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A theorem on the multiplicity of the singular spectrum

of a general Anderson-type Hamiltonian

Dhriti Dolai and Anish Mallick

Abstract. In this work, we study the multiplicity of the singular spectrum for operators of
the form A! D AC

P

n !nCn on a separable Hilbert space H, where A is a self-adjoint
operator and ¹Cnºn is a countable collection of non-negative finite-rank operators. When
¹!nºn are independent real random variables with absolutely continuous distributions, we
show that the multiplicity of the singular spectrum is almost surely bounded above by the
maximum algebraic multiplicity of the eigenvalues of the operator

p
Cn.A

! � z/�1
p
Cn

for all n and almost all .z;!/. The result is optimal in the sense that there are operators for
which the bound is achieved. We also provide an effective bound on the multiplicity of the
singular spectrum for some special cases.
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1. Introduction

Spectral theory of random operators is an important field of study, and within
it, the Anderson tight binding model and the random Schrödinger operator have

https://creativecommons.org/licenses/by/4.0/


1954 D. R. Dolai and A. Mallick

gained significant attention. Over the years considerable attention has been de-
voted to the nature of the spectrum of these operators. But to completely charac-
terize the structure of the operator, information on the multiplicity is also impor-
tant. Here we pay attention to the multiplicity of the singular spectrum for certain
classes of random operators.

One of the well-studied classes of random operators is represented by the
Anderson tight binding model. Many results about its spectrum are known, for
example, the existence of pure point spectrum for the Anderson tight binding
model over the integer lattice [1, 5, 12, 18]. Absolutely continuous spectrum is
known to exist for the same model on the Bethe lattice [3, 11, 19] and anti-trees
[31]. Other models where the pure point spectrum is known to exist include the
random Schrödinger operator [4, 7, 13, 22], the multi-particle Anderson model
[2, 6, 21] and magnetic Schrödinger operators [8, 35].

There are important results which also deal with the multiplicity of the sin-
gular spectrum. For the Anderson tight binding model, Simon [34], Klein and
Molchanov [20] have shown the simplicity of the pure point spectrum. For
Anderson-type models when the randomness acts as rank-one perturbations,
Jakšić and Last [15, 17] showed that the singular spectrum is simple. For the
random Schrödinger operator, in the regime of exponential decay of Green’s func-
tion, Combes, Germinet, and Klein [9] and Dietlein and Elgart [10] showed that
the spectrum is simple. Other work includes [32], where Sadel and Schulz-Baldes
provided a multiplicity result for the absolutely continuous spectrum for random
Dirac operators with time-reversal symmetry. However, no general results con-
cerning the multiplicity of the spectrum are known. One of the difficulties hin-
dering the derivation of multiplicity results for random Schrödinger operator or
multi-particle Anderson model is that the randomness acts as perturbation over an
infinite rank operator.

Randomness acting through perturbation by a finite-rank operator is an in-
termediate model between the Anderson tight binding model and the random
Schrödinger operator. Examples of such a random operator are the Anderson
dimer/polymer model, the Toeplitz/Hankel random matrix, and the random con-
ductance model. Here we will deal with Anderson-type operators and provide a
multiplicity result for the singular spectrum when the randomness acts through
perturbation by a non-negative finite-rank operator. This work is similar to that
by Jakšić and Last [15, 17] and is a generalization and extension of the work by
Mallick [25]. The paper does not answer the question about the multiplicity of sin-
gular spectrum for the random Schrödinger operator, but it is a step towards it. The
technique involved in the proof does not distinguish between point spectrum and
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singular continuous spectrum, so the stated results are true for the entire singular
spectrum.

For a densely defined self-adjoint operatorAwith domainD.A/ on a separable
Hilbert space H and a countable collection of non-negative finite-rank operators
¹Cnºn2N, define the random operator

A! D AC
X

n2N

!nCn; (1)

where ¹!nºn2N are independent real random variables with absolutely continuous
distributions. Let .�;B;P/ denote the probability space such that !n are random
variables over�. We will assume that

AW� �! S.H/

is an essentially self-adjoint operator-valued random variable.1 This is a necessary
assumption because otherwise there can be multiple self-adjoint extensions for
the symmetric operator A! . The assumption itself is not too restrictive and a
large class of operators satisfies this condition. For example, if A is bounded self-
adjoint, ¹Cnºn are non-negative finite-rank operators satisfyingCnCmDCmCnD0

for any n ¤ m, and the distributions of the random variables !n are supported in
some fixed compact set Œ�K;K�, then the operator A! is almost surely bounded
and self-adjoint. The Anderson polymer/dimer model falls into this category of
operators.

For the main result we need to focus on the linear maps

G!n;n.z/ WD Pn.A
! � z/�1PnWPnH �! PnH

for z 2 C n R, where Pn is the projection onto the range of Cn. Using functional
calculus, it is easy to see that the linear operatorG!n;n.z/ can be viewed as a matrix
on PnH (after fixing a basis of PnH) that belongs to the set of matrix-valued
Herglotz functions. Using the representation of matrix-valued Herglotz functions
(see [14, Theorem 5.4]), we can extract all the properties of the spectral measure
over the minimal closed A!-invariant subspace containing PnH.

Let Mult!n .z/ denote the maximum multiplicity of the roots of the polynomial

det.CnG
!
n;n.z/ � xI /

in the variable x, for z 2 C n R, where Cn and G!n;n.z/ are viewed as a linear
operator on PnH, and so I denotes the identity operator on PnH. Since Cn > 0

1 An “essentially self-adjoint operator” is an operator with a unique self-adjoint extension.
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on PnH, we have

det.CnG
!
n;n.z/ � xI / D det.

p

CnG
!
n;n.z/

p

Cn � xI /;

because the similarity transformation preserves the determinant. This is the reason
why the algebraic multiplicity of

p
Cn.A

! � z/�1
p
Cn can also be used instead of

CnG
!
n;n.z/. With these notations, we state our main result:

Theorem 1.1. LetA be a densely defined self-adjoint operator with domain D.A/

on a separable Hilbert space H and ¹Cnºn2N be a countable collection of non-

negative finite-rank operators. Let Pn denote the projection onto the range of Cn

and assume that
P

n Pn D I . Let ¹!nºn2N be a sequence of independent real

random variables on the probability space .�;B;P/ with absolutely continuous

distributions. LetA! given by (1) be a family of essentially self-adjoint operators.

Then

(1) for any fixed n 2 N,

ess sup
z2CnR

Mult!n .z/

is constant for almost all !, and we denote its value by Mn;

(2) if supn2N Mn < 1, then the multiplicity of the singular spectrum of the

operator A! is bounded from above by supn2N Mn, for almost all !.

Remark 1.2. A few observations are in order.

(1) If range.Cn/ � D.A/ for all n, then the subspace

DW D
°

N
X

iD1

�i W�i 2 range.Cni
/; ni 2 N for all 1 � i � N; N 2 N

±

;

is dense and is the domain of A! . If either A is bounded or supn j!nj kCnk is
finite, then it is easy to show that A! is essentially self-adjoint.

(2) Note that although ¹Cnºn are finite-rank operators, a universal upper bound
on their ranks does not necessarily exist. A simple example of such an
operator is

H! D �C
1

X

nD0

!n�¹xWkxk1Dnº;

defined on the Hilbert space `2.Zd /, where � is the discrete Laplacian and
�¹xWkxk1Dnº is the projection onto the subspace `2.¹x 2 Z

d W kxk1 D nº/.
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(3) We assume that
P

n Pn D I to ensure that the subspace
P

nH
!
Pn

is dense
in H. Here we set

H
!
Pn

D hf .A!/�W f 2 Cc.R/; � 2 PnHi;

where hSi denotes the closed linear span of the set S . Without this condition,
infinite multiplicity could easily be achieved. For example, consider the
Hilbert space

L2
`2.Z/, and define the operator

H! D
�

�C
X

n2Z

!n�¹nN;:::;.nC1/N�1º

�

˚
�

X

n2Z

xn jıni hınj
�

;

where ¹xnºn2Z is a fixed sequence and ¹!nºn2Z are independent real random
variables with absolutely continuous distributions. Notice that the first oper-
ator is an Anderson-like operator with simple point spectrum, but the second
operator can have arbitrary multiplicity depending upon the sequence ¹xnºn.

