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Eigenfunction asymptotics and spectral rigidity
of the ellipse

Hamid Hezari and Steve Zelditch

Abstract. Microlocal defect measures for Cauchy data of Dirichlet, resp. Neumann, eigen-
functions of an ellipse E are determined. We prove that, for any invariant curve for the billiard
map on the boundary phase space B�E of an ellipse, there exists a sequence of eigenfunctions
whose Cauchy data concentrates on the invariant curve. We use this result to give a new proof
that ellipses are infinitesimally spectrally rigid among C1 domains with the symmetries of the
ellipse.

In memory of Michael Shubin

1. Introduction

This note is part of a series [12, 13] on the inverse spectral problem for elliptical
domains E � R2. In [12], it is shown, roughly speaking, that an isospectral deform-
ation of an ellipse through smooth (but not necessarily real analytic) domains which
preserves the Z2 � Z2 symmetry is trivial. In [13], it is shown that ellipses of small
eccentricity are uniquely determined by their Dirichlet (or Neumann) spectra among
all C1 domains, with no analyticity or symmetry assumptions imposed. In both
[12,13], the main spectral tool is the wave trace singularity expansion and the special
form it takes in the case of ellipses. In this article, we take the dual approach of study-
ing the asymptotic concentration in the phase space B�@E of the Cauchy data ubj
of Dirichlet (or Neumann) eigenfunctions uj of elliptical domains in the unit coball
bundle of the boundary @E. In Theorem 1, we show that, for every regular rotation
number of the billiard map in the “twist interval” (or, equivalently, action ˛ in the
action interval), there exists a sequence of eigenfunctions whose Cauchy data con-
centrates on the invariant curve with that rotation number (resp. action) in B�@E. The
proof uses the classical separation of variables and one-dimensional WKB analysis.
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Before stating the results, we need to introduce some notation and background. An
orthonormal basis of Dirichlet (resp. Neumann) eigenfunctions in a bounded, smooth
Euclidean plane domain � is denoted by8̂̂<̂

:̂
.�C �2j /'j D 0; h'j ; 'ki WD

Z
�

'j N'kdx;

'j j@� D 0 .resp. @�'j j@� D 0/;

where as usual @� denotes the inward unit normal. The semi-classical Cauchy data is
denoted by

ubj WD

´
'j j@�; Neumann,

��1j @�'j j@�; Dirichlet.
(1)

The Cauchy data are eigenfunctions of the semi-classical eigenvalue problem

N.�j /u
b
j D u

b
j ;

where N.�/ (cut-off near the diagonal) is a semi-classical Fourier integral operator
quantizing the billiard map ˇWB�@�! B�@� away from the glancing set (see [11]
for the precise statement).

We are interested here in the quantum limits of the Cauchy data (1) of an orthonor-
mal basis of eigenfunctions of an ellipse, i.e. in the asymptotic limits of the matrix
elements

�bj .Op„.a// WD
hOp„.a/u

b
j ; u

b
j i

hubj ; u
b
j i

.„ D „j D �
�1
j / (2)

of zeroth order semi-classical pseudo-differential operators Op„.a/ on @E with respect
to the L2-normalized Cauchy data of eigenfunctions. We note that �bj is normalized
so that �bj .I / D 1 and is a positive linear functional, hence all possible weak* limits
are probability measures on the unit coball bundle B�@�. Moreover,

�j .N.�/
�Op„.a/N.�// D �j .Op„.a//;

so that the quantum limits are quasi-invariant under the billiard map (see [11] for
precise statements). In Theorem 1 we determine the quantum limits of sequences
in (2) for an ellipse. The proof uses many of the prior results on WKB formulae for
ellipse eigenfunctions, especially those of [16, 21, 26].

In large part, our interest in matrix elements (2) owes to the fact that the Hadamard
variational formulae for eigenvalues of the Laplacian with Dirichlet boundary condi-
tion expresses the eigenvalue variations as the special matrix elements (2) given byZ

@E

P�jubj j
2 ds (3)
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of the domain variation P� (not to be confused with �j ) against squares of the Cauchy
data (see Section 5.1). As stated in Corollary 2, the limits of such integrals over all
possible subsequences of eigenfunctions determines the “Radon transform” of P� over
all possible invariant curves for the billiard map. Under an infinitesimal isospectral
deformation, all of the limits are zero. We use this result to give a new proof of the
spectral rigidity result in [12]; see Theorem 4 and Corollary 5.

The principal motivation for studying the inverse Laplace spectral problems for
ellipses stems from the Birkhoff conjecture that ellipses are the only bounded plane
domains with completely integrable billiards. Strong recent results, due to A. Avila,
J. de Simoi, V. Kaloshin, and A. Sorrentino [2, 14], have proved local versions of
the Birkhoff conjecture using a weaker notion of integrability known as “rational
integrability,” i.e. that periodic orbits come in one-parameter families, namely invari-
ant curves of the billiard map with rational rotation number. In this article, Bohr–
Sommerfeld invariant curves play the principal role rather than curves of periodic
orbits (see Section 3.4). In Section 1.4 we formulate a “quantum” Birkhoff conjecture
that ellipses are the only quantum integrable billiard tables.

1.1. Statement of results

The first result pertains to concentration of Cauchy data of sequences 'j of Dirichlet
(resp. Neumann) eigenfunctions on invariant curves of the billiard map of an ellipse.
We denote by E the interior of the ellipse x2

a2
C

y2

b2
� 1, 0 � b < a, and choose the

elliptical coordinates .�; #/ by

.x; y/ D .c cosh � cos#; c sinh � sin#/:

Here,

c D
p

a2 � b2; 0 � � � �max D cosh�1.a=c/; 0 � # � 2�:

We denote the angular Hamiltonian, which we will also call action, by

I D p2#=c
2
C cos2 #:

The invariant curves of ˇ are the level sets of I . The range of I is called action inter-
val. There is a natural measure d�˛ on each level set I D ˛, called Leray measure,
which is invariant under ˇ and the flow of I . We refer to Section 2 for detailed defini-
tions and properties involving the billiard map of an ellipse, actions, invariant curves,
and the Leray measure.

