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Uniform resolvent estimates

for the discrete Schrödinger operator in dimension three
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Abstract. In this note, we prove the uniform resolvent estimate of the discrete Schrödinger

operator with dimension three. To do this, we show a Fourier decay of the surface measure

on the Fermi surface.
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1. Introduction

We consider the three-dimensional discrete Laplacian

H0u.x/ D �
X

jx�yjD1

.u.y/ � u.x//:

We denote the Fourier expansion by Fd :

Ou.�/ D Fu.�/ D
X

x2Z3

e�2�ix��u.x/; � 2 T
3 D R

3=Z3:

Then it follows that

Fd H0u.�/ D h0.�/Fd u.�/; h0.�/ D 4

3
X

j D1

sin2.��j /: (1)

We denote the set of the critical points of h0 by Cr.h0/:

Cr.h0/ D ¹� 2 T
3 j rh0.�/ D 0º D ¹� 2 T

3 j �j 2 ¹0; 1=2º; j D 1; 2; 3º: (2)

We call � 2 Cr.h0/ an elliptic threshold if � attains maximum or minimum of h0

and a hyperbolic threshold otherwise. We set M� D h�1
0 .¹�º/ for � 2 Œ0; 12�. The

set M� is called the Fermi surface.

https://creativecommons.org/licenses/by/4.0/
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In this note, we show the uniform resolvent estimates for discrete Schrödinger

operator with dimension three. In case of the continuous Laplacian �� on Rd ,

the following uniform resolvent estimates are known [9, 6]:

k.�� � z/�1f kLq.Rd / � C jzj d
2

. 1
p

� 1
q

/�1kf kLp.Rd / for z 2 C n Œ0; 1/; (3)

where d � 3, and

2

d C 1
� 1

p
� 1

q
� 2

d
;

2d

d C 3
<

1

p
<

2d

d C 1
;

2d

d � 1
<

1

q
<

2d

d � 3
:

It turns out that .�� � z/�1 is uniformly bounded in B.Lp.Rd /; Lp0

.Rd // with

respect to z 2 C n Œ0; 1/ if and only if p D 2d=.d C 2/. On the other hand,

in [13, Theorem 1.7 (iii)] (see also Lemma A.1), it is shown that the resolvent

R0.z/ D .H0 � z/�1 for the discrete Schrödinger operator is not bounded from

lp.Zd / to lp0

.Zd / with p D 2d=.d C 2/, p0 D p=.p � 1/ and with d � 5. The

result in [13, Proposition 3.3] shows that the resolvent R0.z/ satisfies

kR0.z/f klp0
.Zd / � C kf klp.Zd / for z 2 C n Œ0; 4d �; 1 � p � 2d

d C 3
; d � 4:

(4)

The natural questions are the following:

� is the estimate .4/ optimal?

� what about the case of d D 3?

For the latter, the authors in [8] showed that .4/ hold for p 2
�

1; 12
11

�

and for

d D 3 (see also Lemma A.1). In this paper, we improve their results and give the

resolvent estimates which is sharp away from the threshold energies.

The proof of .4/ in [13] depends on the endpoint Strichartz estimates ([11]).

We point out that the endpoint Strichartz estimates for discrete Schrödinger op-

erators might not be used for the sharp resolvent estimate with dimension three

since the Strichartz estimates in [11] are sharp. This is different from the case

of the continuous Laplacian �� (in this case, the endpoint Strichartz estimates

implies the sharp resolvent estimate .3/ with p D 2d=d C 2 and with q D p0).

Instead, we use the strategy in [1] and calculate the Fourier decay of the surface

measure for the Fermi surface. In [2], the Fourier decay away from the umbilic

points (the points where all principal curvatures vanish) are studied. In this paper,

we improve this result and also deal with the Fourier decay near the umbilic point.

For its application to the random Schrödinger operators, see [2] and references

therein.

The main result of this paper is the following theorem.



Uniform resolvent estimates 1833

Theorem 1.1. (i) Resolvent estimates away from the thresholds. Let p 2
�

1; 5
4

�

and r 2
�

1; 10
3

�

. For " > 0, set

D" D
3

\

kD0

¹z 2 C j jz � 4kj � "º:

Then the resolvent R0.z/ D .H0 � z/�1 satisfies

sup
z2D"nR

kR0.z/kB.lp.Z3/;lp0
.Z3// < 1;

sup
z2D"nR; kWj k

lr .Z3/
D1

kW1R0.z/W2kB.l2.Z3// < 1:

(ii) Resolvent estimates near the thresholds. Let p 2
�

1; 6
5

�

and r 2 Œ1; 3�. Then

we have

sup
z2CnR

kR0.z/kB.lp.Z3/;lp0
.Z3// < 1;

sup
z2CnR; kWj k

lr .Z3/
D1

kW1R0.z/W2kB.l2.Z3// < 1:

Remark 1.2. [13, Theorem 1.11 (iii)] shows that the range of p and r in (i) are

optimal.

Remark 1.3. The above results are proved in [8] for p 2
�

1; 12
11

�

and r 2
�

1; 12
5

�

(see Lemma A.1).

Remark 1.4. More generally, it follows from [14, Theorem 1.2 (i)] that the

uniform resolvent estimates away form the diagonal line hold, that is,

sup
z2D"nR

kR0.z/kB.lp.Z3/;lq.Z3// < 1;

for

3

5
� 1

p
� 1

q
;

5

7
<

1

p
;

1

q
<

2

7
:

Moreover, [14, Theorem 1.2 (ii)] implies that R0.z/ is Hölder continuous on

B.lp.Z3/; lp0

.Z3// for 1 � p < 5=4. From this result and the proof of [13,

Theorem 1.9], it is expected that the wave operators W˙ D limt!˙1 eitH e�itH0

exist and is complete for H D H0 C V with V 2 l
5
3 .Z3/. We omit the detail.
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Finally, we state a possible conjecture on the resolvent estimates near the

threshold energies. The author expects that for p 2 Œ1; 5
4
�, the following estimates

hold:

kR0.z/f klp0
.Z3/ � C

�

3
Y

kD0

jz � 4kj
3
2

. 1
p

� 1
p0 /�1

�

kf klp.Z3/; for z 2 C n R: (5)

By virtue of Proposition 2.1 and [1, Proposition A.11], in order to prove .5/, we

only need to prove

k�.D/R0.z/f klp0
.Z3/ � C

�

3
Y

kD0

jz � 4kj
3
2

. 1
p

� 1
p0 /�1

�

kf klp.Z3/; for z 2 C;

where � 2 C 1.T3/ is supported around �0 with �0 2 .M4 [ M8/ n Cr.h0/. The

estimates .5/ can be applied with the Keller type eigenvalue bounds for three-

dimensional discrete Schrödinger operators with complex potentials (see [3] for

the continuous Laplacian).
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Moreover, it is also supported by the program FMSP at the Graduate School of

Mathematics Sciences, the University of Tokyo. The author would like to thank

Kenichi Ito and Shu Nakamura for encouraging to write this paper. The author is

grateful to J. C. Cuenin and I. A. Ikromov for pointing out a mistake of the earlier

version of this manuiscript.