Remark 1.3. To understand the conclusion of the theorem, consider the following
examples.

(1) Consider the operator
H! D z�C

X

n2Z

!nPn;

on the Hilbert space `2.Z � ¹0; : : : ; N º/, where

.z�u/.x; y/ D u.x C 1; y/C u.x � 1; y/ for all .x; y/ 2 Z � ¹0; : : : ; N º

and the projections Pn are given by

.Pnu/.x; y/ D
´

u.x; y/ if x D n;

0 if x ¤ n:

First observe that the subspace

Hk D ¹u 2 `2.Z � ¹0; : : : ; N º/Wu.x; y/ D 0 for all x 2 Z; y ¤ kº

is H!-invariant and ¹.H!;Hk/ºNkD0
are all unitarily equivalent. So any

singular spectrum has multiplicity N . When the random variables ¹!nºn
are i.i.d., there are results [24, 23, 33] which show that .H!;H0/ has pure
point spectrum (hence singular spectrum). It is easy to show that the matrix
G!n;n.z/ is of the form f .z/I , where f is a Herglotz function and I is the
identity on C

N .
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Figure 1. The operator described in the remark is visualized here for N D 3. The operator
z� is the adjacency operator of the graph Z� ¹0; : : : ; 3º, where the edges are denoted by the
dark lines. The shaded region denotes the support of the projections.

(2) Consider the operator

H! D z�C
X

.n;m/2N2

!.n;m/P.n;m/

on the Hilbert space `2.N � N/, where

.z�u/.x; y/ D
´

u.2; y/ if x D 1;

u.x C 1; y/C u.x � 1; y/ if x ¤ 1;
for all .x; y/ 2 N�N;

and the projections P.n;m/ are given by

P.n;m/ D
2nm�1
X

kD2n.m�1/

jı.n;k/ihı.n;k/j

(where j�ih�j denotes the projection on the one-dimensional subspace gen-
erated by �).

In this exampleP.n;m/.H!�z/�1P.n;m/ is diagonal (with respect to the Dirac
basis ¹ı.n;m/W n;m 2 Nº), and it is readily seen that

sup
.n;m/2N

M.n;m/ D 1:

Similarly to the previous example, the subspaces

Hk D ¹u 2 `2.N � N/Wu.x; y/ D 0 for all x 2 N; y ¤ kº for all k 2 N;

are invariant under the action of H! . The operators ¹.H!;Hk/º2
mC1�1
kD2m are

unitarily equivalent for any m 2 N. Consequently, the singular spectrum of
H! has infinite multiplicity.

Thus, the conclusion of the theorem is optimal in the sense that there are random
operators A! such that the multiplicity of their singular spectrum is supn2N Mn.
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Figure 2. The operator described in the remark is visualized here. The operator z� is the
adjacency operator of the graph N

2 where the edges are denoted by the dark lines. The
shaded region represents the support of the projections.

The main technique in the proof is the study of the behavior of the singular
spectrum under a perturbation by a single non-negative operator. This is done via
the resolvent identity, and so properties of matrix-valued Herglotz functions play
an essential role. The steps of the proof will be further explained in Section 1.1.
In general, this kind of result fails to hold without perturbation, and spectral
averaging [7, Corollary 4.2] plays an important role. Since matrix-valued Herglotz
functions are the primary tool, Poltoratskii’s theorem [29] is used to obtain and
characterize the singular measure.

It should be noted that our result (Theorem 1.1) extends the work of Jakšić and
Last [15, 17], Naboko, Nichols, and Stolz [27], and Mallick [26] in the following
way. In the case of Jakšić and Last [15, 17], since the rank of each operator
Pn is one, the theorem above establishes the simplicity of the singular spectrum.
Naboko, Nichols, and Stolz [27] showed the simplicity of the point spectrum for
certain classes of Anderson-type operators on Z

d , and Mallick [26] provided a
bound on the multiplicity of the singular spectrum for a similar class of Anderson-
type operators on Z

d . In general, it is not possible to compute G!n;n.z/, and so
other methods have to be devised to calculate Mn. The following corollary is a
possible way to bound Mn for certain classes of random operators.

Corollary 1.4. Suppose that the operator A! defined by (1) satisfies the hypothe-

ses of Theorem 1.1 on a separable Hilbert space H. Let range.Cn/ � D.A/ for

all n 2 N, and letM 2 R be such that �.A/ and �.A!/ are subsets of .M;1/ for

almost all !.
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(1) If Cn is a finite-rank projection for all n, then the multiplicity of the singular

spectrum of the operator A! is bounded from above by

max
n2N

max
x2�.CnACn/

dim.ker.CnACn � xI //;

where CnACn is viewed as a linear operator on PnH.

(2) If Cn is a non-negative finite rank operator for all n, then the multiplicity of

the singular spectrum of the operator A! is bounded from above by

max
n2N

max
x2�.Cn/

dim.ker.Cn � xI //;

where Cn is viewed as a linear operator on PnH.

Remark 1.5. It should be noted that the above bound is not optimal, but in many
cases it can be computed easily. As an example, for the case of Remark 1.2 (1), all
we have to do is count the multiplicity of the eigenvalues of the operator �Sr

��Sr
,

where Sr D ¹x 2 Z
d W kxk1 D rº. For d D 2, this operator is same as the

Laplacian on a set of 8n points arranged on a circle, so the multiplicity of the
operator can be at most two. Another simple example is when Cn has simple
spectrum; then the singular spectrum of A! is almost surely simple.

The corollary should be considered as a generalization of the technique devel-
oped in Naboko, Nichols, and Stolz [27]. There the authors used the simplicity
of Pn�Pn to conclude the simplicity of the pure point spectrum for a certain type
of Anderson operators on `2.Zd /. Another similar work is [26], where the au-
thor bounded Mn by considering the first few terms of the Neumann series while
keeping track of the perturbation.

Using an approach similar to [26], we can show that the singular spectrum of
the Anderson-type operator on a Bethe lattice is simple. Let B D .V; E/ denote
the infinite tree with root e where each vertex has K neighbors. SetK > 2 so that
the tree is not isomorphic to Z. Consider random operators of the form

H! D �B C
X

x2J

!x� zƒ.x/; (2)

where �B is the adjacency operator of B, and

zƒ.x/ D ¹y 2 V W d.e; x/ � d.e; y/ and d.x; y/ < lxº;

for some l�WV ! N. One assumes that the indexing set J � V is such that
S

x2J
zƒ.x/ D V and

zƒ.x/ \ zƒ.y/ D ; for all x ¤ y 2 J:
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The random variables ¹!xºx2J are real-valued and independent, with absolutely
continuous distributions. With these notation we have:

Theorem 1.6. On a Bethe lattice B with K > 2, consider a family of random

operators H! given by (2), where ¹!xºx2J are i.i.d. random variables with an

absolutely continuous distribution with bounded support. Then the singular spec-

trum of the operatorH! is almost surely simple.

It can be seen that the spectrum of � zƒ.x/�B� zƒ.x/ has non-trivial multiplicity

(is exponential in terms of the diameter of zƒ.x/). So, the above result is not a
consequence of the previous corollary.

1.1. Structure of the proof. The rest of the article is divided into four parts.
In Section 2, we set up the notations and collect the results that will be used
throughout. Section 3 deals with single perturbation results. Section 4 contains the
proof of Theorem 1.1, which is divided into Lemma 4.1 and Lemma 4.2. Finally,
in Section 5, we prove Corollary 1.4 and Theorem 1.6.

