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Abstract. A characterization of the essential spectrum of Schrödinger operators on infinite
graphs is derived involving the concept of R-limits. This concept, which was introduced
previously for operators on N and Z

d as “right-limits,” captures the behaviour of the
operator at infinity. For graphs with sub-exponential growth rate, we show that each point
in �ess.H/ corresponds to a bounded generalized eigenfunction of a corresponding R-limit
of H . If, additionally, the graph is of uniform sub-exponential growth, also the converse
inclusion holds.
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1. Introduction

This work deals with Schrödinger operators H W `2.G/ ! `2.G/ of the form

.H /.v/ WD
X

u�v

. .u/ �  .v//CW.v/ .v/ (1.1)

where W WV.G/ ! R is a bounded function (the potential) and G is an infinite,
connected graph with a uniform bound on the vertex degree.

Weyl’s theorem asserts that the essential spectrum of a linear bounded self-
adjoint operator is invariant under compact perturbations. In light of this, one
naturally expects that the essential spectrum only depends on the geometry at
infinity of the underlying space. This relation has been exposed for Schrödinger
operators onN or Zn. More precisely, the essential spectrum was characterized by
the union of the sets �1.H

0/whereH 0 runs over all right-limits ofH and �1.H
0/

denotes the set of bounded generalized eigenvalues, see [13, 45]. Here the term
right-limit refers to the study of both the potential and the geometry at infinity. In
particular, ifG is the Cayley graph of Z with the usual generators, a right-limit is a
strong limit point of a sequence of shifts going to infinity of the original operator.

https://creativecommons.org/licenses/by/4.0/


1896 S. Beckus and L. Eliaz

This notion of right-limits was extended to Z
n in [27] and recently to general

graphs with uniformly bounded vertex degree in [8]. Since the name right-limit
is no longer appropriate, these operators are called R-limits.

For infinite connected graphs with uniform bound on the vertex degree, the
authors of [8] proved that the union over the spectra of all R-limits of H is
contained in the essential spectrum of H , where H is a bounded Jacobi operator.
Moreover, they show that the converse inclusion holds on regular trees, and that
on the contrary there exists an infinite, connected graph with uniform bound on
the vertex degree such that equality does not hold. This is the starting point of the
present work. Let R.H/ be the set of all R-limits of H . We show that

�ess.H/ �
[

H 02R.H/

�1.H
0/ (1.2)

holds under additional assumptions on the growth rate of balls, see Theorem 2.2.
In general this inclusion can be strict, see Proposition 2.3. However, if additionally
the graph admits a uniform sub-exponential growth, then this inclusion is an
equality and moreover,

�ess.H/ D
[

H 02R.H/

�.H 0/ D
[

H 02R.H/

�1.H
0/: (1.3)

see Theorem 2.4.
Such results go back to the concept of limit operators based on Favard [15],

Muhamadiev [34, 35], Lange and Rabinovich [26], Rabinovich, Roch, and Sil-
bermann [37, 38, 39], and Chandler-Wilde and Lindner [12, 13], see also [29,
30, 36, 46]. In recent developments [25] pushed these methods forward to metric
measure spaces including graphs of property A [48]. Besides other things it is
shown there that the essential spectrum coincides with the union of the spectra of
so called limit operators. Another approach to tackle such questions comes from
C �-algebras [18, 19, 20, 21, 22, 31] which uses the concept of localization at in-
finity, which coincides with the concept of R-limits. In this case, similar results
for operators on locally compact, non-compact abelian groups are obtained. This
was recently extended to groupoid C �-algebra [2, 10, 11]. For a more compre-
hensive review and further references on the subject see [13, 27, 45]. Another
recent work [23] develops a similar characterization for the essential spectrum of
the Laplacian on Klaus-sparse graphs. Note that the class of Klaus-sparse graphs

have a non-trivial intersection with the class of uniform sub-exponential growing
graph, and neither of these classes contains the other. Furthermore, [1] takes ad-
vantage of the above mentioned result on trees from [8], to calculate the essential
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spectrum of Jacobi matrices on homogeneous trees, which are generated by an
Angelesco system.

In order to prove our second main result (Theorem 2.4), the so-called Shnol-
type theorem is used. Shnol [42] proved that if a generalized eigenfunction admits
at most a polynomial growth rate then the corresponding energy is in the spectrum
of the operator. This result was independently discovered by Simon [43]. Since
then various remarkable generalizations to the Dirichlet form setting were proven,
see e.g. [4, 3, 5] and references therein. In the literature also the converse question
is addressed [6, 17, 28]. To be more precise, one seeks to find for �-almost
every element in the spectrum, a generalized eigenfunction that has at most sub-
exponential growth, where � is the spectral measure of the operator H . Such a
converse theorem is used in the proof of Theorem 2.2.

1.1. Organisation. The main results of this work are presented in Section 2.
In Section 3, two examples are provided where the essential spectrum can be
computed with the help of the main results. After introducing the main concepts
such as R-limits, the proof of the main Theorem 2.2 as well as of Proposition 2.3
is provided in Section 4. Then the proof of Theorem 2.4, which states the
Equality (1.3) for d -bounded graphs of uniform sub-exponential growth, is given
in Section 5.

1.2. Acknowledgements. Parts of this work are included in the Ph.D. thesis
of L. Eliaz [14], carried under the supervision of J. Breuer from the Hebrew
University of Jerusalem. We are grateful to him for his significant support during
the preparation of this work. The authors wish to thank M. Keller for inspiring
discussions and for pointing out the reference [9]. L. Eliaz acknowledges the
support of the Israel Science Foundation (grants No. 399/16 and 970/15) founded
by the Israel Academy of Sciences and Humanities. S. Beckus is thankful for
financial support of the Israel Science Foundation (grant No. 970/15) founded by
the Israel Academy of Sciences and Humanities during the Postdoctoral period at
the Israel Institute of Technology where the main part of this work was established.

2. Setting and main results

A graphG consists of a countable vertex set V.G/ and an edge setE.G/ where an
edge is represented by a tuple of vertices. Throughout this work, we deal with
undirected graphs and so the edge .u; v/ is identified with the edge .v; u/ for
u; v 2 V.G/. The tuple .u; u/ for some u 2 V.G/ is called a loop. We only
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consider graphs without loops. Two vertices u and v are called adjacent (u � v)
if .u; v/ 2 E.G/. The vertex degree deg.v/ of a vertex v 2 V.G/ is defined by

deg.v/ WD ]¹u 2 V.G/W v � uº;

where ]S denotes the cardinality of the set S . The tuple .G; v0/ is called rooted

d -bounded graph if v0 2 V.G/ is a fixed vertex and deg.v/ � d for all v 2 V.G/.
A path between two vertices u; v 2 G is given by a chain of vertices .u1; : : : ; un/

satisfying u1 D u; un D v and ui � uiC1 for all 1 � i � n � 1. A graph is called
connected if there is a path between any two vertices u; v 2 V.G/.

Let `2.G/ WD `2.V .G// denote the Hilbert space of all square summable
functions  WV.G/ ! C. Furthermore, `1.G/ WD `1.V .G// is the Banach
space of bounded functions  WV.G/ ! C equipped with the uniform norm
k k1 WD supu2V.G/ j .u/j.

Throughout this work, we study the self-adjoint, linear and bounded operators
acting on the Hilbert space `2.G/ of the form (1.1), where G is an infinite
(i.e. ]V .G/ D 1), d -bounded and connected graph. Whenever W is chosen
to be identically zero, the operator is denoted by �, which is called the graph

Laplacian. Furthermore, A D AG denotes the adjacency operator on the graphG,
which is a Schrödinger operator with W.v/ WD deg.v/ for v 2 V.G/. A triple
.H;G; v0/ denotes a Schrödinger operator of the form (1.1) defined on the rooted
graph .G; v0/.

LetH be a Schrödinger operator on a rooted graph .G; v0/. The spectrum ofH
is denoted by �.H/. The discrete spectrum �disc.H/ � �.H/ is the set of isolated
eigenvalues of finite multiplicity and the essential spectrum is

�ess.H/ WD �.H/ n �disc.H/:

Furthermore, a function  WV.G/ ! C is called a generalized eigenfunction ofH

corresponding to the eigenvalue� if 6� 0 andH .v/ D � .v/ for all v 2 V.G/.
With this at hand, �1.H/ denotes the set of all � such that there exists a bounded
generalized eigenfunction  2 `1.G/ corresponding to the eigenvalue �.

The combinatorial graph distance on G is defined by

dist.u; v/ WD inf¹n j .v0; v1; : : : ; vn/ is a path with v0 D u and vn D vº:

For a rooted graph .G; v0/, the notation

jvj WD dist.v; v0/

is used for the distance of a vertex v 2 V.G/ from the root v0. Then Sr.v0/ denotes
the sphere of radius r 2 N about v0 andBr .v0/ is the ball of radius r 2 N about v0,
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namely,

Sr.v0/ WD ¹v 2 G j dist.v; v0/ D rº; Br .v0/ WD ¹v 2 G j dist.v; v0/ � rº:

Definition 2.1. A connected rooted graph .G; v0/ is of sub-exponential growth

rate if for each  > 1, there exists C D C;v0
> 0 such that for every r 2 N,

]Br.v0/ < C
r :

Furthermore, a graph G is of uniform sub-exponential growth rate if the constant
C > 0 can be chosen independently of the choice of the root. Specifically, for
each  > 1, there exists a constant C D C > 0 such that

]Br .u/ < C
r

holds for every u 2 G and r 2 N.

The concept of R-limits of a Schrödinger operator H defined on a graph G
was recently introduced in [8]. A precise mathematical definition is provided in
Section 4.1.

Theorem 2.2. Let .G; v0/ be an infinite and connected d -bounded graph of

sub-exponential growth rate, and H be a Schrödinger operator on `2.G/ of the

form (1.1). Then

�ess.H/ �
[

H 02R.H/

�1.H
0/:

We point out that in the latter assertion it is not assumed that the graph is of
uniform sub-exponential growth. The inclusion is preserved also for the adjacency
operator H WD AG on the d -regular tree G WD Td , although this graph has
exponential growth rate. In this case, one can directly check that this inclusion
is strict. Indeed, the only R-limit is the same operator H 0 D ATd

on Td . Then
�ess.H/ D �.H/ D Œ�2

p
d � 1; 2

p
d � 1� and Œ�d; d � � �1.H/ holds (see e.g.

