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1. Introduction and main result

The Faber–Krahn inequality states that among all open sets of a given volume in
R

d the ball minimizes the first eigenvalue of the Dirichlet Laplacian. Rayleigh, in
1894, originally formulated this as an assertion (which cannot be regarded as more
than a conjecture at that stage), only for 2 dimensions, which he rather colorfully
phrased in physical terms as follows: “if the area of a membrane be given, there
must evidently be some form of boundary for which the pitch (of the principal
tone) is the gravest possible, and this form can be no other than the circle” (see
[25, pp. 339–340]). The conjecture was proved independently by Faber [10] and
Krahn [17, 18] in the 1920s.

Since then many minimization or maximization problems for the principal
eigenvalue of standard elliptic operators with respect to the shape of the domain
(with constraints on the volume, perimeter, etc.) have been studied. These results,
usually, go under the name of Faber–Krahn inequalities (which we refer to as FKI
for short) and we recall a few of these below. The discussion below is by no means
exhaustive.
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Pólya and Szegő [23], in 1951, conjectured that among all N -gons of fixed
area, the regular N -gon of the same area minimizes the first eigenvalue of the
Dirichlet Laplacian. Although known to be true in the class of triangles and in the
class of quadrilaterals [23] (see also [12] for a modern exposition), this remains a
challenging open problem in the class of polygons with N sides, N � 5.

FKIs for certain other, local or non-local, elliptic operators are also available.
In the local setting, an FKI for the p-Laplacian was first obtained in 1999 by Bhat-
tacharya [3] and has been revisited in recent years in a few papers [21, 8]. On the
other hand, in the non-local setting, an FKI for fractional Laplacian under Dirich-
let boundary conditions has been studied in a paper in 2014 by Brasco, Lindgren,
and Parini [5] in the class of bounded open sets and by Olivares-Contador [22], in
2017, in the class of domains which are triangles or quadrilaterals. Another class
of non-local operators for which FKIs have been obtained concerns the Riesz po-
tential operator which is an integral operator. Rozenblum, Ruzhansky, and Sura-
gan [26] and Kal’menov and Suragan [15] obtain FKIs for the Riesz potential
operator in the class of open bounded domains in Euclidean space whereas anal-
ogous results for other geometries have been obtained by Ruzhansky and Sura-
gan [27]. An FKI for a certain other class of fractional elliptic operators has been
obtained by Kassymov, Ruzhansky, and Torebev [16] while considering cylindri-
cal domains with triangular or quadrilateral sections.

The Riesz potential operator is only the inverse of a fractional Laplacian
operator with a certain non-local boundary condition (see Rozenblum, Ruzhansky,
and Suragan [26]). Thus, the FKI for the fractional Laplacian under Dirichlet
boundary condition does not imply the FKI for the Riesz potential operator or vice
versa. In particular, the attainment of an FKI for the Riesz potential operator (in the
class of all bounded domains) by Rozenblum et al. is a result which is independent
of the FKI for a fractional Laplacian operator obtained earlier by Brasco et al. In
a similar vein, in this paper we prove the FKI for the Riesz operator in the class
of triangles or quadrilaterals; the corresponding results for the Dirichlet fractional
Laplacian were established in [22] and are distinct from what we do here. Apart
from showing the existence of a maximizer, we show also its uniqueness in the
classes of triangles and quadrilaterals. We state below the main result of the paper
after introducing the Riesz operator and the associated eigenvalue problem.