The proof of Theorem 1.1 is divided into three parts. First, we look at the
operator H� WD H C �C , where H is a densely defined essentially self-adjoint
operator and C is a non-negative finite-rank operator. Since all the results are
obtained by resorting to properties of the Borel–Stieltjes transform, there is a set
S � R, independent of �, of full Lebesgue measure, where all the analysis will be
carried out. As a consequence of spectral averaging (see Lemma 2.1), it is enough
to concentrate on S as long as we are working on the subspace

H
�
C D hf .H�/�W f 2 Cc.R/ & � 2 CHi:

By spectral averaging, the spectrum of H� restricted to H
�
C is contained in S

for almost all �. In Section 3, we establish a certain inclusion relation between
singular subspaces. We show that for any finite-rank projection Q, the closed
H�-invariant Hilbert subspace zH�

Q � H
�
Q, such that the spectrum ofH� restricted

to zH�
Q is singular and is contained in S , is a subset of the singular subspace of H�

C .
This inclusion is shown in Lemma 3.1. This is the reason why the multiplicity of
the singular subspace for H!

PN
iD1 Pni

does not depend on N . Lemma 4.2 uses this

fact to get a bound on the multiplicity of the singular spectrum for H!
PN

iD1 Pni

for

any finite collection of numbers ¹niºi . Finally, a global bound on the multiplicity
of the singular spectrum is obtained by observing that the set

S

N2N H
!
PN

iD1 Pni

is

dense for any enumeration of N.



1962 D. R. Dolai and A. Mallick

Lemma 4.1 provides the first conclusion of the theorem and also establishes the
relationship between Mn and the multiplicity of the singular spectrum for H!

Pn
.

The proof is mostly a consequence of properties of polynomial algebra where
the coefficients of the polynomial under consideration are holomorphic function
on C n R. Part of the work is to establish a relation between the multiplicity
of the singular spectrum and the multiplicity of the spectrum of the operatorsp
CnG

!
n;n.z/

p
Cn, which is achieved through the resolvent equation. After choos-

ing a basis, we end up with matrix equations for functions that are holomorphic on
CnR. Since we are only dealing with matrices, the multiplicity of the spectrum ofp
CnG

!
n;n.z/

p
Cn can be computed through its characteristic equation, and so we

have polynomial equations where the coefficients are polynomials in the matrix el-
ements. Most of the work is to show that it is independent of a single perturbation.
The preceding argument also proves the independence on z. Indeed, the matrix
elements are holomorphic functions on C n R, and so any non-zero polynomial
can vanish only on a set of Lebesgue measure zero. Then by induction we show
that Mult!n .z/ is independent of any finite collection of random variables ¹!pi

ºi .
The Kolmogorov 0-1 law provides the stated result.

Finally, in Section 5, we prove Corollary 1.4 and Theorem 1.6. This is mostly
done by writing the matrix G!n;n.z/ in a particular form. For the corollary, using

the fact that range.Cn/ � D.A/, the matrix C
� 1

2
n AC

� 1
2

n is well defined on PnH,
and we have to estimate the number of eigenvalues of

C
� 1

2
n AC

� 1
2

n C �C�1

that lie at a distance of at mostO.1=�/ one another for � � 1. The corollary just
deals with two extreme cases. For Theorem 1.6, most of the work is to show that
for a tree (of finite depth), the adjacency operator perturbed at all the leaf nodes
has simple spectrum. Then the particular structure of G!n;n.z/ yields the desired
conclusion.

Even thoughG!n;m.z/ are defined over CnR, part of the proof of Lemma 3.1 is
carried out on C

C itself. The main problem that can arise upon restricting to C
C

come from F. and R. Riesz’s theorem [30], which states that if the Borel–Stieltjes

transform of a measure vanishes on C
C, then the measure is equivalent to the

Lebesgue measure (see [17, Theorem 2.2] for a proof ). This problem is avoided
by using the fact that in case G!n;m.z/ vanishes z 2 C

C, one can repeat the proof
by switching to z 2 C

� and replacing E C �� by E � �� whenever necessary.
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2. Preliminaries

In this section we introduce the notations and results used in the rest of the work.
Mostly we will deal with the linear operators

G!n;m.z/ WD Pn.A
! � z/�1PmWPmH �! PnH for all n;m 2 N;

which are well defined because of the assumption that A! is essentially self-
adjoint. Here Pn denotes the orthogonal projection onto the range of Cn. We
denote by

H
!
Pn

WD hf .A!/�W f 2 Cc.R/ & � 2 PnHi;

the minimal closed A!-invariant subspace containing PnH. All the results are
stated in a basis-independent form, but sometimes an explicit basis is fixed so that
G!n;m.z/ can be viewed as a matrix-valued functions.

We mostly focus on a single perturbation, proceeding as follows. For p 2 N

we set A!;�p D A! C �Cp and define

G!;�p;n;m.z/ D Pn.A
!;�
p � z/�1Pm

as before. Using resolvent equation we have

G!;�p;p;p.z/ D G!p;p.z/.I C �CpG
!
p;p.z//

�1; (3)

G!;�p;n;m.z/ D G!n;m.z/ � �G!n;p.z/.I C �CpG
!
p;p.z//

�1CpG
!
p;m.z/: (4)

Another way to write (3) and (4) is

.I � �CpG!;�p;p;p.z//.I C �CpG
!
p;p.z// D I; (5)

G!;�p;n;m.z/ DG!n;m.z/ � �G!n;p.z/CpG
!
p;m.z/

C �2G!n;p.z/CpG
!;�
p;p;p.z/CpG

!
p;m.z/:

(6)

Either of these equations will be used, depending on the situation. It should be
noted that the identity operator in equations (3), (4), and (5) is the identity map on
PpH. For a fixed basis in each of the subspaces PnH, using [15, Proposition 2.1]
(which follows from a property of the Borel–Stieltjes transform) for every matrix
element of G!n;m.z/, the limit

G!n;m.E ˙ �0/ WD lim
�#0

G!n;m.E ˙ ��/

exists for almost all E with respect to Lebesgue measure and for any n;m 2 N.
Therefore, the linear operator G!n;m.E ˙ �0/ is well defined for almost all E and
any n;m 2 N.
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Using (5) we observe that for any E 2 R such that G!p;p.E˙ �0/ exists and for
any function f W .0;1/ ! C such that lim�#0 f .�/ D 0, we have

lim
�#0

f .�/.I � �CpG!;�p;p;p.E ˙ ��//.I C �CpG
!
p;p.E ˙ ��// D 0

H) .lim
�#0

f .�/CpG
!;�
p;p;p.E ˙ ��/Cp/.C

�1
p C �G!p;p.E ˙ �0// D 0;

and similarly

.C�1
p C �G!p;p.E ˙ �0//.lim

�#0
f .�/CpG

!;�
p;p;p.E ˙ ��/Cp/ D 0:

This implies that

range..lim
�#0

f .�/CpG
!;�
p;p;p.E ˙ ��/Cp// � ker.C�1

p C �G!p;p.E ˙ �0//

� ker.=G!p;p.E ˙ �0//;
(7)

which is used to determine the singular spectrum. One of the consequences of the
fact that ˙=G!p;p.E ˙ �0/ � 0 is the equality

G!k;p.E ˙ �0/� D G!p;k.E ˙ �0/�� for all � 2 ker.˙=G!p;p.E ˙ �0//; (8)

which plays an important role in the proof of Lemma 3.1.
Since most of the analysis is done using a single perturbation, one of the

important results concerns the spectral averaging; we refer to [7, Corollary 4.2]
for its proof. Here we will use the following version:

Lemma 2.1. Let E�.�/ be the spectral family for the operator A� D A C �C ,

where A is a self-adjoint operator and C is a non-negative compact operator. For

any set M � R of Lebesgue measure zero,
p
CE�.M/

p
C D 0 for almost all �,

with respect to Lebesgue measure.