[9, Theorem 1.1] and [16]). Thus, we derive

Œ�d; d � n Œ�2
p
d � 1; 2

p
d � 1� � �1.H/ n �ess.H/

where the set on the left hand side is non-empty. With this idea at hand, we also
prove the following.

Proposition 2.3. There exists an infinite and connected d -bounded graph G of

sub-exponential growth rate so that the adjacency operatorH WD AG satisfies
�

[

H 02R.H/

�1.H
0/

�

n �ess.H/ ¤ ;:
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The proof of Proposition 2.3 is constructive and the corresponding graph is
sub-exponentially growing but it does not admit uniform sub-exponential growth.
If this is assumed then the following holds.

Theorem 2.4. Let G be an infinite and connected, d -bounded graph of uniform

sub-exponential growth rate and let H be a bounded Schrödinger operator on

`2.G/. Then,

�ess.H/ D
[

H 02R.H/

�.H 0/ D
[

H 02R.H/

�1.H
0/:

As mentioned above, these equalities have been the subject of the previous
works [8, 14], which are inspired by [27]. There the first equality is given on
graphs of uniform polynomial growth rate [14, Theorem 2.1], and on regular trees
[8, Theorem 4]. These results are complemented by [8, Theorem 3], by which the
first equality is not satisfied in general. The proof of the latter statement includes
an example for a graph on which the essential spectrum strictly includes the union
over the spectra of the R-limits. While there the growth rate of the graph is not
sub-exponential, it can be adapted. Specifically, the construction is similar to the
one in the proof of Proposition 2.3.

As remarked earlier, the equality

�ess.H/ D
[

H 02R.H/

�.H 0/

coincides with a recent result from [25]. The corresponding result there is obtained
for metric spaces satisfying a certain set of assumptions. The assumption most
relevant for us is known as Property A [48], and it is satisfied for graphs of uniform
sub-exponential growth rate [47]. Note that the second equality

�ess.H/ D
[

H 02R.H/

�1.H
0/

in Theorem 2.4 is solely part of the current work in the context of graphs.
Following [14, Theorem 2.3], Property A is not satisfied for so called uniform

graphs of exponential growth rate. While the terminology “property A” does not
appear there, this property in fact follows, and is related to the earlier argument
by [27] for proving Theorem 2.4 for G D Zd . Moreover, there are graphs of
sub-exponential growth rate that do not satisfy property A. Such a graph can be
constructed by adjusting the example in [8, Theorem 3].
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3. Examples

The essential spectrum �ess.H/ is computed here for some examples by using
Theorem 2.4.

3.1. Variations of Zn. The spectrum of an adjacency operator on a graph with
bounded vertex degree by 2n admitting Zn as an R-limit is computed.

Proposition 3.1. Let 1 < n 2 N and let G be a infinite graph of uniform

sub-exponential growth such that AZn appears as an R-limit of the adjacency

operator AG. If the vertex degree of G is bounded by 2n, then

�.AG/ D �ess.AG/ D Œ�2n; 2n�:

Proof. A short computation invoking the Cauchy–Schwarz inequality leads to

kAGf k2 D
X

v2G

ˇ

ˇ

ˇ

X

u�v

f .u/
ˇ

ˇ

ˇ

2

� 2n
X

v2G

�

X

u�v

jf .u/j2
�

� .2n/2
X

u2G

jf .u/j2;

since in the last estimate each term is positive and appears at most 2n times in
the total sum. Hence, the spectral radius �.AG/ satisfies �.AG/ � 2n implying
�.AG/ � Œ�2n; 2n�.

For the converse inclusion, Theorem 2.4 together with [33, eq. (7.3)] assert
Œ�2n; 2n� D �.AZn/ � �ess.AG/ since Zn is an R-limit ofAG andG is of uniform
sub-exponential growth. �

For any n 2 N we shall construct a graph which we denote by Zn�n and is an
example for a graph of this family of variations of Zn. The construction procedure
is the following.

� Denote by Bn
L the subgraph of Zn which is the restriction to the box of side

length 2LC 1, centred at 0.

� For each point x 2 Z
n we shall associate the graph Bn

x � Bn
kxk1

.

� We connect each adjacent pair of boxes Bn
x and Bn

xCej
by a line. The con-

nection is done between the center points of the corresponding boundary sur-
faces and includes a sequence of vertices and edges of length max.kxk1; kxC
ej k1/.

For example (a portion of ) the graph Z2�2 is drawn in Figure 3.1. We conclude
from the argument above that

�.AZn�n
/ D �ess.AZn�n

/ D Œ�2n; 2n�:
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O

B.1;0/ B.2;0/ B.3;0/

.1;0/ .2;0/

.0;1/ .1;1/

Figure 3.1. The graph Z2�2.

3.2. Sparse trees with sparse cycles. In [7], so called sparse spherically homo-
geneous rooted trees were studied. It was shown there that under suitable assump-
tions the spectrum is purely singular continuous. These graphs are adjusted here
by adding from time to time a circle in the graph while preserving the spherical
symmetry. Invoking the current result, we compute the spectrum. We only pro-
vide a short discussion of these graphs and we refer the reader interested in more
details to [14].

A rooted tree .T; v0/ is called spherically homogeneous if each vertex v is
connected with �.jvj C 1/ vertices with distance jvj C 1 from the root v0. Let
¹Lnºn2N be a strictly increasing sequence with Ln 2 N and ¹knºn2N be a bounded
sequences with kn 2 N and kn > 1. Following [7], a spherically homogeneous
tree is called of type ¹Ln; knºn2N if �WN ! N is defined by

�.j / WD
´

kj if j 2 ¹Lnºn2N;

1 otherwise:

This graph is called sparse if limn!1.LnC1 � Ln/ D 1.
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Suppose .T; v0/ is a sparse spherically homogeneous tree of type ¹Ln; knºn2N.
Let ¹Cnºn2N be a sequence of natural numbers satisfying

Ln � Cn � Ln�1; lim
n!1

.Ln � Cn/ D 1; and lim
n!1

.Cn � Ln�1/ D 1:

With this at hand, the sparse tree with sparse cycles .G; v0/ of type ¹Ln; kn; Cnºn2N

is defined based on the spherically homogeneous tree .T; v0/ of type ¹Ln; knºn2N

by adding edges for each n 2 N between vertices in a sphere SCn
.v0/ of .T; v0/ in

the following way. Let SCn
.v0/ D ¹u1; : : : ; umº be some fixed ordering of the ver-

tices in the sphere of radius Cn around v0. Then, we add the edges .uj ; uj C1/ for
1 � j � m and the edge .um; u1/. Specifically, each vertex in the sphere of radius
Cn in the graph .G; v0/ is adjacent to exactly two other vertices in the sphere and
we create a circle, see e.g. a sketch of such a graph in Figure 3.2.

Cn

CnC1

Ln

v0

Figure 3.2. A sketch of a sparse tree with sparse cycles.
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In order to apply Theorem 2.4, the sparse tree with sparse cycles need to be
of uniform sub-exponential growth. If ¹Lnº grows exponentially, then a direct
computation shows that .G; v0/ is of uniform sub-exponential growth (for instance
choose Ln D 10n). Denote by D � N the set of all accumulation points of the
sequence ¹knºn2N, which by construction is finite. Then the possible R-limits of
A are the adjacency operators on the following graphs, see Figure 3.3:

� the line Z;

� a two sided infinite comb graph, denoted by C and defined by

V.C/ D ¹v D .k; `/ j k; ` 2 Zº;
E.C/ D ¹..k; `/; .k; `C 1// j k; ` 2 Zº [ ¹..k; 0/; .kC 1; 0// j k 2 Zº:

� the set of star graphs ¹SmC1ºm2D , where the star graph denoted by SmC1 is
defined by mC 1 copies of N glued together at 0.

Figure 3.3. Some of the R-limits of the sparse tree with sparse cycles (besides Z): the
infinite comb graph (left) and the star graph S3 (right).

The spectrum of all of these graphs can be explicitly computed. The proofs
are following standard ideas and can be found in [14].

Lemma 3.2. The equality �.AC/ D Œ�2
p
2; 2

p
2� holds.

Proof. This follows by using the periodicity of the graph AC (following e.g. [45,
Chapter 5] and [40, Chapter XIII.16]) and the Aronszajn–Krein formula (see
e.g. [44]). �

Lemma 3.3. For m 2 N with m > 1 we have

�.ASm
/ D Œ�2; 2�[

°

� mp
m � 1

;
mp
m � 1

±

:
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Proof. This is derived by standard computations invoking [7, Theorem 2.4] and
coefficient stripping (see e.g. [45, Theorem 3.2.4]). �

Thus, Theorem 2.4 implies that the essential spectrum of the adjacency opera-
tor associated with the sparse tree with sparse cyclesG of uniform sub-exponential
growth is given by

�ess.AG/ D Œ�2
p
2; 2

p
2� [

[

m2D

°

� mC 1p
m
;
mC 1p
m

±

:

4. Characterizing �ess.H / using generalized eigenfunctions

The section is devoted to the proof of Theorem 2.2. The first part includes a more
detailed review on R-limits, and several related properties which we develop and
use in this paper. The next three parts include the main tools which we use to
show the existence of generalized eigenfunctions. The last part of this section is
the actual proof of the theorem.

4.1. R-limits. If �WA ! B is a bijective map on two sets A and B , denote by
I� W `2.A/ ! `2.B/ the isomorphism defined via I�.ıa/ WD ı�.a/. Such maps will
be mainly used for sets A and B that are balls in different graphs. Specifically,
let .G; v0/ be an infinite, connected, rooted d -bounded graph. Since we assume
that the graph G admits a uniform bound on the vertex degree, every ball Br.v/

of radius r 2 N about v 2 V.G/ is finite. Throughout this work, Br .v/ defines
a subgraph of G by restricting the edge set only to those that connect to vertices
in Br .v/. For the sake of simplifying the notation, this induced subgraph is also
denoted by Br.v/.

