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Abstract. A characterization of the essential spectrum of Schrodinger operators on infinite
graphs is derived involving the concept of R-limits. This concept, which was introduced
previously for operators on IN and Z< as “right-limits,” captures the behaviour of the
operator at infinity. For graphs with sub-exponential growth rate, we show that each point
in oess(H ) corresponds to a bounded generalized eigenfunction of a corresponding R-limit
of H. If, additionally, the graph is of uniform sub-exponential growth, also the converse
inclusion holds.
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1. Introduction
This work deals with Schrédinger operators H: £2(G) — £*(G) of the form
(HY)(v) := Y (@) =¥ () + W)y (v) (1.1)

u~v
where W:V(G) — R is a bounded function (the potential) and G is an infinite,
connected graph with a uniform bound on the vertex degree.

Weyl’s theorem asserts that the essential spectrum of a linear bounded self-
adjoint operator is invariant under compact perturbations. In light of this, one
naturally expects that the essential spectrum only depends on the geometry at
infinity of the underlying space. This relation has been exposed for Schrodinger
operators on IN or Z”". More precisely, the essential spectrum was characterized by
the union of the sets 0o (H') where H' runs over all right-limits of H and 6o(H")
denotes the set of bounded generalized eigenvalues, see [13, 45]. Here the term
right-limit refers to the study of both the potential and the geometry at infinity. In
particular, if G is the Cayley graph of Z with the usual generators, a right-limit is a
strong limit point of a sequence of shifts going to infinity of the original operator.
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This notion of right-limits was extended to Z" in [27] and recently to general
graphs with uniformly bounded vertex degree in [8]. Since the name right-limit
is no longer appropriate, these operators are called R-limits.

For infinite connected graphs with uniform bound on the vertex degree, the
authors of [8] proved that the union over the spectra of all R-limits of H is
contained in the essential spectrum of H, where H is a bounded Jacobi operator.
Moreover, they show that the converse inclusion holds on regular trees, and that
on the contrary there exists an infinite, connected graph with uniform bound on
the vertex degree such that equality does not hold. This is the starting point of the
present work. Let R(H) be the set of all R-limits of H. We show that

Oess(H) S | 00o(H') (1.2)
H'eR(H)

holds under additional assumptions on the growth rate of balls, see Theorem 2.2.
In general this inclusion can be strict, see Proposition 2.3. However, if additionally
the graph admits a uniform sub-exponential growth, then this inclusion is an
equality and moreover,

oess(H) = | Jo(H") = | Jooo(H"). (1.3)

H'eR(H) H'eR(H)

see Theorem 2.4.

Such results go back to the concept of limit operators based on Favard [15],
Muhamadiev [34, 35], Lange and Rabinovich [26], Rabinovich, Roch, and Sil-
bermann [37, 38, 39], and Chandler-Wilde and Lindner [12, 13], see also [29,
30, 36, 46]. In recent developments [25] pushed these methods forward to metric
measure spaces including graphs of property A [48]. Besides other things it is
shown there that the essential spectrum coincides with the union of the spectra of
so called limit operators. Another approach to tackle such questions comes from
C*-algebras [18, 19, 20, 21, 22, 31] which uses the concept of localization at in-
finity, which coincides with the concept of R-limits. In this case, similar results
for operators on locally compact, non-compact abelian groups are obtained. This
was recently extended to groupoid C*-algebra [2, 10, 11]. For a more compre-
hensive review and further references on the subject see [13, 27, 45]. Another
recent work [23] develops a similar characterization for the essential spectrum of
the Laplacian on Klaus-sparse graphs. Note that the class of Klaus-sparse graphs
have a non-trivial intersection with the class of uniform sub-exponential growing
graph, and neither of these classes contains the other. Furthermore, [1] takes ad-
vantage of the above mentioned result on trees from [8], to calculate the essential
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spectrum of Jacobi matrices on homogeneous trees, which are generated by an
Angelesco system.

In order to prove our second main result (Theorem 2.4), the so-called Shnol-
type theorem is used. Shnol [42] proved that if a generalized eigenfunction admits
at most a polynomial growth rate then the corresponding energy is in the spectrum
of the operator. This result was independently discovered by Simon [43]. Since
then various remarkable generalizations to the Dirichlet form setting were proven,
see e.g. [4, 3, 5] and references therein. In the literature also the converse question
is addressed [6, 17, 28]. To be more precise, one seeks to find for p-almost
every element in the spectrum, a generalized eigenfunction that has at most sub-
exponential growth, where p is the spectral measure of the operator H. Such a
converse theorem is used in the proof of Theorem 2.2.

1.1. Organisation. The main results of this work are presented in Section 2.
In Section 3, two examples are provided where the essential spectrum can be
computed with the help of the main results. After introducing the main concepts
such as R-limits, the proof of the main Theorem 2.2 as well as of Proposition 2.3
is provided in Section 4. Then the proof of Theorem 2.4, which states the
Equality (1.3) for d-bounded graphs of uniform sub-exponential growth, is given
in Section 5.

1.2. Acknowledgements. Parts of this work are included in the Ph.D. thesis
of L. Eliaz [14], carried under the supervision of J. Breuer from the Hebrew
University of Jerusalem. We are grateful to him for his significant support during
the preparation of this work. The authors wish to thank M. Keller for inspiring
discussions and for pointing out the reference [9]. L. Eliaz acknowledges the
support of the Israel Science Foundation (grants No. 399/16 and 970/15) founded
by the Israel Academy of Sciences and Humanities. S. Beckus is thankful for
financial support of the Israel Science Foundation (grant No. 970/15) founded by
the Israel Academy of Sciences and Humanities during the Postdoctoral period at
the Israel Institute of Technology where the main part of this work was established.

2. Setting and main results

A graph G consists of a countable vertex set V(G) and an edge set E(G) where an
edge is represented by a tuple of vertices. Throughout this work, we deal with
undirected graphs and so the edge (u,v) is identified with the edge (v,u) for
u,v € V(G). The tuple (u,u) for some u € V(G) is called a loop. We only
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consider graphs without loops. Two vertices u and v are called adjacent (u ~ v)
if (u,v) € E(G). The vertex degree deg(v) of a vertex v € V(G) is defined by

deg(v) := t{{u € V(G):v ~ u},

where {1.S denotes the cardinality of the set S. The tuple (G, vo) is called rooted
d-bounded graph if vy € V(G) is a fixed vertex and deg(v) < d forallv € V(G).
A path between two vertices u, v € G is given by a chain of vertices (u1, ..., u,)
satisfying u; = u,u, = vandu; ~ u;yq forall 1 <i <n — 1. A graph is called
connected if there is a path between any two vertices u, v € V(G).

Let ¢2(G) := (2(V(G)) denote the Hilbert space of all square summable
functions ¢: V(G) — C. Furthermore, £*°(G) := £*°(V(G)) is the Banach
space of bounded functions ¥:V(G) — C equipped with the uniform norm
1V lloo := sUp,ep ) [V ()]

Throughout this work, we study the self-adjoint, linear and bounded operators
acting on the Hilbert space £2(G) of the form (1.1), where G is an infinite
(i.e. ¥V (G) = o0), d-bounded and connected graph. Whenever W is chosen
to be identically zero, the operator is denoted by A, which is called the graph
Laplacian. Furthermore, A = A denotes the adjacency operator on the graph G,
which is a Schrodinger operator with W(v) := deg(v) for v € V(G). A triple
(H, G, vg) denotes a Schrodinger operator of the form (1.1) defined on the rooted
graph (G, vy).

Let H be a Schrodinger operator on a rooted graph (G, vg). The spectrum of H
is denoted by o (H). The discrete spectrum oqisc(H) € o (H) is the set of isolated
eigenvalues of finite multiplicity and the essential spectrum is

Oess(H) := 0 (H) \ ogisc(H).

Furthermore, a function ¥: V(G) — C is called a generalized eigenfunction of H
corresponding to the eigenvalue A if v # 0and Hy (v) = Ay (v) forallv € V(G).
With this at hand, 0., (H ) denotes the set of all A such that there exists a bounded
generalized eigenfunction ¢ € £°°(G) corresponding to the eigenvalue A.

The combinatorial graph distance on G is defined by

dist(u, v) := inf{n | (vo, v1,...,v,) is a path with vy = u and v, = v}.
For a rooted graph (G, vy), the notation
|v| := dist(v, vg)

is used for the distance of a vertex v € V(G) from the root vg. Then S, (vy) denotes
the sphere of radius r € IN about vg and B, (vg) is the ball of radius r € IN about vy,
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namely,
Sr(vg) :={v € G | dist(v,v9) =1}, Br(vo):={v e G |dist(v,vg) <r}.

Definition 2.1. A connected rooted graph (G, vo) is of sub-exponential growth
rate if for each y > 1, there exists C = C,,, > 0 such that for every r € IN,

1B, (vo) < Cy".