Since the set of points E where lim�#0G
!
n;m.E ˙ ��/ does not exist for

some n;m 2 N, has Lebesgue measure zero, Lemma 2.1 guarantees that we can
ignore this set in our analysis as long as we are only focusing on A!;�p -invariant
subspaces containing PpH. Another important result is

Lemma 2.2. For a �-finite positive measure space .X;B; m/ and a collection of

B-measurable functions ai WX ! C and bi WX ! C, define

f .�/ D 1C
PN
nD1 an.x/�

n

1C
PN
nD1 bn.x/�

n
:
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Then the set

ƒf D ¹� 2 CWm.x 2 X W f .�; x/ D 0/ > 0º

is countable.

Its proof can be found in [25, Lemma 2.1]. This lemma ensures that the
linear operator G!;�p;p;p.z/ is well defined for almost all �. This is the case be-
cause G!;�p;p;p.z/ and G!p;p.z/ are related through the equation (3), and so the set
¹EW det.I C �CpG

!
p;p.E ˙ �0// D 0º should have Lebesgue measure zero, other-

wise the analysis will fail. This is also the set which contains the singular spectrum
of the operator A!;�p restricted to H

!
Pp

(it is easy to see that the space H
!
Pp

is in-

variant under the action of A!;�p ).

The next result is Poltoratskii’s theorem, which is the main tool allowing us to
handle the singular part of the spectrum. Since we only deal with finite measures,
we will denote the Borel–Stieltjes transform F�WCC ! C

C of a Borel measure �
by

F�.z/ D
Z

d�.x/

x � z :

For f 2 L1.R; d�/, let f� be the unique measure associated with the linear
functional Cc.R/ 3 g 7!

R

g.x/f .x/d�.x/. The version of the Poltoratskii’s
theorem we will use reads:

Lemma 2.3. Let � be a complex-valued Borel measure on R and let f 2
L1.R; d�/. Then

lim
�#0

Ff�.E C ��/

F�.E C ��/
D f .E/

for a.e. E with respect to the singular part of �.

The proof of this lemma can be found in [16]. With these results at hand, we
can now prove our results.

3. Single perturbation results

This section is devoted to the case of a single perturbation. Lemma 3.1 will play
an important role in proving the main result. For this section, we adopt a different
notation, because it is not necessary to keep track of all the random variables
¹!nºn.
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Let H be a densely defined self-adjoint operator on a separable Hilbert space
H and C1 be a non-negative finite-rank operator. Set H� D H C �C1 and let P1
be the orthogonal projection onto the range of C1. For any projection Q, let

H
�
Q WD hf .H�/ W 2 QH & f 2 Cc.R/i;

be the minimal closed H�-invariant subspace containing the range of Q. Let ��1
denote the trace measure tr.P1EH�.�//, where EH�.�/ is the spectral projection
for the operator H�. The subscript “sing” will be used to denote the singular part
of a measure whenever necessary. The main result of this section is the following:

Lemma 3.1. Let Q be a finite-rank projection and let ¹eiºi be an orthonormal

basis of QH C P1H. Consider the set

S D ¹E 2 RW hei ; .H �E � �0/�1ej i exists and finiteº;

and denote E�sing the spectral measure on the singular part of the spectrum of the

operator H�. Then

E�sing.S/H
�
Q � E�sing.S/H

�
P1

for almost all � with respect to the Lebesgue measure.

Remark 3.2. The spectral averaging result (Lemma 2.1) shows that ��1 .R n
S/ D 0 for almost all � with respect to the Lebesgue measure, so it is actually
not necessary to write S on the right-hand side of the above inclusion. But
E�sing.R n S/H�

Q can be non-trivial.

Proof. In view of Lemma A.2, it is enough to show that

E�sing.S/H
�
ei

� E�sing.S/H
�
P1
;

where H
�
ei

is the minimal closed H�-invariant subspace containing ei . This is
because applying Lemma A.2 for the operator E�sing.S/H� will then give the
singular subspaces in the conclusion of the lemma.

Using the resolvent equation

.H� � z/�1 � .H � z/�1 D ��.H� � z/�1C1.H � z/�1

and similarly

.H� � z/�1 D .H � z/�1 � �.H � z/�1C1.H� � z/�1

D .H � z/�1 � �.H � z/�1C1.H � z/�1

C �2.H � z/�1C1.H� � z/�1C1.H � z/�1;
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we have

hei ; .H� � z/�1ei i D hei ; .H � z/�1eii � �hei ; .H � z/�1C1.H � z/�1ei i
C �2hei ; .H � z/�1C1.H� � z/�1C1.H � z/�1ei i:

(9)

Let ¹e1iºr1iD1, where r1 D dim.P1H/, be an orthonormal basis of P1H (so that the
elements e1i are linear combinations of ¹eiºi ); hence G�1;1.z/ D P1.H� � z/�1P1
is a matrix for this basis. Also, set

Gi;1.z/ D

0

B

B

B

B

@

hei ; .H � z/�1e11i
hei ; .H � z/�1e12i

:::

hei ; .H � z/�1e1r1i

1

C

C

C

C

A

t

and G1;i .z/ D

0

B

B

B

B

@

he11; .H � z/�1ei i
he12; .H � z/�1ei i

:::

he1r1 ; .H � z/�1ei i

1

C

C

C

C

A

:

Then equation (9) can be written as

hei ; .H� � z/�1ei i D hei ; .H � z/�1ei i � �Gi;1.z/C1G1;i.z/
C �2Gi;1.z/C1G

�
1;1.z/C1G1;i .z/:

Using the fact that the left-hand side is the Borel–Stieltjes transform of the measure
heiEH�.�/ei i, the support of the singular part lies in the set of pointsE 2 R where

lim
�#0

1

hei ; .H� �E � ��/�1ei i
D 0:

We don’t need to consider the case when hei ; .H� � z/�1ei i D 0 for all z 2 C
C

because by F. and R. Riesz’s theorem [30], the measure hei ; EH�.�/eii is absolutely
continuous. But by the definition of the set S , we have that Gi;1.E ˙ �0/;

G1;i .E ˙ �0/, and hei ; .H � E � �0/�1ei i exist for all E 2 S . So the singular
part of hei ; EH�.�/eii can lie on the set R n S or on the set of points E 2 S where
lim�#0.tr.G�1;1.E C ��///�1 D 0.

For the points E 2 S where lim�#0.tr.G�1;1.E C ��///�1 D 0,

lim
�#0

hei ; .H� �E � ��/�1ei i
tr.G�1;1.E C ��//

D �2Gi;1.E C �0/C1

�

lim
�#0

G�1;1.E C ��/

tr.G�1;1.E C ��//

�

C1G1;i .E C �0/:

Using (8), we have

lim
�#0

hei ; .H� �E � ��/�1eii
tr.G�1;1.E C ��//

D �2ŒC1G1;i .E C �0/��
�

lim
�#0

G�1;1.E C ��/

tr.G�1;1.E C ��//

�

ŒC1G1;i .E C �0/�:

(10)
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Since G�1;1.�/ is a matrix-valued Herglotz function for a positive operator-
valued measure (it is the Borel transform of P1EH�.�/P1), the Herglotz repre-
sentation theorem for matrix-valued measures (see [14, Theorem 5.4]) provides a
matrix-valued function M�

1 2 L1.R; ��1 ;Mrank.P1/.C// such that

G�1;1.z/ D
Z

1

x � z
M�
1 .x/d�

�
1 .x/

for all z 2 C n R. Using Poltoratskii’s theorem (Lemma 2.3),

lim
�#0

1

tr.G�1;1.E C ��//
G�1;1.E C ��/ D M�

1 .E/

for almost all E with respect to ��1;sing. Since the measure P1EH�.�/P1 is non-

negative, the matrix-valued function M�
1 .E/ � 0 for almost all E with respect

to ��1;sing.