2. Preliminary, reduction to the Fourier decay of the surface measure

2.1. Uniform resolvent estimates near thresholds. To obtain uniform resolvent

estimates near thresholds, we only need to the argument in [13, Proposition 3.3]

slightly.

Proposition 2.1. Let d � 3 and T WTd ! R be a smooth function with a non-

degenerate critical point �0 with corresponding energy �0. Then there exists ı > 0

such that for � 2 C 1
c .Bı.�0// and for r 2 Œ1; d �, we have

kW1�.D/2.T .D/ � z/�1W2kB.l2.Zd // � C kW1klr .Zd /kW2klr .Zd / (6)

with a constant independent of W1; W2 2 lr .Zd / and z 2 C n R.
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Remark 2.2. In [1, Proposition A.11], it is proved that

kW1�.D/2.T .D/ � z/�1W2kB.L2/ � C jz � �0j d
r

�1Gr .z/kW1kLr kW2kLr ;

for r 2 Œd; d C 1�, where

Gr .z/ D
´

j log jz � �0jj if �0 is a saddle point and if r D d;

1 otherwise:

Proposition 2.1 improves this result when �0 is a saddle point and when r D d ,

although in [1, Proposition A.11], the Shatten norm estimates are shown. For the

results on exact ultrahyperbolic operators, see [5].

Proof. We shall slightly modify the argument in [13, Proposition 3.3]. We may

assume Im z < 0. Since lp1.Zd / � lp2.Zd / for p1 � p2, we may assume r D d .

We take ı > 0 small enough such that the Hessian of T .�/ does not vanish on

B2ı.�0/. Then for � 2 C 1
c .Bı.�0//, the stationary phase theorem implies

k�.D/e�itT .D/kB.l1.Zd /;l1.Zd // � C hti� d
2 ;

where we note that the singularity at t D 0 does not occur by virtue of the com-

pactness of supp � (see the proof in [11, Theorem 3]). Applying [7, Theorem 1.2]

with U.t/ D 1Œ0;T /.t /�.D/e�itT .D/, it follows that the unique solution u.t; x/ to

i@tu.t; x/ � T .D/u.t; x/ D g.t; x/; u.0; x/ D u0.x/ 2 l2.Zd / (7)

satisfies

k�.D/2ukL2.Œ0;T /;l2�
.Zd // � C ku0kL2.Zd / C C kgkL2.Œ0;T /;l2� .Zd //;

where 2� D 2d=.d � 2/ and 2� D 2d=.d C 2/.

Let f be a finitely supported function. Set

g.t; x/ D eitzf .x/; u0.x/ D .T .D/ � z/�1f .x/; u.t; x/ D eitzu.x/:

Since u.t; x/ and g.t; x/ satisfy .7/, we have


.T /k�.D/2u0kl2�
.Zd // � C ku0kL2.Zd / C C
.T /kf kl2�.Zd /;

where 
.T / D .
R T

0 jeitzj2dt/1=2. Since Im z < 0, we have 
.T / �
p

T . By

letting T ! 1, we obtain

k�.D/2.T .D/ � z/�1f kl2�
.Zd // � C kf kl2�.Zd /:

Now Lemma A.1 implies .6/ for Im z < 0. �
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2.2. Uniform resolvent estimates away form thresholds. We use the following

propositions essentially due to the arguments in [1, Proposition A.5] and [14,

Theorem 1.2]. Although [1, Proposition A.5] is stated only for a hypersurface

in Rd , its proof there can be applied with a hypersurface on Td .

Proposition 2.3. Let d � 1 and M � Td be a hypersurface with normalized

defining function �WTd ! R. For � 2 C 1.Td / and k > 0, assume that

sup
x2Zd

.1 C jxj/k 3�d�M .x/ < 1; (8)

where d�M denotes the canonical surface measure on M . Then for r 2 Œ1; 2C2k�,

we have

kW1�.D/.�.D/ � z/�1W2kB.l2.Zd // � C kW1klr .Zd /kW2klr .Zd /:

with a constant independent of W1; W2 2 lr .Zd / and z 2 C n R.

By using a partition of unity, to prove Theorem 1.1, it suffices to prove the

following theorem.

Theorem 2.4. Let � 2 .0; 12/. We denote M D M� and �.�/ D h0.�/ � �.

(i) Let � 2 .0; 4/ [ .8; 12/ and � 2 M�. Then for any � 2 C 1.T3/ supported

close to �, .8/ holds for k D 1.

(ii) Let � D 6 and � 2 M�. Then for any � 2 C 1.T3/ supported close to �, .8/

holds for k D 2
3
.

(iii) Let � 2 .4; 8/ n ¹6º and � 2 M�. Then for any � 2 C 1.T3/ supported close

to �, .8/ holds for k D 3
4
.

(iv) Let � 2 ¹4; 8º and � 2 M� n Cr.h0/. Then for any � 2 C 1.T3/ supported

close to �, .8/ holds for k D 1
2
.

Remark 2.5. In [2, Theorem 2.1], (iii) is proved for r D 3
4

� " for any " > 0

(more precisely, the estimates with a logarithmic loss). Our result (iii) improves

the result in [2].

Proof of Theorem 1.1. Proposition 2.3, Theorem 2.4 (i), (ii), and (iii) imply

Theorem 1.1 (i). Moreover, Proposition 2.1 and Theorem 2.4 imply Theo-

rem 1.1 (ii). �

In the rest of this paper, we will prove Theorem 2.4.
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3. Some oscillatory integrals

In this section, we collect the results on the decay rate of some oscillatory integrals.

It is regarded as generalization of the Van der Corput lemma in higher dimensions.

Oscillatory integrals of the following forms are studied in [15]:
Z

R2

�.�/ei�f .�/d� as � ! 1:

For our purpose, we need the decay rates for the Fourier transform of the surface

measure. To do this, we use the recent result by Ikromov and Müller [4]. To prove

the decay of such integrals, we need the following elementary lemma.