Theorem 1. Let E be an ellipse. For any ˛ in the action interval of the billiard map
of E, there exists a sequence of separable (in elliptical coordinates) eigenfunctions
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¹'j º of eigenvalue �2j whose Cauchy data concentrates on the level set ¹I D ˛º, in the
sense that, for any zeroth order semi-classical pseudo-differential operator Op„.a/ on
B�@E with principal symbol a0,

hOp„j .a/u
b
j ; u

b
j i

hubj ; u
b
j i

!

R
ID˛

a0d�˛R
ID˛

d�˛
.hj D �

�1
j ! 0/; (4)

where

d�˛ D

8̂<̂
:

1p
c2.cosh2 �max � cos2 #/

d�˛; Dirichlet,

p

c2.cosh2 �max � cos2 #/ d�˛; Neumann.

(5)

In particular, we get the following result.

Corollary 2. In the special case when the symbol a.#;p#/D P�.#/ is only a function
of the base variable # , R

@E
P�jubj j

2 dsR
@E
jubj j

2 ds
!

R
ID˛
P� d�˛R

ID˛
d�˛

;

where ds D
p
c2.cosh2 �max � cos2 #/ d# is the arclength measure.

Remark 3. If we denote by � the symplectic dual variable of the arclength s, then
our quantum limit can be expressed as

d�˛ D

8̂<̂
:
p
1 � j�j2 d�˛; Dirichlet;
1p

1 � j�j2
d�˛; Neumann:

Although the formula in Theorem 1 may appear to have the numerator and denom-
inator reversed, in fact they are not. (See our computation of 1 � j�j2 in the proof of
Corollary 18.)

The appearance of the (non-invariant) factors
p
1 � j�j2 and 1=

p
1 � j�j2 is con-

sistent with the result of [11], where the quantum limits of boundary traces of ergodic
billiard tables are studied.

To our knowledge, Theorem 1 is the first result on microlocal defect measures
of Cauchy data of eigenfunctions in non-ergodic cases. (See Section 1.3 for related
results.) One of the difficulties in determining the limits of (2) is that the Cauchy data
ubj are not L2 normalized. It is shown in [10, Theorem 1.1] that there exist C; c > 0
so that

c � k��1j @�'j kL2.@�/ � C
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for Dirichlet eigenfunctions of Euclidean plane domains (and more general non-trap-
ping cases). Hence, the L2 normalization in (2) is rather mild. On the other hand,
the corresponding inequalities do not hold in general for Neumann eigenfunctions.
As pointed out in [10, Example 7], there are simple counter-examples to any constant
upper bound on the unit disc (whispering gallery modes). On the other hand, there do
exist positive lower bounds for convex Euclidean domains. But, lacking upper bounds,
the L2 normalization in (2) is necessary to obtain limits.

1.2. Spectral rigidity

Before stating the results, we review the main definitions. An isospectral deformation
of a plane domain �0 is a one-parameter family �t of plane domains for which the
spectrum of the Euclidean Dirichlet (or Neumann, or Robin) Laplacian�t is constant
(including multiplicities). The deformation is said a C 1 deformation through C1

domains if each�t is a C1 domain and the map t ! �t is C 1. We parameterize the
boundary @�t as the image under the map

x 2 @�0 ! x C �t .x/�x; (6)

where �t 2 C 1.Œ0; t0�; C1.@�//. The first variation is defined as

P�.x/ WD
d

dt

ˇ̌̌
tD0
�t .x/:

An isospectral deformation is said trivial if�t D �0 (up to isometry) for sufficiently
small t . A domain �0 is said spectrally rigid if all C1 isospectral deformations are
trivial.

In [12] the authors proved a somewhat weaker form of spectral rigidity for ellipses,
with “flatness” replacing “triviality.” Its main result is the infinitesimal spectral rigid-
ity of ellipses among C1 plane domains with the symmetries of an ellipse. We orient
the domains so that the symmetry axes are the x-y axes. The symmetry assumption
is then that �t is invariant under .x; y/! .˙x;˙y/. The variation is called infinites-
imally spectrally rigid if P�0 D 0.

The main result of [12] is:

Theorem 4. Suppose that �0 is an ellipse, and that �t is a C 1 Dirichlet (or Neu-
mann) isospectral deformation of �0 through C1 domains with Z2 � Z2 symmetry.
Let �t be as in (6). Then P� D 0.

Corollary 5. Suppose that �0 is an ellipse, and that t ! �t is a C 1 Dirichlet (or
Neumann) isospectral deformation through Z2 � Z2 symmetric C1 domains. Then
�t must be flat at t D 0.
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The proof of Theorem 4 in [12] used the variation of the wave trace. In the original
posting (arXiv:1007.1741) the authors used a more classical Hadamard variational
formula for variations of individual eigenvalues �j .t/, which appears in Section 5.1.
The authors rejected this approach in favor of the one appearing in [12] because it was
thought that this argument was invalid when the eigenvalues were multiple. When a
multiple eigenvalue of a 1-parameter family Lt of operators is perturbed, it splits into
a collection of branches which in general are not differentiable in t . Moreover, the
authors assumed that the variational formula would express the variation in terms of
special separable eigenfunctions (see Section 3). This created doubt that one could
use the variational formula for individual eigenvalues. Instead, the authors used the
variational formula for the trace of the wave group or equivalently for spectral pro-
jections, which are symmetric sums over all of the branches into which an eigenvalue
splits.

However, as we show in this article, the original variational formulae were in
fact correct even in the presence of multiplicities. The first point is that the non-
differentiability issue does not arise for an isospectral deformation since no splitting
occurs. Second, the vanishing of the variation of eigenvalues implies that the infin-
itesimal variation P� is orthogonal to squares of all (Dirichlet) eigenfunctions in the
eigenspace, and in particular the separable ones. More precisely, we prove thatZ

@E

P�jubj j
2 ds D 0:

Then, by Corollary 5, we obtain that for every ˛ in the action interval one hasZ
ID˛

P� d�˛ D 0: (7)

In the final step, we calculate the measure d�˛ and provide two proofs, one via invert-
ing an Abel transform and another using the Stone–Weierstrass theorem, that (7)
implies P� D 0. The proof in the Neumann case is similar and will be provided.