Let U �1 .E/ be the unitary matrix which diagonalizesM�
1 .E/, i.e.,

U �1 .E/M
�
1 .E/U

�
1 .E/

� D diag.f �j I 1 � j � r1/;

where some of the f �j can be zero. Using the Hahn–Hellinger theorem (see [28,

Theorem 1.34]),U �1 can be chosen to be a Borel measurable unitary matrix-valued
function. Since we are only interested on the singular part, we set U �1 .E/ D 0 for
E not in the support of ��1;sing and define  �j D U �1 .H�/

�e1j . Now observe that

h �k ; .H� � z/�1 �l i

D
Z

1

x � z h �k ; E
H�.dx/ �l i

D
Z

1

x � z hU �1 .x/�e1k; EH�.dx/U �1 .x/
�e1li

D
Z

1

x � z
X

p;q

hU �1 .x/�e1k; e1pihe1q ; U �1 .x/�e1lihe1p ; EH�.dx/e1qi

D
X

p;q

Z

1

x � z hU �1 .x/�e1k; e1pihe1q ; U �1 .x/�e1lihe1p ; EH�.dx/e1qi;

and so using Poltoratskii’s theorem (Lemma 2.3) we get

lim
�#0

h �
k
; .H� �E � ��/�1 �

l
i

tr.G�1;1.E C ��//

D
X

p;q

hU �1 .E/�e1k ; e1pihe1q ; U �1 .E/�e1li
�

lim
�#0

he1p; .H� �E � ��/�1e1qi
tr.G�1;1.E C ��//

�

D he1k ; U �1 .E/M�
1 .E/U

�
1 .E/

�e1li D f �k .E/ık;l
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for almost allE with respect to ��1;sing. By construction of �j , the spectral measure

h �j ; EH�.�/ �j i is purely singular with respect to the Lebesgue measure, so above

computation implies h �
k
; .H� � z/�1 �

l
i D 0 for all z for k ¤ l , which implies

that the measure h �
k
; EH�.�/ �

l
i is zero, and in particular we have H

�

 �
k

? H
�

 �
l

for k ¤ l .
Next, using the resolvent equation, we obtain

lim
�#0

h �
k
; .H� �E � ��/�1ei i
tr.G�1;1.E C ��//

D lim
�#0

��
h �
k
; .H� �E � ��/�1C1.H � E � ��/�1ei i

tr.G�1;1.E C ��//

D ��f �k .E/he1k ; U �1 .E/C1G1;i .E C �0/i;

(11)

for a.e. E with respect to ��1;sing. Using Lemma A.1 and (11) in equation (10), we
conclude that

lim
�#0

hei ; .H� � E � ��/�1ei i
tr.G�1;1.E C ��//

D
X

j

j.Q�

 �
j

ei /.E/j2f �j .E/

for almost all E with respect to ��1;sing, whereQ�

 �
j

ei is the projection of ei on the

Hilbert subspace H�

 �
j

. So for g 2 Cc.R/, we can write

hei ; E�sing.S/g.H�/ei i D
X

j

Z

g.E/j.Q�

 �
j

ei /.E/j2f �j .E/d��1;sing.E/;

which implies that the projection of E�sing.S/ei onto H
�
P1

is an isometry, hence

E�sing.S/H
�
ei

� E�sing.S/H
�
P1
:

The lemma follows by an application of Lemma A.2. �

4. Proof of Theorem 1.1

The proof of the main result is divided into Lemma 4.1 and Lemma 4.2. It should
be noted that the conclusion of Lemma 4.1 is similar to the conclusion reached by
combining [26, Lemma 2.2 and Lemma 2.1]. This section deals with the operator
A! itself and so the notations introduced in Section 2 will be used. Following the
notations from the previous section, set H!

P to be the minimal closedA!-invariant
subspace containing the range of the projection P .
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Lemma 4.1. For any n 2 N,

M
!
n WD ess sup

z2CnR

Mult!n .z/

is almost surely constant; denote it by Mn. The multiplicity of the singular

spectrum for H!
Pn

is bounded above by Mn.

Proof. First we prove that M!
n is independent of !. This is done using the Kol-

mogorov 0-1 law. So the first step is to show that M!
n is independent of any finite

collection of random variables ¹!pi
ºi .

Following the notations from Section 2, set A!;�p D A!C�Cp for p 2 Nn¹nº,
we have the equation (4)

G!;�p;n;n.z/ D G!n;n.z/ � �G!n;p.z/.I C �CpG
!
p;p.z//

�1CpG
!
p;n.z/:

Looking at G!i;j .z/ as a matrix, observe that

Qg!�;z.x/ D det.CnG
!;�
p;n;n.z/ � xI /

D det.CnG
!
n;n.z/ � �CnG!n;p.z/.I C �CpG

!
p;p.z//

�1CpG
!
p;n.z/ � xI /

D
p!
l
.z; �/xl C p!

l�1
.z; �/xl�1 C � � � C p!0 .z; �/

det.C�1
p C �G!n;n.z//

;

where l D rank.Pn/. Here ¹p!i .z; �/ºliD0 are polynomials in the elements of the
matrices ¹G!i;j .z/ºi;j2¹n;pº and �. We are not interested in the denominator, so let
us set

g!�;z.x/ D p!l .z; �/x
l C p!l�1.z; �/x

l�1 C � � � C p!0 .z; �/:

The maximum algebraic multiplicity of G!;�p;n;n.z/ is at most k if the function

F
!;k
�;z
.x/ D gcd

�

g!�;z.x/;
dg!

�;z

dx
.x/; : : : ;

dkg!
�;z

dxk
.x/

�

is constant with respect to x. Using the fact that

gcd.f1.x/; : : : ; fm.x// D gcd.f1.x/; : : : ; fm�2.x/; gcd.fm�1.x/; fm.x///

and Euclid’s algorithm for polynomials, we get

F
!;k
�;z
.x/ D q!k;0.�; z/C q!k;1.�; z/x C � � � C q!k;s.�; z/x

s ;

where ¹q!
k;i
.�; z/ºsiD0 are rational polynomials of ¹p!i .z; �/ºi . We need to examine

the numerators of q!
k;i

, which we denote by Qq!
k;i

. Since ¹ Qq!
k;i

º are polynomials in
the matrix elements ¹G!i;j .z/ºi;j2¹n;pº and �, we can write

Qq!k;i.�; z/ D
X

j

a!k;i;j .z/�
j ;
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where ¹a!
k;i;j

ºk;i;j are holomorphic functions on C n R. Hence, for each i the
functions ¹ Qq!

k;i
º are well defined for .�; z/ 2 R � .C n R/.