Recall that a bijective map �WV.G/ ! V.G0/ between two graphs G and G0

(finite or infinite) is called a graph isomorphism if the induced map

�E WE.G/ ! E.G0/; .u; v/ 7�! .�.u/; �.v//

is also bijective. Then two graphs G and G0 are isomorphic (G � G0) if there
exists a graph isomorphism between them. Clearly, deg.v/ D deg.�.v// holds for
all v 2 V.G/ where � denotes the graph isomorphism. Let G;G0 be two graphs.
If there is an isomorphism between them, thenG is a connected d -bounded graph
if and only if G0 is a connected d -bounded graph. We say that two balls Br.u/

and Br .u
0/ for u 2 V.G/ and u0 2 V.G0/ are isomorphic (Br.u/ � Br .u

0/) if the
corresponding subgraph Br.u/ is isomorphic to the subgraph Br.u

0/.
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Define the projection

Pv0;r W `2.G/ �! `2.Br.v0//; .Pv0;r /.v/W D �Br .v0/.v/ .v/;

where �Br .v0/ is the characteristic function of the ball Br.v0/. Note furthermore
that `2.Br.v0// is naturally embedded into `2.G/ by extending a function with
zeros. In the following, we will not distinguish between the finite dimensional
space `2.Br.v0// and its embedding in `2.G/. For a linear bounded operator
H W `2.G/ ! `2.G/ on the rooted graph .G; v0/, define the operator

Hv0;r W `2.Br .v0// �! `2.Br.v0//; Hv0;r WD Pv0;rHPv0;r :

It is worth pointing out that Hv0;r can be represented as a matrix acting on
C]Br .v0/. With this notion at hand,  WV.G/ ! C is a generalized eigenfunction
ofH corresponding to the eigenvalue � if and only if Pv0;rH D �Pv0;r for all
r 2 N.

Recall that a sequence of vertices ¹vnºn2N goes to infinity (or converges to

infinity) if it leaves any finite subset of V.G/, or equivalently, if

lim
n!1

dist.v0; vn/ D 1:

Throughout this paper, we will usually assume, without loss of generality, that
the convergence is monotone. Let .G; v0/ and .G0; v0

0/ be two rooted graphs.
A sequence of maps fr WBr.v0/ ! Br.v

0/ for r 2 N is called coherent ( for v0) if
for s > r , the restriction of the map fs to Br .v0/ equals fr , namely

fs.u/ D fr .u/; u 2 Br .v0/:

Definition 4.1. For n 2 N, let Hn be a Schrödinger operators on the connected
rooted d -bounded graphs .Gn; vn/ and let H 0W `2.G0/ ! `2.G0/ be a linear
bounded operator on the connected rooted graph .G0; v0

0/. Then the sequence
¹.Hn; Gn; vn/ºn2N is called convergent to .H 0; G0; v0

0/ if the following holds:

(C1) there are coherent maps ¹fn;r WBr.vn/ ! Br .v
0
0/ºr2N for each n 2 N, such

that for every r 2 N, there exists an Nr 2 N satisfying that fn;r WBr.vn/ !
Br.v

0
0/ is a graph isomorphism for all n � Nr ;

(C2) for each r 2 N,

lim
n!1

kIfn;r
Pvn;rHnPvn;rI

�1
fn;r

�H 0
v0

0
;r

k D 0:
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Note that we require in the latter definition that the maps fn;r (in n 2 N)
are eventually graph isomorphism between the balls Br.vn/ and Br .v

0
0/. How-

ever, if n < Nr these maps are not necessarily graph isomorphisms. Thus, for
n � Nr , the map Ifn;r

W `2.Br.vn// ! `2.Br.v
0
0// is an isomorphism and so I

�1
fn;r

is well-defined. If only (C1) holds, we call the sequence of connected, rooted
d -bounded graphs ¹.Gn; vn/ºn2N convergent to the connected, rooted d -bounded
graph .G0; v0

0/.
Note, furthermore, that if ¹.Hn; Gn; vn/ºn2N converges to .H 0; G0; v0

0/, then
the limit point .H 0; G0; v0

0/ is unique up to a graph isomorphisms. Specifically,
if . zH; zG; Qv0/ is another limit point of ¹.Hn; Gn; vn/ºn2N, then there is a graph
isomorphism f WG0 ! zG such that f .v0

0/ D Qv0 and IfH
0
I

�1
f

D zH . This graph
isomorphism f is defined by using the coherent maps, see (C1).

Additionally, note that (C1) in Definition 4.1 can be replaced with the require-
ment that there exist maps fn;r WBr.vn/ ! Br .v

0
0/ that are eventually bijective.

In this case, the maps fn;r are eventually graph isomorphism by (C2). It is worth
pointing out that (C1) is only a combinatorial condition that guarantees that locally
the graphs are eventually isomorphic. On the other hand, (C2) encodes further
properties of the potential that in general cannot be kept by (C1). However, when-
ever the potential satisfies Wn � cn for all n 2 N with cn 2 C and cn ! c 2 C,
then (C1) implies (C2).

Definition 4.2. LetH be a Schrödinger operator on a graphG. Then a Schrödinger
operator H 0 on a graph G0 is called an R-limit of H if there exist a vertex
v0

0 2 V.G0/ and a sequence of vertices vn 2 V.G/ that monotonically converges to
infinity such that ¹.H;G; vn/ºn2N converges to .H 0; G0; v0

0/. As mentioned before,
the set of all R-limits associated with H is denoted by R.H/.

Whenever it is necessary to specify the coherent maps, we say that .H 0; G0; v0
0/

is an R-limit with respect to the coherent maps ¹fn;r WBr.vn/ ! Br .v
0
0/ºr;n2N.

Notice that the above definition forR-limits is equivalent to the definition given
in [8, 14]. Nevertheless, the definition is presented here slightly different in order
to relate it to the more general notion of convergence of a sequence of Schrödinger
operators, introduced in Definition 4.1, which will be useful for us in this paper.

We start with some observation that will be helpful. They are inspired by
previous considerations on N, see [45].

Let G be a graph and  WV.G/ ! C be a map. Then the support of  is de-
fined by supp. / WD ¹u 2 V.G/W .u/ ¤ 0º. Denote by Cc.G/ the set of all
 WV.G/ ! C such that supp. / is finite. Clearly, Cc.G/ � `2.G/ holds. Recall
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from equation (1.1) that a Schrödinger operator H W `2.G/ ! `2.G/ on the graph
G is given by

.H /.v/ WD
X

u�v

. .u/ �  .v//CW.v/ .v/;  2 `2.G/; v 2 V.G/;

where W WV.G/ ! R satisfies kW k1 WD supv2V.G/ jW.v/j < 1. The map W
is called the potential. Although we mainly treat the case where H is self-adjoint
(i.e. W is real-valued), the following statements of Lemma 4.3, Lemma 4.4, and
Lemma 4.5 also hold for complex-valued potentials W .

Lemma 4.3. For n 2 N, letHn be a Schrödinger operators on a connected rooted

d -bounded graph .Gn; vn/ with potential WnWV.Gn/ ! C. Consider a linear

bounded operator H 0W `2.G0/ ! `2.G0/ on a connected rooted graph .G0; v0
0/. If

¹.Hn; Gn; vn/ºn2N converges to .H 0; G0; v0
0/ and supn2N kWnk1 � C for some

C > 0, then

(a) .G0; v0
0/ is an infinite, connected rooted d -bounded graph,

(b) H 0 is a Schrödinger operator on .G0; v0
0/ of the form (1.1) with potentialW 0

and

(c) kH 0k � 2.d C C/ holds.

In particular, every R-limit H 0 of a Schrödinger operator H with potential W

is a Schrödinger operator of the form (1.1) with bounded potential and kH 0k �
2.d C CH / for CH WD kW k1.

Proof. Let ¹fn;r WBr.vn/ ! Br .v
0
0/ºr2N be the coherent maps (that are eventually

isomorphic) such that ¹.Hn; Gn; vn/ºn2N converges with respect to these maps
to .H 0; G0; v0

0/. Claim (a) follows immediately from the definition (using the
coherent maps fn;r ) since these properties are preserved under isomorphism and
the fact that .Gn; vn/ is an infinite, connected, rooted d -bounded graph for each
n 2 N.

Let r 2 N. By definition, there exists an Nr 2 N such that fn;r WBr.vn/ !
Br .v

0
0/ is an isomorphism for all n � Nr and

lim
n!1;n�Nr

kIfn;r
Pvn;rHnPvn;rI

�1
fn;r

�H 0
v0

0
;r

k D 0:

Furthermore, Br.v
0
0/ and Br .vn/ are finite sets of the same cardinality and so

Ifn;r
Pvn;rHnPvn;rI

�1
fn;r

and Hv0
0

;r can be represented as matrices that converge
in the matrix norm to each other. This is equivalent to the convergence of the
coefficients. Since by (1.1), .Hn /.v/ depends only on the values of  on the
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neighbours of v and v itself, H 0 is a Schrödinger operator of the form (1.1)
proving (b).

In order to prove (c), let us first note that the operator norm estimate kHnk �
2d C C . Let  2 Cc.G

0/ be such that k k � 1. Then there is an r 2 N such that
supp. / � Br�1.v

0
0/. According to Definition 4.1, there exists an n0 2 N such

that
kIfn0;r

Pvn0
;rHn0

Pvn0
;rI

�1
fn0;r

�Hv0
0

;rk < C:
Since supp. / � Br�1.v

0
0/ (r � 1 is important here) and H 0 is a Schrödinger

operator of the form (1.1), we have

H 0 D H 0
v0;r :

Thus, the previous considerations lead to

kH 0 k D kH 0
v0

0
;r
 k

� kH 0
v0

0
;r
 � Ifn0;r

Pvn0
;rHn0

Pvn0
;rI

�1
fn0;r

 k

C kIfn0;r
Pvn0

;rHn0
Pvn0

;rI
�1
fn0;r

 k

< C C 2d C C

as k k � 1, Ifn0;r
is an isomorphism and kPvn0

;rk � 1.
The last statement in the lemma follows as every R-limit .H 0; G0; v0

0/ of H
is a limit of a sequence ¹.H;G; vn/ºn2N. Thus, Wn WD W holds implying
supn2N kWnk1 D kW k1 < 1. �

Next, we show that the operation of considering the R-limits of H is a con-
traction in the sense that R.R.H// � R.H/.