1.3. Related results and open problems

Quantum limits of Cauchy data on manifolds with boundary have been studied in
[7, 11] in the case where the billiard map ˇ is ergodic. To our knowledge, they have
not been studied before in non-ergodic cases. Theorem 1 shows that, as expected,
Cauchy data of eigenfunctions localize on invariant curves for the billiard map rather
than delocalize as in ergodic cases.

L2 norms of Cauchy data of eigenfunctions are studied in [10] in the Dirichlet case
and in [5] in the Neumann case. Further results on the quasi-orthonormality properties
of Cauchy are studied in [4, 9].

https://arxiv.org/abs/1007.1741
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The study of eigenfunctions in ellipses has a long literature and we make sub-
stantial use of it. We quote several articles in the physics literature, in particular
[21, 26], and several in mathematics [3, 16], for detailed analyses of eigenfunctions
of the quantum ellipse. There is also a series of articles of G. Popov and P. Topalov
(see e.g. [19, 20]) on the use of KAM quasi-modes to study Laplace inverse spectral
problems. In particular, in [20], Popov and Topalov also give a new proof of the rigid-
ity result of [12] and extend it to other settings. The approach in this article is closely
related to theirs, although it does not seem that the authors directly studied Cauchy
data of eigenfunctions of an ellipse.

The multiplicity of Laplace eigenvalues of an ellipse appears to be largely an open
problem. It is a non-trivial result of C. L. Siegel [22] that the multiplicities are either 1
or 2 in the case of circular billiards; multiplicity 1 occurs for, and only for, rotationally
invariant eigenfunctions. The Laplacians of the family of ellipses x2

a2
C

y2

b2
D 1 form

an analytic family containing the disk Laplacian, and one might try to use analytic
perturbation theory to prove the following,

Conjecture 6. For a generic class of ellipses the multiplicity of each eigenvalue is
� 2.

1.4. Quantum Birkhoff conjecture

As mentioned above, ellipses have completely integrable billiards, and the classical
Birkhoff conjecture is that elliptical billiards are the only completely integrable Euc-
lidean billiards with convex bounded smooth domains. Despite much recent progress,
the Birkhoff conjecture remains open.

The eigenvalue problem on a Euclidean domain is often called “quantum billiards”
in the physics literature (see e.g. [26]). One could formulate quantum analogues of
the Birkhoff conjecture in several related but different ways. The quantum analogue
of the Birkhoff conjecture is presumably that ellipses are the only quantum integ-
rable billiard tables. A standard notion of quantum integrability is that the Laplacian
commutes with a second, independent, (pseudo-differential) operator; we refer to [24]
for background on quantum integrability. In Section 3, we explain that the ellipse is
quantum integrable in that one may construct two commuting Schrödinger operat-
ors with the same eigenfunctions and eigenvalues. The symbol of the second operator
then Poisson commutes with the symbol of the Laplacian, hence the billiard dynamics
and billiard map are integrable. A related version is that one can separate variables in
solving the Laplace eigenvalue problem. It is not obvious that these two notions are
equivalent; in Section 3 we use both separation of variables and existence of commut-
ing operators in studying the ellipse. Classical studies of separation of variables and
its relation to integrability go back to C. Jacobi, P. Stäckel, L. Eisenhart, and others,
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and E. K. Sklyanin has studied the problem more recently. We do not make use of
their results here.

Quantum integrability is much stronger than classical integrability, and one might
guess that it is simpler to prove the quantum Birkhoff conjecture than the classical
one. Wave trace techniques as in [12, 13] reduce Laplace spectral determination and
rigidity problems to dynamical inverse or rigidity results. The wave trace only “sees”
periodic orbits and is therefore well adapted to results on rational integrability. The
dual approach through eigenfunctions studied in this article gives a different path to
the quantum Birkhoff conjecture, in which rational integrability and periodic orbits
play no role.

2. Classical billiard dynamics

In this section, and in the next one, we review some background definitions and results
on the classical and quantum elliptical billiard. We follow the notation of [21]; see also
[3, 26].

An ellipse E is a plane domain defined by

x2

a2
C
y2

b2
� 1; 0 � b < a:

Here, a (resp. b) is the length of the semi-major (resp. semi-minor) axis. The ellipse
has foci at .˙c; 0/ with c D

p
a2 � b2 and its eccentricity is e D c

a
. Its area is

�ab, which is fixed under an isospectral deformation. We define elliptical coordinates
.�; #/ by

.x; y/ D .c cosh � cos#; c sinh � sin#/:

Here,
0 � � � �max D cosh�1.a=c/; 0 � # � 2�:

The coordinates are orthogonal. The lines � D constant are confocal ellipses and the
lines # D constant are confocal hyperbolas. In the special case of the disc, we have
c D 0, but we assume henceforth that c 6D 0.

2.1. Action variables for the billiard flow

The billiard flow on the ellipse E is the (broken) geodesic flow of the Hamiltonian
H D p2x C p

2
y on T �E, which follows straight lines inside E and reflects on @E

according to equal angle law of reflection.
Action-angle variables on T �E are symplectic coordinates in which the billiard

flow of the ellipse is given by Kronecker flows on the invariant Lagrangian submani-
folds. We refer to [1] for the general principles and to [21] for the special case of the
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ellipse. Let p� and p# be the symplectic dual variables corresponding to the elliptic
coordinates � and # , respectively. The two conserved quantities of the system are the
energy (the Hamiltonian) H and the angular Hamiltonian I (which we also call the
“action”), given in the coordinates .�; p�; #; p#/ by

H D
p2� C p

2
#

c2.cosh2 � � cos2 #/
and I D

p2
#

cosh2 �C p2� cos2 #

p2� C p
2
#

:

In the notation of [23],

I D cos2 � cosh2 �C sin2 � cos2 #;

where � is the angle between a trajectory of the billiard flow and a tangent vector
to the confocal ellipse with parameter �. Note also that by the notation of [21], I D
1C L1L2

c2H
whereL1L2 is the product of two angular momenta about the two foci. The

values of I are restricted to

0 � I �
a2

c2
D cosh2.�max/:

The upper limit I D cosh2.�max/ corresponds to the motion along the boundary and
the lower limit I D 0 corresponds to the motion along the minor axis. Moreover,
there are two different kinds of motion in the ellipse depending on the sign of I . For
1 < I < cosh2.�max/, the trajectories have a caustic in the form of a confocal ellipse.
For 0 < I < 1, the caustic of the motion is a confocal hyperbola and the trajectories
cross the x-axis between the two focal points. Both kinds of motions are separated by
a separatrix which consists of orbits with I D 1 that go through the focal points of the
ellipse.

In terms of H and I , the canonical momenta are given by

p2� D c
2.cosh2 � � I /H and p2# D c

2.I � cos2 #/H: (8)

Therefore, the action variables are

I� D
1

2�

Z
p� d� D

c
p
H

�

Z
cosh2 ��I
��0

q
cosh2 � � I d�; (9)

I# D
1

2�

Z
p# d# D

c
p
H

�

Z
cos2 #�I
0�'��

p

I � cos2 # d#: (10)

In fact, these are the actions for the half-ellipse 0 � ' � � . The integrals can be
calculated in terms of I using elliptic integrals of first and second kind (See [21]).
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The actions will play a key role in Section 3.4 in the description of Bohr–Sommerfeld
quantization conditions for the eigenvalues of the Laplacian.

2.2. Billiard map, invariant curves, Leray measure, and action-angle variables

The billiard map of an ellipseE (or in general any smooth domain) is a cross section to
the billiard flow on S�

@E
E, which we always identify with B�@E and call phase space

of the boundary. To be precise, the billiard map ˇ is defined on B�@E as follows:
given .s; �/ 2 T �@E, with s being the arc-length variable measured in the counter-
clockwise direction from a fixed point, say s0, and j�j � 1, we let .s; �/ 2 S�E be
the unique inward-pointing unit covector at s which projects to .s; �/ under the map
T �
@E
E ! T �@E. Then, we follow the geodesic (straight line) determined by .s; �/ to

the first place it intersects the boundary again; let s0 2 @E denote this first intersection.
(If j�j D 1, then we let s0 D s.) Denoting the inward unit normal vector at s0 by �s0 ,
we let �0 D � C 2.� � �s0/�s0 be the direction of the geodesic after elastic reflection at
s0, and let �0 be the projection of �0 to T �s0Y . Then we define

ˇ.s; �/ D .s0; �0/:

A theorem of Birkhoff asserts that billiard map preserves the natural symplectic
form ds ^ d� on B�@E, i.e.

ˇ�.ds ^ d�/ D ds ^ d�:

In the literature, the coordinates .s; �/ are commonly used for phase space of the
boundary, where � 2 Œ0;�� is the angle that � makes with the positive tangent direction
at s. In these coordinates,

ds ^ d� D sin � d� ^ ds:

An invariant set in B�@E is a set C such that ˇ.C / D C . An invariant curve is a
curve (connected or not) on the phase space that is invariant. The phase space B�@E
of the ellipse E is in fact foliated with invariant curves. More precisely:

Lemma 7. The invariant curves of the billiard map ˇ W B�@E! B�@E are level sets
of I WB�@E ! R defined by

I D
p2
#

c2
C cos2 #:

Proof. It follows quickly from the second equation of (8) and from the fact thatH D 1
on S�@E.
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The two conserved quantities of the system are the energy and the product L1L2 of the
two angular momenta about the two foci

L1L2 =
p
2
v
sinh2 u � p

2
u sin

2
v

cosh2 u � cos2 v
. (6)

It is more convenient to use another conserved quantity, instead of L1L2, which is energy
independent and is determined by the geometrical properties of a trajectory only. This
is ↵ = L1L2/E whose values are restricted to the range b

2 > ↵ > �c
2. The upper

limit ↵ = b
2 corresponds to the motion along the boundary and the lower limit ↵ = �c

2

corresponds to the motion along the minor axis.
In terms of E and ↵, the canonical momenta, are given by

p
2
u = E(c

2 sinh2 u � ↵)

p
2
v

= E(c
2 sin2 v + ↵).

(7)

There are two different kinds of motion in the ellipse depending on the sign of ↵. For
0 < ↵ 6 b

2 the trajectories have a caustic in the form of a confocal ellipse with semiminor
axis b

0 =
p

↵. The motion goes around the two focal points and is composed of a libration
in the coordinate u and a rotation in the coordinate v. For �c

2 6 ↵ < 0 the caustic of the
motion is a confocal hyperbola with semiconjugate axis b

0 =
p

�↵ and semitransverse axis
a

0 =
p

c2 + ↵. The motion is composed of a libration in the coordinate u and a libration in
the coordinate v, and the trajectories cross the x-axis always between the two focal points.
Both kinds of motions are separated by a separatrix which consists of orbits with ↵ = 0
that go through the focal points of the ellipse.

Figure 1 shows a Poincaré section through the classical motion in an ellipse for different
initial conditions. The boundary of the billiard is chosen as the surface of the section and on
this surface the reflections are described in Birkhoff coordinates: s is the arclength along the
billiard boundary and p is the cosine of the angle between the outgoing trajectory and the
tangent to the boundary at the reflection point. The two lines through (s, p) = (0, 0) mark
the separatrix of the motion. The lines inside the separatrix correspond to the librational
motion with ↵ < 0 and the lines outside the separatrix correspond to the rotational motion

–1.0

–0.5

0.0

0.5

1.0

s/L

Figure 1. A Poincaré section through the motion in an ellipse with b

a
=

9
11 . The boundary of

the billiard is taken as surface of section and the reflections are described in Birkhoff coordinates
s and p. L denotes the perimeter of the ellipse.

