/ D 2� gen.e/, i.e. l is of

exponential decay with respect to generation of edges. Then we have diam.Bh/ D

2.1 � 2�h/, L D h and d
Œ��
max D 5 � 2h. From (31) we obtain �2.�Bh

/ �
�2

2.1�2�h/
; whereas our bound (28) leads to �2.�Bh

/ � 120�2h

h
: Thus, (31) gives an

asymptotically sharper bound for l.e/ D 2� gen.e/, which supports the conjecture

that the estimate (28) gives an asymptotically sharper bound, when the edge

lengths do not vary too much.

4. Eigenvalue bounds for graphs of higher genus

4.1. The weighted normalized Laplacian. LetG D .VG ; EG/ be a simple finite

graph and let !WE ! .0;1/ be an edge weight. We recall that the normalized

Laplacian L!
norm is the operator acting on the space of functions f WVG ! C given

by

.L!
normf /.v/ D

1

d
Œ!�
v

X

eD¹u;vº2Ev

!.e/.f .v/� f .u//; v 2 VG ;

so in the language of Section 2.2 we have L!
norm D Lm;� with �.e/ D !.e/ for

e 2 EG and m.v/ D d
Œ!�
v for v 2 VG . For our analysis it will be useful to

understand the behavior of the spectrum of L!
norm under subdivision of the graph.
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LetG0 D .VG0 ; EG0/ be subdivision graph ofG obtained after adding a new vertex

on each edge, i.e.

VG0 D VG [EG ; EG0 D ¹¹v; eº j v 2 VG ; e 2 Evºº

with the edge weight !0 given by

!0.¹v; eº/D !.e/; v 2 VG ; e 2 Ev:

Lemma 4.1. Let � 2 Œ0; 2�n¹1º. Then � is an eigenvalue of L!0

norm.G
0/, if and only

if R.�/ WD 4� � 2�2 is an eigenvalue of L!
norm.G/. In that case, � and R.�/ have

the same multiplicity.

A proof in the unweighted case (! � 1) is given in [12] and it can easily be

extended to the weighted case. The lemma immediately yields

�k.L
!
norm.G// D 4�k.L

!0

norm.G
0// � 2�k.L

!0

norm.G
0//2; k D 1; : : : ; jVGj;

and, in particular,

�k.L
!
norm.G// � 4�k.L

!0

norm.G
0//; k D 1; : : : ; jVGj: (32)

4.2. Measured manifolds and the theorem of Amini and Cohen-Steiner. Let

M be a closed, oriented, connected and compact smooth surface with a conformal

class c of Riemannian metrics on M . For g 2 c let �g denote the Riemannian

measure on M induced by the metric g and let rg denote the gradient defined on

the space of smooth functions on M .

Definition 4.2. LetU �M be an open subset and let � be a finite Radon measure

on M that is absolutely continuous with respect to �g for some – or equivalently

all – g 2 c. For k 2 N we define the generalized eigenvalues

�k.U; �/ WD inf
ƒk

sup
F 2ƒkn¹0º

R

U
jrgF j

2 d�g
R

U jF j
2 d�

;

whereƒk varies over the family of k-dimensional subspaces of C1.U /\L2
�.U /.

We point out that
R

U jrgF j
2 d�g D

R

U jrhF j
2 d�h holds for g; h 2 c, so the

previous definition does not depend on the choice of the Riemannian metric g 2 c.

Also, note that

0 D �1.M; �/ < �2.M; �/ � �3.M; �/ � � � � �! 1

are in fact the eigenvalues of the Laplace–Beltrami operator �g D �divg ı rg on

M if we choose � D �g for g 2 c.
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Definition 4.3. Let � be a finite and absolutely continuous Radon measure on

M . A double cover ofM is a finite family .Ui /i2I of open and connected subsets

Ui � M , so that for almost every point p 2 M there are two indices i1 ¤ i2 in I

with p 2 Ui1 \ Ui2 and p … Uj for j … ¹i1; i2º. The vicinity graph � associated

with .Ui /i2I is the simple graph with vertex set I where i1 ¤ i2 are adjacent if

and only if �.Ui1 \Ui2/ > 0. The measure � induces an edge weight on �, which

by abuse of notation shall be denoted with � as well, given by

�.¹i1; i2º/ WD �.Ui1 \ Ui2/:

Let L
�
norm be the associated normalized Laplacian on �.