Lemma 3.1. Let ˛; ˇ 2 R n ¹0º and define

f1; f2; f3 W S D ¹� 2 R
2 j j�j D 1º ! C

by

f1.�/ D ˛�2
1�2 C ˇ�1�2

2; f2.�/ D ˛�3
1 C ˇ�2

2; f3.�/ D ˛�2
1�2 C ˇ�2

2:

Then any zeros of the functions f1; f2; f3 are simple.

Proof. We denote �1 D cos � and �2 D sin � . Let ' 2 Œ0; 2�/ n
®

0; �
2

; �; 3�
2

¯

be

satisfying cos ' D ˇ

˛2Cˇ2 and sin ' D ˛
˛2Cˇ2 . Then we write

f1 D cos � sin �.˛ cos � C ˇ sin �/ D
p

˛2 C ˇ2 cos � sin � sin.� C '/;

f2 D ˛ cos3 � C ˇ.1 � cos2 �/;

f3 D �˛ sin3 � C ˇ sin2 � C ˛:

Since the zeros of cos � , sin � and sin.� C '/ are simple and since these zeros are

distinct, it follows that the zeros of f1 are simple. A simple calculation gives

df2

d�
D � sin � cos �.3˛ cos � � 2ˇ/:

Thus,

f2.�/ D df2

d�
.�/ D 0 H) cos � D ˙

p
3:

Since j cos � j � 1, then the zeros of f2 are simple. Finally, we have

f3 D �˛ sin �
�

sin � � ˇ

2˛
�

r

ˇ2

4˛2
C 1

��

sin � � ˇ

2˛
C

r

ˇ2

4˛2
C 1

�

which only has simple zeros. �
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The next proposition is a consequence of [4, Theorem1.1].

Proposition 3.2. Let f be a real-valued smooth function near 0 2 R2. For

� 2 C 1
c .Rd / supported near 0, define

I.x/ D
Z

R2

�.�/e2�i.x1�1Cx2�2Cx3f .�//d�; x 2 R
3:

If the support of � is close to 0, the following holds.

(i) Suppose that f can be written as

f .�/ D f .0/ C
2

X

j D1

@�j
f .0/�j C ˛12�2

1�2 C ˛21�1�2
2 C O.j�j4/ as j�j ! 0

with ˛12; ˛21 2 R n ¹0º. Then we have I.x/ D O.jxj� 2
3 / as jxj ! 1.

(ii) Suppose that f can be written as

f .�/ D f .0/ C
2

X

j D1

@�j
f .0/�j C ˛2�2

2 C
X

iCj CkD3

i�j �k

˛ijk�i�j �k

C
X

iCj CkCmD4

i�j �k�m

˛ijkm�i�j �k�m C O.j�j5/ as j�j ! 0

with ˛2 2 R n ¹0º and ˛ijk ; ˛ijkm 2 R. We assume

˛111 D 0 H) ˛112 ¤ 0 and ˛1111 D 0:

Then we have

I.x/ D
´

O.jxj� 5
6 / as jxj ! 1 if ˛111 ¤ 0;

O.jxj� 3
4 / as jxj ! 1 otherwise.

Remark 3.3. The results in [15] imply that the above estimates are sharp for

x1 D x2 D 0 and jx3j ! 1 at least if f is analytic.

Proof. We may assume f .0/ D 0. Moreover, changing of the variable x0
j D

xj C @�j
f .0/x3 (j D 1; 2) and x0

3 D x3, we may also assume @�j
f .0/ D 0 for

j D 1; 2.
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(i) We use some notations and definitions from [4, before Theorem 1.1]. Let

fpr be the principal part of f , �.f / be the principal face, d.f / be the Newton

distance, h.f / be the height of f and �.f / be Varchenko’s exponent of f . By a

simple calculation, we have

�.f / D ¹� 2 R
2 j �1 � 1; �2 � 2; �2 D ��1 C 3º;

fpr.�/ D ˛12�2
1�2 C ˛21�1�2

2; d.f / D 3

2
:

Moreover, it turns out that the coordinate � is adapted in the sense of [4]. In fact, it

follows that �.f / is the compact edge and m.fpr/ D 1 < 3
2

D d.f / (this follows

from Lemma 3.1), where m.fpr/ is the vanishing order of fprjS1 . This implies that

f satisfies the condition .a/ in [4, before Lemma 1.5] and hence the coordinate �

is adapted. This implies h.f / D d.f / D 3
2
. Since h.f / < 2, we have �.f / D 0

by its definition. Now our claim follows from [4, Theorem 1.1].

(ii) First, we assume ˛111 ¤ 0. By Lemma 3.1, we have

�.f / D
°

� 2 R
2

ˇ

ˇ

ˇ
�1 � 0; �2 � 0; �2 D �2

3
�1 C 2

±

;

fpr.�/ D ˛2�2
2 C ˛111�3

1;

d.f / D h.f / D 6

5
;

m.fpr/ D 1:

Since h.f / < 2, we obtain �.f / D 0 and I.x/ D O.jxj� 5
6 /. Next, we assume

˛111 D 0. Since ˛1111 D 0, we have

�.f / D
°

� 2 R
2

ˇ

ˇ

ˇ �1 � 0; �2 � 1; �2 D �1

2
�1 C 2

±

;

fpr.�/ D ˛2�2
2 C 2˛112�2

1�2;

d.f / D h.f / D 4

3
;

m.fpr/ D 1:

Since h.f / < 2, we obtain �.f / D 0 and I.x/ D O.jxj� 3
4 /. �

Remark 3.4. When ˛111 D 0 in .i i/, the condition ˛1111 D 0 is necessary since

in general, the principal part is written as fpr.�/ D ˛2�2
2 C 2˛112�2

1�2 C ˛1111�4
1.

As is pointed out by J. C. Cuenin and I. A. Ikromov, the optimal decay of I is

O.jxj� 1
2 / for the phase function f .�/ D .�2 � �2

1/2 D �2
2 � 2�2

1�2 C �4
2.
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4. Geometry of hypersurfaces

In this section, we study the geometry of the Fermi surface M� for � 2 Œ0; 4d �.