Furthermore, a graph G is of uniform sub-exponential growth rate if the constant
C > 0 can be chosen independently of the choice of the root. Specifically, for
each y > 1, there exists a constant C = C,, > 0 such that

1B,(u) < Cy"
holds for every u € G and r € IN.

The concept of R-limits of a Schrodinger operator H defined on a graph G
was recently introduced in [8]. A precise mathematical definition is provided in
Section 4.1.

Theorem 2.2. Let (G,vo) be an infinite and connected d-bounded graph of
sub-exponential growth rate, and H be a Schrédinger operator on £%(G) of the
fJorm (1.1). Then
Oess(H) S |_J ooo(H).
H'eR(H)

We point out that in the latter assertion it is not assumed that the graph is of
uniform sub-exponential growth. The inclusion is preserved also for the adjacency
operator H := Ag on the d-regular tree G := Ty, although this graph has
exponential growth rate. In this case, one can directly check that this inclusion
is strict. Indeed, the only R-limit is the same operator H" = A7, on T;. Then
Oess(H) = 0(H) = [-2+/d — 1,24/d — 1] and [—d, d] C 0 (H) holds (see e.g.
[9, Theorem 1.1] and [16]). Thus, we derive

[-d.d]\[-2vVd = 1.2¥d — 1] C 00o(H) \ Oess(H)

where the set on the left hand side is non-empty. With this idea at hand, we also
prove the following.

Proposition 2.3. There exists an infinite and connected d-bounded graph G of
sub-exponential growth rate so that the adjacency operator H := Ag satisfies

UOOO(H/)) \ Oess(H) # 0.

H'eR(H)
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The proof of Proposition 2.3 is constructive and the corresponding graph is
sub-exponentially growing but it does not admit uniform sub-exponential growth.
If this is assumed then the following holds.

Theorem 2.4. Let G be an infinite and connected, d-bounded graph of uniform
sub-exponential growth rate and let H be a bounded Schrodinger operator on
02(G). Then,

oess(H) = | Jo(H") = | oo (H").

H'eR(H) H'eR(H)

As mentioned above, these equalities have been the subject of the previous
works [8, 14], which are inspired by [27]. There the first equality is given on
graphs of uniform polynomial growth rate [14, Theorem 2.1], and on regular trees
[8, Theorem 4]. These results are complemented by [8, Theorem 3], by which the
first equality is not satisfied in general. The proof of the latter statement includes
an example for a graph on which the essential spectrum strictly includes the union
over the spectra of the R-limits. While there the growth rate of the graph is not
sub-exponential, it can be adapted. Specifically, the construction is similar to the
one in the proof of Proposition 2.3.

As remarked earlier, the equality

Oess(H) = | Jo(H')

H'eR(H)

coincides with arecent result from [25]. The corresponding result there is obtained
for metric spaces satisfying a certain set of assumptions. The assumption most
relevant for us is known as Property A [48], and it is satisfied for graphs of uniform
sub-exponential growth rate [47]. Note that the second equality

Oess(H) = U Uoo(H/)

H'eR(H)

in Theorem 2.4 is solely part of the current work in the context of graphs.

Following [14, Theorem 2.3], Property A is not satisfied for so called uniform
graphs of exponential growth rate. While the terminology “property A” does not
appear there, this property in fact follows, and is related to the earlier argument
by [27] for proving Theorem 2.4 for G = Z¢. Moreover, there are graphs of
sub-exponential growth rate that do not satisfy property A. Such a graph can be
constructed by adjusting the example in [8, Theorem 3].
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3. Examples

The essential spectrum oess(H) is computed here for some examples by using
Theorem 2.4.

3.1. Variations of Z”. The spectrum of an adjacency operator on a graph with
bounded vertex degree by 2n admitting Z" as an R-limit is computed.

Proposition 3.1. Let 1 < n € N and let G be a infinite graph of uniform
sub-exponential growth such that Azn appears as an R-limit of the adjacency
operator Ag. If the vertex degree of G is bounded by 2n, then

U(AG) = Uess(AG) = [—21’1, 2n].

Proof. A short computation invoking the Cauchy—Schwarz inequality leads to

I /12 =] > f(u)\z <2y (Y 1F@P) = @n? Y Il

veG uU~v veG u~v ueG

since in the last estimate each term is positive and appears at most 2n times in
the total sum. Hence, the spectral radius p(Ag) satisfies p(Ag) < 2n implying
0(Ag) € [-2n,2n].

For the converse inclusion, Theorem 2.4 together with [33, eq. (7.3)] assert
[—2n,2n] = 6 (Azn) C 0ess(Ag) since Z" is an R-limit of Ag and G is of uniform
sub-exponential growth. O

For any n € IN we shall construct a graph which we denote by Z, «, and is an
example for a graph of this family of variations of Z,. The construction procedure
is the following.

e Denote by B} the subgraph of Z" which is the restriction to the box of side
length 2L + 1, centred at 0.
e For each point x € Z" we shall associate the graph B? = B/

xfloo
e We connect each adjacent pair of boxes B} and B}, by a line. The con-

nection is done between the center points of the corresponding boundary sur-
faces and includes a sequence of vertices and edges of length max(|| x| oo, [| X+
€j lloo)-
For example (a portion of) the graph Z,x» is drawn in Figure 3.1. We conclude
from the argument above that

U(Aznxn) = UESS(AZan) = [_2n,2n].
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(0,1) (1.1)

(1.0) 2.p)

B(.0 B.0 B@.0)

Figure 3.1. The graph Z5x>.

3.2. Sparse trees with sparse cycles. In [7], so called sparse spherically homo-
geneous rooted trees were studied. It was shown there that under suitable assump-
tions the spectrum is purely singular continuous. These graphs are adjusted here
by adding from time to time a circle in the graph while preserving the spherical
symmetry. Invoking the current result, we compute the spectrum. We only pro-
vide a short discussion of these graphs and we refer the reader interested in more
details to [14].

A rooted tree (7, vg) is called spherically homogeneous if each vertex v is
connected with «(Jv| + 1) vertices with distance |v| 4+ 1 from the root vy. Let
{Ln}nen be a strictly increasing sequence with L, € IN and {k, },<n be a bounded
sequences with k, € IN and k, > 1. Following [7], a spherically homogeneous
tree is called of type {L,, kn}nen if «: N — IN is defined by

. kj lfJ € {Ln}nEINa
k(j) = _
1  otherwise.

This graph is called sparse if lim, o0 (Ly+1 — Lyp) = 00.
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Suppose (7, vo) is a sparse spherically homogeneous tree of type { L, k, }nen-
Let {C, }nen be a sequence of natural numbers satisfying

L,>C,>L,_1, nango(Ln —Cy) =00, and nli)rglo(cn —Ly—1) = o0.

With this at hand, the sparse tree with sparse cycles (G, vg) of type { L, ky, Cy }nen
is defined based on the spherically homogeneous tree (7', vo) of type {L,, kn}nen
by adding edges for each n € IN between vertices in a sphere Sc, (vo) of (T, vo) in
the following way. Let 8¢, (vo) = {u1, ..., un} be some fixed ordering of the ver-
tices in the sphere of radius C, around vo. Then, we add the edges (u;,u; 1) for
1 < j < m and the edge (un,,u1). Specifically, each vertex in the sphere of radius
C, in the graph (G, vo) is adjacent to exactly two other vertices in the sphere and
we create a circle, see e.g. a sketch of such a graph in Figure 3.2.

Figure 3.2. A sketch of a sparse tree with sparse cycles.
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In order to apply Theorem 2.4, the sparse tree with sparse cycles need to be
of uniform sub-exponential growth. If {L,} grows exponentially, then a direct
computation shows that (G, vg) is of uniform sub-exponential growth (for instance
choose L, = 10"). Denote by D € IN the set of all accumulation points of the
sequence {k, }»en, Which by construction is finite. Then the possible R-limits of
A are the adjacency operators on the following graphs, see Figure 3.3:

e the line Z;

e a two sided infinite comb graph, denoted by € and defined by
V() ={v=(k{) |k leZ}
EQC) ={((k,0),(k, £+ 1)) |k, LeZ}U{((k,0),(k+1,0) |k €Z}.

e the set of star graphs {S},+1}mep, where the star graph denoted by S;,+1 is
defined by m + 1 copies of N glued together at 0.

Figure 3.3. Some of the R-limits of the sparse tree with sparse cycles (besides Z): the
infinite comb graph (left) and the star graph S3 (right).

The spectrum of all of these graphs can be explicitly computed. The proofs
are following standard ideas and can be found in [14].

Lemma 3.2. The equality o (A¢) = [—2~/2,2+/2] holds.

