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Erratum to

“Asymptotic shape optimization for Riesz means

of the Dirichlet Laplacian over convex domains”

Simon Larson

We correct two errors in [6]. All the main results of the paper remain unchanged,

but two of the proofs need to be altered. Firstly, the proof of Theorem 2.4 in [6]

contains a gap. Indeed, the proof of the theorem is based on the bound [3, eq. 4.3].

However, the proof of this equation in [3] contains an error. We shall therefore give

a alternative proof of [6, Theorem 2.4] which avoids using [3, eq. 4.3]. Secondly,

there is a mistake in the proof of Corollary 5.3 which we also fix. The statements

of two results are:

Theorem 1 ([6, Theorem 2.4]). Let � 2 K
n. For 
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Corollary 2 ([6, Corollary 5.3]). Let � 2 K
n. There exists a constant c.n/ > 0

such that, for all m � 1,
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As in [6] the constants Lcl

;n; An; and Bn are defined by
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1. Proof of Theorem 1

The first part of the theorem is a direct consequence of the bound �1.�/ � �2

4r.�/2

proved in [4, 7]. For the second part, Theorem 1.2 in [2] implies that there exist

universal constants c1; c2 > 0 such that

Tr.��� � ƒ/� � Lcl
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1;n�1j@�jƒ1C.n�1/=2; (1)

for all ƒ � c1

r.�/2 . In order to extend (1) to all ƒ � �2

4r.�/2 we recall Theorem 3.5

in [5] which for � 2 K
n implies that
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r.�/�3=2j�jƒn=2C1=4; (2)

for all ƒ � �2

4r.�/2 . Note that this is almost what we aim to prove but the negative

correction term on the right-hand side differs from that in (1) both in terms of the

dependence on � and in the power of ƒ. However, provided the quantity r.�/2ƒ

remains bounded the two correction terms can be related as follows.

We claim that there is a universal constant c3 > 0 such that
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r.�/2 , which allows us to extend (1) to all ƒ � �2
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with a smaller constant c2). The existence of such a constant follows from
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where we in the second step used [6, eq. (13)],
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: (4)

This completes the proof of Theorem 1 for 
 D 1.
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To prove the case 
 > 1 we apply the Aizenman–Lieb identity [1] (see also [6,

Section 6]). For all ƒ � 0 and b 2 Œ0; 1� the case 
 D 1 implies that
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for some positive constants c1; c2. Here the positive part in the first inequality

is necessary as we do not distinguish between the two cases of Theorem 1. An

application of the Aizenman–Lieb identity yields
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(5)

for all ƒ � 0 and b 2 Œ0; 1�. From (4) we have j@�j
j�j

ƒ�1=2 � 2n
�

for all ƒ � �2

4r.�/2

and thus the claimed bound follows by choosing b sufficiently small. �

2. Proof of Corollary 2

The proof is as before based on the fact that

sup
ƒ�0

�
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To find a bound for the right-hand side of (6) we plug in a suitable choice of ƒ � 0

in the left-hand side and use Theorem 1 to bound the Riesz mean.

The natural choice to make is
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however we need to distinguish whether this quantity is less or greater than �2

4r.�/2 .

This case distinction is precisely what was missed in the erroneous proof given

in [6]. If ƒ0 � �2

4r.�/2 Theorem 1 implies that
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If ƒ0 � �2

4r.�/2 choose ƒ D �2

4r.�/2 . The results of [4, 7] (or Theorem 1) implies

that 1
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provided c D c.n/ > 0 is small enough. Let
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a;na1Cn=2. Therefore, by (4) and ƒ0 D a
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from which (7) follows for c sufficiently small.
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