Lemma 4.4. Let .G; v0/ be a rooted d -bounded graph and H be a Schrödinger

operator on `2.G/ as defined in (1.1). If ¹.H 0
m; G

0
m; u

0
m/ºm is a sequence of

R-limits of H that converges in the sense of Definition 4.1 to . zH; zG; Qv0/ then

. zH; zG; Qv0/ is an R-limit of H . In particular, R.H 0/ � R.H/ holds for every

R-limit H 0 of H , and thus also R.R.H// � R.H/.

Proof. By assumption, we have the following:

(1) the sequence .H 0
m; G

0
m; u

0
m/ converges to . zH; zG; Qv0/ along the sequence of

coherent maps ¹f 0
m;r WBr.u

0
m/ ! Br. Qv0/ºm;r2N that are eventually graph

isomorphisms according to Definition 4.1;

(2) for m 2 N, there is a sequence ¹u.m/

k
ºk2N � V.G/ and a sequence of co-

herent maps ¹f .m/

k;r
WBr.u

.m/

k
/ ! Br.u

0
m/ºk;r2N such that ¹.H;G; u.m/

k
/ºk2N

converges to .H 0
m; G

0
m; u

0
m/:
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Let " > 0 and R 2 N. Invoking (1) there is an MR 2 N such that

f 0
m;RWBR.u

0
m/ �! BR. Qv0/

is a graph isomorphism for m � MR and

kIf 0
m;R

.H 0
m/u0

m;RI
�1
f 0

m;R
� zHQv0;Rk < "

2
; m � MR:

Let m � MR. Invoking (2) there is an K.R;m/ 2 N such that

f
.m/

k;R
WBR.u

.m/

k
/ �! BR.u

0
m/

is a graph isomorphism for k � K.R;m/ and

kI
f

.m/

k;R

H
u

.m/

k
;R
I

�1

f
.m/

k;R

� .H 0
m/u0

m;Rk < "

2
; k � K.R;m/:

For m � MR, the map

gm;R WD f 0
n;R ı f .m/

K.R;m/;R
WBR.u

.m/

K.R;m/
/ ! BR. Qv0/

is a graph isomorphism and If 0
m;R

I
f

.m/

K.R;m/;R

D Igm;R
. Thus, we derive

kIgm;R
H

u
.m/

K.R;m/
;R
I

�1
gm;R

� If 0
m;R

H 0
u0

m;R
I

�1
f 0

m;R
k

D kI
f

.m/

K.R;m/;R

H
u

.m/

K.R;m/
;R
I

�1

f
.m/

K.R;m/;R

�H 0
u0

m;R
k < "

2
:

With this at hand, the triangle inequality leads to

kIgm;R
H

u
.m/

K.R;m/
;R
I

�1
gm;R

� zHQv0;Rk

� kIgm;R
H

u
.m/

K.R;m/
;R
I

�1
gm;R

� If 0
m;R

H 0
u0

m;R
I

�1
f 0

m;R
k

C kIf 0
m;R

H 0
u0

m;R
I

�1
f 0

m;R
� zHQv0;Rk < "

for all m � MR. Since " > 0 was arbitrary, zH is an R-limit of H . �

The following statement provides a (sequentially) compactness property of the
set of triples .H;G; v/where the operators are uniformly bounded in the operator
norm.

Lemma 4.5 (sequentially compactness). Let ¹.Gn; vn/ºn2N be a sequence of con-

nected, infinite, rooted d -bounded graphs and Hn be a Schrödinger operators

of the form (1.1) on .Gn; vn/ such that supn2N kWnk1 < 1. Then there exists

a Schrödinger operator H 0 on a rooted d -bounded graph .G0; v0
0/ and a subse-

quence ¹.Hnk
; Gnk

; vnk
/ºk2N that converges to .H 0; G0; v0

0/.
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Proof. By assumption, deg.v/ � d holds for all v 2 V.Gn/ and n 2 N. Thus, for
each r 2 N, the set

Br WD ¹Br.v/W v 2 V.Gn/; n 2 Nº= �

is finite, where � is the equivalence relation induced by graph isomorphism. Then
a Cantor diagonalization argument gives a convergent subsequence ¹.Gn; vn/ºn2N

to a rooted d -bounded graph .G0; v0
0/. By a similar argument and by passing

to another subsequence one gets the desired result that ¹.Hnk
; Gnk

; vnk
/ºk2N

converges to .H 0; G0; v0
0/. Since these arguments are standard, we only provide

a sketch of the proof here.
Let r D 1. Since B1 is finite, there is a subsequence ¹N.1; k/ºk2N � N

with N.1; k/ ! 1 such that B1.vN.1;k1// � B1.vN.1;k2// for all k1; k2 2 N.
Now let r D 2. By the same argument, there is a subsequence ¹N.2; k/ºk2N �
¹N.1; k/ºk2N such that BR.vN.2;k1// � BR.vN.2;k2// for all k1; k2 2 N and
1 � R � 2. By recursion we get for each r 2 N a subsequence

¹N.r; k/ºk2N � ¹N.r � 1; k/ºk2N � � � � � ¹N.2; k/ºk2N � ¹N.1; k/ºk2N � N

(4.1)
such that

BR.vN.r;k1// � BR.vN.r;k2//; k1; k2 2 N; 1 � R � r:

In particular, due to equation (4.1), BR.vN.r;k// is isomorphic to BR.vN.R;1// for
every k 2 N and 1 � R � r .

In order to define the graph .G0; v0
0/, it suffices to define BR.v

0
0/ for all R 2 N

modulo graph isomorphism. Define BR.v
0
0/ WD BR.vN.R;1//. By construction

BR.vN.R;1// � BR.vN.r;k// holds for all k 2 N andR � r . Thus, the rooted graph
.G0; v0

0/ is well-defined (up to graph isomorphism). By construction, .G0; v0
0/ is a

connected and infinite (rooted) d -bounded graph.
We claim that the diagonal sequence ¹.GN.k;k/; vN.k;k//ºk2N converges to

.G0; v0
0/. This can be seen as follows. Define fk;RWBR.vN.k;k// ! BR.v

0
0/ for k �

R to be the graph isomorphism between BR.vN.k;k// and BR.v
0
0/ D BR.vN.R;1//

which exists by construction as k � R. If k � R, define fk;RWBR.vN.k;k// !
BR.v

0
0/ by fk;R.u/ WD v0

0 for all u 2 BR.vN.k;k//. By construction, these maps are
eventually graph isomorphisms (as k ! 1), namely they satisfy the constraints
given in Definition 4.1.

By the latter considerations, we have shown that there is a subsequence that
converges to an infinite and connected (rooted) d -bounded graph .G0; v0

0/. In order
to simplify the notation, suppose that ¹.Gn; vn/ºn2N converges to .G0; v0

0/. The
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operators Hn are uniformly bounded in n 2 N since

kHnk � 2d C sup
n2N

kWnk1:

Thus, for fixed r 2 N, there is a subsequence ¹nkºk2N such that

Ifnk;r
Pvnk

;rHnk
Pvnk

;rI
�1
fnk;r

converges in norm (using that `2.Br .vnk
// is a finite dimensional vector space).

By a similar argument, as for the graph sequence one can construct (with a Cantor
diagonalization argument) an operatorH 0 on .G0; v0

0/ and a subsequence ¹nkºk2N

such that for each r 2 N

lim
k!1;nk�Nr

kIfnk;r
Pvnk

;rHnk
Pvnk

;rI
�1
fnk;r

�H 0
v0

0
;r

k D 0

whereNr 2 N is chosen such that fnk ;r defines a graph isomorphism for nk � Nr .
According to Lemma 4.3,H 0 is a bounded Schrödinger operator of the form (1.1).

�

4.2. Existence of bounded generalized eigenfunctions for R-limits. This sec-
tion is devoted to providing conditions such that a bounded generalized eigen-
function corresponding to the eigenvalue � of an R-limit exists. These are key
ingredients for the proof of Theorem 2.2.

Proposition 4.6. Let .H;G; v0/ and ¹.Hn; Gn; vn/ºn2N be such that either

(a) each .Hn; Gn; vn/ is an R-limit of .H;G; v0/, or

(b) Hn D H , Gn D G, and ¹vnºn2N monotonically converges to infinity.

Let C > 0 and for each n 2 N, let '.n/WV.Gn/ ! C, �n 2 C and Rn 2 N be such

that lim
n!1

�n D �0, lim
n!1

Rn D 1,

Pvo;rHn'
.n/ D �nPv0;r'

.n/; for all r � Rn; n 2 N;

and

max
u2Bn.vn/

j'.n/.u/j � C j'.n/.vn/j ¤ 0: (4.2)

Then there exists a subsequence of ¹.Hn; Gn; vn/ºn2N converging to an R-limit

.H 0; G0; v0
0/ of H and a generalized eigenfunction 0 ¤ '0 2 `1.G0/ of H 0

corresponding to the eigenvalue �0.
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Proof. Due to Lemma 4.3, there is a constant C > 0 such that every R-limit
H 0 of H is a Schrödinger operator of the form (1.1) with potential W 0 satisfying
kH 0k � 2.d C C/. Hence, there is no loss of generality (by enlarging the
constant C ) that kW 0k1 � C . Thus, supn2N kWnk1 < 1 follows where Wn

is the potential of Hn for both cases (a) or (b). Hence, Lemma 4.5 implies that
¹.Hn; Gn; vn/ºn2N has a convergent subsequence.