4.1. General theory. Let M � T3 or M � R3 be an embedded hypersurface

of codimension 1. Let q 2 M . We may assume that there exist an open

neighborhood U � T3 or U � R3 of q, an open set V � R2 and a smooth

function f W V ! R such that M \ U D ¹.� 0; f .� 0// j � 0 2 V º. We compute the

induced Riemannian metric g on M , the unit normal �, the second fundamental

form A.� 0/ D .A.� 0//2
i;j D1 and the Gaussian curvature K1.� 0/:

g D
2

X

j D1

.1 C @�j
f .� 0/2/d�2

j C 2@�1
f .� 0/@�2

f .� 0/d�1d�2;

�.� 0/ D 1
p

1 C jr� 0f .� 0/j2

�

�r� 0f .� 0/

1

�

; Aij .� 0/ D
@�i

@�j
f .� 0/

p

1 C jr� 0f .� 0/j2
; (9)

K1.� 0/ D det.Aij .� 0//

det g.� 0/
D

det @�i
@�j

f .� 0/

.1 C jr� 0f .� 0/j2/2
: (10)

Lemma 4.1. We denote the Gaussian curvature at � 2 M \ U � T3 by K.�/,

that is K1.� 0/ D K.� 0; f .� 0// for � D .� 0; f .� 0// 2 M \ U . Then it follows that

r� 0K1.� 0/ ¤ 0 if and only if

.r�h0 � r�K/.� 0; f .� 0// ¤ 0:

Proof. We recall rh0 is the unit normal of M� and is parallel to the vector

.�@�1
f; �@�2

f; 1/:

We learn

r� 0K1.� 0/ D .r� 0K/.� 0; f .� 0// C .@�3
K/.� 0; f .� 0//r� 0f .� 0/

and

0

@

�@�1
f

�@�2
f

1

1

A � r�K.� 0; f .� 0// D

0

@

�@�3
K@�2

f � @�2
K

@�3
K@�1

f C @�1
K

�@�1
f @�2

K C @�2
f @�1

K

1

A :

It follows that .r�h0 � r�K/.� 0; f .� 0// D 0 implies r� 0K1.� 0/ D 0. A simple

calculation implies that r� 0K1.� 0/ D 0 gives �@�1
f @�2

K C @�2
f @�1

K D 0 at

� D .� 0; f .� 0//. This completes the proof. �
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It is useful to calculate the Taylor expansion of f in terms of information about

the Hessian of f :

Lemma 4.2. Let V � R2 be an open set and f 2 C 1.V IR/. Moreover, the

2 � 2-matrix B.� 0/ is defined by B.� 0/ D .@�i
@�j

f .� 0//2
j;kD1

. Suppose that there

exist smooth functions �˙.� 0/ 2 C 1.V IR/ and a orthogonal matrix

U.� 0/ D
�

uC.� 0/ u�.� 0/
�

; u˙.� 0/ 2 C 1.V IR2/

with

ua.� 0/ � ub.� 0/ D ıab; a; b 2 ¹˙º

such that

U.� 0/�1B.� 0/U.� 0/ D
�

�C.� 0/ 0

0 ��.� 0/

�

:

Let p 2 V . Set U D U.p/ and introduce the variable

� D U �1.� 0 � p/:

Then we have

f .� 0/ D f .p/ C @� 0f .p/ � U� C 1

2
.�C.p/�2

1 C ��.p/�2
2/

C 1

3Š
.uC.p/ � .r� 0�C/.p/�3

1 C u�.p/ � .r� 0��/.p/�3
2/

C 1

3Š
.3u�.p/ � .r� 0�C/.p/�2

1�2 C 3uC.p/ � .r� 0��/.p/�1�2
2/

C O.j�j4/

as � ! 0.

Proof. We note

.� 0 � p/ � @2
� 0f .p/.� 0 � p/ D � � t UB.p/U� D �C.p/2�2

1 C ��.p/2�2
2:

Thus, it suffices to prove

@3
�1

f .p/ D uC.p/ � .r� 0�C/.p/; @2
�1

@�2
f .p/ D u�.p/ � .r� 0�C/.p/;

@�1
@2

�2
f .p/ D uC.p/ � .r� 0��/.p/; @3

�2
f .p/ D u�.p/ � .r� 0��/.p/:

To see this, we observe

U.p/�1@2
� 0f .� 0/U.p/ D @2

�f .� 0/:
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This implies
�

�C.� 0/ 0

0 ��.� 0/

�

D U.� 0/�1U.p/@2
�f .� 0/U.p/�1U.� 0/

Differentiating in � 0 and substituting � 0 D p, we have
�

@� 0�C.p/ 0

0 @� 0��.p/

�

D @� 0@2
�f .� 0/ C U.p/�1U.p/@2

�f .p/U.p/�1.@� 0U /.p/

� U.p/�1.@� 0U /.p/U.p/�1U.p/@2
�f .p/U.p/�1U.p/

D @� 0@2
�f .� 0/ C @2

�f .p/U.p/�1.@� 0U /.p/

� U.p/�1.@� 0U /.p/@2
�f .p/:

(11)

Using

.@� 0ju˙.� 0/j2/j� 0Dp D @� 01 D 0

and

.@� 0uC.� 0/ � u�.� 0//j� 0Dp D @� 00 D 0;

we have

uC.p/ � @� 0uC.p/ D u�.p/ � @� 0u�.p/ D 0;

uC.p/ � @� 0u�.p/ C @� 0uC.p/ � u�.p/ D 0:

This implies

U.p/�1.@� 0U /.p/ D
�

uC.p/ � @� 0uC.p/ uC.p/ � @� 0u�.p/

u�.p/ � @� 0uC.p/ u�.p/ � @� 0u�.p/

�

D
�

0 uC.p/ � @� 0u�.p/

u�.p/ � @� 0uC.p/ 0

�

:

Setting a D uC.p/ � @� 0u�.p/ D �u�.p/ � @� 0uC.p/, A D @2
�1

f .p/ and B D
@2

�2
f .p/, we have

@2
�f .p/U.p/�1.@� 0U /.p/ � U.p/�1.@� 0U /.p/@2

�f .p/

D
�

A 0

0 B

��

0 a

�a 0

�

�
�

0 a

�a 0

��

A 0

0 B

�

D
�

0 a.A � B/

a.A � B/ 0

�

:

(12)

It follows from .11/ and .12/ that

@� 0�C.p/ D .@� 0@2
�1

/f .p/; @� 0��.p/ D .@� 0@2
�2

/f .p/

Using @�1
D uC.p/ � @� 0 and @�2

D u�.p/ � @� 0 , we complete the proof. �
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4.2. Geometry of the Fermi surface. In the following, we consider the Fermi

surface M D M� D h�1
0 .¹�º/. We fix some notations. For j D 1; 2; 3, we set

aj D aj .�/ D cos 2��j ; bj D bj .�/ D sin 2��j :

Set

E� D 3 � �=2 2 .�3; 3/ for 0 < � < 12:

From the expression .1/, we have

M� D ¹� 2 T
3 j a1 C a2 C a3 D E�º;

Cr.h0/ D ¹� 2 T
3 j bj D 0; j D 1; 2; 3º;

(13)

where we recall that Cr.h0/ is defined in .2/. We define

K.�/ 2 C 1.T3 n Cr.h0/IR/W the Gaussian curvature of M� at �;

�.�/ 2 C 1.T3 n Cr.h0/IR3/W the unit normal of M� at �;

where the smoothness of K follows from the implicit function theorem. For

� 2 M� \ ¹@�3
h0.�/ ¤ 0º D ¹b3 ¤ 0º;

we write

� D .� 0; f�.� 0//; K.� 0; f�.� 0// D K1.� 0/:

We note that the map .� 0; �/ 7! f�.� 0/ is smooth by virtue of the implicit function

theorem.