Proof. This follows by using the periodicity of the graph Ae (following e.g. [45,
Chapter 5] and [40, Chapter XIII.16]) and the Aronszajn—Krein formula (see
e.g. [44]). O

Lemma 3.3. For m € N with m > 1 we have

o(As,) = [—2,2]u{— J% \/n%}
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Proof. This is derived by standard computations invoking [7, Theorem 2.4] and
coefficient stripping (see e.g. [45, Theorem 3.2.4]). O

Thus, Theorem 2.4 implies that the essential spectrum of the adjacency opera-
tor associated with the sparse tree with sparse cycles G of uniform sub-exponential
growth is given by

Uess(AG) = [—2\/5,2\/5] U U { — %, mT_;l}

meD

4. Characterizing o.ss( H) using generalized eigenfunctions

The section is devoted to the proof of Theorem 2.2. The first part includes a more
detailed review on R-limits, and several related properties which we develop and
use in this paper. The next three parts include the main tools which we use to
show the existence of generalized eigenfunctions. The last part of this section is
the actual proof of the theorem.

4.1. R-limits. If n: A — B is a bijective map on two sets 4 and B, denote by
Jn: £*(A) — €*(B) the isomorphism defined via J,(85) := 8, (4. Such maps will
be mainly used for sets A and B that are balls in different graphs. Specifically,
let (G, vo) be an infinite, connected, rooted d-bounded graph. Since we assume
that the graph G admits a uniform bound on the vertex degree, every ball B, (v)
of radius r € IN about v € V(G) is finite. Throughout this work, B, (v) defines
a subgraph of G by restricting the edge set only to those that connect to vertices
in B, (v). For the sake of simplifying the notation, this induced subgraph is also
denoted by B, (v).

Recall that a bijective map ¢: V(G) — V(G’) between two graphs G and G’
(finite or infinite) is called a graph isomorphism if the induced map

¢e: E(G) —> E(G),  (u,v) —> (¢(u). ¢(v))

is also bijective. Then two graphs G and G’ are isomorphic (G ~ G') if there
exists a graph isomorphism between them. Clearly, deg(v) = deg(¢(v)) holds for
all v € V(G) where ¢ denotes the graph isomorphism. Let G, G’ be two graphs.
If there is an isomorphism between them, then G is a connected d -bounded graph
if and only if G’ is a connected d-bounded graph. We say that two balls B, (u)
and B, (u') foru € V(G) and u’ € V(G’) are isomorphic (B, (u) ~ B, (1)) if the
corresponding subgraph B, (u) is isomorphic to the subgraph B, (u').
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Define the projection

Py i 82(G) —> (Br(v0)),  (Pug,r¥)(V): = XB, vy (Y (V)

where x g, (v,) is the characteristic function of the ball B, (vo). Note furthermore
that £2(B,(vg)) is naturally embedded into £2(G) by extending a function with
zeros. In the following, we will not distinguish between the finite dimensional
space £2(B,(vo)) and its embedding in ¢?(G). For a linear bounded operator
H:{%(G) — {*(G) on the rooted graph (G, vy), define the operator

HUO,V: Zz(Br(UO)) - 52(31’(”0))’ Hvo,r = on,rHon,r'

It is worth pointing out that H,,, can be represented as a matrix acting on
C#Br(v0) - With this notion at hand, ¥: V(G) — C is a generalized eigenfunction
of H corresponding to the eigenvalue A if and only if Py, Hy = AP, v for all
r € IN.

Recall that a sequence of vertices {v,},ew goes to infinity (or converges to
infinity) if it leaves any finite subset of V' (G), or equivalently, if

lim dist(vg, v,) = o0.
n—>o0

Throughout this paper, we will usually assume, without loss of generality, that
the convergence is monotone. Let (G, vo) and (G', vy) be two rooted graphs.
A sequence of maps f,: Br(vg) — B, (v’) for r € N is called coherent ( for vy) if
for s > r, the restriction of the map f; to B,(vo) equals f,, namely

Js@) = fr(u), u € Br(vo).

Definition 4.1. For n € IN, let H, be a Schrédinger operators on the connected
rooted d-bounded graphs (G,,v,) and let H':{>(G’) — {*>(G’) be a linear
bounded operator on the connected rooted graph (G’,vg). Then the sequence
{(Hp. Gy, vp)}nen is called convergent to (H', G, vy,) if the following holds:

(C1) there are coherent maps { fy,,: By (vs) — By (vy)}ren for each n € IN, such
that for every r € IN, there exists an N, € N satisfying that f, ,: B;(v,) —
B, (vg) is a graph isomorphism for all n > N,;

(C2) foreachr € IN,

. -1 —
nll)l’l(}o ||jfn!r Pun,anPvn,rjfn_r - H;(/),r” =0.
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Note that we require in the latter definition that the maps f,, (inn € IN)
are eventually graph isomorphism between the balls B, (v,) and B, (v,). How-
ever, if n < N, these maps are not necessarily graph isomorphisms. Thus, for
n > Ny, the map Iz, ,: £?(B,(v,)) — £*>(Br(vp)) is an isomorphism and so 7. !
is well-defined. If only (C1) holds, we call the sequence of connected, rooted
d-bounded graphs {(G, v,)}nen convergent to the connected, rooted d-bounded
graph (G', vy).

Note, furthermore, that if {(H,, G, vs)}new converges to (H', G, vy), then
the limit point (H’, G’, vy) is unique up to a graph isomorphisms. Specifically,
if (P~I, G, Ug) is another limit point of {(Hj, G, vs)}nen, then there is a graph
isomorphism f:G’ — G such that f(vy) = Vo and ij/j;I = H. This graph
isomorphism f is defined by using the coherent maps, see (C1).

Additionally, note that (C1) in Definition 4.1 can be replaced with the require-
ment that there exist maps f, »: Br(v,) — B;(v;) that are eventually bijective.
In this case, the maps f, , are eventually graph isomorphism by (C2). It is worth
pointing out that (C1) is only a combinatorial condition that guarantees that locally
the graphs are eventually isomorphic. On the other hand, (C2) encodes further
properties of the potential that in general cannot be kept by (C1). However, when-
ever the potential satisfies W, = ¢, for alln € N with¢, € Cand ¢, — ¢ € C,
then (C1) implies (C2).

Definition 4.2. Let H be a Schrodinger operator on a graph G. Then a Schrédinger
operator H' on a graph G’ is called an R-limit of H if there exist a vertex
v, € V(G') and a sequence of vertices v, € V(G ) that monotonically converges to
infinity such that {(H, G, v,)}new converges to (H’, G’, vy). As mentioned before,
the set of all R-limits associated with H is denoted by R(H ).

Whenever it is necessary to specify the coherent maps, we say that (H', G’, vy)
is an R-limit with respect to the coherent maps { f,.»: Br(vs) = B, (v()}rnen.

Notice that the above definition for R-limits is equivalent to the definition given
in [8, 14]. Nevertheless, the definition is presented here slightly different in order
to relate it to the more general notion of convergence of a sequence of Schrodinger
operators, introduced in Definition 4.1, which will be useful for us in this paper.

We start with some observation that will be helpful. They are inspired by
previous considerations on IN, see [45].

Let G be a graph and ¥: V(G) — C be a map. Then the support of ¢ is de-
fined by supp(¥) := {u € V(G):¥(u) # 0}. Denote by C.(G) the set of all
¥: V(G) — C such that supp(y) is finite. Clearly, C.(G) € ¢?(G) holds. Recall
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from equation (1.1) that a Schrédinger operator H: £?(G) — £?(G) on the graph
G is given by

(HY)(©) =Y (@) =y )+ W)Y (), ¥ l?G),veV(G),
u~v
where W:V(G) — R satisfies [|W e := Sup,cp(g) [W(v)| < oo. The map W
is called the potential. Although we mainly treat the case where H is self-adjoint
(i.e. W is real-valued), the following statements of Lemma 4.3, Lemma 4.4, and
Lemma 4.5 also hold for complex-valued potentials W'.

Lemma 4.3. Forn € N, let H, be a Schrodinger operators on a connected rooted
d-bounded graph (Gy, v,) with potential Wy,:V(G,) — C. Consider a linear
bounded operator H': {*(G') — €*(G’) on a connected rooted graph (G', vy). If
{(Hp. Gn, vn)}nen converges to (H',G',vy) and sup, ey [|[Wnlloo < C for some
C >0, then

(@) (G',vyg) is an infinite, connected rooted d-bounded graph,

(b) H'is a Schrédinger operator on (G', v) of the form (1.1) with potential W'
and

©) ||1H'| <2(d + C) holds.

In particular, every R-limit H' of a Schrodinger operator H with potential W
is a Schrodinger operator of the form (1.1) with bounded potential and |H'| <
2(d + Cg) for Cg = |W | co-

Proof. Let{ fur: Br(vs) = Br(vg)}ren be the coherent maps (that are eventually
isomorphic) such that {(H,, G,, v,)}ren converges with respect to these maps
to (H',G’,vp). Claim (a) follows immediately from the definition (using the
coherent maps f, ) since these properties are preserved under isomorphism and
the fact that (G, v,) is an infinite, connected, rooted d-bounded graph for each
n € NN.

Let r € IN. By definition, there exists an N, € IN such that f, ,: B, (v,) —
B, (vg) is an isomorphism for all » > N, and

. —1 /
n_)c}é,r’r}er 19, Py Hy Py, T, — Hv6,r|| = 0.