Definition 1.1. Let � � R
d be a bounded domain, d > 1. For 0 < ˛ < d , the

Riesz potential operator on L2.�/ is defined by

.I˛u/.x/ D �� d

2 2�˛ �..d � ˛/=2/

�.˛=2/

Z

�

u.y/

jx � yjd�˛
dy a.e. x 2 �: (1.1)
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It is known that the Riesz potential operator is a compact, self-adjoint, and
non-negative operator (see [26, Section 2]) from which, by the spectral theory for
compact self-adjoint operators, it has a discrete spectrum included in the positive
real line and with 0 as its only point of accumulation. Moreover, the first (largest)
eigenvalue of the Riesz operator admits the following characterization

�1.�/ D max

²Z

�

Z

�

u.x/u.y/

jx � yjd�˛
dx dyW u 2 L2.�/; kukL2.�/ D 1

³

: (1.2)

The maximizer for (1.2) exists and satisfies the following Euler–Lagrange equation

Z

�

Z

�

u.x/�.y/

jx � yjd�˛
dx dy D �1.�/

Z

�

u.x/�.x/ dx for all � 2 L2.�/: (1.3)

Moreover, the first eigenvalue is simple and any corresponding eigenfunction is
a continuous, non-vanishing function of constant sign on �, being facts which
sometimes go under the name of Jentzsch’s theorem (see [27, Lemma 3.1], [13,
p. 256], [14], or [29, Chapter 4, Section 18]). We now state our main theorem.

Theorem 1.1. Let 0 < ˛ < 2. The maximum of �1.�/ among all triangles (open)

of given area is obtained when � is an equilateral triangle and only when � is an

equilateral triangle (up to a set of Lebesgue measure 0). Similarly, the maximum

of �1.�/ among all quadrilaterals (open) of given area is obtained when � is a

square and only when � is a square (up to a set of Lebesgue measure 0).

We also prove two secondary results which are used in the proof of the main
result. The first of these is a discussion of the equality case in Riesz’s inequality
for Steiner symmetrization in any dimension (Proposition 2.3). Although, in
the one-dimensional case, this was treated in [19] (see also Lieb and Loss [20,
Chapter 3]), a discussion of the equality case, in higher dimensions, for the Steiner
symmetrization is not easy to find. The equality case in Riesz’s inequality for
the Schwarz symmetrization is well studied and we refer the interested reader to
[20, 6]. The second is the continuity of the first eigenvalue of the Riesz operator
with respect to convergence in the Hausdorff complementary distance of a family
of uniformly bounded convex open sets (Proposition 2.9).

The plan of the paper is as follows. The basic definitions, notions, and sec-
ondary results which will be used in this paper are given in Section 2. Section 3
contains the proof of the main theorem.
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2. Tools

2.1. Properties of �1. We now list several properties of �1 which will be re-
quired in the proof of the Proposition 2.9.

Proposition 2.1. Let � be a bounded domain in R
d .

(1) Translation invariance. �1.�/ D �1.� C x/ for all x 2 R
d .

(2) Invariance under orthonormal transformations. �1.�/ D �1.T .�// for

every orthonormal transformation T 2 O.n/.

(3) Homothety law. �1.k�/ D k˛�1.�/ for k > 0.

(4) Domain monotonicity Given bounded domains A and B in R
d , if A � B ,

then �1.A/ � �1.B/.

Proof. We only prove property (3). Properties (1), (2), and (4) can be proved
analogously. For this, note that u 7! w, given by

w.x/ WD u
�x

k

�

;

is an isomorphism from L2.�/ to L2.k�/ and under this isomorphism, we have

Z

k�

Z

k�

w.x/w.y/

jx � yjd�˛
dx dy

Z

k�

jwj2.x/ dx

D

Z

k�

Z

k�

u
�

x
k

�

u
�

y
k

�

jx � yjd�˛
dx dy

Z

k�

ˇ

ˇ

ˇu
�x

k

�
ˇ

ˇ

ˇ

2

dx

D k˛

Z

�

Z

�

u.z/u.r/

jz � r jd�˛
dz dr

Z

�

ju.z/j2 dz

:

Then, property (3) follows from the characterization (1.2) by taking the maximum
with respect to w in L2.k�/ which is equivalent, under the isomorphism, to taking
the maximum with respect to u 2 L2.�/ on the right-hand side. �

2.2. Steiner symmetrizations of sets and functions. In this subsection we re-
call the notion of Steiner symmetrization and some of its properties. The defini-
tions given below follow Lieb and Loss [20] or Brascamp, Lieb, and Luttinger [4].
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We also refer to the same texts and Gruber [11] for the main properties. For com-
plementary information we refer the reader to [1, 7, 9, 12].