The following theorem by Amini and Cohen-Steiner [1] compares the general-

ized eigenvalues with the eigenvalues of the normalized Laplacian on the vicinity

graph.

Theorem 4.4. Let � be a finite and absolutely continuous Radon measure on M

and let .Ui /i2I be a double cover of M . Then we have the eigenvalue estimate

�k.L
�
norm/ � 2

�k.M; �/

�
; k D 1; : : : ; jI j;

where

� D min
i2I

�2.Ui ; �/:

It was already observed in [1] that Theorem 4.4 also holds for double covers

of metric graphs and the eigenvalues of the Laplacian on metric graphs. This idea

was further developed by Mugnolo and the present author [31] and it turns out

that, if one chooses suitable double covers of the graph, Theorem 4.4 generally

provides sharper lower bounds for the eigenvalues of the Laplacian compared to

previously known abstract results.

4.3. Bounds on embedded combinatorial graphs. Our main result of this

section will be the following:

Theorem 4.5. Let G D .V; E/ be a finite, simple and connected graph of genus

g and let !WE ! .0;1/ be an edge weight. Then the corresponding normalized

Laplacian satisfies

�k.L
!
norm/ � C

d
Œ!�
max.g C k/

P

e2E !.e/
(33)

for all k D 1; : : : ; jV j, where C is a generic constant that does not depend on G.
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This theorem improves the main result by Amini and Cohen-Steiner in [1] to

the weighted case. The main idea of their proof was to construct a double cover

on a surface of genus g that represents the combinatorial structure of G. To adapt

their proof we recall this construction.

Consider an embedding of G on a oriented, closed, connected and compact

surface M of genus g. For the sake of notation, we identify the vertices and

edges of G with their drawings on M . Let F denote the set of (open) faces on

M enclosed by G. Since M has the same genus as G, every face f 2 F is

simply connected (see for instance [28, Proposition 3.4.1]). Thus, there exists

a homeomorphism 'f WDf ! f on the open unit disk that can be extended to

surjective and continuous map 'f WDf ! Nf , since the boundary of f is the finite

union of its incident edges in E. Let z1
f
; : : : ; z

Nf

f
2 @Df be the preimages of the

vertices ofG on the boundary of f under the surjection 'f appearing in clockwise

order and let v1
f
; : : : ; v

Nf

f
denote the associated vertices on @f . (Note there might

be vertices of G in this list that appear multiple times.) Finally, we can extend the

graph G to obtain a triangulation of M . We add the vertex vf D 'f .0/ and the

edges e
j

f
D ¹vf ; v

j

f
º for j D 1; : : : ; Nf that are identified with the images of the

lines connecting 0 and z
j

f
. Let H D .VH ; EH / be the graph obtained from the

described construction, i.e.

VH D VG [ ¹vf ºf 2F ; EH D EG [ ¹e
j

f
º

j D1;:::;Nf

f 2F
:

By construction, the graphH is embedded inM and the boundary of each face

enclosed by H consists of three edges ofH , where exactly one edge e belongs to

the original graph G. Let T i
e ; i D 1; 2 be the two faces that are incident to e; we

think of T i
e as a triangle in M . However, note that, in general, H does not define

a triangulation of M , as two faces may share multiple edges of H (see Figure 4),

but for our purpose the decomposition of M given by H is sufficient to define an

appropriate Riemannian metric on M .

Following the construction in [38], we can choose a flat Riemannian metric h

on M n VH with conical singularities in the vertices of VH so that every triangle

T i
e is isometric to an isosceles triangle in the Euclidean plane, where the edges of

T i
e that do not correspond to e have length 1 and the angle enclosed by e and the

two other edges is

˛e D
1

2
arcsin

� �!e

2d
Œ!�
max

�

(34)
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z1
f

z2
f

z3
f

z4
f

z5
f

z6
f

z7
f

Df 'f v1
f

v2
f

v3
f

v4
f

v5
f D v7

f

v6
f

vf

f

Figure 4. Construction of the extended graph H . The white vertex is the vertex added on

f and the dashed edges are the added edges.

respectively (see Figure 5). For v 2 VG let �v be the total angle of the correspond-

ing conical singularity. We have

�v D 2
X

e2Ev

˛e D
X

e2Ev

arcsin
� �!e

2d
Œ!�
max

�

�
X

e2Ev

�!e

d
Œ!�
max

D
�d

Œ!�
v

d
Œ!�
max

� �; (35)

for all v 2 V . Now, one can show that there exists a Riemannian metric g on M

that is conformally equivalent to h on M n VH (we refer again to [38] for details).