Furthermore, B,(vy) and B, (v,) are finite sets of the same cardinality and so
It Popr Hy Pvn,rj;nl!r and HU(/),, can be represented as matrices that converge
in the matrix norm to each other. This is equivalent to the convergence of the
coefficients. Since by (1.1), (H,V¥)(v) depends only on the values of ¥ on the



Eigenfunctions growth on graphs 1909

neighbours of v and v itself, H’ is a Schrodinger operator of the form (1.1)
proving (b).

In order to prove (c), let us first note that the operator norm estimate || H, | <
2d + C. Lety € C.(G’) be such that ||y || < 1. Then there is an r € IN such that
supp(¥) € B,—1(vy). According to Definition 4.1, there exists an no € IN such
that

||:an0_,P,,no,,HnOP,,no,,JEOJ — Hy .l < C.

Since supp(y¥) € B,_1(vy) (r — 1 is important here) and H’ is a Schrodinger
operator of the form (1.1), we have

H'¢y = H{,O’,l/r.
Thus, the previous considerations lead to
|yl =15y, v
= ”Hl/)a,rw - jfn().r PvnoaanO Pvnoarj;nlo!rw”
+ ||jfn0r PU"O’anOPv"O’rJJT‘nlO,rw”
<C+2d+C

as |y = 1,7y, , is an isomorphism and || Py, || < 1.

The last statement in the lemma follows as every R-limit (H’, G, vy) of H
is a limit of a sequence {(H, G, v,)}nen. Thus, W, := W holds implying
sup,en [Walloo = [[W oo < o0. O

Next, we show that the operation of considering the R-limits of H is a con-
traction in the sense that R(R(H)) C R(H).

Lemma 4.4. Let (G, vy) be a rooted d-bounded graph and H be a Schrodinger
operator on {*(G) as defined in (1.1). If {(H},, G, ul)}m is a sequence of
R-limits of H that converges in the sense of Definition 4.1 to (H,G, 7o) then
(H. G, o) is an R-limit of H. In particular, R(H') C R(H) holds for every

R-limit H' of H, and thus also R(R(H)) € R(H).

Proof. By assumption, we have the following:

(1) the sequence (H/,,G! .u') converges to (H,G, 1) along the sequence of

coherent maps { f,;l’,: B (u),) — B;(U0)}m,rex that are eventually graph
isomorphisms according to Definition 4.1;

(2) for m € NN, there is a sequence {u,(cm)}kE]N C V(G) and a sequence of co-

herent maps {fk(m): B, (u,(cm)) — By (u),)}k.ren such that {(H, G, u,(cm))}kG]N

N
converges to (H,,, G, u,,).
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Lete > 0 and R € IN. Invoking (1) there is an Mg € IN such that
S r: BR(3,) —> BR (Vo)
is a graph isomorphism for m > Mg and

”jfr/n!R(Hr/n)u;n,Rj_r/yll o Hy, g

| < £ >M

=, m=> .

> R

Let m > Mg. Invoking (2) there is an K(R,m) € N such that

SR BROG™) — Br(uy,)
is a graph isomorphism for k > K(R, m) and
190 Hgon 7 bon = (Hig gl < 50 2 K(R.m).
For m > Mg, the map
e £/ (m) ‘B B
gm.R = Jy RO K(R,m),R" R(“K(R m)) — Br(vo)

is a graph isomorphism and Ipr @d o =Jg,, r- Thus, we derive
K(R.m).R !

19 g, & H, o Rj; R jfr/n, H’ Rf’ I

UK(R.m)*
= 9p0m  H om = om —H, pll<s.
TRRm.R UK (R.m) R K(R.m).R 2

With this at hand, the triangle inequality leads to

(NP ue m),RJ;,,, « — Hio.rl
1
< emrH, N Rjg R _jf};7_ H’ f’ I

+ ||jf’;7~RHu;n’Rj_r/n,R — Hyorll <&

for all m > Mpg. Since ¢ > 0 was arbitrary, H is an R-limit of H.

O

The following statement provides a (sequentially) compactness property of the
set of triples (H, G, v) where the operators are uniformly bounded in the operator

norm.

Lemma 4.5 (sequentially compactness). Let {(Gy, vn) }nen be a sequence of con-
nected, infinite, rooted d-bounded graphs and H, be a Schrodinger operators
of the form (1.1) on (G, v,) such that sup, i ||Walleo < 00. Then there exists
a Schrodinger operator H' on a rooted d-bounded graph (G', vy) and a subse-

quence {(Hy, , Gn, . Vn, ) }ken that converges to (H', G', v).
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Proof. By assumption, deg(v) < d holds for all v € V(G,) and n € IN. Thus, for
each r € IN, the set

B, := {B,(v):v € V(Gy),n € N}/ ~

is finite, where ~ is the equivalence relation induced by graph isomorphism. Then
a Cantor diagonalization argument gives a convergent subsequence {(Gy,, Vy) }neN
to a rooted d-bounded graph (G’,v;). By a similar argument and by passing
to another subsequence one gets the desired result that {(Hy,, Gny, Vny ) ken
converges to (H', G', v). Since these arguments are standard, we only provide
a sketch of the proof here.

Let r = 1. Since B; is finite, there is a subsequence {N(1,k)}rey S N
with N(1,k) — oo such that Bl(vN(l,kl)) ~ BI(UN(I,kz)) for all kq,k, € IN.
Now let r = 2. By the same argument, there is a subsequence {N(2,k)}reny <
{N(1,k)}ren such that BR(UN(2,k1)) ~ BR(UN(2,k2)) for all k1,k, € N and
1 < R < 2. By recursion we get for each r € IN a subsequence

{N(r,k)bkew SN — 1, k)b kew S -+ S{NQ2,k)}ken S {N(1,k)}xew €N
4.1)
such that

Br(WN(G k) ~ BR(VNG k), ki1,ko € NJI<R<r.

In particular, due to equation (4.1), BRr(vn(rk)) is isomorphic to Bgr(vw(r,1)) for
everyk e Nand1 <R <r.

In order to define the graph (G’, vy), it suffices to define Bg(v;) forall R € IN
modulo graph isomorphism. Define Br(vy) := Br(vn(r,1))- By construction
Br(vn(R,1)) ~ BR(UN(rk)) holds forall k € N and R < r. Thus, the rooted graph
(G', vp) is well-defined (up to graph isomorphism). By construction, (G', vy) is a
connected and infinite (rooted) d-bounded graph.

We claim that the diagonal sequence {(Gnk), UN(k,k))}keN converges to
(G’, vg). This can be seen as follows. Define fi g: BR(Vn@,k)) — Br(vg) fork >
R to be the graph isomorphism between Br(vnk,k)) and Br(vy) = Br(VN(Rr,1))
which exists by construction as k > R. If k < R, define fi r: BR(UNK.k) —
Br(vg) by fi,r(1) := vy forallu € Br(vnk,k))- By construction, these maps are
eventually graph isomorphisms (as k — 00), namely they satisfy the constraints
given in Definition 4.1.

By the latter considerations, we have shown that there is a subsequence that
converges to an infinite and connected (rooted) d-bounded graph (G’, v;). In order
to simplify the notation, suppose that {(G,, v,)}nen converges to (G, vy). The
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operators H, are uniformly bounded in n € IN since

[ Hnll < 2d + sup [[Walleo.
nelN

Thus, for fixed r € IN, there is a subsequence {ny }x< such that
jf,,k!r Pvnk,ank Pvnk,rj;nlk_r

converges in norm (using that £2(B;, (v, )) is a finite dimensional vector space).
By a similar argument, as for the graph sequence one can construct (with a Cantor
diagonalization argument) an operator H' on (G’, vy) and a subsequence {rny }ren
such that for each r € IN
. -1 / _
k—»oi{E;ZNr 1. Pongesr B Py or 3y, = Hog (1l =0
where N, € Nis chosen such that f,, . defines a graph isomorphism for ny > N;.

According to Lemma 4.3, H' is a bounded Schrodinger operator of the form (1.1).
O

4.2. Existence of bounded generalized eigenfunctions for R-limits. This sec-
tion is devoted to providing conditions such that a bounded generalized eigen-
function corresponding to the eigenvalue A of an R-limit exists. These are key
ingredients for the proof of Theorem 2.2.

Proposition 4.6. Let (H, G, vy) and {(H,, Gy, Vy)}new be such that either
(a) each (Hy, Gy, vy) is an R-limit of (H, G, vy), or
(b) H, = H, G, = G, and {vy, }nenx monotonically converges to infinity.
Let C > 0 and for eachn € N, let ¢™:V(G,) — C, A, € C and R, € N be such
that lim A, = A/, lim R, = oo,
n—>oo n—>oo
Py, Hyo™ = A, on,r(p(”), forallr < R,, n €N,

and

max o™ )| < Cle™ (vy)| # 0. (4.2)
u€By (vp)

Then there exists a subsequence of {(Hy, Gy, Vn)}nen converging to an R-limit
(H',G',v)) of H and a generalized eigenfunction 0 # ¢’ € £>°(G’) of H’
corresponding to the eigenvalue A’
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Proof. Due to Lemma 4.3, there is a constant C > 0 such that every R-limit
H'’ of H is a Schrodinger operator of the form (1.1) with potential W’ satisfying
|H'| < 2(d + C). Hence, there is no loss of generality (by enlarging the
constant C) that ||W/'||oc < C. Thus, sup,cy [Wallee < oo follows where W,
is the potential of H,, for both cases (a) or (b). Hence, Lemma 4.5 implies that
{(Hy, Gy, vy)}nen has a convergent subsequence.