We can calculate K and � explicitly:

Lemma 4.3. We have

K.�/ D 4�2.a1a2b2
3 C a2a3b2

1 C a3a1b2
2/

.b2
1 C b2

2 C b2
3/2

;

�.�/ D 1
q

b2
1 C b2

2 C b2
3

.b1; b2; b3/:

: (14)

Proof. Let �0 2 T3 n Cr.h0/ and U be a small neighborhood of �0. We prove .14/

at �0. Set � D h0.�0/. By permutating the coordinate, we may assume b3.�/ ¤ 0.

By the implicit function theorem, U \ M� has a graph representation:

U \ M� D ¹.� 0; f�.� 0//º:
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Differentiating h0.� 0; f�.� 0// D � twice, for j D 1; 2, we have

@�j
f�.� 0/ D �bj

b3

; (15a)

@2
�j

f�.� 0/ D �2�

b3
3

.aj b2
3 C a3b2

j /; (15b)

@�1
@�2

f�.� 0/ D �2�b1b2a3

b3
3

: (15c)

This implies

.1 C j@� 0f .� 0/j2/2 D .b2
1 C b2

2 C b2
3/2

b4
3

;

det @2
� 0f�.� 0/ WD @2

�1
f .� 0/@2

�2
f .� 0/ � .@�1

@�2
f .� 0//2

D 4�2

b4
3

.a1a2b2
3 C a2a3b2

1 C a3a1b2
2/:

Substituting these relations into .9/ and .10/, we obtain .14/. �

Now we determine all points where the Gaussian curvature vanishes.

Proposition 4.4. Let 0 < � < 12.

(i) We have

K�1.0/ \ M� D ¹a1a2 C a2a3 C a3a1 D a1a2a3.a1 C a2 C a3/º
D ¹a1 D a2 D 0º [ ¹a2 D a3 D 0º [ ¹a3 D a1 D 0º

[ ¹a1 C a2 C a3 D 1=a1 C 1=a2 C 1=a3; a1; a2; a3 ¤ 0º:
(16)

Moreover, if K.�/ D 0 with � 2 M� n Cr.h0/, then 4 � � � 8 holds.

(ii) All principal curvatures of M� n Cr.h0/ at � vanish if and only if �j 2
¹1=4; 3=4º for j D 1; 2; 3 and � D 6.

(iii) The Gaussian curvature K.�/ on M6 vanishes if and only if �j 2 ¹1=4; 3=4º
for j D 1; 2; 3.

Proof. (i) The first part immediately follows from the representation .14/ and the

relations a2
j C b2

j D 1 for j D 1; 2; 3.

Next, we prove that K.�/ D 0 with � 2 M� implies 4 � � � 8. Let

� 2 K�1.0/ \ M� and set

f .t/ D t3 � E�t2 C .E�a1a2a3/t � a1a2a3:
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Then .13/ and .16/ imply that a1, a2 and a3 are all zeros of f . Since

lim
t!˙1

f .t/ D ˙1

and aj 2 Œ�1; 1�, we have f .1/ � 0 and f .�1/ � 0, which implies

.1 � E�/.1 � a1a2a3/ � 0; .1 C E�/.1 C a1a2a3/ � 0:

These inequalities with ja1a2a3j � 1 gives �1 � E� � 1, which is equivalent to

4 � � � 8.

(ii) Let � 2 M� n Cr.h0/ with 4 � � � 8. By permutating the coordinate, we

may assume that b3.�/ ¤ 0 and that we can write U \ M� D ¹.� 0; f�.� 0//º. Then

all principal curvatures of M� at � vanishes if and only if @�k
@�l

f .� 0/ D 0 for each

k; l D 1; 2. This is also equivalent to

ıkl .1 � a2
3/ak C bkbl

q

1 � a2
k

q

1 � a2
l
a3 D 0; k; l D 1; 2: (17)

Since it is easy to see that �j 2 ¹1=4; 3=4º for j D 1; 2; 3 imply .17/, then we

prove that .17/ implies �j 2 ¹1=4; 3=4º for j D 1; 2; 3. Recall that ja3j ¤ 1 since

we assume @�3
h0 ¤ 0 on M�.

If we suppose a3 D 0, then .17/ with k D l D 1; 2 imply that ak D 0 for

k D 1; 2 and hence �k 2 ¹1=4; 3=4º for k D 1; 2; 3.

If we suppose a3 ¤ 0, then .17/ with k D 1 and l D 2 imply that either ja1j
or ja2j is equal to 1. Then it follows from a3 ¤ 0 and from .17/ with k D l D 1

or k D l D 2 that ja3j D 1. Thus we obtain jak j D 1 for k D 1; 2 by .17/ with

k D l D 1; 2. However, this contradicts to rh0.�/ ¤ 0 and hence a3 D 0.

(iii) We note that � D 6 is equivalent to E� D 0. .13/ and .16/ implies

a1 C a2 C a3 D a1a2 C a2a3 C a3a1 D 0 (18)

at � 2 M6. Then, it follows that a1; a2; a3 are the solutions to the equation

t3 � a1a2a3 D 0: (19)

If a1a2a3 D 0, then we have a1 D a2 D a3 D 0 and hence �j 2 ¹1=4; 3=4º
holds for j D 1; 2; 3. We suppose a1a2a3 ¤ 0 and deduce a contradiction.