Figure 1. Invariant curves and caustics.

Although I# is the classical angular action on B�@E, we shall call I the action,
as it is more convenient and is related to I# via the one-to-one correspondence (10).
As is evident from the Figure 1, the separatrix curve I D 1 divides the phase space
into two types of open sets, the exterior corresponding to trajectories with confocal
elliptical caustics (1 < I < cosh2 �max) and the interior to trajectories with confocal
hyperbolic caustics (0 < I < 1).

2.2.1. Leray measure. On each level set I D ˛ of I , there is a natural measure d�˛
called Leray measure which in invariant under ˇ and the flow generated by I . In the
symplectic coordinates .#; p#/, and on I D ˛, it is given by

d�˛ D
d# ^ dp#

dI
:

Since d# ^ dI D @I
@p#

d# ^ dp# , we obtain that

d�˛ D
c2

2p#

ˇ̌̌
ID˛

d# D
c

2
.˛ � cos2 #/�1=2C d#: (11)

Here, xC D x if x > 0 and is zero otherwise. Up to a scalar multiplication, d�˛ is a
unique measure that is invariant under ˇ and the flow of I .
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2.2.2. Action-angle variables and rotation number. The billiard map has a Birk-
hoff normal form around each invariant curve in B�@E. That is, in the symplectically
dual angle variable � to I , the billiard map has the form ˇ.I; �/D .I; �C r.I //, where
r is often called the rotation number of the invariant curve. An explicit formula for it
is given in [23, eq. (3.5)] , [6, Section 4.3 (11)], and [17]. If 0 < I < 1,

r.I / D
�

2F.
p
I /
F
�

arcsin
� 2 tanh.�max/

p
cosh2 �max � I

cosh2 �max � I C I tanh2 �max

�
;
p
I
�
;

where

F.z; k/ D

zZ
0

d�
p

1 � k2 sin2 �
; F.k/ D F

��
2
; k
�
:

Also, if 1 < I < cosh2.�max/, then

r.I / D
�

2F.1=
p
I /
F
�

arcsin
�p

I
2 tanh.�max/

p
cosh2 �max � I

cosh2 �max � I C I tanh2 �max

�
;
1
p
I

�
:

Definition. We define the range of the action variable I as the action interval, i.e. the
interval Œ0; cosh2.�max/�, and the range of r.I / as the rotation interval.

3. Quantum elliptical billiard

The Helmholtz equation in elliptical coordinates takes the form

�

� @2
@�2
C

@2

@#2

�
' D �2c2.cosh2 � � cos2 #/': (12)

The quantum integrability of � owes to the fact that this equation is separable. We
put

'.�; #/ D F.�/G.#/; (13)

and separate variables to get the coupled Mathieu equations8̂̂<̂
:̂
„2

c2
F 00.�/C cosh2 �F.�/ D ˛F.�/ DBC (resp. NBC),

�
„2

c2
G00.#/C cos2 #G.#/ D ˛G.#/ PBC.

(14)

where „ D ��1 and ˛ is the separation constant. Here, PBC stands for “periodic
boundary conditions,” while DBC (resp. NBC) stands for “Dirichlet boundary condi-
tions” (resp. “Neumann boundary conditions”). Thus, we consider pairs .„; ˛/ where
there exists a smooth solution of the two boundary problems.
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Each of the angular and radial equations above is an eigenvalue problem for a
semi-classical Schrödinger operator with boundary conditions on a finite interval.
These commuting operators are given by

Op„.J / W J D �p2�=c
2
C cosh2.�/I (15)

Op„.I / W I D p2#=c
2
C cos2.#/: (16)

The boundary conditions on F take the form

F.�max/ D 0 .Dirichlet/; F 0.�max/ D 0 .Neumann/: (17)

As G.�#/ is a solution whenever G.#/ is, we restrict our attention to 2�-periodic
solutions to the angular equation which are either even or odd. One can then see that:

Remark 8. In order to obtain solutions well defined on the line segment joining the
foci, i.e. at � D 0, solutions to the radial equation must satisfy the boundary condition
F 0.0/D 0 in case the solutionG is even and F.0/D 0 in caseG is odd. In these cases
the solutions F are also respectively even and odd functions.

3.1. Mathieu and modified Mathieu characteristic numbers

For each fixed „, the angular problem is a Sturm–Liouville problem and thus there
exist real valued sequences ¹a0n.„/º

1
nD0 and ¹b0n.„/º

1
nD1 so that it has 2�-periodic

non-trivial solutions – even solutions if ˛ D an.„/ and odd solutions if ˛ D bn.„/.
Here, even or odd is with respect to # ! �# , or equivalently y ! �y. We represent
the corresponding solutions by Ge

n.#;„/ and Go
n.#;„/, respectively. The even indices

correspond to �-periodic solutions, thus they must be invariant under # ! � � # , or
equivalently be even with respect to x ! �x. Solutions with odd indices have anti-
period � and correspond to odd solutions in the x variable. The sequences a0n.„/ and
b0n.„/ are related to the standard Mathieu characteristic numbers of integer orders
an.q/ and bn.q/ by

a0n.„/ D
1

2
C
an.q/

4q
; b0n.„/ D

1

2
C
bn.q/

4q
; q D

c2

4„2
: (18)

Thus, using the well-known properties of an and bn, for „ > 0 we have

a00.„/ < b
0
1.„/ < a

0
1.„/ < b

0
2.„/ < a

0
2.„/ < b

0
3.„/ < � � � ; (19)

b0nC1.„/ � a
0
n.„/ D On.e

�C=„/; C > 0: (20)

The sequence (19) is precisely the spectrum of the angular Schrödinger operator on
the flat circle R=.2�Z/.
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Similarly for the radial problem (say with Dirichlet boundary condition given by
F.�max/ D 0), for each „, there exist sequences ¹A0m.„/º