Without loss of generality (by passing to a subsequence), assume that the
sequence {(Hy. Gn, Un)}nen convergesto (H', G', vy) with respect to the coherent
maps { fu.r}n.ren in the sense of Definition 4.1. In addition, there is no loss of
generality (again, by passing to a subsequence) to assume that f, ,: B, (v,) —
B, (vp) is a graph isomorphism for all r < n. Define v™: V(G - Cby

v ) = T Ponn ™) (1)

1
o™ ()
Since f, 1(v)) = va, we have ¥ ™ (vj) = 1 and

Iy @ = sup [y @) = sup [yP@w)|<C
ueG u€ By (v())
by the assumption (4.2). Thus, ¥ € £°(G).

By construction, the sequence v (u) is uniformly bounded for every u e

V(G’). Hence, the Bolzano—Weierstrass theorem and a Cantor diagonalization

argument yield that there is a subsequence {¢y "} ,cx € Nanday’: V(G') — C
such that for all r € IN,

lim || Py (™ —y")| = 0.

{—00 0
Furthermore, ['(u)| < C holds for all u € V(G’), namely ¢’ € £*°(G’). In
addition, ¥’ (vj) = 1 follows from ¥ (v}) = 1.

In case (a), each H,, is an R-limit of H. Lemma 4.3 and Lemma 4.4 assert that

H’ is also an R-limit of H. If (b) holds, H’ is also an R-limit of H as {v,}nen
goes to infinity. Thus, it is left to show that ¥’ € £°°(G’) defines a generalized
eigenfunction of H' corresponding to the eigenvalue A’.

Lete > Oand fix r € IN. Since H' is an R-limit of H, it is of the form (1.1) (see
Lemma 4.3). Thus, PU(/),rH/Iﬂ/ = Py » Pu(’),r+1H/Pv6,r+1W follows implying

| Pug e CH'0" = 20| < P NHY ' = 2 P
= ||H;6,,+1W/ - A/Pv(’),r—l—lw/”-
In order to simplify the notation, set

Ln,r = jfnr PUnJHn Pvn’rj;rll.r
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acting on €2(B,+1(vy)). Since limy_0o Ay = A', there exists a Co > 0 such
that [A,)| < Co. Recall that for each n € NN, there is an R, € NN such
that Py, , Hyo™ = X, Py, @™ for all r < R,. Choose £ € NN such that
n(t), Ry > r and

&
ILnyre1 — Hy il <gi75—57
n r Vg, +1 3||Pv(’),rw/||

P A CIG) NI £ ’
1Py 1 (W7 = 2)| 6maxid + C.Col
&
Any = | <=—.
" 61l Pyy V|

Note that || Pv(/)’,w/ | # 0as ¥'(vy) = 1 by construction. Furthermore,
”Pvf),an(ﬁ),r-f—l ” = 2(d + C)
follows as Hj, is an R-limit and so || H, || < 2(d + C) holds by Lemma 4.3. Hence,

” Pv(’),r(H/w/ - )Uﬂ/)H
= ||Pu6,rH1/,6,r+1¢/ — APy, r+1w/||

UO,

= ||Pv;),rH{,6,,+1W - Pv{),an(Z),r—l—lw/”

+ 1Py s L1907 = Py Lny.r 19 @)
+ ”Pvé),an(Z),r-i-lw(n(Z)) - An(ﬁ) Pué,rw/”

+ ”An(l) Pvé,rw/ - A/Pvé),r—l—lw/”
=M+ +B)+ @

follows by using the triangle inequality. We estimate each of the summands (1),
(2), (3), and (4) separately. Specifically, the previous considerations and the choice
of £ lead to

(1) < ILu@ 1 = Hly 1Py ¥l <

and

W] m

2) < 1Poyr Ln@yr+1 11 Pogrg 1 (0 = O <

v,
Since R, > r, we have Py, H,9"® = 1, Py ,0"® Hence, using the
choice n(f) > r,

Pv(’),an(Z),r+1w(n(e)) = An(g) P%’rw(n(e))
follows. Thus,
&
(3) = WAn@ Py ¥ " = i P ¥'ll < 2
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Finally, using once more the choice of £, we deduce
/ i €
(4) = Mn(ﬁ) - A |||Pv(’),rw ” < g
Combining the latter estimates, we conclude
1Py (H'Y' =29 < (D) +(2) +3) + 4) <e.

Since ¢ > 0 was arbitrary, we derive that ||P06,,(H’1p’ — Ay")|| = 0 for any
r € IN, namely A’ is a generalized eigenvalue of H’ with generalized eigenfunction
Y e £°(G). O

Corollary 4.7. The union |y cx gy 000 (H') is closed.

Proof. Assume {1, }neny C UH,ER(H) 0oo(H") and lim, oo A, = A'. Forn € N,
let H, be an R-limit on the d-bounded graph G, and 0 # ¢, € £*°(G,) be such
that (H, — Ax)gn = 0. Choose u, € V(Gy) such that ¢, (u,) > 122l Then
the conditions of Proposition 4.6 are satisfied (for C = 2) and so we derive that

A e UH’ER(H) UOQ(H/). |

Another consequence of Proposition 4.6 is the following statement. Let
{¢i }ie be a sequence of functions ¢;: V(G) — C. We will use the notation
@) .
= u e N,
Qek ((k— 1)<|u|<€k i@l
and, denote by u(l) € V(G) a vertex satisfying £(k — 1) < |u§f}(| < Lk and
O _ (l)
Qo = |pi (u ).
Lemma 4.8. Let (H, G,vg) be given where H is a Schrodinger operator on
the infinite connected rooted d-bounded graph (G, vg). Suppose we are given
a sequence {Qn}nen of generalized eigenfunctions of H corresponding to the
eigenvalues { A, }new satisfying

(@) limy—o00 Ay = A;
(b) there is an s > 1 such that for each k € N, there are subsequences n; — co

and £; — oo satisfying

1
q( = ¢, (u(” B ;max{qé"fl . qé"’_l o

Then there is an R-limit (H', G', vy) of H, and a generalized eigenfunction 0 #
¢’ € L®°(G’) of H' corresponding to the eigenvalue ).
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Proof. We will prove in the following that for each k € IN, there is an R-limit
(H®, G® 8 of H together with a ¢®: V(G®) — € and A®) := 2 satisfy-
ing all the assumptions of Proposition 4.6. This leads to the desired result.

Let k € IN. For the sake of simplifying the notation and since k stays fixed
until the last step of the proof, there is no loss of generality (by passing to a
subsequence) in assuming that n; = i and £; > k for all i € IN. Since ¢; — oo,

the vertices u?_) ¢ 2o to infinity if i — oo. Then there is no loss of generality
[

. . (i) \y. BT k) k) , k)
’ ’ . 1 ’ ’ ’
in assuming that {(H, G Uy, ©)Jien converges to an R-limit (HY, G, vy")

otherwise we can pass to a convergent subsequence by Lemma 4.5. Since ¢; >
k > k — 1, the requirement (b) yields

lpi ()| < slgi (g )]

forall u € V(G) satisfying (¢ — 1) (k—1) < [u| < (¢ + Dk. Letu € Br_y (uf).
Since £; (k — 1) < [u{’,| < £:k holds by definition, we conclude

=Dk =1 < [ud | =k —1) < Ju| <’ |+ (k—1) < (& + Dk.

Hence,
max |g; ()] < sloi (u))l
u€By_| (ugli .k)

follows. Define y*: V(G) — C by

@i (u)
wi(k) () =3 loi (”1(31,-),k) |
0 otherwise.

if u € Bioy (uf).

Therefore, wi(k) (ug)k) = 1and ||1/fl~(k) loo <s. Since {(H, G, “Z-)k)}iGJN converges

to (H®, G0, v((,k)) with respect to the coherent maps
' k
{for: Br ) = Br(og)}iren.

there is an iy € IN such that f;  is a graph isomorphism for all i > iy. Define for
i > i, (pl.(k): V(G®) - C by goi(k) =T wi(k). We remind the reader that this
formally just defines a function on £2(By (v((,k))) that we embed into ¢2(G®)) by
extending it by zero. Then, we deduce for i > iy

k k k k k
supp(@?) € Bio ), 0P ) =1, and [P e <.
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Since Bk_l(v((,k)) is finite, there is no loss of generality (by passing to another
subsequence) that {goi(k)}ie]N converges pointwise (and so in £2-norm as all func-
tions are supported on Bg_;(v¥)) to a map ¢®: V(G®) — € such that
supp(¢®) € B (6). 91 0) = 1 and 0 < ®] = 5. Thus,

k
sup  Jp® ()] <5 = s|p® @P)).

veBk(vék))

Now, we are almost in the setting of Proposition 4.6. More precisely, we need to
show that ¢®) are “approximate generalized eigenfunctions.”