Now suppose M
!
n D k. Then q!

k;0
.0; �/ ¤ 0 and q!i .0; �/ D 0 identically,

which implies a!
k;i;0

.�/ D 0 for i ¤ 0. On other hand, the assumption M
!
n D k

implies that F!;k�1
0;z .x/ is a non-constant polynomial (with respect to x), hence

q!
k�1;i1

.0; �/ ¤ 0 for some i1 > 0. Hence, there exists indices i1; j1 such that

a!
k�1;i1;j1

.�/ ¤ 0, which implies that F!;k�1
�;z

.x/ is a non-constant polynomial

(with respect to x) for almost all �. This impliesG!;�p;n;n.z/ have multiplicity strictly
greater than k�1. Setting Q!p to be such that Q!p

k
D !k for k ¤ p and Q!pp D !pC�,

gives M
!
n � M

Q!p

n for almost all �. Since M
Q!p

n can be at most rank.Pn/, this

implies M Q!p

n is independent of �.
For the case p D n, we can follow above argument, but a simpler reasoning is

available. Indeed, observe that

Qg!�;z.x/ D det.CnG
!;�
n;n;n.z/ � xI /

D det.CnG
!
n;n.z/.I C �CnG

!
n;n.z//

�1 � xI /

D
det..1 � x�/CnG!n;n.z/ � xI /

det.I C �CnG!n;n.z//
;

which implies that the roots of Qg!
�;z
.x/ are given by

x
!;z
i

1C�x
!;z
i

, where x!;zi are the

roots of Qg!0;z.x/. The multiplicities of the roots are also preserved in this process.
We conclude that M Q!n

n is independent of �.
Now repeating the proof inductively for a collection of sites ¹piºNiD1 proves

the independence of M!
n from the random variables ¹!pi

ºNiD1. Hence, using the
Kolmogorov 0-1 law, M!

n is independent of !.
Assume that Mn D k, which implies that the maximum multiplicity for the

matrix G!n;n.z/ is k for almost every z. Using above argument for the polynomial

g!z .x/ D det.CnG
!
n;n.z/ � xI / D .�x/l C .�x/l�1p!l�1.z/C � � � C p!0 .z/;

we see that the function

gcd
�

g!z .x/;
dg!z
dx

.x/; : : : ;
dkg!z
dxk

.x/
�

is a rational polynomial in the matrix elements ofG!n;n.z/, and so the numerator is
holomorphic on CnR. Since it is non-zero for a set of positive Lebesgue measure,
it is non-zero for almost all z 2 C n R, which implies

k D ess sup
E2R

¹maximum multiplicity of roots of
det.CnG

!
n;n.E ˙ �0/ � xI /º: (12)
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Now we address the second assertion of the lemma, i.e., that multiplicity of
the singular spectrum on H

!
Pn

is bounded by Mn. Consider the set

S D ¹E 2 RW maximum multiplicity of the roots of
det.CnG

!
n;n.E ˙ �0/ � xI / is kº; (13)

which as shown above has full Lebesgue measure.
Using the spectral theorem (see [25, Theorem A.3]) for the operator A!;�n D

A! C �Cn gives

.H
!;�;n
Pn

; A!;�n / Š .L2.R; PnE
A

!;�
n .�/Pn; PnH/;MId/:

Here EA
!;�
n is the spectral measure for A!;�n and H

!;�;n
Q is the minimal closed

A
!;�
n -invariant space containing the subspace QH for a projection Q. Since the

measure PnEA
!;�
n .�/Pn is absolutely continuous with respect to the trace measure

�
!;�
n .�/ D tr.PnEA

!;�
n .�/Pn/, after a choice of basis, there exists a non-negative

matrix-valued function M!;�
n 2 L1.R; �!;�n ;Mrank.Pn/.C// such that

PnE
A

!;�
n .dx/Pn D M!;�

n .x/�!;�n .dx/;

and applying Poltoratskii’s theorem (Lemma 2.3) we see that

lim
�#0

1

tr.G!;�n;n;n.E C ��//
G!;�n;n;n.E C ��/ D M!;�

n .E/

for almost all E with respect to �!;�n;sing. Here we are assuming that �!;�n has a

non-trivial singular component, so G!;�n;n;n.z/ ¤ 0 for almost all z 2 C
C. In much

the same ways as in (5), we also have

.I C �CnG
!
n;n.z//.I � �CnG!;�n;n;n.z// D I;

which implies (using steps involved in the derivation of (7)) that

.I C �CnG
!
n;n.E C �0//

h

Cn lim
�#0

1

tr.G!;�n;n;n.E C ��//
G!;�n;n;n.E C ��/

i

D 0;

for E such that lim�#0
1

tr.G!;�
n;n;n.EC��//

D 0. Consequently,

.I C �CnG
!
n;n.E C �0//CnM

!;�
n .E/ D 0

for almost all E with respect to �!;�n;sing. Using the fact that �!;�n .R n S/ D 0 for

almost all � and the above equation, which implies that the rank of M!;�
n .E/ is
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bounded above by the dimension of the kernel .I C �CnG
!
n;n.E C �0//, which in

turn is bounded above by k over the set S (as it follows from (13)), we conclude
that the multiplicity of the singular spectrum for A!;�n is bounded above by k
over H!;�;n

Pn
.

This completes the proof, as the conclusion is true for almost all .!; �/. �

Note that the above lemma establishes a bound for the multiplicity of the
singular spectrum for the subspace H

!
Pn

, and not on the entire Hilbert space.
Lemma 3.1 is used to obtain the final result, which is as follows:

Lemma 4.2. Under the hypotheses of Theorem 1.1, assume that Mn � K for

all n 2 N. Then the multiplicity of the singular spectrum of the operator A! is

bounded above by K almost surely.

Proof. The proof carried out in two steps. First we show that for any finite
collection ¹piºNiD1 � N, the multiplicity of the singular spectrum of the operator
A! restricted to the subspace H

!
PN

iD1 Ppi

is bounded by K.

Then the proof is completed using the denseness of
S1
ND1H

!
PN

iD1 Ppi

.

The first part uses induction, so let ¹piºi2N be an enumeration of the set N.
The induction statement SN is: the multiplicity of the singular spectrum of A!

restricted to the subspace H
!
PN

iD1 Ppi

is at most K.

For N D 1, the conclusion follows from Lemma 4.1, i.e., the multiplicity of
the singular spectrum over H!

Pp1
is at most K.

Now assume SN is true, i.e., the multiplicity of the singular spectrum on
H
!
PN

iD1 Ppi

is bounded by K. Before going on to show that SNC1 holds, note that

H
!
PNC1

iD1
Ppi

D H
!
PN

iD1 Ppi

C H
!
PpNC1

;

It is obvious that the right-hand side is a subset of the left-hand side; for the
opposite inclusion observe that the right-hand side is dense and closed in the left-
hand side.

Now consider the operator A!;�pNC1
D A! C �CpNC1

. By Lemma 4.1, the

multiplicity of singular spectrum of A!;�pNC1
on H

!;�;pNC1

PpNC1
is bounded by K. By

SN , the multiplicity of singular spectrum for

.H
!;�;pNC1
PN

iD1 Ppi

; A!;�pNC1
/

is at mostK. Next, by Lemma 3.1, there exists a set S! of full Lebesgue measure
such that

E
A

!;�
pNC1

sing .S!/H
!;�;pNC1
PN

iD1 Ppi

� E
A

!;�
pNC1

sing .S!/H
!;�;pNC1

PpNC1
:
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Spectral averaging implies that

E
A

!;�
pNC1

sing .R n S!/H!;�;pNC1

PpNC1
D ¹0º

for almost all � (with respect to the Lebesgue measure). Now the decomposition

H
!;�;pNC1
PN

iD1 Ppi

D E
A!;�

pNC1 .S!/H
!;�;pNC1
PN

iD1 Ppi

˚E
A!;�

pNC1 .R n S!/H!;�;pNC1
PN

iD1 Ppi

gives

E
A!;�

pNC1

sing H
!;�;pNC1
PNC1

iD1
Ppi

D E
A!;�

pNC1

sing H
!;�;pNC1
PN

iD1 Ppi

CE
A!;�

pNC1

sing H
!;�;pNC1

PpNC1

D E
A

!;�
pNC1

sing .R n S!/H!;�;pNC1
PN

iD1 Ppi

˚ E
A

!;�
pNC1

sing .S!/H
!;�;pNC1

PpNC1
;

where both subspaces have multiplicity at most K. The supports of the singular
spectrum of A!;�pNC1

restricted to the two subspaces are disjoint, and so assertion
SNC1 holds. This completes the first part of the proof.