1
mD0 and ¹B 0m.„/º

1
mD1 such

that the radial problem has a non-trivial even solution F e
m.�; „/ if ˛ D A0m.„/, and a

odd solution F o
m.�;„/ if ˛ D B 0m.„/. The sequences of A0m.„/ and B 0m.„/ are related

to modified Mathieu characteristic numbers Am.q/ and Bm.q/ (see [18]) by the same
relations as in (18). They form the spectrum of the radial semi-classical Schrödinger
operator on the interval Œ��max; �max� with Dirichlet boundary condition and satisfy

A00.„/ < B
0
1.„/ < A

0
1.„/ < B

0
2.„/ < A

0
2.„/ < B

0
3.„/ < � � � : (21)

3.2. Eigenvalues of E : Intersection of Mathieu and modified Mathieu curves

In order to find eigenfunctions of the ellipse E, one has to search specific values of „
such that both radial and angular Sturm–Liouville problems possess non-trivial solu-
tions for the same value of ˛. By Remark 8, we only consider the separable solutions

F e
m.�; „/G

e
n.#; „/ and F o

m.�; „/G
o
n.#; „/:

Thus, the frequencies of E with Dirichlet boundary condition1 are of the form

�e
mn D

1

„e
mn

and �o
mn D

1

„o
mn

;

where „e
mn and „o

mn are, respectively, solutions to

a0n.„/ D A
0
m.„/ and b0n.„/ D B

0
m.„/: (22)

The existence of the point of intersection of the curves a0n.„/ with A0m.„/, and b0n.„/
with B 0m.„/ are guaranteed by:

Theorem 9 (Neves [18]). For each .m; n/, there is a unique positive solution q to
each of the equations an.q/ D Am.q/ and bn.q/ D Bm.q/.

Hence, the same statement holds for (22) by the correspondence (18). The fre-
quencies �j of E are obtained by sorting ¹�e

mn; �
o
mnI .m; n/ 2 N2º in increasing

order.

3.3. Symmetries classes

The irreducible representations of the Z2 � Z2 symmetry group are real one-dimen-
sional spaces, so that there exists an orthonormal basis of eigenfunctions of the ellipse
which are even or odd with respect to each Z2 symmetry, i.e. have one of the four

1In the Neumann case, An and Bm are different from the ones for the Dirichlet case.
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even in x, even in y odd in x, even in y

even in x, odd in y odd in x, odd in y

Figure 2. Symmetries classes of Dirichlet eigenfunctions corresponding to the first four eigen-
values, shown by their probability densities.

symmetries

(even, even), (even, odd), (odd, even), (odd, odd),

where the first and the second entries correspond to symmetries with respect to x !
�x and y !�y, respectively. Given the above discussion, the symmetric eigenfunc-
tions are8̂̂̂̂

ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

(even, even): 'e
m;2k
D F e

m.�; „/G
e
2k
.#; „/I „ D „

e
m;2k

;

(even, odd): 'o
m;2k
D F o

m.�; „/G
o
2k
.#; „/I „ D „

o
m;2k

;

(odd, even): 'e
m;2kC1

D F e
m.�; „/G

e
2kC1

.#; „/I „ D „e
m;2kC1

;

(odd, odd): 'o
m;2kC1

D F o
m.�; „/G

o
2kC1

.#; „/I „ D „o
m;2kC1

:

(23)

Figure 2 shows the symmetries classes of eigenfunctions distinguished by their
probability densities. It is possible that two symmetric eigenfunctions correspond to
the same eigenvalue, or it is possible that they correspond to different eigenvalues.

3.4. Semi-Classical actions and Bohr–Sommerfeld quantization conditions for
the ellipse

Graphs of the one-dimensional classical potentials are given in [26, Figure 1]. The
potential � cosh2 � for Op„.J / in (15) is a potential barrier with a single local max-



H. Hezari and S. Zelditch 38

imum which is symmetric around the vertical line through the local maximum. The
classical potential cos2 # underlying Op„.I / in (16) is a double-well potential on the
circle. Thus, there exists a separatrix curve corresponding to the two local maxima of
the potential, which divides the two-dimensional phase space into two regions. Inside
the phase space curve, the level sets of the potential are “circles” paired by the left-
right symmetry across the vertical line through the local maximum at � . Outside the
separatrix, the level sets have non-singular projections to the base, i.e. are roughly
horizontal.

As will be seen below, the Bohr–Sommerfeld levels inside the separatrix are
invariant under the up-down symmetry and have two components exchanged by the
left-right symmetry. The levels outside the separatrix are invariant under the left-right
symmetry and are exchanged under the up-down symmetry.

It is more important for our purposes to determine the lattice of semi-classical
eigenvalues in terms of classical and quantum action variables. The WKB (or EKB)
quantization for the actions are given in [21, eq. (33)] (see also [16] for the original
reference). Up to O.„2/, terms they have the form

odd in y

8̂<̂
: I > 1W I� D

�
mC

3

4

�
„; I# D .nC 1/„; m; n D 0; 1; 2; : : : ;

I < 1W I� D .mC 1/„; I# D
�
nC

1

2

�
„; m; n D 0; 1; 2; : : : ;

even in y

8̂̂<̂
:̂
I > 1W I� D

�
mC

3

4

�
„; I# D n„; m; n D 0; 1; 2; : : : ;

I < 1W I� D
�
mC

1

2

�
„; I# D

�
nC

1

2

�
„; m; n D 0; 1; 2; : : : :

(24)
There is a discontinuity at I D 1 due to the separatrix curve, but it is not important
for our problem and we ignore it.