Letr < k—2. Then the convergence of {(H, G, uz)k)}iem to (H®, K, v(()k))
and the £?-convergence of {gol.(k)}iem to go(k) imply the following: for all ¢ > 0,
there is an i; € IN such that fori > iy,

) _ g® €
terir B raifirn = Hoo <5500,
e
8max{d + Cu, |Ai|, 1}

k k
lo® —o®, <

&
i — Al <—.
l 8lle® 2

Note that ¢®) is supported on Bk_l(v((,k)) and so [|¢® ||, is finite. Furthermore,
lim; 500 A; = A holds implying |A;| is uniformly bounded in i € IN. According
to Lemma 4.3, H® is a Schrodinger operator of the form (1.1) and ||[H®| <
2(d + Cg) for some constant Cy > 0 independent of k. Using (1.1), we derive

k) (k) _ (k) (k)
Pv(()k),rH ) = Pv(()k),rHv(()k),r_HPv(()k),r+1(p .

Let v € B, (v{¥). Then
s P i T0 @ = L), L e *(G®),

holds as the maps are coherentand r 41 < k—1. Denote by y , the characteristic
function of B, (v((,k )). Then, a short computation gives

. -1 (k)
G0 vt B0 i Vfirid oo 97 0)
k
= 1r OO By 90)

= X ) HYO)fT )
= A; (Pv(()k),rjfi,r_l,.l 1)”l_(k))(v)

k
= Ai(Pv((Jk)’rQDi( ()
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invoking the definition of wi(k) and the fact that ¢; is a generalized eigenfunction
of H corresponding to the eigenvalue A;. With this at hand, the triangle inequality
leads to

1P, H®o® _2p e OO < T+ T+ T3 + Ty,
where

Ty := ||P @, H Pv(k)

<k) 1 r+1%

(k)
_P<k> 1 r-HH(') 17, r+1Pv(‘J"’,r+1¢ I

L _ -1
I = ||Pvf)k),rjﬁ.r+1Hu§’.), ,r+ljﬁ,r+1Pv(k):r+1(p

(k) ”

- P w0, i H, (l) r+ljfl r+1Pv(()k),r+190i

’

T3 :=|P, @, Jfiea H, (,) Pv(‘)’” _kipvgk’,rw(k)”’

(k)
r—ij: 1 r+1%i

Ty:=||Ai P o, gD — AP w0, (p(k)H

Then the previous considerations yield

T1<£,
2

Tr<2(d + cH)nqo(’” ol <7

|A|||P<k> <P P<k> <P()||<8

— ). (%)
Ty = [Ai = APy 0|l < §-
Thus, || P, @, H(k) &) _ AP o, go(k)|| < ¢ follows implying
Pvé)k),rH(k)(p(k) = )LPvé)k),r(p(k), r<k-2,

as ¢ > 0 was arbitrary.

Combining all the previous considerations, Proposition 4.6 applies for the
sequence {(H(k), G, u(k))}kE]N, the sequence {go(k)}kE]N, Ry =k—-2, A :=A
and C := s. Hence, there is an R-limit (H’, G’,vy) of H and a generalized
eigenfunction 0 # ¢’ € £°°(G’) of H' corresponding to the eigenvalue A finishing
the proof. |
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4.3. The existence and the behaviour at infinity of generalized eigenfunctions
for R-limits. The next two statements rely on Proposition 4.6. We show that un-
der certain conditions the existence of a generalized eigenfunction ¢ of H results
in the existence of a bounded generalized eigenfunction of some R-limit of H or
it gives constraints on the growth behaviour of ¢ at infinity. The first proposition
treats bounded generalized eigenfunctions, while in the second proposition they
are unbounded. Both proofs are based on elementary statements that are provided
separately in a lemma to make the reading of the proofs more accessible.

Lemma 4.9. Lets > 1 and {a, }nen be a sequence of non-negative numbers such
that lim,_ o a, = 0. Then either there exists C > 0 such that

a, <Cs™, necl. 4.3)
or there exists a subsequence {ay, }7- | such that for any k € NN,

Qn, > Anp+1 and — SAp, > Apy—1. “4.4)
Proof. This follows by straightforward computations, see [14]. |

Proposition 4.10. Let H be a Schrodinger operator on an infinite, connected
rooted d -bounded graph (G, vo) and ¢ € £*°(G) be a bounded generalized eigen-
function of H corresponding to the eigenvalue A that does not vanish everywhere.
Then one of the following assertions holds.

(a) There exists an R-limit (H', G, vy) of H, and a bounded generalized eigen-
Sunction 0 # ¢’ € £>°(G’) of H' corresponding to the eigenvalue A.

(b) There are constants y > 1 and C > 0 such that

lpu)| < C'y_lul, ueaG.

Proof. Letk € N. Thenthereisau,, x € V(G)suchthatm(k—1) < |u,, x| < mk
and

u = max u)l =: .
ool = max 0] =g

Note that the latter is a maximum as B, (vo) is finite for every r € IN. We will treat
the two cases

(A) {gm.k}men does not tend to zero for some k € IN and

(B) {qm k}mew does tend to zero for all k € IN.
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(A) Suppose that k € N is chosen such that {g,,  }men does not tend to zero.
Let {gm, k}een be a subsequence such that limy_, o g,k = ¢ > 0. Such a
subsequence exists as {¢m k }men is uniformly bounded since ¢ € £*°(G). Choose
Lo € N such that g,,,, x > q/2 for every £ > {y. Then,

2||gl
max [eW)] < [[¢flec = =

u€Be(um, k) q

o Qm, )| # 0.

Thus, all the requirements of Proposition 4.6 are satisfied for the sequence
{(H,G U, k) eew With A, = 4, ™ =gpand C := %. Hence, statement (a)
of Proposition 4.10 follows from Proposition 4.6.

(B) Suppose now that limy, 00 gm i = O forall k € IN and let s > 1. Due to
Lemma 4.9, either

(B.1) there is a k € N such that (4.3) holds for a suitable constant C > 0 and
Am = qm k OF

(B.2) for all k € IN, there is a subsequence {an;, }ien satisfying (4.4).
(B.1) There exists a k € IN and a constant C > 0 such that

Gmik <Cs™, mel.

If u € V(G), then there is an m € NN such that m(k — 1) < |u| < mk and so
—m < —%. Consequently, the latter considerations yield

lul

dmi < Cs k.
Specifically, ¢ is exponentially decaying as claimed in (b) with y := sk > 1.
(B.2) For all k € IN, there is a subsequence {¢p, « }ien satisfying
dm;k > qmi+1.6  and  $Gm; k = Gm;—1,k- 4.5)
Hence,
1
qm[,k > E maX{CIm,-—l,ka C]m,-+1,k}

follows and ¢ is a generalized eigenfunction of H corresponding to the eigen-
value A. Thus, Lemma 4.8 applied to ¢; := ¢ and A; := A implies (a). |

Next, unbounded generalized eigenfunctions are studied in Proposition 4.12.
For this the following lemma will be useful.
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Lemma 4.11. Let {a,}nen be an unbounded sequence of non-negative numbers
such that there is an s > 1 and a C > 0 satisfying

a, <Cs", nel.
Then, for eachy > s, there exists a subsequence {an, {7, such that for all k € NN,
An; > Api—1  and  Yap, > dpy+1-
Proof. This follows by straightforward computations, see [14]. |

Proposition 4.12. Let ¢ be an unbounded generalized eigenfunction of H corre-
sponding to the eigenvalue A. Then one of the following assertions holds.

(a) There exists an R-limit (H', G, vy) of H, and a bounded generalized eigen-
function ¢’ € £L°(G") of H' corresponding to the eigenvalue ) that does not
vanish everywhere.

(b) There exists a constant y > 1, such that for all C > 0, thereisau = u(C) €
V(G) satisfying |p(u)| = Cy!.

Proof. Suppose (b) is not satisfied. We will prove that then (a) holds. Let k € IN.
Define

max lo(u)|, m € N.

k= a
G m(k—1)<|u|<mk

Since (b) does not hold, for all y > 1, there is a constant C, x > 0 such that
lp)| < Cyry™, ueV(G).

Lets > 1 andsety := st o> 1. Thus, there is a constant Cy = C(k,r) > 0 such
that
Gmi < Ciy™ = Cps™.