For any measurable subset � � R with finite Lebesgue measure, we denote
by �� the open interval with centre at 0 having the same measure as �. For
any nonnegative Borel measurable function f on R vanishing at infinity (in the
sense that all its positive level sets have finite measure), we define the symmetric-
decreasing rearrangement f � of f as follows:

f �.x/ D

1
Z

0

�¹y2RWf .y/>tº�.x/ dt: (2.1)

The function f � so defined is a Borel measurable function.

Definition 2.1. Let f be a nonnegative, Borel measurable function on R
d which

vanishes at infinity, and let H be any hyperplane (.d � 1/-dimensional plane)
through the origin of Rd . We set up an orthogonal coordinate system on R

d , with
basis vectors ¹e1; e2; : : : ; ed º, in such a way that if a generic point x is represented
as .x0; xd / D .x1; x2; : : : ; xd�1; xd /, then H is the plane xd D 0.

A nonnegative, Borel measurable function f ? on R
d is called the Steiner sym-

metrization with respect to H of f , if f ?.x1; x2; : : : ; xd�1; �/ is the symmetric-
decreasing rearrangement of f .x1; x2; : : : ; xd�1; �/ with respect to the xd variable,
for each fixed .x1; : : : ; xd�1/.

It can be seen that this naturally leads to the following definition for the Steiner
symmetrization of a bounded measurable set � with respect to the hyperplane H .

Definition 2.2 (Steiner symmetrization of a set). For any bounded Borel mea-
surable set � � R

d , the Steiner symmetrization of � with respect to H , to be
denoted by �?, is given by

�? D
[

b2H
�\Lb¤;

°

b C ted W jt j �
1

2
j� \ Lbj

±

; (2.2)

where j� \ Lbj is the one-dimensional Lebesgue measure of � \ Lb with Lb

being the line with direction ed passing through the point b for any b 2 H . �

We recall the following properties of Steiner symmetrization of functions.

Proposition 2.2. (1) The definitions of the Steiner symmetrization of sets and

functions are consistent, that is,

�A? D .�A/? and ¹xW f .x/ � tº? D ¹xW f ?.x/ � tº:
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for all Borel measurable sets A with finite Lebesgue measure and for all non-

negative Borel measurable functions f which vanish at infinity.

(2) Let f be a nonnegative Borel measurable function with f 2 L2.Rd /. Then,

kf k2 D kf ?k2:

Proof. For (1) see [1, 183–184]. The proof of (2) follows easily from (1) and the
d -dimensional layer cake representation (see [20, Theorem 1.13]). �

Proposition 2.3 (Riesz’s inequality). Let f; g, and h be non-negative Borel mea-

surable functions that vanish at infinity on R
d , and let f ?; g?, and h? be their

respective Steiner symmetrizations with respect to a given hyperplane H taken,

as above, as ¹x 2 R
d jxd D 0º. Then, for

I.f; g; h/ WD

Z

R
d

Z

R
d

f .x/g.x � y/h.y/ dx dy;

we have

I.f; g; h/ � I.f ?; g?; h?/: (2.3)

Moreover, if g is symmetric with respect to the hyperplane H and strictly de-

creasing in the orthogonal direction (moving away) and both f and h are non-

trivial, then there is equality in (2.3) if and only if there exists w 2 R
d of the form

.0; 0; : : : ; 0; k/ for some k 2 R, such that f .x/ D f ?.x�w/ and h.x/ D h?.x�w/

for almost all x 2 R
d . The k for which this holds is unique.

We refer to Lemma 3.2 of [4] for a proof of inequality (2.3). We only treat the
case of equality for which we need the following lemma.

Lemma 2.4. Let A � R be a Lebesgue measurable set with jAj > 0. If A D ACx

for some x 2 R n ¹0º, then jAj D 1.