3.4.1. Semi-Classical action. In fact, for each of the eight Bohr–Sommerfeld quant-
ization condition above, there is a version which is valid to all orders in „ which
are essentially given by the quantum Birkhoff normal form around each orbit under
consideration. To be precise, there exist eight so-called “semi-classical actions”

S
e=o;1˙;�=#

„
.˛/;

where the choices of e=o corresponds to even or odd in the y (equivalently in the #)
variable, of 1C or 1� to I > 1 or I < 1, and � or # to actions in the � or # variable,
respectively. Each of the eight semi-classical actions has an „ asymptotic expansion
of the form

S„.˛/ D S0.˛/C „S1.˛/C „
2S2.˛/C � � � ;
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where S0.˛/ is the corresponding classical action which is I�jID˛ for Se=o;1
˙;�

„
and

I# jID˛ for Se=o;1
˙;#

„
. (See equations (10) and (9) for formulae for the classical actions

in terms of I D ˛.) Then the Bohr–Sommerfeld Quantization Conditions (BSQC) to
all orders are given by

S
e=o;1C;�

„
.˛e=o;1

C;�
m .„// D m„; valid uniformly for ˛ 2 Œ1C "; cosh2 �max � "�;

(25)

S
e=o;1C;#

„
.˛e=o;1

C;#
n .„// D n„; valid uniformly for ˛ 2 Œ1C "; cosh2 �max � "�

(26)

S
e=o;1�;�

„
.˛e=o;1

�;�
m .„// D m„; valid uniformly for ˛ 2 Œ"; 1 � "�; (27)

S
e=o;1�;#

„
.˛e=o;1

�;#
n .„// D n„; valid uniformly for ˛ 2 Œ"; 1 � "�; (28)

where " > 0 is arbitrary, however the remainder estimates in the asymptotic expan-
sions depend on ". There are versions of BSQC in the literature that are valid uni-
formly near the separatrix, but we do not them here. We also point out that the Maslov
indices are not ignored, but absorbed in the corresponding subleading terms S1.˛/.

Remark 10. By our notations of Section 3.1 on the Mathieu and modified Mathieu
characteristic values, away from the separatrix level we have

¹˛e;1
˙;�

m .„/Wm D 0; 1; 2; : : : º D ¹A0m.„/Wm D 0; 1; : : : º;

¹˛o;1
˙;�

m .„/Wm D 0; 1; 2; : : : º D ¹B 0m.„/Wm D 1; 2; : : : º;

¹˛e;1
˙;#

n .„/Wn D 0; 1; 2; : : : º D ¹a0n.„/Wn D 0; 1; : : : º;

¹˛o;1
˙;#

n .„/Wn D 0; 1; 2; : : : º D ¹b0n.„/Wn D 1; 2; : : : º:

The eigenvalues of E are determined by intersecting the above analytic curves as

˛e;1
˙;�

m .„/ D ˛e;1
˙;#

n .„/; ˛o;1
˙;�

m .„/ D ˛o;1
˙;#

n .„/; (29)

the solutions of which are precisely „emn and „omn, respectively, that we introduced in
Section 3.2.

3.5. Keller–Rubinow algorithm

In this section we explore the procedure of finding „emn corresponding to eigenvalues
associated to invariant curves outside the separatrix (i.e. 1C case) whose eigenfunc-
tions are even in the # variable. All other cases follow a similar procedure and we
shall drop the superscripts for convenience.
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We are in search of solutions to equation (29) which, in our convenient notation,
are given by

˛�m.„/ D ˛
#
n .„/; (30)

where the left and the right-hand sides satisfy the BSQC (25) and (26),

S
�

„
.˛�m.„// D m„; S#

„
.˛#n .„// D n„; (31)

respectively. Following [16], we divide these two equations to obtain

A„.˛/ WD
S
�

„
.˛/

S#
„
.˛/
D
I�.˛/ �

3
4
„ C

P1
kD2 S

�

k
.˛/„k

I#.˛/C
P1
kD2 S

#
k
.˛/„k

D
m

n
: (32)

The expression A„.˛/ has a classical „ expansion with principal term

A0.˛/ WD
I�.˛/

I#.˛/
; (33)

which is a positive monotonic function on the interval Œ1;cosh2 �max� (See [16, p. 41]).
Hence, if we choose r in the range of A0.˛/ on the domain Œ1C 2"; cosh2 �max � 2"�,
then for „ sufficiently small there is a unique solution ˛ to the equation A„.˛/ D r
in the slightly larger interval Œ1C "; cosh2 �max � "�, accepting an „ expansion of the
form

˛.„; r/ D

1X
kD0

˛.k/.r/„
k : (34)

It is manifestly the inverse function of Ah.˛/ and its formal power series coefficients
˛.k/.r/ are smooth functions of r . The principal term ˛.0/ is the inverse function of
A0.˛/. By this definition, the solution to (32) is ˛.„;m=n/ wheneverm=n belongs to
A0Œ1C 2"; cosh2 �max � 2"�, which is a bounded closed interval in .0;1/. In partic-
ular, m=n is bounded above and below by positive constants K1 and K2:

.m; n/ 2 N2
W K1 �

m

n
� K2: (35)

This is the eligible sector of lattice points for our eigenvalue problem outside the sep-
aratrix. Plugging ˛.„; m=n/ into the angular BSQC, i.e. the second equation of (31)
(the radial one follows immediately from the angular one and (32)), we arrive at the
quantization condition for the eigenvalues of E:

Q.„; m; n/ WD
1

n
S#
„
.˛.„; m=n// D „: (36)

We claim that, for m and n sufficiently large, this equation has a unique solution „mn
in a sufficiently small interval Œ0; „0�, or equivalently the function Q.�; m; n/ has a
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unique fixed point. Now, since

Q.0;m; n/ D
I#.˛.0/.m=n//

n
;

@Q

@„
.0;m; n/ D 0;

for „0 sufficiently small and n sufficiently large, Q.�; m; n/ maps Œ0; „0� into itself
and @Q

@„
.„; m; n/ < 1

2
in this interval. The claim follows by the Banach contraction

principle.

Remark 11. Since there are many functions ˛ used, it is important to highlight their
relations and differences. If we evaluate ˛.„; r/, defined in (34), at „ D „m;n and
r D m

n
, we get the common value of (30). In short,

˛
�
„mn;

m

n

�
D ˛�m.„mn/ D ˛

#
n .„mn/:

We also note that the function ˛.0/.r/, with parentheses around 0, is the principal term
of ˛.„; r/ and should not be confused with ˛�0.„/ or ˛#0 .„/.