Since ¢ is unbounded, lim,; o0 gm x = 0o. Then Lemma 4.11 implies that there
is a subsequence {¢,, k }iew such that for every y’ > s,

dmik > Gmi—1k a0 Y Gk > Q1 k-
Thus, Lemma 4.8 applied to ¢; := ¢, A; := A and s = y’ leads to (a). O
4.4. Generalized eigenfunctions and Shnol type theorems. As discussed in
the introduction, Shnol type theorems connect a growth conditions for generalized

eigenfunctions corresponding to the eigenvalue A to the fact that A belongs to the
spectrum of the operator.
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We say that a function ¢: V(G) — C on a graph G has sub-exponential growth
(with respect to the graph metric dist) if for one (any) vertex vy € V(G), the map

V(G) SV > e—adist(v,vo)(p(v)

is an element of £2(G) for all « > 0. With this at hand, the following Shnol-type
theorem holds, proven in [24] in more general setting of bounded Jacobi operators
on a graph. This theorem is used for the proof of Theorem 2.4.

Proposition 4.13 ([24, Theorem 4.8]). Let H be a Schrodinger operator of the
Jorm (1.1) on an infinite, connected, rooted d-bounded graph (G, vy). Suppose
©: V(G) — Cis a generalized eigenfunction of H corresponding to the eigenvalue
A. If ¢ is sub-exponentially bounded, then A € o(H).

The proof of Theorem 2.2 depends on the existence of a generalized eigenfunc-
tion for each point in the spectrum admitting a suitable growth rate. The follow-
ing statement provides a sufficient condition to get such generalized eigenfunction
which can be found in [28, Theorem 3] in a more general setting.

Theorem 4.14 (reverse Shnol’s Theorem, [28, Theorem 3]). Let (G, vg) be a
connected, infinite, rooted graph and H be a Schrodinger operator on £*(G) of
the form (1.1) with spectral measure . Suppose w € £*(G) is real-valued and
positive (i.e. w(v) > 0 for all v € G). Then for p-a.e. A € o(H), there exists

a generalized eigenfunction ¢ of H corresponding to the eigenvalue A satisfying
¢ -w € 2(G).

Corollary 4.15. Let (G, vg) be a connected, infinite, rooted graph and H be a
Schrédinger operator on £2(G) of the form (1.1). If o € £*(G) is real-valued and
positive, then

{A € 6(H) | there exists ¢p: G — C such that Hp = A¢ and pw € {%2(G)}
=o(H).

As a consequence of Theorem 4.14 we derive

Corollary 4.16. The set

there is a generalized eigenfunction ¢,
Ay = 3A €eo(H) | corresponding to the eigenvalue A

such that | (v)] < (Jv] 4+ 1) /88y (vo)
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is dense in o (H). In particular, if G has sub-exponential growth, then the set

there is a generalized eigenfunction ¢,
Ay = { A € 0(H) | corresponding to the eigenvalue A (4.6)
such that ¢, is sub-exponentially growing

is dense in o (H).

Proof. The set Ay is dense in o(H) by using Corollary 4.15 and wg € €*(G)
where

1
wa)= (1ol +1) /8811 (vo)”

The second part follows from the fact that if G is sub-exponentially growing, then
for each y > 1, there is a C > 0 such that

v e V(G).

(lv] + 1) /881 (vo) < C - yV2(Jv] + 1).

Then the statement follows from the first part. O

4.5. Proof of Theorem 2.2. The strategy of the proof of Theorem 2.2 is as fol-
lows. Given A € oes(H) we use the reverse Shnol’s property (Theorem 4.14) to
obtain a sequence of generalized eigenfunctions {¢™ yoo , of H corresponding to
the eigenvalue A, such that lim, .- A, = A and each ¢, is sub-exponentially
growing. With this at hand, Proposition 4.6, Propositions 4.10 and Proposi-
tion 4.12 complete the proof of the theorem.

Recall that the discrete spectrum ogisc(H) of an operator H is defined by
the set of isolated eigenvalues of finite multiplicity. Furthermore, the essential
spectrum oegs(H ) is defined by o (H) \ 04isc(H). Thus, if A is an element of the
essential spectrum, then either A is an eigenvalue of infinite multiplicity or in each
neighbourhood of A there are elements of the spectrum o (H ) that are not equal
to A.

Proof of Theorem 2.2. Let A € 0egs(H). Then one of the following cases holds:

(a) forevery e > O thereisa A, € 0(H) suchthat0 < |[A — A,| < &;

(b) there exists an infinite sequence ¢, € {2(G) satisfying H¢, = A¢, and they
are pairwise orthogonal.

We begin with case (a), due to Corollary 4.16 and since (G, vo) has sub-
exponential growth, the set A, (of (4.6)) is dense in o (H ). Then by assumption (a)
there is a sequence of eigenvalues {A,},cn corresponding to generalized eigen-
functions ¢,: V(G) — C such that A, # A, for m # n, lim,c0c Ay, = A and ¢,
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has sub-exponential growth. Then either infinitely many of the ¢, are unbounded
or only finitely many of them are unbounded

If infinitely many of the ¢, are unbounded, there is no loss of generality in
assuming that each ¢, is unbounded (otherwise pass to a subsequence). Then
Proposition 4.12 asserts that A,, € 0o (Hj,) for some R-limit H,, of H or there is
ay > 1 such that for all C > 0, there exists a u € V(G) with |p(u)| = Cy.
However, the second assertion cannot hold as ¢, is sub-exponentially bounded.
Hence, A, € 05(H,) holds for some H, € R(H). Since A,, — A, Corollary 4.7
yields A € Upgrermy 000 (H') finishing the proof.

If only finitely many of the ¢,’s are unbounded, there is no loss of generality
in assuming that ¢, is bounded for each n € IN (otherwise pass to a subsequence).
By Proposition 4.10 either infinitely many of the A, satisfy A,, € 0 (H,,) for some
H, € R(H) or only finitely many. In the first case Corollary 4.7 finishes the proof
as before. In the second case, Proposition 4.10 asserts that for n large enough

lon ()| < Cp -y, ueG.

Thus, ¢, € ¢2(G) and in particular, they are orthogonal as H is self-adjoint and
An # Am for m # n. This is the same situation as in (b) (where the orthogonality
of the eigenfunctions is assumed). We proceed proving the claim of the theorem
in this last case which will also prove it for the case (b).

Set ¢, = Tonls (p ” for each n € IN. Then v, is still an eigenfunction of H
corresponding to the eigenvalue A, (A, = A in (b)) and the functions {, },v are
pairwise orthogonal. Let u, € V(G) be the vertex such that ||V, |lcc = |¥n(un)|-
We have two cases, either {u, },en (monotonically, by passing to a subsequence)
converges to infinity or {u,},eny € Br(v) for some r > 0, v € V(G) and every

n € IN. In the first case, when {u, },< converges to infinity, then

ue%lf);n [V )| = [Vnlloo = |¥n(un)]
holds by construction. Thus, Proposition 4.6 yields that there exists an R-limit
(H',G', vy) being a limit point of (H, G,u,) and a generalized eigenfunction
0 # ¢ € £°°(G’) of H' corresponding to the eigenvalue A.

It is left to treat the case that {1, },en € B (v) for some r > 0, v € V(G) and
every n € IN. Since {V,}ne are pairwise orthogonal, they converge weakly to
zero, see e.g. [41, Theorem I1.6]. Since ||V, |lco = |¥n(uy)| and u, € B,(v) for
all n € IN, the weak convergence to zero yields lim,— o || ¥n|loo = 0. For k € N
define

n) ._
k"= 44 1)<|u|<£k|1/,n( Wl
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Since v, € £2(G), we derive limy_, o qénlz = 0. Define

Ly :={le: qé",i > maxq(';c)}

Since limy_, o qe k = 0, we conclude that L, j is infinite for all » € IN. Next, we
will prove the followmg lemma that together with Lemma 4.8 will conclude the
proof.

Lemma 4.17. Suppose we are in the setting as described before. For each k € IN
there are two sequences {nj};jen (withn; — oo) and {{;};en (with{; — o0) such
that for each j € N, {; € Ly, x and qg"_)l 2q(n])

Before proving Lemma 4.17, let us explain why it finishes the proof. By con-
struction, v, is a generalized eigenfunction of H corresponding to the eigenvalue
Ay satisfying 0 # ¥, € £°°(G) and lim,, .00 A, = A. Lemma 4.17 implies that for
each k e N, there are subsequences n; — oo and £; — oo satisfying tj €Lk

and q 1k < 2q£j k The condition ¢; € Ly, x leads to qZ k > qén’H - Thus,
the constralnt (b) of Lemma 4.8 is satisfied w1th s = 2. Hence, this lemma
implies that there is an R-limit (H’, G’, vy) of H and a generalized eigenfunc-
tion 0 # ¢’ € £°°(G’) of H' corresponding to the eigenvalue A proving Theo-
rem 2.2. O

Proof of Lemma 4.17. Let us fix k € NN and introduce the following notation
qé") = qé”; and L, := L, k. Assume by contradiction that for all {n;}; with

nj — oo, and {{;}; w1th {; — oo, there exists j € IN such that
0 ¢ Ly, or qénl) > 2q‘”f’. 4.7)

We first prove that this is equivalent to ask that there exist ¢, £o € IN such that

qé”) < maxqi(”) or ¢, ’i > 2¢,
i>L

™ foralln >ng.£>Ly.  (4.8)
That (4.8) implies (4.7) is straightforward. In order to show the implication
4.7y = (4.8), assume by contradiction that (4.7) holds but (4.8) does not hold.
First note that £ € L, is equivalent to q( ") > max;>¢ q( ™ Let A, ¢ denotes the
statement

(n)

(Ane) g > max ¢ ™,
i>L

and q(n) <2gq,

Since (4.8) does not hold, we conclude

for all ng, £y € IN there existn > ng, £ > £o such that 4, ; hold true. 4.9)
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Then we can iteratively define a sequence (ng, {;) with ny — oo and £ — oo
such that A4,, ¢, is true for each k € IN. More precisely, let (n1, £1) be such that
1 < 41,1 < nyand Ay, ,, is true, which is possible by (4.9). Suppose now we
have (ny, {x) for 1 < k < m such that 4, ¢, is true. By (4.9), there is ann > n,
and £ > {,, such that A4, y is true. Set n,,+; := n and {,,+; := £. By construction
ng — oo and £ — oo and A, ¢, is true for all k& € IN. This contradicts (4.7).
Thus, we have proven that (4.7) and (4.8) are equivalent.