Without loss of generality (by passing to a subsequence), assume that the
sequence ¹.Hn; Gn; vn/ºn2N converges to .H 0; G0; v0

0/with respect to the coherent
maps ¹fn;rºn;r2N in the sense of Definition 4.1. In addition, there is no loss of
generality (again, by passing to a subsequence) to assume that fn;r WBr.vn/ !
Br .v

0
0/ is a graph isomorphism for all r � n. Define  .n/WV.G0/ ! C by

 .n/.u/ WD 1

'.n/.vn/
.Ifn;n

Pvn;n'
.n//.u/

Since f �1
n;n .v

0
0/ D vn, we have  .n/.v0

0/ D 1 and

k .n/k D sup
u2G

j .n/.u/j D sup
u2Bn.v0

0
/

j .n/.u/j � C

by the assumption (4.2). Thus,  .n/ 2 `1.G0/.
By construction, the sequence  .n/.u/ is uniformly bounded for every u 2

V.G0/. Hence, the Bolzano–Weierstrass theorem and a Cantor diagonalization
argument yield that there is a subsequence ¹ .n.`//º`2N � N and a 0WV.G0/ ! C

such that for all r 2 N,

lim
`!1

kPv0
0

;r. 
.n.`// �  0/k D 0:

Furthermore, j 0.u/j � C holds for all u 2 V.G0/, namely  0 2 `1.G0/. In
addition,  0.v0

0/ D 1 follows from  .n/.v0
0/ D 1.

In case (a), eachHn is an R-limit ofH . Lemma 4.3 and Lemma 4.4 assert that
H 0 is also an R-limit of H . If (b) holds, H 0 is also an R-limit of H as ¹vnºn2N

goes to infinity. Thus, it is left to show that  0 2 `1.G0/ defines a generalized
eigenfunction of H 0 corresponding to the eigenvalue �0.

Let " > 0 and fix r 2 N. SinceH 0 is anR-limit ofH , it is of the form (1.1) (see
Lemma 4.3). Thus, Pv0

0
;rH

0 0 D Pv0
0

;rPv0
0

;rC1H
0Pv0

0
;rC1 

0 follows implying

kPv0
0

;r.H
0 0 � � 0/k � kPv0

0
;rkkH 0

v0
0

;rC1
 0 � �0Pv0

0
;rC1 

0k

� kH 0
v0

0
;rC1

 0 � �0Pv0
0

;rC1 
0k:

In order to simplify the notation, set

Ln;r WD Ifn;r
Pvn;rHnPvn;rI

�1
fn;r
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acting on `2.BrC1.v
0
0//. Since lim`!1 �n.`/ D �0, there exists a C0 > 0 such

that j�n.`/j � C0. Recall that for each n 2 N, there is an Rn 2 N such
that Pv0;rHn'

.n/ D �nPv0;r'
.n/ for all r � Rn. Choose ` 2 N such that

n.`/; Rn.`/ > r and

kLn.`/;rC1 �H 0
v0

0
;rC1

k < "

3kPv0
0

;r 
0k ;

kPv0
0

;rC1. 
0 �  .n.`///k < "

6max¹d C C; C0º ;

j�n.`/ � �0j < "

6kPv0
0

;r 
0k :

Note that kPv0
0

;r 
0k ¤ 0 as  0.v0

0/ D 1 by construction. Furthermore,

kPv0
0

;rLn.`/;rC1k � 2.d C C/

follows asHn is an R-limit and so kHnk � 2.dCC/ holds by Lemma 4.3. Hence,

kPv0
0

;r.H
0 0 � � 0/k

� kPv0
0

;rH
0
v0

0
;rC1

 0 � �0Pv0
0

;rC1 
0k

� kPv0
0

;rH
0
v0

0
;rC1

 0 � Pv0
0

;rLn.`/;rC1 
0k

C kPv0
0

;rLn.`/;rC1 
0 � Pv0

0
;rLn.`/;rC1 

.n.`//k
C kPv0

0
;rLn.`/;rC1 

.n.`// � �n.`/Pv0
0

;r 
0k

C k�n.`/Pv0
0

;r 
0 � �0Pv0

0
;rC1 

0k
DW .1/C .2/C .3/C .4/

follows by using the triangle inequality. We estimate each of the summands (1),
(2), (3), and (4) separately. Specifically, the previous considerations and the choice
of ` lead to

.1/ � kLn.`/;rC1 �H 0
v0

0
;rC1

kkPv0
0

;rC1 
0k � "

3

and
.2/ � kPv0

0
;rLn.`/;rC1kkPv0

0
;rC1. 

0 �  .n.`///k � "

3
:

Since Rn.`/ � r , we have Pv0;rHn'
.n.`// D �nPv0;r'

.n.`//. Hence, using the
choice n.`/ > r ,

Pv0
0

;rLn.`/;rC1 
.n.`// D �n.`/Pv0

0
;r 

.n.`//

follows. Thus,

.3/ D k�n.`/Pv0
0

;r 
.n.`// � �n.`/Pv0

0
;r 

0k < "

6
:
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Finally, using once more the choice of `, we deduce

.4/ � j�n.`/ � �0jkPv0
0

;r 
0k < "

6
:

Combining the latter estimates, we conclude

kPv0
0

;r.H
0 0 � � 0/k < .1/C .2/C .3/C .4/ < ":

Since " > 0 was arbitrary, we derive that kPv0
0

;r.H
0 0 � �0 0/k D 0 for any

r 2 N, namely �0 is a generalized eigenvalue ofH 0 with generalized eigenfunction
 0 2 `1.G0/. �

Corollary 4.7. The union
S

H 02R.H/ �1.H
0/ is closed.

Proof. Assume ¹�nºn2N �
S

H 02R.H/ �1.H
0/ and limn!1 �n D �0. For n 2 N,

let Hn be an R-limit on the d -bounded graph Gn and 0 ¤ 'n 2 `1.Gn/ be such
that .Hn � �n/'n D 0. Choose un 2 V.Gn/ such that 'n.un/ � k'nk1

2
: Then

the conditions of Proposition 4.6 are satisfied (for C D 2) and so we derive that
�0 2

S

H 02R.H/ �1.H
0/. �

Another consequence of Proposition 4.6 is the following statement. Let
¹'i ºi2N be a sequence of functions 'i WV.G/ ! C. We will use the notation

q
.i/

`;k
WD max

`.k�1/�juj<`k
j'i .u/j; i 2 N;

and, denote by u.i/

`;k
2 V.G/ a vertex satisfying `.k � 1/ � ju.i/

`;k
j < `k and

q
.i/

`;k
D j'i .u

.i/

`;k
/j.

Lemma 4.8. Let .H;G; v0/ be given where H is a Schrödinger operator on

the infinite connected rooted d -bounded graph .G; v0/. Suppose we are given

a sequence ¹'nºn2N of generalized eigenfunctions of H corresponding to the

eigenvalues ¹�nºn2N satisfying

(a) limn!1 �n D �;

(b) there is an s > 1 such that for each k 2 N, there are subsequences ni ! 1
and `i ! 1 satisfying

q
.ni /

`i ;k
D j'ni

.u
.ni /

`i ;k
/j � 1

s
max¹q.ni /

`i C1;k
; q

.ni /

`i �1;k
º:

Then there is an R-limit .H 0; G0; v0
0/ of H , and a generalized eigenfunction 0 ¤

'0 2 `1.G0/ of H 0 corresponding to the eigenvalue �.
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Proof. We will prove in the following that for each k 2 N, there is an R-limit
.H .k/; G.k/; v

.k/
0 / of H together with a '.k/WV.G.k// ! C and �.k/ WD � satisfy-

ing all the assumptions of Proposition 4.6. This leads to the desired result.
Let k 2 N. For the sake of simplifying the notation and since k stays fixed

until the last step of the proof, there is no loss of generality (by passing to a
subsequence) in assuming that ni D i and `i � k for all i 2 N. Since `i ! 1,
the vertices u.i/

`i ;k
go to infinity if i ! 1. Then there is no loss of generality

in assuming that ¹.H;G; u.i/

`i ;k
/ºi2N converges to an R-limit .H .k/; G.k/; v

.k/
0 /,

otherwise we can pass to a convergent subsequence by Lemma 4.5. Since `i �
k > k � 1, the requirement (b) yields

j'i .u/j � sj'i .u
.i/

`i ;k
/j

for all u 2 V.G/ satisfying .`i �1/.k�1/ � juj < .`i C1/k. Let u 2 Bk�1.u
.i/

`i ;k
/.

Since `i .k � 1/ � ju.i/

`i ;k
j < `ik holds by definition, we conclude

.`i � 1/.k � 1/ � ju.i/

`i ;k
j � .k � 1/ � juj � ju.i/

`i ;k
j C .k � 1/ < .`i C 1/k:

Hence,

max
u2Bk�1.u

.i/

`i ;k
/

j'i .u/j � sj'i .u
.i/

`i ;k
/j

follows. Define  .k/
i WV.G/ ! C by

 
.k/
i .u/ WD

8

ˆ

<

ˆ

:

'i .u/

j'i .u
.i/

`i ;k
/j

if u 2 Bk�1.u
.i/

`i ;k
/;

0 otherwise.

Therefore,  .k/
i .u

.i/

`i ;k
/ D 1 and k .k/

i k1 � s. Since ¹.H;G; u.i/

`i ;k
/ºi2N converges

to .H .k/; G.k/; v
.k/
0 / with respect to the coherent maps

¹fi;r WBr.u
.i/

`i ;k
/ ! Br.v

.k/
0 /ºi;r2N;

there is an i0 2 N such that fi;k is a graph isomorphism for all i � i0. Define for
i � i0, '.k/

i WV.G.k// ! C by '.k/
i WD Ifi;k

 
.k/
i . We remind the reader that this

formally just defines a function on `2.Bk.v
.k/
0 // that we embed into `2.G.k// by

extending it by zero. Then, we deduce for i � i0

supp.'.k/
i / � Bk�1.v

.k/
0 /; '

.k/
i .v

.k/
0 / D 1; and k'.k/

i k1 � s:
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Since Bk�1.v
.k/
0 / is finite, there is no loss of generality (by passing to another

subsequence) that ¹'.k/
i ºi2N converges pointwise (and so in `2-norm as all func-

tions are supported on Bk�1.v
.k/
0 /) to a map '.k/WV.G.k// ! C such that

supp.'.k// � Bk�1.v
.k/
0 /, '.k/.v

.k/
0 / D 1 and 0 < k'.k/k � s. Thus,

sup
v2Bk.v

.k/
0

/

j'.k/.v/j � s D sj'.k/.v
.k/
0 /j:

Now, we are almost in the setting of Proposition 4.6. More precisely, we need to
show that '.k/ are “approximate generalized eigenfunctions.”