Proof. Since jAj > 0, necessarily there exists an n 2 Z for which B WD

A \ Œn; n C 1� has positive measure. Notice that B C x � A C x D A and
then, using induction, we also obtain B C mx � A for every m 2 Z. Now, we
assume, without loss of generality, that x > 0 and then choose M 2 N such that
Mx > 1. Then it follows that the intervals ŒsMx C n; sMx C n C 1� are disjoint
for distinct s 2 Z. Since, B C sMx � ŒsMx C n; sMx C n C 1�, we obtain that
the sets B C sMx are disjoint for distinct s 2 Z. Therefore, necessarily it follows
that jAj D 1, since A contains infinitely many disjoint copies of B . �
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Proof of Proposition 2.3. The equality case in the one-dimensional case is dis-
cussed in Lieb [19] (see also [20, Theorem 3.9, p. 93]).

The equality case in the d -dimensional case, for d � 2, is discussed be-
low. The proof, unlike the proof of the equality case in Riesz’s inequality under
Schwarz symmetrization sketched in Theorem 3.9 of Lieb and Loss [20], does
not require induction on the dimension. We exploit, directly, the one-dimensional
result. Since we have chosen an orthogonal coordinate system wherein H is the
hyperplane ¹.x0; 0/ W x0 D .x1; x2; : : : ; xd�1/ 2 R

d�1º, the hypotheses on g gives
us g.z0; �/ D g�.z0; �/ and so the equality I.f; g; h/ D I.f ?; g; h?/ may be written
as

Z

Rd�1�Rd�1

Z

R�R

f .x0; xd /g.x0 � y0; xd � yd /h.y0; yd / dxd dyd dx0 dy0

D

Z

Rd�1�Rd�1

Z

R�R

f ?.x0; xd /g.x0 � y0; xd � yd /h?.y0; yd / dxd dyd dx0 dy0;

(2.4)

with .x0; y0/ 2 R
d�1 � R

d�1.
For any fixed .x0; y0/ 2 R

d�1 � R
d�1, by definition f ?.x0; �/ and h?.y0; �/

are the one-dimensional symmetric-decreasing rearrangements of f .x0; �/ and
h.y0; �/ respectively. Now for any x0; y0 2 R

d�1, Riesz’s inequality applied to
the functions f .x0; �/; g.x0 � y0; �/, and h.y0; �/ viewed as functions of the final
variable gives us

Z

R�R

f .x0; xd /g.x0 � y0; xd � yd /h.y0; yd / dxd dyd

�

Z

R�R

f ?.x0; xd /g.x0 � y0; xd � yd /h?.y0; yd /dxd dyd :

(2.5)

When we view the left-hand side and right-hand side terms in (2.5) as functions of
.x0; y0/, this inequality is an inequality between functions on R

d�1 �R
d�1 which

holds pointwise. Whereas, (2.4) tells us that their integrals on R
d�1 � R

d�1 are
equal. From, this it can be deduced that there is in fact equality in the almost
everywhere sense in (2.5), that is,

Z

R�R

f .x0; xd /g.x0 � y0; xd � yd /h.y0; yd / dxd dyd

D

Z

R�R

f ?.x0; xd /g.x0 � y0; xd � yd /h?.y0; yd / dxd dyd a.e. x0; y0:

(2.6)



1942 R. Mahadevan and F. Olivares-Contador

Let S be the set of the couples .x0; y0/ for which equality holds in (2.6), so that
.Rd�1 � R

d�1/ n S has measure 0. Also, let

M D ¹x0 2 R
d�1W f .x0; �/ is not the zero functionº;

N D ¹y0 2 R
d�1W h.y0; �/ is not the zero functionº:

Note that, by our hypothesis, both M and N are of positive measure. Also, for
any .x0; y0/ 2 M � N , by the definition of M and N , both f .x0; �/ and h.y0; �/

are non-zero functions. It can be observed that for any .x0; y0/ 2 S
T

.M � N /

we have equality for Riesz’s inequality in one dimension. Therefore, the equality
case of the one-dimensional result (as found in [19, Lemma 3]) now tells us that
there is a shift, k.x0; y0/, such that

f .x0; xd / D f ?.x0; xd � k.x0; y0// a.e. xd ; (2.7)

and
h.y0; yd / D h?.y0; yd � k.x0; y0// a.e. yd : (2.8)

Moreover, this shift is unique since, otherwise, f .x0; �/ (and h.y0; �/) would be
symmetric about two points which means that f .x0; �/ (similarly, h.y0; �/) is trans-
lation invariant and this is not possible because of the hypotheses on the level sets
of f (and h).