Our aim is to apply Theorem 4.4 on M with the conformal class c generated by g

and the Radon measure� D �h. It remains to define a double cover that represents

the combinatorial structure of G.

For every e 2 EG let De be the diamond

De WD T
1
e [ T

2
e :

We decompose De into two triangles by cutting through the diagonal of De

perpendicular to e. Every vertex v 2 VG that is incident to e is contained in

exactly one of the mentioned triangles; let Se;v be this triangle. Finally, we define

the cone

Cv WD
[

e2Ev

Se;v:

The construction of the diamond De and the cone Cv is illustrated in Figure 6.
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1 1

˛e ˛e

e

Figure 5. The metric h on a single triangle T i
e .

Cv
De

Figure 6. The covering elementsDe and Cv .

Lemma 4.6. The family .De/e2EG
[ .Cv/v2VG

is a double cover ofM . Moreover,

two covering elements are adjacent in the corresponding vicinity graph �, if and

only if one element is a diamond De and the other one is a cone Cv , where v is

incident to e in G. In particular, the vicinity graph � is the subdivision graph of

G obtained after adding one vertex on each edge of G. Finally, we have

�h.De \ Cv/ D �h.Se;v/ D
�!e

4d
Œ!�
max

(36)

if e is incident to v.

Proof. The claimed statements follow from the construction of the sets De; Cv;

and Se;v . We point that the volume of Se;v is given by (36), since Se;v is an

isosceles triangle where the two edges of equal length have length 1 and the angle

enclosed by these two edges is 2˛e D arcsin
�

�!e

2d
Œ!�
max

�

by (34). �

We are ready to complete the proof of Theorem 4.5. To do so, we apply

Theorem 4.4 with the double-cover .De/e2EG
[ .Cv/v2VG

. Let L
�h

norm denote

the normalized on the vicinity graph � with respect to the edge weight induced

by (36). We obtain

�k.L
�h

norm/ � 2
�k.M; �h/

�
; k D 1; : : : ; jVG j C jEG j (37)
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where

� D min.min
v2VG

�2.Cv; �h/; min
e2EG

�2.De; �h//:

As � is the subdivision ofG and the edge weight given by (36) is a scalar multiple

of ! (the normalized Laplacian is scale-invariant), (32) yields

�k.L
!
norm/ � 4�k.L

�h

norm/; k D 1; : : : ; jVG j: (38)

It remains to estimate the right-hand side of (37). We start by cutting Cv through

one the new edges of H , that we previously added to G, we obtain a new open

subset Pv of M . Note that this procedure only decreases �2. The set Pv is – by

construction of the Riemannian metric h – isometric to a polygonal domain in the

Euclidean plane. As the angle �v of the conical singularity v is less or equal than �

(see (35)), this polygonal domain is convex (see Figure 7). Similarly, each De is

isometric to an actual diamond in R
2 which again is convex.

v

Figure 7. Cutting (along the red line) and unfolding of the cone Cv onto the Euclidean

plane.

By choice of the metric h all the side lengths ofPv andDe are 1, so the diameter

of Pv andDe is bounded from above by 2. It is known that the spectral gap of the

Laplacian (with Neumann boundary conditions) on convex domains of uniformly

bounded diameter is uniformly bounded from below (see [33]). More precisely,

we obtain

�2.Cv; �h/ � �2.Pv; �h/ �
�2

4
; �2.De; �h/ �

�2

4
(39)

for all v 2 VG ; e 2 EG . Next, we consider �k.M; �h/. A theorem of Hassanezhad

[15, Corollary 1.2] yields

�k.M; �h/ � zC
g C k

�h.M/
: (40)

for some generic constant zC > 0; we point out that the result in [15] was not stated

in the setting of manifolds with a Radon measure, but – as it was already observed
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in [1] – the proof given in [15] can be adapted to this setting. By choice of the

metric h we have

�h.M/ D
X

v2VG

X

e2Ev

�h.Sv;e/ D
X

v2VG

X

e2Ev

�!e

4d
Œ!�
max

D
X

e2EG

�!e

2d
Œ!�
max

(41)

Plugging (38), (39), (40), and (41) into (37) we obtain

�k.L
!
norm/ � C

d
Œ!�
max.g C k/
P

e2EG
!e

with C D 64 zC
�3 , which finally proves the claim of Theorem 4.5.