Let r � k�2. Then the convergence of ¹.H;G; u.i/

`i ;k
/ºi2N to .H .k/; G.k/; v

.k/
0 /

and the `2-convergence of ¹'.k/
i ºi2N to '.k/ imply the following: for all " > 0,

there is an i1 2 N such that for i � i1,

kIfi;rC1
H

u
.i/

`i ;k
;rC1

Ifi;rC1
�H

.k/

v
.k/
0

;rC1
k < "

2sk'.k/k2

;

k'.k/
i � '.k/k2 <

"

8max¹d C CH ; j�i j; 1º
;

j�i � �j < "

8k'.k/k2

:

Note that '.k/ is supported on Bk�1.v
.k/
0 / and so k'.k/k2 is finite. Furthermore,

limi!1 �i D � holds implying j�i j is uniformly bounded in i 2 N. According
to Lemma 4.3, H .k/ is a Schrödinger operator of the form (1.1) and kH .k/k �
2.d C CH / for some constant CH > 0 independent of k. Using (1.1), we derive

P
v

.k/
0

;r
H .k/'.k/ D P

v
.k/
0

;r
H

.k/

v
.k/
0

;rC1
P

v
.k/
0

;rC1
'.k/:

Let v 2 Br.v
.k/
0 /. Then

.Ifi;rC1
P

u
.i/

`i ;k
;rC1

I
�1
fi;k

�/.v/ D �.v/; � 2 `2.G.k//;

holds as the maps are coherent and rC1 � k�1. Denote by �k;r the characteristic
function of Br.v

.k/
0 /. Then, a short computation gives

G.P
v

.k/
0

;r
Ifi;rC1

H
u

.i/

`i ;k
;rC1

I
�1
fi;rC1

P
v

.k/
0

;rC1
'

.k/
i /.v/

D �k;r .v/.Ifi;rC1
H

u
.i/

`i ;k
;rC1

 
.k/
i /.v/

D �k;r .v/.H 
.k/
i /.f �1

i;rC1.v//

D �i .Pv
.k/
0

;r
Ifi;rC1

 
.k/
i /.v/

D �i .Pv
.k/
0

;r
'

.k/
i /.v/
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invoking the definition of  .k/
i and the fact that 'i is a generalized eigenfunction

ofH corresponding to the eigenvalue �i . With this at hand, the triangle inequality
leads to

kP
v

.k/
0

;r
H .k/'.k/ � �P

v
.k/
0

;r
'.k/k � T1 C T2 C T3 C T4;

where

T1 WD kP
v

.k/
0

;r
H

.k/

v
.k/
0

;rC1
P

v
.k/
0

;rC1
'.k/

� P
v

.k/
0

;r
Ifi;rC1

H
u

.i/

li ;k
;rC1

I
�1
fi;rC1

P
v

.k/
0

;rC1
'.k/k;

T2 WD kP
v

.k/
0

;r
Ifi;rC1

H
u

.i/

li ;k
;rC1

I
�1
fi;rC1

P
v

.k/
0

;rC1
'.k/

� P
v

.k/
0

;r
Ifi;rC1

H
u

.i/

li ;k
;rC1

I
�1
fi;rC1

P
v

.k/
0

;rC1
'

.k/
i k;

T3 WD kP
v

.k/
0

;r
Ifi;rC1

H
u

.i/

li ;k
;rC1

I
�1
fi;rC1

P
v

.k/
0

;rC1
'

.k/
i � �iPv

.k/
0

;r
'.k/k;

T4 WD k�iPv
.k/
0

;r
'.k/ � �P

v
.k/
0

;r
'.k/k:

Then the previous considerations yield

T1 <
"

2
;

T2 � 2.d C CH /k'.k/ � '
.k/
i k < "

4
;

T3 D j�i jkPv
.k/
0

;r
'

.k/
i � P

v
.k/
0

;r
'.k/k < "

8
;

T4 D j�i � �jkP
v

.k/
0

;r
'.k/k < "

8
:

Thus, kP
v

.k/
0

;r
H .k/'.k/ � �P

v
.k/
0

;r
'.k/k < " follows implying

P
v

.k/
0

;r
H .k/'.k/ D �P

v
.k/
0

;r
'.k/; r � k � 2;

as " > 0 was arbitrary.
Combining all the previous considerations, Proposition 4.6 applies for the

sequence ¹.H .k/; G.k/; u.k//ºk2N, the sequence ¹'.k/ºk2N, Rk WD k � 2, �k WD �

and C WD s. Hence, there is an R-limit .H 0; G0; v0
0/ of H and a generalized

eigenfunction 0 ¤ '0 2 `1.G0/ ofH 0 corresponding to the eigenvalue � finishing
the proof. �
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4.3. The existence and the behaviour at infinity of generalized eigenfunctions

for R-limits. The next two statements rely on Proposition 4.6. We show that un-
der certain conditions the existence of a generalized eigenfunction ' ofH results
in the existence of a bounded generalized eigenfunction of some R-limit of H or
it gives constraints on the growth behaviour of ' at infinity. The first proposition
treats bounded generalized eigenfunctions, while in the second proposition they
are unbounded. Both proofs are based on elementary statements that are provided
separately in a lemma to make the reading of the proofs more accessible.

Lemma 4.9. Let s > 1 and ¹anºn2N be a sequence of non-negative numbers such

that limn!1 an D 0. Then either there exists C > 0 such that

an < Cs
�n; n 2 N: (4.3)

or there exists a subsequence ¹ank
º1

kD1
such that for any k 2 N,

ank
> ankC1 and sank

� ank�1: (4.4)

Proof. This follows by straightforward computations, see [14]. �

Proposition 4.10. Let H be a Schrödinger operator on an infinite, connected

rooted d -bounded graph .G; v0/ and ' 2 `1.G/ be a bounded generalized eigen-

function ofH corresponding to the eigenvalue � that does not vanish everywhere.

Then one of the following assertions holds.

(a) There exists an R-limit .H 0; G0; v0
0/ ofH , and a bounded generalized eigen-

function 0 ¤ '0 2 `1.G0/ of H 0 corresponding to the eigenvalue �.

(b) There are constants  > 1 and C > 0 such that

j'.u/j � C � �juj; u 2 G:

Proof. Let k 2 N. Then there is a um;k 2 V.G/ such thatm.k�1/ � jum;k j < mk
and

j'.um;k/j D max
m.k�1/�juj<mk

j'.u/j DW qm;k :

Note that the latter is a maximum asBr .v0/ is finite for every r 2 N. We will treat
the two cases

(A) ¹qm;kºm2N does not tend to zero for some k 2 N and

(B) ¹qm;kºm2N does tend to zero for all k 2 N.
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(A) Suppose that k 2 N is chosen such that ¹qm;kºm2N does not tend to zero.
Let ¹qm`;kº`2N be a subsequence such that lim`!1 qm`;k D q > 0. Such a
subsequence exists as ¹qm;kºm2N is uniformly bounded since ' 2 `1.G/. Choose
`0 2 N such that qm`;k > q=2 for every ` > `0. Then,

max
u2B`.um`;k/

j'.u/j � k'k1 � 2k'k1

q
j'.um`;k/j ¤ 0:

Thus, all the requirements of Proposition 4.6 are satisfied for the sequence
¹.H;G; um`;k/º`2N with �n D �, '.n/ D ' and C WD 2k'k1

q
. Hence, statement (a)

of Proposition 4.10 follows from Proposition 4.6.

(B) Suppose now that limm!1 qm;k D 0 for all k 2 N and let s > 1. Due to
Lemma 4.9, either

(B.1) there is a k 2 N such that (4.3) holds for a suitable constant C > 0 and
am WD qm;k or

(B.2) for all k 2 N, there is a subsequence ¹ami
ºi2N satisfying (4.4).

(B.1) There exists a k 2 N and a constant C > 0 such that

qm;k < Cs
�m; m 2 N:

If u 2 V.G/, then there is an m 2 N such that m.k � 1/ � juj < mk and so
�m < � juj

k
. Consequently, the latter considerations yield

qm;k < Cs
�

juj
k :

Specifically, ' is exponentially decaying as claimed in (b) with  WD s
1
k > 1.

(B.2) For all k 2 N, there is a subsequence ¹qmi ;kºi2N satisfying

qmi ;k > qmi C1;k and sqmi ;k � qmi �1;k : (4.5)

Hence,

qmi ;k � 1

s
max¹qmi �1;k; qmi C1;kº

follows and ' is a generalized eigenfunction of H corresponding to the eigen-
value �. Thus, Lemma 4.8 applied to 'j WD ' and �j WD � implies (a). �

Next, unbounded generalized eigenfunctions are studied in Proposition 4.12.
For this the following lemma will be useful.
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Lemma 4.11. Let ¹anºn2N be an unbounded sequence of non-negative numbers

such that there is an s > 1 and a C > 0 satisfying

an < Cs
n; n 2 N:

Then, for each  > s, there exists a subsequence ¹ank
º1

kD1
such that for all k 2 N,

ank
> ank�1 and ank

� ankC1:

Proof. This follows by straightforward computations, see [14]. �

Proposition 4.12. Let ' be an unbounded generalized eigenfunction of H corre-

sponding to the eigenvalue �. Then one of the following assertions holds.

(a) There exists an R-limit .H 0; G0; v0
0/ ofH , and a bounded generalized eigen-

function '0 2 `1.G0/ of H 0 corresponding to the eigenvalue � that does not

vanish everywhere.

