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Erratum to
“Asymptotic shape optimization for Riesz means
of the Dirichlet Laplacian over convex domains”

Simon Larson

We correct two errors in [6]. All the main results of the paper remain unchanged,
but two of the proofs need to be altered. Firstly, the proof of Theorem 2.4 in [6]
contains a gap. Indeed, the proof of the theorem is based on the bound [3, eq. 4.3].
However, the proof of this equation in [3] contains an error. We shall therefore give
a alternative proof of [6, Theorem 2.4] which avoids using [3, eq. 4.3]. Secondly,
there is a mistake in the proof of Corollary 5.3 which we also fix. The statements
of two results are:

Theorem 1 ([6, Theorem 2.4]). Let 2 € X". For y > 1 there exists a constant
c(y,n) > 0 such that
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Corollary 2 ([6, Corollary 5.3]). Let Q € X". There exists a constant c(n) > 0
such that, for all m > 1,
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As in [6] the constants Ly .+ An. and B, are defined by
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1. Proof of Theorem 1

The first part of the theorem is a direct consequence of the bound A, (£2) > ﬁ
proved in [4, 7]. For the second part, Theorem 1.2 in [2] implies that there exist
universal constants c¢1, ¢, > 0 such that

Tr(~Aq — A)- < LS, IQIAT2 — o, L5 [aQ|AT+H =172, (1)

for all A > . (3)2. In order to extend (1) to all A > 4’;—9)2 we recall Theorem 3.5
in [5] which for 2 € X" implies that
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forall A = - (9)2 Note that this is almost what we aim to prove but the negative
correction term on the right-hand side differs from that in (1) both in terms of the
dependence on Q and in the power of A. However, provided the quantity r(Q)?A
remains bounded the two correction terms can be related as follows.

We claim that there is a universal constant ¢z > 0 such that
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for ﬁ <A< (9)2, which allows us to extend (1) to all A > - (9)2 (possibly

with a smaller constant ¢,). The existence of such a constant follows from
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where we in the second step used [6, eq. (13)],
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This completes the proof of Theorem 1 for y = 1.
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To prove the case y > 1 we apply the Aizenman-Lieb identity [1] (see also [6,
Section 6]). For all A > 0 and b € [0, 1] the case y = 1 implies that
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for some positive constants c¢1, c,. Here the positive part in the first inequality
is necessary as we do not distinguish between the two cases of Theorem 1. An
application of the Aizenman-Lieb identity yields
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forall A > 0 and b € [0, 1]. From (4) we have %A‘l/z < 2?” for all A > ﬁ
and thus the claimed bound follows by choosing b sufficiently small. |
2. Proof of Corollary 2
The proof is as before based on the fact that
m
sup (mA — Y (A = A(R)) = 3 Ak(@), ©)
Az0 kiAg (Q)<A k=1

To find a bound for the right-hand side of (6) we plug in a suitable choice of A > 0
in the left-hand side and use Theorem 1 to bound the Riesz mean.
The natural choice to make is

A= A() =
(n 4 2)2/7(L§ )2/m
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however we need to distinguish whether this quantity is less or greater than - (9)2
This case distinction is precisely what was missed in the erroneous proof given

in [6]. If Ag > ﬁ Theorem 1 implies that
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—2— choose A = The results of [4, 7] (or Theorem 1) implies

IfAo = 3 (Q) 4r (9)2
that £ 3% Ax(Q) = o (9)2 What remains is to show that if Ag < - (9)2, then
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provided ¢ = ¢(n) > 0 is small enough. Let
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so that A, = a — L), a' /2. Therefore, by (4) and Ao = a(#)”" < 7.
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from which (7) follows for ¢ sufficiently small.
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