Substituting (19) into t D a1, a2 and a3, we have a3
1 D a3

2 D a3
3 D a1a2a3.

This gives a2
1 D a2a3, a2

2 D a3a1 and a2
3 D a1a2. Combining these relations

with (19), we obtain a1 D a2 D a3. Thus (18) implies a1 D a2 D a3 D 0. This is

a contradiction. �
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Lemma 4.5. Let 4 < � < 8 with � ¤ 6 and �� 2 M� \ K�1.0/. Then we obtain

r�h0.��/ � r�K.��/ ¤ 0: (20)

In particular, from Lemma 4.1, we have .r� 0K1/.� 0
�/ ¤ 0, where �� D .� 0

�; f�.� 0//.

Proof. We set

�.�/ D .b1; b2; b3/; zK.�/ D a1a2b2
3 C a2a3b2

1 C a3a1b2
2 :

Using zK.��/ D 0, rh0 k � and .14/, we see that .20/ is equivalent to

�.��/ � r�
zK.��/ ¤ 0:

A direct computation gives

�.�/ � r�
zK.�/ D �2�

0

@

b2b3.a2 � a3/.1 � a1.a1 C a2 C a3//

b3b1.a3 � a1/.1 � a2.a1 C a2 C a3//

b1b2.a1 � a2/.1 � a3.a1 C a2 C a3//

1

A :

We note that .a1 C a2 C a3/.��/ D E�. Moreover, it follows that � 2 .4; 8/ is

equivalent to E� 2 .�1; 1/. These relations with �1 � aj � 1 imply that for

� 2 M�, �.�/ � r�
zK.�/ D 0 is equivalent to

b2b3.a2 � a3/ D b3b1.a3 � a1/ D b1b2.a1 � a2/ D 0 at �: (21)

Since �� 2 M� \ K�1.0/ with � 2 .4; 8/ n ¹6º, .14/ implies that .21/ does not

hold at ��. This completes the proof. �

4.3. Concrete description of the Fourier transform of the surface measure.

Now we set

@2
� 0f .� 0/ D �2�

0

B

B

B

@

a1b2
3 C a3b2

1

b3
3

b1b2a3

b3
3

b1b2a3

b3
3

a2b2
3 C a3b2

2

b3
3

1

C

C

C

A

DW B.� 0/: (22)

Proposition 4.6. Let �� 2 M� \ K�1.0/ with � 2 .4; 8/ with b3.��/ ¤ 0

and U � T3 be a small neighborhood of � such that U \ M� has a graph

representation: U \ M� D ¹.� 0; f�.� 0//º.
(i) If � D 6, then f� has the following Taylor expansion near �� D .� 0

�; f�.� 0
�//:

f�.� 0/ D f�.� 0
�/ C .@� 0f�/.� 0

�/ � � C ˛12�2
1�2 C ˛21�1�2

2 C R.�/; (23)

where � D .�1; �2/ D � 0 � � 0
� and a real-valued function R satisfies

j@

�R.�/j � C j�jmax.4�j
 j;0/. Here ˛12; ˛21 2 R n ¹0º.
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(ii) Suppose � ¤ 6. We regard � 0 � � 0
� as a vector in R2. Then there exists a 2�2

unitary matrix U such that

f�.� 0/ D f�.� 0
�/ C .@� 0f�/.� 0

�/ � U� C ˛1�2
1 C ˛2�2

2

C .˛111�3
1 C 3˛112�2

1�2 C 3˛122�1�2
2 C ˛222�3

2/

C
X

iCj CkCmD4

i�j �k�m

˛ijkm�i�j �k�m C R.�/;

where we set

� D .�1; �2/ D U �1.� 0 � � 0
�/

and a real-valued function R satisfies j@

�R.�/j � C j�jmax.5�j
 j;0/. Here

˛1; ˛2; ˛ij 2 R for i; j D 1; 2 satisfies .˛1; ˛2/ ¤ .0; 0/ and

˛1 ¤ 0 H) .˛122; ˛222/ ¤ .0; 0/;

˛2 ¤ 0 H) .˛111; ˛112/ ¤ .0; 0/:

Moreover, it follows that if .˛1; ˛111/ D .0; 0/ or .˛2; ˛222/ D .0; 0/ hold,

then we have

.a1.��/; a2.��/; a3.��// 2 ¹.0; 0; E�/; .0; E�; 0/; .E�; 0; 0/º: (24)

(iii) Suppose � ¤ 6. Let �� satisfying

a1.��/ D a3.��/ D 0; a2.��/ D E�:

Then we have

f�.� 0/ D f�.� 0
�/ C .@� 0f�/.� 0

�/ � � 0 C ˛1�2
1 C ˛2�2

2

C .˛111�3
1 C 3˛112�2

1 �2 C 3˛122�1�2
2 C ˛222�3

2 /

C
X

iCj CkCmD4

i�j �k�m

˛ijkm�i �j �k�m C R.� 0/;

where

˛1 D ˛111 D ˛1111 D 0; ˛112 ¤ 0;

hold and a real-valued function R satisfies j@


� 0R.� 0/j � C j� 0jmax.5�j
 j;0/.

Proof. (i) Let �� 2 M6 \ K�1.0/. Proposition 4.4 implies that .��/j 2 ¹1=4; 1=3º
for each j D 1; 2; 3 (which automatically implies b3.��/ ¤ 0). We prove .23/ only
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for .��/j D 1=4, j D 1; 2; 3. The other cases are similarly proved. Differentiating

h0.� 0; f�.� 0// D 6 three times, we have .15/ and

@�m
@�k

@�l
f�.� 0/ D 4�2

b3

��

ıklılmbk � bmblbk

b2
3

�

� a3

b4
3

.ıklakbmb2
3 C ılmalbkb2

3

C ımkamblb
2
3 C 3bmbkbla3/

�

(25)

for j; k; l D 1; 2. Substituting this into �� D .1=4; 1=4; 1=4/, we obtain

@3
�j

f�.� 0
�/ D 0; @2

�1
@�2

f�.� 0
�/ D @2

�1
@�2

f�.� 0
�/ D �4�2:

for j D 1; 2. Taylor expanding f�, we obtain .23/.

(ii) We recall B is the matrix defined in .22/. We denote the eigenvalues of B

at � 0 by �C.� 0/ and ��.� 0/. Now .10/, .22/, and Lemma 4.5 imply

r� 0 det B.� 0
�/ ¤ 0:

Thus,

.r� 0�C/.� 0
�/��.� 0

�/ C .r� 0��/.� 0
�/�C.� 0

�/ ¤ 0:

Since �C.� 0
�/��.� 0

�/ D 0 and .�C.� 0
�/; ��.� 0

�// ¤ .0; 0/, we have

�C.� 0
�/ D 0 H) r� 0��.� 0

�/ ¤ 0; (26)

��.� 0
�/ D 0 H) r� 0�C.� 0

�/ ¤ 0: (27)

Note that �C.� 0
�/ and ��.� 0

�/ are distinct by virtue of Proposition 4.4. Then

[10, Theorem XII.4] implies that �C.� 0/ and ��.� 0/ are analytic near � 0
� and the

corresponding unit eigenvectors uC.� 0/ and u�.� 0/ can be chosen to be analytic

near � 0
�. Now our claim follows from Lemma 4.2, .26/, and .27/. .24/ will be

proved in Appendix B.