(b) There exists a constant  > 1, such that for all C > 0, there is a u D u.C / 2
V.G/ satisfying j'.u/j � C juj:

Proof. Suppose (b) is not satisfied. We will prove that then (a) holds. Let k 2 N.
Define

qm;k WD max
m.k�1/�juj<mk

j'.u/j; m 2 N:

Since (b) does not hold, for all  > 1, there is a constant C;k > 0 such that

j'.u/j � C;k
juj; u 2 V.G/:

Let s > 1 and set  WD s
1
k > 1. Thus, there is a constant Ck D C.k; r/ > 0 such

that
qm;k < Ck

mk D Cks
m:

Since ' is unbounded, limm!1 qm;k D 1. Then Lemma 4.11 implies that there
is a subsequence ¹qmi ;kºi2N such that for every  0 > s,

qmi ;k > qmi �1;k and  0qmi ;k � qmi C1;k :

Thus, Lemma 4.8 applied to 'j WD ', �j WD � and s D  0 leads to (a). �

4.4. Generalized eigenfunctions and Shnol type theorems. As discussed in
the introduction, Shnol type theorems connect a growth conditions for generalized
eigenfunctions corresponding to the eigenvalue � to the fact that � belongs to the
spectrum of the operator.
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We say that a function 'WV.G/ ! C on a graphG has sub-exponential growth

(with respect to the graph metric dist) if for one (any) vertex v0 2 V.G/, the map

V.G/ 3 v 7�! e�˛ dist.v;v0/'.v/

is an element of `2.G/ for all ˛ > 0. With this at hand, the following Shnol-type
theorem holds, proven in [24] in more general setting of bounded Jacobi operators
on a graph. This theorem is used for the proof of Theorem 2.4.

Proposition 4.13 ([24, Theorem 4.8]). Let H be a Schrödinger operator of the

form (1.1) on an infinite, connected, rooted d -bounded graph .G; v0/. Suppose

'WV.G/ ! C is a generalized eigenfunction ofH corresponding to the eigenvalue

�. If ' is sub-exponentially bounded, then � 2 �.H/.

The proof of Theorem 2.2 depends on the existence of a generalized eigenfunc-
tion for each point in the spectrum admitting a suitable growth rate. The follow-
ing statement provides a sufficient condition to get such generalized eigenfunction
which can be found in [28, Theorem 3] in a more general setting.

Theorem 4.14 (reverse Shnol’s Theorem, [28, Theorem 3]). Let .G; v0/ be a

connected, infinite, rooted graph and H be a Schrödinger operator on `2.G/ of

the form (1.1) with spectral measure �. Suppose ! 2 `2.G/ is real-valued and

positive .i.e. !.v/ > 0 for all v 2 G/. Then for �-a.e. � 2 �.H/, there exists

a generalized eigenfunction ' of H corresponding to the eigenvalue � satisfying

' � ! 2 `2.G/.

Corollary 4.15. Let .G; v0/ be a connected, infinite, rooted graph and H be a

Schrödinger operator on `2.G/ of the form (1.1). If ! 2 `2.G/ is real-valued and

positive, then

¹� 2 �.H/ j there exists 'WG ! C such that H' D �' and '! 2 `2.G/º
D �.H/:

As a consequence of Theorem 4.14 we derive

Corollary 4.16. The set

ƒ1 D

8

<

:

� 2 �.H/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

there is a generalized eigenfunction '�

corresponding to the eigenvalue �

such that j'�.v/j � .jvj C 1/
p

]Sjvj.v0/

9

=

;
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is dense in �.H/. In particular, if G has sub-exponential growth, then the set

ƒ2 D

8

<

:

� 2 �.H/

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

there is a generalized eigenfunction '�

corresponding to the eigenvalue �

such that '� is sub-exponentially growing

9

=

;

(4.6)

is dense in �.H/.

Proof. The set ƒ1 is dense in �.H/ by using Corollary 4.15 and !G 2 `2.G/

where

!G.v/ WD 1

.jvj C 1/
p

]Sjvj.v0/
; v 2 V.G/:

The second part follows from the fact that if G is sub-exponentially growing, then
for each  > 1, there is a C > 0 such that

.jvj C 1/

q

]Sjvj.v0/ � C �  jvj=2.jvj C 1/:

Then the statement follows from the first part. �

4.5. Proof of Theorem 2.2. The strategy of the proof of Theorem 2.2 is as fol-
lows. Given � 2 �ess.H/ we use the reverse Shnol’s property (Theorem 4.14) to
obtain a sequence of generalized eigenfunctions ¹'.n/º1

nD1 ofH corresponding to
the eigenvalue �n such that limn!1 �n D � and each 'n is sub-exponentially
growing. With this at hand, Proposition 4.6, Propositions 4.10 and Proposi-
tion 4.12 complete the proof of the theorem.

Recall that the discrete spectrum �disc.H/ of an operator H is defined by
the set of isolated eigenvalues of finite multiplicity. Furthermore, the essential
spectrum �ess.H/ is defined by �.H/ n �disc.H/. Thus, if � is an element of the
essential spectrum, then either � is an eigenvalue of infinite multiplicity or in each
neighbourhood of � there are elements of the spectrum �.H/ that are not equal
to �.

Proof of Theorem 2.2. Let � 2 �ess.H/. Then one of the following cases holds:

(a) for every " > 0 there is a �" 2 �.H/ such that 0 < j� � �"j < ";
(b) there exists an infinite sequence 'n 2 `2.G/ satisfying H'n D �'n and they

are pairwise orthogonal.

We begin with case (a), due to Corollary 4.16 and since .G; v0/ has sub-
exponential growth, the setƒ2 (of (4.6)) is dense in �.H/. Then by assumption (a)
there is a sequence of eigenvalues ¹�nºn2N corresponding to generalized eigen-
functions 'nWV.G/ ! C such that �n ¤ �m for m ¤ n, limn!1 �n D � and 'n
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has sub-exponential growth. Then either infinitely many of the 'n are unbounded
or only finitely many of them are unbounded

If infinitely many of the 'n are unbounded, there is no loss of generality in
assuming that each 'n is unbounded (otherwise pass to a subsequence). Then
Proposition 4.12 asserts that �n 2 �1.Hn/ for some R-limit Hn of H or there is
a  > 1 such that for all C > 0, there exists a u 2 V.G/ with j'.u/j � C juj.
However, the second assertion cannot hold as 'n is sub-exponentially bounded.
Hence, �n 2 �1.Hn/ holds for some Hn 2 R.H/. Since �n ! �, Corollary 4.7
yields � 2

S

H 02R.H/ �1.H
0/ finishing the proof.

If only finitely many of the 'n’s are unbounded, there is no loss of generality
in assuming that 'n is bounded for each n 2 N (otherwise pass to a subsequence).
By Proposition 4.10 either infinitely many of the �n satisfy �n 2 �1.Hn/ for some
Hn 2 R.H/ or only finitely many. In the first case Corollary 4.7 finishes the proof
as before. In the second case, Proposition 4.10 asserts that for n large enough

j'n.u/j � Cn � �juj
n ; u 2 G:

Thus, 'n 2 `2.G/ and in particular, they are orthogonal as H is self-adjoint and
�n ¤ �m for m ¤ n. This is the same situation as in (b) (where the orthogonality
of the eigenfunctions is assumed). We proceed proving the claim of the theorem
in this last case which will also prove it for the case (b).

Set  n WD 'n

k'nk2
for each n 2 N. Then  n is still an eigenfunction of H

corresponding to the eigenvalue �n (�n D � in (b)) and the functions ¹ nºn2N are
pairwise orthogonal. Let un 2 V.G/ be the vertex such that k nk1 D j n.un/j.
We have two cases, either ¹unºn2N (monotonically, by passing to a subsequence)
converges to infinity or ¹unºn2N � Br.v/ for some r > 0, v 2 V.G/ and every
n 2 N. In the first case, when ¹unºn2N converges to infinity, then

max
u2Bn.un/

j n.u/j � k nk1 D j n.un/j

holds by construction. Thus, Proposition 4.6 yields that there exists an R-limit
.H 0; G0; v0

0/ being a limit point of .H;G; un/ and a generalized eigenfunction
0 ¤  2 `1.G0/ of H 0 corresponding to the eigenvalue �.

It is left to treat the case that ¹unºn2N � Br .v/ for some r > 0, v 2 V.G/ and
every n 2 N. Since ¹ nºn2N are pairwise orthogonal, they converge weakly to
zero, see e.g. [41, Theorem II.6]. Since k nk1 D j n.un/j and un 2 Br.v/ for
all n 2 N, the weak convergence to zero yields limn!1 k nk1 D 0. For k 2 N

define
q

.n/

`;k
WD max

`.k�1/�juj<`k
j n.u/j:
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Since  n 2 `2.G/, we derive lim`!1 q
.n/

`;k
D 0. Define

Ln;k WD ¹` 2 NW q.n/

`;k
� max

i�`
q

.n/

i;k
º:

Since lim`!1 q
.n/

`;k
D 0, we conclude that Ln;k is infinite for all n 2 N. Next, we

will prove the following lemma that together with Lemma 4.8 will conclude the
proof.

Lemma 4.17. Suppose we are in the setting as described before. For each k 2 N

there are two sequences ¹nj ºj 2N (with nj ! 1) and ¹ j̀ ºj 2N (with j̀ ! 1) such

that for each j 2 N, j̀ 2 Lnj ;k and q
.nj /

j̀ �1;k
� 2q

.nj /

j̀ ;k
.