By our assumption and the previous considerations (4.8) holds. Let £g,ng € IN
be chosen according to (4.8). Furthermore, fixn > ng,and £ € L, suchthat{ > £,
(exists since L, is infinite). Then (4.8) leads to qé’i)l > 2q(§"). Thus,

ai”, > 2¢;" = maxq/"”
i>L

follows implying that also £ — 1 € L,. Since f{L,, = oo, the latter considerations
imply that [€g,00) N IN C Ly. Thus, ¢, > 2¢\" holds for all £ > £, by (4.8).
Altogether, we derive that

w_1w 1 m RO
4y < 26]4 1 22614 2 < S 20— Zoqfo - 2Z lo 1 lloo

holds for all » > ng and £ > £y. Hence, for v € V(G) with |v| = r > £k, the
estimates

() ),
|1/’n(v)| = qu/kJ — 2Lr/kJ —{ ||Wn||oo ”d’n”oo ’ n = ny,

are deduced where |r/k] denotes the largest integer j satisfying j < z. Recall

that 8, (vo) denotes the sphere of radius r and center vy in G. Since (G, vg) has

sub-exponential growth rate, there is a constant Cx > 0 such that S, (vo) < Cryy,
In(2)
forall» € IN where y; := e "2t > 1, see Definition 2.1. Then a short computation

yields
_In@2)
Z |¢n(v)|2 < ¥ ||o<>2£0 Z 18- (vo)e™ & "

veV(G):|v|>Lok r>£Lok

< 1¥n ||00260Ck Z Vk_r

rzf()k

The latter sum is convergent by the root test as y, 1" < 1. Furthermore, the
cardinality of all vertices v € V(G) with |v| < {ok is finite as G is d-bounded
graph. Hence,

1l =Y 1@ =Y " 1Wa@P + D Y@ < Cell¥nlloo

veV(G) veV(G):|lv|<lok veV(G):|v|>Lok
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follows for a suitable constant ék > 0. Since lim,, o0 [|¥nlloo = 0, we derive
limy— o0 |¥nl|3 = 0, a contradiction as |Yn|l2 = 1. Thus, Lemma 4.17 is
proven. O

4.6. Proof of Proposition 2.3. Next we show that the inclusion of Theorem 2.2
can also be strict for graphs with sub-exponential growth rate. This is done by
providing a specific example motivated by the considerations made in Section 2
about the d-regular tree. This construction is inspired by an example given
in [14]. In order to do so a more general construction of so called chain graphs is
introduced next.

Definition 4.18. Let (Gy)ken be a sequence of finite graphs, v}, v € V(Gy) for
each k € IN and {k¢}sew < IN be an increasing sequence. Then the corresponding
chain graph is defined as follows:
e begin with the graph IN, namely V =WNand E = {(n,n + 1) | n € N};
o foreach k € {k¢}72 ,, replace the vertex k with the graph Gy;
o the edges (k — 1,k), (k,k + 1) are replaced with the edges (k — 1,v}) and
(v,%, k+1);
e incasethatk = ky = ky—y + 1 the edge (k — 1, k) is replaced with the edge
(V1. v)-

Proof of Proposition 2.3. Fix d > 2 and let T be the d-regular tree with root vy,
and denote by Gy the finite subgraph By (vo) in Ty. Let {k¢}72, be the sequence
defined by k¢ := d“*!. For each { € N, let v},v? be two vertices in G of
maximal distance from each other. Then let G¢ be the corresponding chain graph,
see Definition 4.18 and a sketch in Figure 4.1.

BI‘Z(UO)
By, (vo)

'Ull_._vl2 Ul U%
o - - - - - ool o
vo 8 klé-‘rl ko —1 koi+1

=ki—1 H

Figure 4.1. The graph G¢ for d = 3.

Let Agaq and A7, be the adjacency operator on G¢ and T respectively, namely
it is the Schrodinger operator of the form (1.1) with W(v) := deg(v). Next, we
show that G? with root vy = 1 is of sub-exponential growth.
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A short computation gives that §G; = 1+d (d_dl_)z_l < d(z:?k. Furthermore,
8¢ = dist(vez_l,vel) = d"!' — 4t = (d — 1)d* holds implying #G; < &.
Define r;, := dist(vo, vl?). Then §; < ry — rg—; holds. Next, we will show
By, (vo) < 2r¢, £ € N, via induction. For the base case, we have

By, (vo) = k1 — 1+ G, =d* +d <2d* + 4 =2(k; + 1) = 2ry.
The induction step is deduced by the estimate
1By, (vo) = iBr,_, (vo) + 8¢ + #Ge < #Br,_, (vo) + 28¢ < 2ry

invoking the induction hypothesis and the previous considerations. With this at
hand, we derive by the definition of G4 that

§Br,+j(vo) = 1By, (vo) +j <2(r¢+j), 0=j <kgy1—k¢+ 1.

On the other hand, decreasing the radius of B, (vo) reduces the number of vertices
in the ball by at least two in each step since d > 2. Thus,

J
§Br,—j(v0) < BBy, (vo) = D 2 <20rg—j), 1<j<20—1,

n=1

follows.

Putting all together, we derive §B(vo) < 2k for each k € IN. Furthermore,
G%isa sub-graph of T,;. Thus, [32, Corollary 4.5] together with [33, Section 7.c]
lead to

Uess(AGd) - O'(Ac;d) Cl[-2vd —1,2d/d — 1] = O(ATd).

On the other hand, one of the R-limits of A5« is the adjacency operator on
the d-regular tree, for which [—d,d] € 0 (Ar1,), see [9, Theorem 1.1]. As a
consequence, we conclude

0 # [~d.d]\ [-2vVd = 1.2v/d = 1] € | J00o(H') \ 0ess(Aga)

H/G:R(AGd)

since d > 2. O

5. Proof of Theorem 2.4

The proof follows from the results mentioned above, and the following theorem
from [8].
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Theorem 5.1 ([8, Theorem 2]). Let G be an infinite, connected d -bounded graph
and H a Schrodinger operator on G, then

UU(H/) C Oess(H).

H'eR(H)
With this at hand, we can prove Theorem 2.4.

Proof of Theorem 2.4. We already know from Theorem 5.1 and Theorem 2.2 that

o (H') S oess(H) | oo (H).

H'eR(H) H'eR(H)
Thus, it suffices to prove for each H' € R(H), that
00o(H') C o (H).

In order to do so, recall the notions introduced in Section 4.4. Since G admits a
uniform sub-exponential growth also any R-limit (H’, G', vy) of (H, G, vp) is of
uniform sub-exponential growth. Indeed, for each y > 1 there exists a constant
C > 0 (independent of the root) such that #S,(u) < Cy" for all u € V(G) and
r € NN, see Definition 2.1. Let y > 1 be arbitrary and r € IN. Since (H', G’, vy)
is an R-limit of (H, G, vy), there is a vertex u € V(G) such that the subgraphs
B, (vy) and B, (u) are isomorphic (see Definition 4.1). In particular, the spheres
contained in these balls have the same cardinality, namely {8, (u) = {8, (vy).
Since §8,(u) < Cy” where the corresponding constant C is independent of
u € V(G), we derive 18, (v)) < Cy”. Thus, the map V(G') 3 v’ > =% dist".v)
is an element £2(G’) for any a > 0.

Let A € 00(H’), then by definition there is a bounded generalized eigenfunc-
tion ¢ of H’ corresponding to the eigenvalue A. By the previous considerations

V(G/) 50— e—adist(v’,v’o)(p(v/)

is an element of £2(G’) as ¢ is uniformly bounded. Thus, ¢ is sub-exponentially
bounded implying A € o (H’) by Proposition 4.13. |
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