With the induction completed, note that

H
!
PN

iD1 Ppi

� H
!
PNC1

iD1
Ppi

for all N 2 N;

which implies that zH! WD
S

n2N H
!
PN

iD1 Ppi

is a linear subspace of H, and it is

dense because
P

p2N Pp D I . Clearly, zH! is invariant under the action of the

operator A! . For any finite collection ¹�iºNiD1 2 zH! , there exists M 2 N such
that �i 2 H

!
PM

j D1 Ppj

for all i . Therefore, the multiplicity of the singular spectrum

for zH! is bounded by K. Finally, since zH! is dense in H, we conclude that the
multiplicity of the singular spectrum is bounded by K. �

5. An application

To prove Corollary 1.4 and Theorem 1.6, we need some results about the multi-
plicity of the matrix

p
CnG

!
n;n.z/

p
Cn. These are obtained by using the resolvent

equation for a special decomposition of A! .
Fix n 2 N. Then using the fact that range.Cn/ � D.A/, the operators PnAPn,

.I � Pn/APn and PnA.I � Pn/ are well defined, and since they are finite-rank
operators, they are bounded. Hence, using the resolvent equation connecting the
operators A! and

zA! D PnAPn C .I � Pn/A.I � Pn/C
X

m2N

!mCm;
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we see that

G!n;n.z/ D ŒPnAPn C !nCn � zPn � PnA.I � Pn/. zA! � z/�1.I � Pn/APn��1;
(14)

where the right-hand side is viewed as a linear operator on PnH.
Thus, the maximum algebraic multiplicity of the eigenvalues of the matrixp
CnG

!
n;n.z/

p
Cn is the same as the maximum algebraic multiplicity of the eigen-

values of the matrix

C
� 1

2
n AC

� 1
2

n � zC�1
n � C� 1

2
n A.I � Pn/. zA! � z/�1.I � Pn/AC

� 1
2

n : (15)

Notice that (15) is independent of !n. The basic difference between the proof of
Corollary 1.4 and that of Theorem 1.6 is in how the term

C
� 1

2
n A.I � Pn/. zA! � z/�1.I � Pn/AC

� 1
2

n

is handled. Since the norm of this operator is O..=z/�1/, it is clear that we can
ignore this term by choosing =z large enough, but it is this term that provides the
simplicity of the spectrum in Theorem 1.6.

We will be using the following lemma:

Lemma 5.1. Suppose the operators A! and A satisfy the hypotheses of Corol-

lary 1.4. Let I � .�1;M/ be a bounded interval such that the maximum alge-

braic multiplicity of the eigenvalues of
p
CnG

!
n;n.E/

p
Cn is bounded by K for all

E 2 I . Then for almost all z the maximum algebraic multiplicity of the eigenval-

ues of
p
CnG

!
n;n.z/

p
Cn is bounded by K.

Remark 5.2. The main advantage of this lemma is that instead of looking for a
bound in C n .M;1/, we can work with z 2 R n .�.A!/ [ �.A// and so the
operator Pn.A! �E/�1Pn D lim�#0 Pn.A

! �E � ��/�1Pn is self-adjoint, hence
the algebraic and geometric multiplicities coincides.

The proof follows the same steps as the proof of Lemma 4.1 and is omitted.
Now we are ready to prove our other two results.

5.1. Proof of Corollary 1.4. Using Lemma 5.1 and the fact that the algebraic
multiplicity of

p
CnG

!
n;n.E/

p
Cn is same as the algebraic multiplicity of

C
� 1

2
n AC

� 1
2

n �EC�1
n � C� 1

2
n A.I � Pn/. zA! �E/�1.I � Pn/AC

� 1
2

n ; (16)

it suffices to boud the multiplicity of this last matrix for E � M .



1976 D. R. Dolai and A. Mallick

First we handle the case when Cn are projections. The maximum algebraic
multiplicity of (16) is same as that of

PnAPn � PnA.I � Pn/. zA! �E/�1.I � Pn/APnI (17)

the term EC�1
n can be ignored because it is the identity operator, and so it does

not affect the multiplicity. Let

ı D min
x;y2�.PnAPn/

x¤y

jx � yj:

Then for E < �M � 3
ı

kPnA.I � Pn/k2 we have

kPnA.I � Pn/. zA! �E/�1.I � Pn/APnk <
ı

3
:

Hence, viewing PnA.I � Pn/. zA! � E/�1.I � Pn/APn as a perturbation, we see
that any eigenvalue of (17) is in the ı

3
-neighborhood of the set of eigenvalues of

PnAPn. So the multiplicity of any eigenvalue of the operator (17) cannot exceed
the multiplicity of the eigenvalues of the operator PnAPn. This completes the
proof for the case of a projection.

For general Cn, the maximum algebraic multiplicity of (16) is same as the
maximum algebraic multiplicity for

� C�1
n C 1

E
.C

� 1
2

n AC
� 1

2
n � C� 1

2
n A.I � Pn/. zA! �E/�1.I � Pn/AC

� 1
2

n /; (18)

so setting
ı D min

x;y2�.C�1
n /

x¤y

jx � yj

and choosing

E < �2M � 3

ı
.kC� 1

2
n AC

� 1
2

n k C kC� 1
2

n A.I � Pn/k2/;

we see that the eigenvalues of (18) are in the ı
3
-neighborhood of the set of

eigenvalues of C�1
n . So, following the argument for the projection case, we

conclude that the multiplicity of any eigenvalue of (16) is bounded above by the
multiplicity of the eigenvalues of C�1

n .

5.2. Proof of Theorem 1.6. Since Pn�BPn has a non-trivial multiplicity, the
previous argument does not give us the desired result. So we have to concentrate
on (17), which in this case is

Pn�BPn � Pn�B.I � Pn/. zH! �E/�1.I � Pn/�BPn; (19)
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where
zH! D Pn�BPn C .I � Pn/�B.I � Pn/C

X

x2J

!xPx:

Here we denote Px D � zƒ.x/. For simplicity of notation, we set

@zƒ.x/ D ¹.p; q/ 2 zƒ.x/ � zƒ.x/c W d.p; q/ D 1º;

i.e., we pair all the leaf nodes of the tree zƒ.x/ with their neighbors outside the
tree.

zƒ.x/

T0

0l WD x

T1 T2 T3 T4 T8T7T6T5

Figure 3. A representation of the rooted tree with three neighbors. Observe that removing
the sub-tree zƒ.x/ divides the graphs into nine connected components.

Using the Dirac bra and ket notation, we observe that

Pn�B.I � Pn/. zH! �E/�1.I � Pn/�BPn

D
X

.p;q/2@ zƒ.x/

ˇ

ˇıp
˛ ˝

ıp
ˇ

ˇ hıq ; . zH! � E/�1ıqi:

This holds because

hıq ; .I � Pn/�BPnıpi D
´

1 if .p; q/ 2 @zƒ.n/;
0 otherwise,

and
hıq1

; . zH!/kıq2
i D 0 for all k 2 N;
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for .p1; q1/; .p2; q2/ 2 @zƒ.n/ and q1 ¤ q2. This is also the reason why the random
variables

¹hıq; . zH! �E/�1ıqiº.p;q/2@ zƒ.x/

are independent of each other. The random variable hıq ; . zH! � E/�1ıqi is real
for E 2 R, and has an absolutely continuous distribution, which follows from the
continuos fraction expression

hıq; . zH! �E/�1ıqi

D
1

!q �E �
P

x12Nq

1

!x1
� E �

P

x22Nx1

1

: : : �
P

xl 2Nxl�1
a!xl
.E/

;

where ¹a!xl
.E/º are independent of !q, and the distribution of !q is absolutely

continuous with respect to the Lebesgue measure. Now Theorem 1.6 follows from
Theorem 5.3.

But first a few notations are needed. Let TL denote a rooted tree with root 0L
and such that every vertex hasKC 1 neighbors, except for the root 0L (which has
K neighbors) and the vertices in the boundary

@TL WD ¹x 2 TLW d.0L; x/ D Lº;

which have one neighbor each.