(iii) It suffices to prove ˛112 ¤ 0 and ˛1 D ˛111 D ˛1111 D 0, that is,

@2
�1

@�2
f�.� 0

�/ ¤ 0; @2
�1

f�.� 0
�/ D @3

�1
f�.� 0

�/ D @4
�1

f�.� 0
�/ D 0:

The relations @2
�1

@�2
f�.� 0

�/ ¤ 0 and @2
�1

f�.� 0
�/ D @3

�1
f�.� 0

�/ D 0 directly follow

from .15/ and .25/. Differentiating h0.� 0; f�.� 0// D � four times in �1-variable,

we have

� 8�3a1 C .@4
�1

f�/b3 C 8�.@3
�1

f�/.@�1
f�/a3 C 6�.@2

�1
f�/2a3

� 24�2.@2
�1

f�/.@�1
f�/2b3 � 12�3.@�1

f�/4a3 D 0:
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Substituting

a1.��/ D a3.��/ D @2
�1

f�.� 0
�/ D @3

�1
f�.� 0

�/ D 0;

we obtain @4
�1

f�.� 0
�/ D 0. �

5. Proof of Theorem 2.4

By permutating the coordinate, we may assume @�3
h0.�/ ¤ 0 on supp �. We use

the following representation:

2�d�M�
.�/ D

Z

T3

�.� 0; f�.� 0//e2�i.x1�1Cx2�2Cx3f�.� 0// d� 0

jrh0.� 0; f�.� 0//j ;

where � 0 D .�1; �2/ and we write M� D ¹.� 0; f�.� 0//º locally.

Theorem 2.4 (i) and .iv/ directly follows from Proposition 4.4 (i), (ii) and

the stationary phase theorem. See [12, Chapter VIII, §3, Theorem 1]. Theo-

rem 2.4 (ii) follows from Proposition 3.2 (i) and Proposition 4.6 (i). Moreover,

Proposition 3.2 (ii) and Proposition 4.6 (ii), (iii) imply Theorem 2.4 (ii) (if neces-

sary, permuting the coordinate). We finish the proof.

Appendices

A. Equivalence of uniform resolvent estimates

Next elementary lemma follows from the Hölder inequality and the duality argu-

ment.

Lemma A.1. Let p 2 Œ1; 2� and r 2 Œ2; 1� satisfying

1

p
D 1

2
C 1

r
:

Set p0 D p=.p � 1/. Then

kAkB.lp.Zd /;lp0
.Zd // � C (28)

is equivalent to

kW1AW2kB.l2.Zd // � C kW1klr .Zd /kW2klr .Zd / for W1; W2 2 lr.Zd / (29)

with a same constant C > 0.
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Proof. Let u 2 l2.Zd /. The Hölder inequality with .28/ implies

kW1AW2ukl2.Zd / � kW1klr .Zd /kAW2uklp0
.Zd /

� C kW1klr .Zd /kW2uklp.Zd /

� C kW1klr .Zd /kW2klr.Zd /kukl2.Zd /:

Thus we have .29/. Conversely, assume .29/ and fix W2 2 lr .Zd /. First, we prove

kAW2kB.l2.Zd /;lp0
.Zd // � C kW2klr .Zd /. Let u; w be finitely supported functions.

Then .28/ implies

j.w; AW2u/l2.Zd /j Dj.jwj
p
2 sgnw; jwj1� p

2 AW2u/l2.Zd /j
�C kjwj

p
2 kl2.Zd /kjwj1� p

2 klr .Zd /kW2klr .Zd /kukl2.Zd /

DC kW2klr.Zd /kwklp.Zd /kukl2.Zd /:

Thus we have kAW2kB.l2.Zd /;lp0
.Zd // � C kW2klr.Zd /. Similar argument also

implies .28/. �

B. Proof of .24/

In this appendix, we prove .24/. We introduce the notation

aj D aj .�/ D cos 2��j ; bj D bj .�/ D sin 2��j ; cj D cj .�/ D tan 2��j D bj

aj

and recall M� D h�1
0 .¹�º/ and E� D 3 � �=2. We note

E� 2 .�1; 1/ () � 2 .4; 8/:

For � 2 M� with b3.�/ ¤ 0, we write

� D .� 0; f�.�//:

We recall

B.� 0/ D @2
� 0f�.� 0/ D �2�

0

B

B

B

@

a1b2
3 C a3b2

1

b3
3

b1b2a3

b3
3

b1b2a3

b3
3

a2b2
3 C a3b2

2

b3
3

1

C

C

C

A

and denote the eigenvalues of B.� 0/ by �C.� 0/ and ��.� 0/ and the corresponding

eigenvectors by uC.� 0/ and u�.� 0/.
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In order to prove .24/, by permuting the coordinate, it suffices to prove

�C.� 0
�/ D uC.� 0

�/ � @� 0�C.� 0
�/ D 0

H) .a1.��/; a2.��/; a3.��// 2 ¹.0; 0; E�/; .0; E�; 0/; .E�; 0; 0/º

if we suppose E� 2 .�1; 1/ n ¹0º. We recall ��.� 0
�/ ¤ 0 if �C.� 0

�/ D 0 by

Proposition 4.4 and by the condition E� ¤ 0. Since

aj D 0 for some j D 1; 2; 3

H) .a1; a2; a3/ 2 ¹.0; 0; E�/; .0; E�; 0/; .E�; 0; 0/º;

at � 2 K�1.¹0º/ \ M�, we only need to prove

aj ¤ 0 for all j D 1; 2; 3 and �C.��/ D 0

H) uC.� 0
�/ � @� 0�C.� 0

�/ ¤ 0:
(30)

First, we compute the null eigenvector of B.� 0
�/.