Now, S
T

.M �N / is of full measure in .M �N / and so, for almost all y0 2 N

the section .S
T

.M � N //y0 which is the section of S
T

.M � N / at y0 is of full
measure in M . Consider any y0

0 in N for which .S
T

.M � N //y0
0

has the same
measure as M . Now, for any x0; z0 2 .S

T

.M � N //y0
0

, we observe that

f .x0; xd / D f ?.x0; xd � kx0;y0
0
/ a.e. xd ;

h.y0
0; yd / D h?.y0

0; yd � kx0;y0
0
/ a.e. yd ;

f .z0; xd / D f ?.z0; xd � kz0;y0
0
/ a.e. xd ;

h.y0
0; yd / D h?.y0

0; yd � kz0;y0
0
/ a.e. yd ;

from which we obtain

h.y0
0; yd / D h.y0

0; yd C kz0;y0
0

� kx0;y0
0
/ a.e. yd (2.9)

Since y0
0 belongs to N we see that ¹yd W h.y0

0; yd / ¤ 0º is of positive measure.
Also, since h.y0

0; �/ vanishes at infinity, it is possible to fix a t with 0 < t < 1 such
that the measure of A D ¹yd W h.y0

0; yd / > tº is finite and positive. Also notice
that, by (2.9), we have A D A C kx0;y0

0
� kz0;y0

0
. Therefore, using Lemma 2.4, we

have kz0;y0
0

D kx0;y0
0
. Let us denote this common value by k.y0

0/. This implies
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that f .x0; �/ is symmetric-decreasing about xd D k.y0
0/ independently of x0 in

.S
T

.M � N //y0
0

. That is, f .x0; �/ is symmetric-decreasing about xd D k.y0
0/

for almost every x0 in M . Since, f .x0; �/ is independent of y0
0 we can also

conclude that k.y0
0/ does not really depend on y0

0 since a non-zero function
vanishing at infinity cannot be symmetric-decreasing with respect to two distinct
points. Therefore, for almost every x0 in M , f .x0; �/ is symmetric-decreasing
about xd D k where k now is independent of x0; y0.

Then, (2.8) allows us to conclude that, for almost all w0 2 M , h.w0; �/ is also
Steiner symmetric about yd D k. �

Remark 1. We note that the hypotheses on f and h requiring their vanishing at
infinity, apart from the hypothesis on g, are crucial for being able to say that the
equality in Riesz’s inequality implies that they are Steiner symmetric except for a
common shift. These hypotheses exclude, effectively, the possibility that the shift
depends on the section or that there are multiple possibilities for the shifts.

To end this subsection, we also recall the following properties of Steiner
symmetrization of sets. To start with, we define a few basic concepts. A convex
body is a compact convex set with non-empty interior. By K

d we denote the set
of all convex bodies in R

d . For a convex body A in R
d , the inradius r.A/ is the

supremum of the radii of balls contained in A and the circumradius R.A/ is the
infimum of the radii of balls containing A.

Proposition 2.5. Let A; B 2 K
d . Then,

(1) A? � B? for A � B;

(2) r.A/ � r.A?/;

(3) R.A?/ � R.A/;

(4) V.A/ D V.A?/ where V.A/ denotes the volume of A.

Proof. See [11, Proposition 9.1, pp. 169–171]. �

2.3. The Minkowski addition and the Minkowski difference

Definition 2.3. The Minkowski addition of two sets X; Y � R
d is defined by

X ˚ Y WD
[

y2Y

.X C y/: (2.10)

The Minkowski difference of two sets X; Y � R
d is defined by

X 	 Y WD
\

y2Y

.X � y/: (2.11)
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If Y D �Y , then
X 	 Y D

\

y2Y

.X C y/: (2.12)

Note. If K is a convex body the set K 	 B.0; �/ is called the inner parallel body
of K at distance � (see [28, p. 93 and p. 148]).