Before proving Lemma 4.17, let us explain why it finishes the proof. By con-
struction,  n is a generalized eigenfunction ofH corresponding to the eigenvalue
�n satisfying 0 ¤  n 2 `1.G/ and limn!1 �n D �. Lemma 4.17 implies that for
each k 2 N, there are subsequences nj ! 1 and j̀ ! 1 satisfying j̀ 2 Lnj ;k

and q
.nj /

j̀ �1;k
� 2q

.nj /

j̀ ;k
. The condition j̀ 2 Lnj ;k leads to q

.nj /

j̀ ;k
� q

.nj /

j̀ C1;k
. Thus,

the constraint (b) of Lemma 4.8 is satisfied with s D 2. Hence, this lemma
implies that there is an R-limit .H 0; G0; v0

0/ of H and a generalized eigenfunc-
tion 0 ¤ '0 2 `1.G0/ of H 0 corresponding to the eigenvalue � proving Theo-
rem 2.2. �

Proof of Lemma 4.17. Let us fix k 2 N and introduce the following notation
q

.n/

`
WD q

.n/

`;k
and Ln WD Ln;k . Assume by contradiction that for all ¹nj ºj with

nj ! 1, and ¹ j̀ ºj with j̀ ! 1, there exists j 2 N such that

j̀ 62 Lnj
or q

.nj /

j̀ �1
> 2q

.nj /

lj
: (4.7)

We first prove that this is equivalent to ask that there exist n0; `0 2 N such that

q
.n/

`
< max

i�`
q

.n/
i or q

.n/

`�1
> 2q

.n/

`
for all n � n0; ` � `0: (4.8)

That (4.8) implies (4.7) is straightforward. In order to show the implication
(4.7) H) (4.8), assume by contradiction that (4.7) holds but (4.8) does not hold.
First note that ` 2 Ln is equivalent to q.n/

`
� maxi�` q

.n/
i . Let An;` denotes the

statement

q
.n/

`
� max

i�`
q

.n/
i and q

.n/

`�1
� 2q

.n/

`
:(An;`)

Since (4.8) does not hold, we conclude

for all n0; `0 2 N there exist n � n0; ` � `0 such that An;l hold true. (4.9)
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Then we can iteratively define a sequence .nk ; `k/ with nk ! 1 and `k ! 1
such that Ank ;`k

is true for each k 2 N. More precisely, let .n1; `1/ be such that
1 � `1, 1 � n1 and A`1;n1

is true, which is possible by (4.9). Suppose now we
have .nk ; `k/ for 1 � k � m such that Ank ;`k

is true. By (4.9), there is an n > nm

and ` > `m such that An;` is true. Set nmC1 WD n and `mC1 WD `. By construction
nk ! 1 and `k ! 1 and Ank ;`k

is true for all k 2 N. This contradicts (4.7).
Thus, we have proven that (4.7) and (4.8) are equivalent.

By our assumption and the previous considerations (4.8) holds. Let `0; n0 2 N

be chosen according to (4.8). Furthermore, fix n � n0, and ` 2 Ln such that ` � `0

(exists since Ln is infinite). Then (4.8) leads to q.n/

`�1
> 2q

.n/

`
. Thus,

q
.n/

`�1
> 2q

.n/

`
� max

i�`
q

.n/
i

follows implying that also ` � 1 2 Ln. Since ]Ln D 1, the latter considerations
imply that Œ`0;1/ \ N � Ln. Thus, q.n/

`�1
> 2q

.n/

`
holds for all ` � `0 by (4.8).

Altogether, we derive that

q
.n/

`
<
1

2
q

.n/

`�1
<
1

22
q

.n/

`�2
< � � � < 1

2`�`0
q

.n/

`0
� 1

2`�l0
k nk1

holds for all n � n0 and ` � `0. Hence, for v 2 V.G/ with jvj D r � `0k, the
estimates

j n.v/j � q
.n/

br=kc
� 1

2br=kc�`0
k nk1 � k nk12

`0e� ln.2/
k

r ; n � n0;

are deduced where br=kc denotes the largest integer j satisfying j � r
k
. Recall

that Sr.v0/ denotes the sphere of radius r and center v0 in G. Since .G; v0/ has
sub-exponential growth rate, there is a constant Ck > 0 such that ]Sr.v0/ < Ck

r
k

for all r 2 Nwhere k WD e
ln.2/

2k > 1, see Definition 2.1. Then a short computation
yields

X

v2V.G/Wjvj�`0k

j n.v/j2 � k nk12
`0

X

r�`0k

]Sr .v0/e
� ln.2/

k
r

� k nk12
`0Ck

X

r�`0k

�r
k :

The latter sum is convergent by the root test as �1
k

< 1. Furthermore, the
cardinality of all vertices v 2 V.G/ with jvj < `0k is finite as G is d -bounded
graph. Hence,

k nk2
2 D

X

v2V.G/

j n.v/j2 D
X

v2V.G/Wjvj<`0k

j n.v/j2 C
X

v2V.G/Wjvj�`0k

j n.v/j2 � zCkk nk1
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follows for a suitable constant zCk > 0. Since limn!1 k nk1 D 0, we derive
limn!1 k nk2

2 D 0, a contradiction as k nk2 D 1. Thus, Lemma 4.17 is
proven. �

4.6. Proof of Proposition 2.3. Next we show that the inclusion of Theorem 2.2
can also be strict for graphs with sub-exponential growth rate. This is done by
providing a specific example motivated by the considerations made in Section 2
about the d -regular tree. This construction is inspired by an example given
in [14]. In order to do so a more general construction of so called chain graphs is
introduced next.

Definition 4.18. Let .Gk/k2N be a sequence of finite graphs, v1
k
; v2

k
2 V.Gk/ for

each k 2 N and ¹k`º`2N � N be an increasing sequence. Then the corresponding
chain graph is defined as follows:

� begin with the graph N, namely V D N and E D ¹.n; nC 1/ j n 2 Nº;
� for each k 2 ¹k`º1

`D1
, replace the vertex k with the graph Gk;

� the edges .k � 1; k/, .k; k C 1/ are replaced with the edges .k � 1; v1
k
/ and

.v2
k
; k C 1/;

� in case that k D k` D k`�1 C 1 the edge .k � 1; k/ is replaced with the edge
.v2

k�1
; v1

k
/.

Proof of Proposition 2.3. Fix d > 2 and let Td be the d -regular tree with root v0,
and denote by Gk the finite subgraph Bk.v0/ in Td . Let ¹k`º1

`D1
be the sequence

defined by k` WD d `C1. For each ` 2 N, let v1
`
; v2

`
be two vertices in G` of

maximal distance from each other. Then letGd be the corresponding chain graph,
see Definition 4.18 and a sketch in Figure 4.1.

v0 8

D k1 1

k1C1 k2 1 k2C1

v
1
1 v

2
1 v

1
2 v

2
2

G1 G2

Figure 4.1. The graph Gd for d D 3.

LetAGd andATd
be the adjacency operator onGd and Td respectively, namely

it is the Schrödinger operator of the form (1.1) with W.v/ WD deg.v/. Next, we
show that Gd with root v0 D 1 is of sub-exponential growth.
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A short computation gives that ]Gk D 1Cd .d�1/k�1
d�2

< d.d�1/k

d�2
. Furthermore,

ı` WD dist.v2
`�1
; v1

`
/ D d `C1 � d ` D .d � 1/d ` holds implying ]Gk < ı`.

Define r` WD dist.v0; v
2
`
/. Then ı` < r` � r`�1 holds. Next, we will show

]Br`
.v0/ < 2r`; ` 2 N; via induction. For the base case, we have

]Br1
.v0/ D k1 � 1C ]G1 D d2 C d < 2d2 C 4 D 2.k1 C 1/ D 2r1:

The induction step is deduced by the estimate

]Br`
.v0/ D ]Br`�1

.v0/C ı` C ]G` < ]Br`�1
.v0/C 2ı` < 2r`

invoking the induction hypothesis and the previous considerations. With this at
hand, we derive by the definition of Gd that

]Br`Cj .v0/ D ]Br`
.v0/C j < 2.r` C j /; 0 � j � k`C1 � k` C 1:

On the other hand, decreasing the radius ofBr`
.v0/ reduces the number of vertices

in the ball by at least two in each step since d > 2. Thus,

]Br`�j .v0/ < ]Br`
.v0/ �

j
X

nD1

2 < 2.r` � j /; 1 � j � 2`� 1;

follows.
Putting all together, we derive ]Bk.v0/ < 2k for each k 2 N. Furthermore,

Gd is a sub-graph of Td . Thus, [32, Corollary 4.5] together with [33, Section 7.c]
lead to

�ess.AGd / � �.AGd / � Œ�2
p
d � 1; 2

p
d � 1� D �.ATd

/:

On the other hand, one of the R-limits of AGd is the adjacency operator on
the d -regular tree, for which Œ�d; d � � �1.ATd

/, see [9, Theorem 1.1]. As a
consequence, we conclude

; ¤ Œ�d; d � n Œ�2
p
d � 1; 2

p
d � 1� �

[

H 02R.A
Gd /

�1.H
0/ n �ess.AGd /

since d > 2. �

5. Proof of Theorem 2.4

The proof follows from the results mentioned above, and the following theorem
from [8].
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Theorem 5.1 ([8, Theorem 2]). LetG be an infinite, connected d -bounded graph

and H a Schrödinger operator on G, then

[

H 02R.H/

�.H 0/ � �ess.H/:

With this at hand, we can prove Theorem 2.4.

Proof of Theorem 2.4. We already know from Theorem 5.1 and Theorem 2.2 that
[

H 02R.H/

�.H 0/ � �ess.H/ �
[

H 02R.H/

�1.H
0/:

Thus, it suffices to prove for eachH 0 2 R.H/, that

�1.H
0/ � �.H 0/:

In order to do so, recall the notions introduced in Section 4.4. Since G admits a
uniform sub-exponential growth also any R-limit .H 0; G0; v0

0/ of .H;G; v0/ is of
uniform sub-exponential growth. Indeed, for each  > 1 there exists a constant
C > 0 (independent of the root) such that ]Sr.u/ < C r for all u 2 V.G/ and
r 2 N, see Definition 2.1. Let  > 1 be arbitrary and r 2 N. Since .H 0; G0; v0

0/

is an R-limit of .H;G; v0/, there is a vertex u 2 V.G/ such that the subgraphs
Br .v

0
0/ and Br.u/ are isomorphic (see Definition 4.1). In particular, the spheres

contained in these balls have the same cardinality, namely ]Sr .u/ D ]Sr .v
0
0/.

Since ]Sr.u/ < C r where the corresponding constant C is independent of
u 2 V.G/, we derive ]Sr.v

0
0/ < C r . Thus, the map V.G0/ 3 v0 7! e�˛ dist.v0;v0

0
/

is an element `2.G0/ for any ˛ > 0.
Let � 2 �1.H

0/, then by definition there is a bounded generalized eigenfunc-
tion ' of H 0 corresponding to the eigenvalue �. By the previous considerations

V.G0/ 3 v0 7�! e�˛ dist.v0;v0
0

/'.v0/

is an element of `2.G0/ as ' is uniformly bounded. Thus, ' is sub-exponentially
bounded implying � 2 �.H 0/ by Proposition 4.13. �
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