Proposition B.1. Suppose E� 2 .�1; 1/ n ¹0º. If

�� D .� 0
�; f�.� 0

�// 2 M� \ K�1.¹0º/ n .¹a1 D 0º [ ¹a2 D 0º [ ¹b3 D 0º/

satisfies �C.� 0
�/ D 0, then we have

uC.� 0
�/ k

�

c1.��/

c2.��/

�

:

We will prove this proposition in the next subsection. It follows from this

proposition that under the condition �C.� 0
�/ D 0, the equation

uC.� 0
�/ � @� 0�C.� 0

�/ D 0

is equivalent to

�

c1.��/

c2.��/

�

� .@� det B/.� 0
�/ D 0

if a1.��/ ¤ 0 and a2.��/ ¤ 0 are satisfied. Since det B.� 0
�/ D 0, this equation is

also equivalent to

�

c1.��/

c2.��/

�

�
�

@� det
��b4

3

2�
B

��

.� 0
�/ D 0: (31)
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Lemma B.2. Suppose E� 2 .�1; 1/ n ¹0º. For � D .� 0; f�.� 0// 2 M�, we have

@� det.
�b4

3

2�
B/ D �2�

�

b1.a3 � a1/.1 � E�a2/

b2.a3 � a2/.1 � E�a1/

�

:

Proof. We set

M D �b4
3

2�
B:

A direct calculation gives

M Da1a2b2
3 C a1a3b2

2 C a2a3b2
1 :

Since

@�j
a3 D �2�b3.@�j

f�/ D 2�bj

and

@�j
b3 D 2�a3.@�j

f�/ D �2�bj a3=b3

(recall .15/), we obtain

@�1
M.�/ D2�b1.a1 � a3/.1 � a2.a1 C a2 C a3//

@�2
M.�/ D2�b2.a2 � a3/.1 � a1.a1 C a2 C a3//:

This completes the proof. �

Now we compute the left hand side of .31/. We assume a1 ¤ 0, a2 ¤ 0 and

a3 ¤ 0. Using the relations aj bj cj D b2
j , we have

1

2�

�

c1

c2

�

�
�

@� det
��b4

3

2�
B

��

D .b1c1 C b2c2/a3 � b2
1 � b2

2

C E�.a1a2.b1c1 C b2c2/ � a3.b1c1a2 C a1b2c2//:

Since
P3

j D1 bj cj D 0 which is proved in Lemma B.3 below, we obtain

1

2�

�

c1

c2

�

�
�

@� det
��b4

3

2�
B

��

D � a3b3c3 � b2
1 � b2

2

� E�.a1a2b3c3 C a3.b1c1a2 C a1b2c2//

D �b2
1 � b2

2 � b2
3 � E�

�a1a2b2
3

a3

C a2a3b2
1

a1

C a3a1b2
2

a2

�

D �b2
1 � b2

2 � b2
3 � E�

�a2
1a2

2 C a2
2a2

3 C a2
3a2

1

a1a2a3

� 3a1a2a3

�

:
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From the relations (see .16/)

a1 C a2 C a3 D E�; a1a2 C a2a3 C a3a1 D E�a1a2a3;

we obtain

a2
1a2

2 C a2
2a2

3 C a2
3a2

1 D E�a1a2a3.E�a1a2a3 � 2/;

b2
1 C b2

2 C b2
3 D 3 � E2

� C 2E�a1a2a3:

Thus we have

1

2�

�

c1

c2

�

�
�

@� det
��b4

3

2�
B

��

D E2
� � 3 � 2E�a1a2a3 � E�.E�.E�a1a2a3 � 2/ � 3a1a2a3/

D �a1a2a3E3
� C 3E2

� C a1a2a3E� � 3

D .E2
� � 1/.�a1a2a3E� C 3/ ¤ 0

since E� 2 .�1; 1/. This proves .30/.

B.1. Proof of Proposition B.1. We need the following lemmas.

Lemma B.3. Suppose E� 2 Œ�1; 1�. Then, for

� 2 M� n ¹a1 D 0º [ ¹a2 D 0º [ ¹a3 D 0º;

K.�/ D 0 holds if and only if

b.�/ D .b1.�/; b2.�/; b3.�// ? c.�/ D .c1.�/; c2.�/; c3.�//;

where we recall that K.�/ is the Gaussian curvature at � 2 M� which is defined

in Lemma 4.1.

Proof. By virtue of .14/, K.�/ D 0 if and only if

a1a2b2
3 C a2a3b2

1 C a3a1b2
2 D 0 at �:

Since b2
j D aj bj cj , this equation is equivalent to

a1a2a3.b1c1 C b2c2 C b3c3/ D 0 at �:

This is also equivalent to b.�/ ? c.�/ under the conditions a1 ¤ 0, a2 ¤ 0 and

a3 ¤ 0. �
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Lemma B.4. Suppose E� 2 .�1; 1/. If � 2 K�1.¹0º/ \ M�, then we have

.b1.�/; b2.�// ¤ .0; 0/. In particular, we obtain .c1.�/; c2.�// ¤ .0; 0/.

Proof. If b1.�/ D b2.�/ D 0, then we have ja1.�/j D ja2.�/j D 1. It follows

that a1.�/ D a2.�/ D ˙1 does not hold since these imply a3.�/ D E� � 2 …
Œ�1; 1�, which is a contradiction. Thus we have .a1.�/; a2.�// D .˙1; �1/ and

a3.�/ D E� by .13/. Using .16/, we conclude E2
�

D 1, which is contradicts to

E� 2 .�1; 1/. �

Lemma B.5. Suppose E� 2 .�1; 1/. For � 2 K�1.¹0º/\M�n¹a1 D 0º[¹a2 D 0º
with b3.�/ ¤ 0, we have

B.� 0/

�

c1

c2

�

D 0; (32)

where we write � D .� 0; f�.� 0// 2 M�. In particular, the vector .c1; c2/ is

the eigenvector of the matrix B with 0-eigenvalue at � 0, where we note that

.c1.� 0/; c2.� 0// ¤ .0; 0/ by virtue of Lemma B.4 (and by E� ¤ 0).

Proof. By virtue of .22/, it suffices to prove

c1.a1b2
3 C a3b2

1/ C c2b1b2a3 D 0; c1b1b2a3 C c2.a2b2
3 C a3b2

2/ D 0:

Using the relation cj aj D bj and Lemma B.3, we have

c1.a1b2
3 C a3b2

1/ C c2b1b2a3 D b1.b2
3 C .b1c1 C b2c2/a3/

D b1.b2
3 � a3b3c3/ D 0:

The equation c1b1b2a3 C c2.a2b2
3 C a3b2

2/ D 0 is similarly proved. �

Now Proposition B.1 immediately follows from Lemma B.5.
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