Proposition 2.6. Let X; Z � R
d with X � Z and let � > 0. Then

X 	 B.0; �/ � Zn..ZnX/ ˚ B.0; �//: (2.13)

Proof. From (2.11) it follows that .X 	 B.0; �//c D Xc ˚ B.0; �/ from which

Z \ .X 	 B.0; �//c D Z \ .Xc ˚ B.0; �//: (2.14)

On the other hand, we have trivially

Z \ ..Z \ Xc/ ˚ B.0; �// � Z \ .Xc ˚ B.0; �//:

So, after taking the complement with respect to Z in the anterior and then us-
ing (2.14), we get

Zn.Z \ .X 	 B.0; �//c/ � Zn.Z \ ..Z \ Xc/ ˚ B.0; �///:

From this, in view of the hypothesis that X � Z, we get

X 	 B.0; �/ � Zn..Z \ Xc/ ˚ B.0; �//: �

Proposition 2.7. Let X be an open convex set of Rd . Then, the following holds:

X 	 B.0; �/ D xX 	 B.0; �/:

Proof. On the one hand, it is clear that X 	 B.0; �/ � xX 	 B.0; �/.
On the other hand, for any x 2 X 	B.0; �/, it follows from the definition (2.11)

that B.x; �/ � xX . Since for an open convex set it is true that PX D X (see [24,
Theorem 2.28]) we get B.x; �/ � X , and so, x 2 X 	 B.0; �/. This proves the
inclusion which is less obvious. �

The main ingredient in the proof of Proposition 2.9 is the following Lemma.

Lemma 2.8. Let K be a convex body in R
d , with B.0; r/ � K � B.0; R/ for

some numbers r > 0 and R > 0. If 0 < � < r2

4R
, then

�

1 � 4
R�

r2

�

K � K 	 B.0; �/ � K: (2.15)

Proof. See [28, Lemma 2.3.6, p. 93]. �
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2.4. Hausdorff distance. In this subsection, we quickly recall the definition of
the complementary Hausdorff distance for bounded open sets (see [12, 28] for
more details) and prove a continuity property of the first eigenvalue of the Riesz
operator with respect to the convergence in this metric. The continuity result is
similar to that proved in [22] for the eigenvalues of fractional Laplacian with
Dirichlet boundary conditions. We are able to remove some of the hypothesis
used therein.

Definition 2.4. Let K and C be two non-empty compact sets in R
d . Then their

Hausdorff distance is defined as

d H .K; C / D inf¹� � 0W K � C ˚ B.0; �/ and C � K ˚ B.0; �/º:

Let O1 and O2 be two open subsets of a compact set B . Then the so-called
complementary Hausdorff distance is defined by

dH .O1; O2/ D d H .BnO1; BnO2/: (2.16)

Proposition 2.9. Let B be a fixed compact set in R
d and �n be a family of

non-empty convex open subsets of B which converges, for the complementary

Hausdorff distance, to a non-empty convex open set �. Then,

�1.�/ D lim
n!1

�1.�n/:

Proof. Since �1 is invariant under translation, we can assume that 0 2 �. Since
� is an open set, there is an open ball such that B.0; r/ � �. We assume, without
loss of generality, that B is the closure of the ball B.0; R/ for some R large enough.