Theorem 5.3. Let �TL
denote the adjacency matrix of the tree TL and set

B� D
X

x2@TL

tx jıxi hıx j

for � D ¹txºx2@TL
2 R

@TL . Then, for almost all � with respect to the Lebesgue

measure, the spectrum of H� D �TL
C B� is simple.

Proof. The proof is done by induction on L. Let H�;l denote the operator

H�;l D �Tl
C

X

x2@Tl

�x jıxi hıx j ;

where �Tl
is the adjacency operator of the rooted tree Tl with root 0l .

The induction is done over the statement: for almost all � , H�;l has simple

spectrum with the property that all the eigenfunctions are non-zero at the root,

and �.H�;l/ \ �.H!;l/ D ; for almost all !.
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For l D 0, the statement is trivial becauseH�;0 is the operator of multiplication
by the random variable �0l

on C.
Suppose that the induction statement holds for l D N � 1. Observe that

H�;N D
X

xWd.0N ;x/D1

.jı0N
ihıx j C jıxihı0N

j/C
X

xWd.0N ;x/D1

H�;x;

where H�;x WD �Tx
H�;l�Tx

for the sub-tree

Tx WD ¹y 2 Tl W d.0N ; y/ D d.0N ; x/C d.x; y/º:

0l

x1 xKx2 xK 1

Tx1
Tx2

TxK
TxK 1

Figure 4. The tree Tl can be viewed as a union of K disjoint trees ¹Txi
ºi which are

connected through their roots ¹x1; : : : ; xKº to a separate node 0l .

First notice that H�;x is unitarily equivalent to HQ�;N�1, where Q� is restriction
of � to the @Tx. Next note that the ¹�yºy that appear in H�;xi

are disjoint for any
two subtrees Tx1

and Tx2
with x1 ¤ x2. Hence, by the induction hypothesis,

�.H�;x/ \ �.H�;y/ D ; for x ¤ y and the spectrum of the operator H�;x is
simple, with the property that the eigenfunctions corresponding to the eigenvalues
are non-zero at the root, for each x.

Since we are working on tree graphs, we have

hı0N
; .H�;N � z/�1ı0N

i D 1

�z �
P

xWd.0N ;x/D1
hıx ; .H�;x � z/�1ıxi

D 1

�z �
P

xWd.0N ;x/D1

P

E2�.H�;x/
jh �;x;E ;ıxij2

E�z

; (20)

where  �;x;E is the eigenfunction of H�;x corresponding to the eigenvalue E. By
the induction hypothesis we have h �;x;E ; ıxi ¤ 0 for each E 2 �.H�;x/ and x a
neighbor of 0N . Next, using the fact that �.H�;x/ \ �.H�;y/ D ; for x ¤ y, we
get that

z C
X

xWd.0N ;x/D1

X

E2�.H�;x/

jh �;x;E ; ıxij2

E � z
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has
P

xWd.0N ;x/D1
#�.H�;x/ poles, and consequently equation (20) has

1C
X

xWd.0N ;x/D1

#�.H�;x/

roots, that is, jTN j roots. But using functional calculus we also have

hı0N
; .H�;N � z/�1ı0N

i D
X

E2�.H�;N /

jh �;N;E ; ı0N
ij2

E � z ;

where  �;N;E is the eigenfunction of the matrixH�;N corresponding to the eigen-
value E. So each pole hı0N

; .H�;N � z/�1ı0N
i corresponds to an eigenvalue, and

the previous computation shows that there are jTN j many poles, which establishes
the simplicity of the spectrum of the operator H�;N . Finally, the eigenfunction
 �;N;E is non-zero at the root 0N , because if h �;N;E ; ı0N

i D 0, then the pole
corresponding to E will not be present in the above expression.

Finally, we have to prove that �.H�;l/ \ �.H!;l/ D ; for almost all �; !. But
first we need the following claim:

Claim. For any solution  2 C
Tl n ¹0º of the equation H�;l D E for E 2 R,

there exists x 2 @Tl such that  x ¤ 0.

Proof of the claim. If for some E 2 R there exists  2 CTl such that H�;l D
E and

 x D 0 for all x 2 @Tl ;
then, for any x 2 @Tl ,

.H�;l /x D E x D 0 H)  Px C tx x D 0

H)  Px D 0;

where Px is the unique neighbor of x satisfying d.0l ; x/ D d.0l ; P x/ C 1. So
we get that  x D 0 for all x 2 Tl such that d.0; x/ D l � 1. Repeating this
argument for x satisfying d.0; x/ D l � 1 shows that  x D 0 for all x such that
d.0l ; x/ D l � 2. Repeating the last step recursively gives  � 0, a contradiction.
This completes the proof of the claim. 4

Now, to prove that �.H�;l/ \ �.H!;l/ D ;, for almost all �; !, denote � D
¹�xºx2@Tl

, ! D ¹!xºx2@Tl
, and let ¹E�i ºi and ¹ �i º denote the eigenvalues and

the corresponding eigenfunctions for H�;l , and similarly for H!;l . Using the
Feynman–Hellmann theorem for rank-one perturbations, we have

dE�i
d�x

D jh �i ; ıxij2 for all x 2 @Tl and all i;
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and similarly

dE!i
d!x

D jh !i ; ıxij2 for all x 2 @Tl and all i:

For each i , by the previous claim, there exists x�i 2 @Tl such that h �i ; ıx�
i
i ¤ 0,

and similarly for !. Now using the implicit function theorem over the function
g.!; �/ D E�i � E!j D 0, we conclude that the dimension of the manifold

¹.�; !/ 2 R
@Tl � R

@Tl WE�i D E!j º

is smaller than 2j@Tl j. In particular, the Lebesgue measure of the set

¹.�; !/ 2 R
@Tl � R

@Tl WE�i D E!j º

is equal to zero, which completes the proof of the induction step. �

A. Appendix

Lemma A.1. Let H be a separable Hilbert space, and let H be a self-adjoint

operator on H, and for �;  2 H set ��.�/ D h�;EH .�/�i and ��; .�/ D
h�;EH .�/ i. Let f be the Radon–Nikodym derivative of ��; with respect to �� .

Then f .H/� is the projection of  on the minimal closed H -invariant subspace

containing �.

Proof. Let H� denote the minimal closed H -invariant subspace containing �.
Then, the pair .H� ; H/ is unitarily equivalent to .L2.R; ��/;MId/, where MId is
multiplication by the identity map on R. Consider the linear functional

g 7�! hg.H/�;  � f .H/�i

for g 2 L2.R; ��/. Observe that

hg.H/�;  � f .H/�i D hg.H/�;  i � hg.H/; f .H/�i

D
Z

g.x/d��; .x/ �
Z

g.x/f .x/d��.x/ D 0:

Since g.H/� are dense in H� for � 2 L2.R; ��/, we have

 � f .H/� ? H� ;

hence f .H/� is the projection of  on to H� . �
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Lemma A.2. Let H be separable Hilbert space,H be a self-adjoint operator H,

and Q be a finite-rank projection. Let ¹eiºi2N be an orthonormal basis for the

subspaceQH and denote

Hi D hf .H/ei W f 2 Cc.R/i

and

HQ D hf .H/�W f 2 Cc.R/ & � 2 QHi:
Then

HQ D
X

i

Hi ;

where
P

i Hi denotes the closed linear span of Hi .

Proof. Since Hi � HQ for any i , we always have
X

i

Hi � HQ:

For the other way round, note that we only have to show f .H/� 2
P

i Hi

whenever � 2 QH. Since ¹eiºi is a basis, we have

� D
X

i

aiei :

Using it, define

 N D
N

X

iD1

aif .H/ei ;

which satisfies  N 2
P

i Hi for any N 2 N. Now the conclusion of the lemma
holds, since

P

i Hi is closed. �
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