Remark 4.7. (i) If one choose the weights given by m.v/ D d
Œ!�
v and �.e/ D !e

in Theorem 3.11 one obtains the estimate

�2.L
!
norm/ � C

d
Œ!�
max

P

e2EG
!e

for planar G. Therefore, Theorem 4.8 generalizes Theorem 3.11 to higher genus

and higher order eigenvalues in the normalized case.

(ii) To our knowledge, no explicit upper bounds are known for the constant zC

appearing in Hassanezhad’s bound (40). This is why we cannot give any explicit

upper bounds for the optimal constant C > 0 in (33) or the constants appearing in

the following section.

4.4. Bounds on embedded metric graphs. In this final subsection we prove the

estimates (5) and (6) mentioned in the introduction:

Theorem 4.8. Let G D .G; `/ be a connected and compact metric graph of genus

g. There exists a generic constant C > 0 that does not depend on G, so that the

ordered eigenvalues �k.�G/ of the Kirchhoff Laplacian on G satisfy the estimate

�k.�G/ � C
d

Œ`�
max.g C k/

`2
minL

; k D 1; : : : ; jV j; (42)

where L WD
P

e2E `e is the total length of G, `min D mine2E `e is the minimal

length of the edges of G, and

d Œ`�
max D max

v2V
d Œ`�

v

is the maximal degree of the vertices of G.
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Proof. By a subdivision argument similar to the one in the proof of Theorem 3.11

we may assume that G is simple. Let Lm;� be the combinatorial Laplacian

associated with the edge and vertex weights given by (16). Using the Courant–

Fischer theorem one can show that

�k.Lm;�/ �
1

`2
min

�k.L
`
norm/; k D 1; : : : ; jV j:

Thus, Corollary 2.2 and Theorem 4.5 yield that

�k.�G/ �
�2

2`2
min

�k.L
`
norm/ � C

d `
max.gC k/

`2
minL

; k D 1; : : : ; jV j:

This proves the claim. �

Theorem 4.9. Let G D .G; `/ be a connected and compact metric graph of genus

g and let ˇ D jEG j � jVG j C 1 be its first Betti number. There exists a generic

constant C > 0, so that

�k.�G/ � C
dmax.ˇ C k � 1/.gC k/

L2
(43)

holds for all integers k 2 N with k � L
`min
� ˇ C 1.

Proof. For given k 2 N with k � L
`min
� ˇ C 1, we set

n WD k C ˇ � 1 D k C jEG j � jVG j:

Then, for e 2 E let me be the unique integer with

me � 1 �
n`e

L
< me

and let m WD
P

e2E me . Let zG D . zG; Q̀/ be the metric subdivision graph obtained

after dividing each edge e into me edges of the same length `e

me
. Note that, by the

condition on k and the choice of n, we have n`e

L
� 1. Therefore me has to be at

least 2. Then, by choice of me , we have m � jEj � n < m and

me � 1

me

�
L

n
�
`e

me

<
L

n
;

The latter implies
L

2n
�
`e

me

<
L

n
(44)
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since me � 2 for e 2 E. By construction, the underlying combinatorial graph zG

of zG has

jV zG j D jVG j Cm � jEG j > jVG j C n � jEG j D k

vertices. Thus, we obtain

�k.�G/ D �k.�zG/ � C
d

Œ Q̀�
max.gC k/

Q̀2
minL

by Theorem 4.8, where Q̀min is the minimal length and d
Œ Q̀�
max is the maximal degree

of zG. Using (44) we obtain `min �
L
2n

and d
Œ Q̀�
max � dmax

L
n

, which again yields

�k.�G/ � 4C
dmaxn.g C k/

L2
D 4C

dmax.ˇ C k � 1/.gC k/

L2
:

As k was arbitrary, this completes the proof. �
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