Step 1. Since, dH .�n; �/ ! 0, by the definition of the complementary Haus-
dorff distance, for any � > 0 there exist n� such that

Bn� � .Bn�n/ ˚ B.0; �/ for all n � n� (2.17)

and
Bn�n � .Bn�/ ˚ B.0; �/ for all n � n�: (2.18)

Further, by taking the relative complement in (2.18) with respect to B and there-
after applying Proposition 2.6 with the choices X D � and Z D B , we obtain

� 	 B.0; �/ � �n for all n � n�: (2.19)

Therefore, by Proposition 2.7, we also have

x� 	 B.0; �/ � �n for all n � n�: (2.20)
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From the above, by choosing 0 < � < r , we get

B.0; r � �/ D B.0; r/ 	 B.0; �/ � � 	 B.0; �/ � �n for all n � n�:

So, if 0 < � < r
2
, then we shall also have

B.0; r=2/ � �n for all n � n�: (2.21)

Step 2. Let us now fix 0 < � < r2

16R
. For this choice, we also have 0 < � < r2

4R

and so, applying Lemma 2.8 with the compact set x� in mind, we get
�

1 � 16
R�

r2

�

� �
�

1 � 16
R�

r2

�

x� � x� 	 B.0; �/: (2.22)

So, using (2.20), it follows that
�

1 � 16
R�

r2

�

� � �n for all n � n�: (2.23)

Then, by using the domain monotonicity and homothety properties or the Riesz
eigenvalues given in Proposition 2.1, we can obtain the inequality

�

1 � 16
R�

r2

�˛

�1.�/ � �1.�n/:

After taking the limit inferior, as n ! 1, we obtain
�

1 � 16
R�

r2

�˛

�1.�/ � lim
n!1

�1.�n/: (2.24)

If we now take the limit as � ! 0 in (2.24) we get

�1.�/ � lim
n!1

�1.�n/: (2.25)

Step 3. Arguing similarly as in Step 1, but starting from (2.17), we can also
obtain the inclusion

�n 	 B.0; �/ � � for all n � n�:

In view of (2.21) and since we have chosen 0 < � < r2

16R
, by applying Lemma 2.8

with the compact set x�n in mind we obtain
�

1 � 16
R�

r2

�

�n �
�

1 � 16
R�

r2

�

x�n � x�n 	 B.0; �/:

So, continuing similarly as in Step 2, we conclude that

lim
n!1

�1.�n/ � �1.�/: (2.26)

The desired result follows from (2.25) and (2.26). �
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3. Proof of the main theorem

Proof of Theorem 1.1. Let 41 be an arbitrary open triangle of positive area a. We
successively define the open triangles 4nC1 by taking the Steiner symmetrization
of 4n with respect to the perpendicular bisector of a side with respect to which
there is no symmetry. Then by Proposition 2.5 (4), each of the triangles has
area a and also the triangles are uniformly bounded since, by part 3 of the same
proposition, the circumradius decreases after successive Steiner symmetrizations.
This can be used to show that the sequence 4n converges with respect to the
complementary Hausdorff distance to an open equilateral triangle 4 (see [23,
p. 158], [2, Theorem 20.7, pp. 153–154], or [12, Theorem 3.3.3]).

Let fn be an eigenfunction for �1.4n/, that is, a function for which the
maximum is attained in (1.2) which we can take to be continuous, non-negative
and having unit L2 norm. By property 1 of Proposition 2.1, the eigenvalue
�1.4n/ is invariant under translations, and so in this expression we may always
assume that the coordinate system has its origin at the circumcenter of the triangle.
Furthermore, for the ease of considering Steiner symmetrization of functions
with respect to the chosen line of Steiner symmetrization of �n, by the rotation
invariance of the eigenvalue, we may that this line is oriented along the x1-axis.
Let f ?

n be the corresponding Steiner symmetrization of Qfn (the extension of fn

by zero outside 4n) which is a Borel measurable function vanishing at infinity.
We note that f ?

n has to be supported on the closure of 4nC1. By property 2 in
Proposition 2.2, we note that f ?

n also has norm 1 in the L2 norm. Notice that
the Riesz potential jxj�.2�˛/, is Steiner symmetric with respect to the x1 axis.
Since ˛ < 2, it is also a strictly decreasing function away from the x1-axis in the
x2-direction. Therefore, we can apply Proposition 2.3 to the function Qfn (taken
twice) and with the function in the middle taken as the Riesz potential to obtain

�1.4n/ D

Z

4n

Z

4n

fn.x/fn.y/

jx � yj2�˛
dx dy �

Z

4nC1

Z

4nC1

f ?
n .x/f ?

n .y/

jx � yj2�˛
dx dy

� max
w2L2.4nC1/

² Z

4nC1

Z

4nC1

w.x/w.y/

jx � yj2�˛
dx dyW kwkL2.�nC1/ D 1

³

D �1.4nC1/

(3.1)

for each n. Therefore,

�1.41/ � �1.4n/ for all n:
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We then use the continuity property of the Riesz eigenvalue for the complementary
Hausdorff convergence (Proposition 2.9) and get

�1.41/ � lim
n!1

�1.4n/ D �1.4/:

This shows that, among all triangles of given area a > 0, �1 attains its maximum
value for an equilateral triangle.

The proof, in the case of quadrilaterals, that the maximum is attained for a
square uses a similar argument as in the case of triangles. Indeed, starting from
any quadrilateral (open), it will be enough to construct a sequence of Steiner sym-
metrizations of the quadrilateral which converge in the complementary Hausdorff
distance to a square. To start with, apply Steiner symmetrization with respect to
an axis which is perpendicular to a diagonal of the quadrilateral, for which the
other two vertices aren’t on the same side of this diagonal. The resulting object
is a convex quadrilateral which is symmetric with respect to this axis. Next, we
Steiner symmetrize with respect to a perpendicular axis and thereby get a rhom-
bus. This is to be followed by a Steiner symmetrization with respect to an axis
perpendicular to one of the sides to produce a rectangle. The rectangle is then
Steiner symmetrized with respect to an axis perpendicular to a diagonal to get,
again, a rhombus. By repeating the procedures for the rhombus and rectangle,
we end up with an infinite sequence of rhombi and rectangles which converge,
ultimately, in the complementary Hausdorff distance, to a square (refer to [23,
pp. 158–159] or [2, Theorem 20.8, pp. 154–155]).

Now we address the proof of the uniqueness in the case of triangular domains.
Suppose that � is an open triangle of given area for which the maximum is
attained. If � is not already an equilateral triangle, then there is at least one axis
m (perpendicular to one of its sides) such that � is not Steiner symmetric with
respect to m. Let �? be the Steiner symmetrization of � respect to m. Without
loss of generality, m passes through the origin. We take f to be a continuous
positive eigenfunction of norm 1 (in the L2 norm) associated to �1.�/. Let f ?

be the Steiner symmetrization of Qf (the extension of f by zero outside �) with
respect to m. We note that f ? has to be supported on the closure of �?. By
property (2) of Proposition 2.2, we note that f ? also has norm 1 in the L2 norm.
Then, we apply Proposition 2.3 with Qf and with the function in the middle taken
as the Riesz potential on R

d to obtain

�1.�?/ �

Z

�?

Z

�?

f ?.x/f ?.y/

jx � yj2�˛
dx dy �

Z

�

Z

�

f .x/f .y/

jx � yj2�˛
dx dy D �1.�/: (3.2)

Now, since we assumed that � maximizes �1 this leads to the observation that
�1.�?/ D �1.�/ and so, we get the equality case in Riesz’s inequality. Then,
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by Proposition 2.3 it follows that f is a translate of f ? up to a set of measure 0,
that is, f .�/=f �.� � y/ for some y 2 R

d a.e. Furthermore, f ? is a maximizer for
�1.�?/ and so, by Jentzsch’s theorem, is continuous and positive on �?. Since,
the functions f and f ? are strictly positive on � and �? respectively, we therefore
have

� D ¹x 2 �W f .x/ > 0º D ¹x 2 R
d W f ?.x � y/ > 0º

(up to a set of measure 0)

D �? C y:

Thus, � is Steiner symmetric (up to a set of measure 0) with respect to m contrary
to our supposition. So, we conclude that the equilateral triangle is the only
maximizer (up to a set of Lebesgue measure 0).

The uniqueness in the quadrilateral case is proved similarly. �
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