In fact, the above procedure provides an asymptotic for �mn D 1=„mn and gives
a sharper result than previously known:

Proposition 12. The frequencies �e=omn of E associated to invariant curves outside the
separatrix curve, and " away from it, correspond to lattice points .m; n/ 2 N2 in the
sector

min
° I�.˛/
I#.˛/

W˛ 2 Œ1C "; cosh2 �max � "�
±

�
m

n
� max

° I�.˛/
I#.˛/

W˛ 2 Œ1C "; cosh2 �max � "�
±
;

and satisfy the asymptotic property

�e=omn D
n

I#.˛.0/.m=n//
CO

�1
n

�
:

The same asymptotic formula holds for the frequencies �e=omn associated to invariant
curves inside the separatrix curve, except in this case the sector of lattice points is

min
° I�.˛/
I#.˛/

W˛ 2 Œ"; 1 � "�
±
�
m

n
� max

° I�.˛/
I#.˛/

W˛ 2 Œ"; 1 � "�
±
:

The effects of even/odd are only reflected in the remainder term O.1=n/, which in
addition depends on the distance " from the separatix. Note that the explicit formulae
for I# and I� (hence for ˛.0/) in terms of elliptic integrals are different for the inside
and outside the separatrix curve. (See for example [21].)
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4. Localization of boundary values of separable eigenfunctions on
invariant curves. Proof of Theorem 1

We relate semi-classical asymptotics of eigenfrequencies �e/o
m;n D 1=„

e/o
m;n and of the

associated separated eigenfunctions 'e/o
m;n defined by (23) along “ladders” or “rays”

in the action lattice .m; n/ 2 N2. In particular, different rays correspond to different
invariant Lagrangian submanifolds for the billiard flow. It is simpler to use the billiard
map and then to relate rays in the joint spectrum to invariant curves for the billiard
map. Given an invariant curve, inside or outside the separatrix, we wish to find a
ray in the joint spectrum for which the associated eigenfunctions concentrate on the
curve. Since the WKB method is highly developed in dimension one, it suffices for
our purposes to locate the ray in N2 which corresponds to the invariant curve. The
corresponding eigenfunctions will then concentrate on the corresponding Lagrangian
submanifolds.

Proposition 13. Let 'e=om;n.�; #/ be a separable Dirichlet (resp. Neumann) eigenfunc-
tion defined in (23). Then the “modified boundary trace”

ue=om;n.#/ D

8̂̂<̂
:̂
'e=om;n.�; #/j�D�max ; Neumann,

1

�
e=o
mn

@'
e=o
m;n.�; #/

@�

ˇ̌̌
�D�max

; Dirichlet,

is an eigenfunction of the angular Schrödinger operator ¹Op„.I /º„D„e/o
m;n

, whose
eigenvalue ˛ is determined by

hOp„.I /u
e=o
m;n; u

e=o
m;niL2.@E/

hu
e=o
m;n; u

e=o
m;niL2.@E/

; (37)

which is ˛e=o;1
C;#

n .„/ if it is > 1 and ˛e=o;1
�;#

n .„/ if it is < 1.

Proof. The proof is obvious by equations (23), (14), and (16).

Remark 14. It is important to note that, although in the Neumann case, our modified
boundary trace ue=om;n is the same as the boundary trace .ue=om;n/b defined by (1), but
they are slightly different in the Dirichlet case, as in this case

.ue=om;n/
b
D �

1p
c2.cosh2 �max � cos2 #/

ue=om;n;

which is due to the relation

@

@�
D �

1p
c2.cosh2 �max � cos2 #/

@

@�

ˇ̌̌
�D�max

:
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Our goal is to show that, for any invariant curve I D ˛ of the billiard map lying
inside or outside the separatrix curve, there exists a ladder of separable eigenfunctions
'
e=o
m;n whose Cauchy data .ue=om;n/b concentrates on the invariant curve in B�@E. In

order to prove this we first need the following lemma.

Lemma 15. For any ˛ 2 Œ0; cosh2 �max�, there exists a subsequence of

¹„
e=o
mn W .m; n/ 2 N2

º

(for either Dirichlet or Neumann boundary conditions) along which the eigenvalues
of the semi-classical angular operator ¹Op„.I /ºj„D„e=omn converges to ˛. Here, e=o
means that any choice of even or odd can be selected.

Proof. It suffices to prove that

(1) for any ˛ 2 .1; cosh2 �max/ corresponding to invariant curves outside the sep-
aratrix, there exists a subsequence of ¹„e=omn W .m;n/2N2º (for either Dirichlet
or Neumann boundary conditions) along which

˛e=o;1
C;#

n .„e=omn/! ˛I

(2) for any ˛ 2 .0;1/ corresponding to invariant curves inside the separatrix, there
exists a subsequence along which

˛e=o;1
�;#

n .„e=omn/! ˛:

A density argument would take care of the levels ˛ D 0, 1 and cosh2 �max.
We shall only prove (1), as the proof of (2) is similar. Furthermore, we shall

only focus on the even case, because the proof for the odd case is identical. Fix
˛ 2 .1; cosh2 �max/. We choose " > 0 so that ˛ 2 Œ1C 2"; cosh2 �max � 2"�. Let „mn
be the sequence we found in Section 3.5 associated to the level curves outside the sep-
aratrix and to even eigenfunctions (even in the y variable). By Remark 11, it suffices
to show that there is a subsequence .mj ; nj / along which

˛
�
„mj ;nj ;

mj

nj

�
! ˛ as j !1:

We choose r0 by ˛.0/.r0/D ˛ (recall that ˛.0/ is monotonic) and a sequence of lattice
points .mj ; nj / 2 N2 in the eligible sector (35) such that

mj

nj
! r0 and j.mj ; nj /j ! 1:

Since ˇ̌̌
˛
�
„mj ;nj ;

mj

nj

�
� ˛.0/

�mj
nj

�ˇ̌̌
D O.„mjnj / D O.n�1j /;

the lemma follows by letting j !1 and using the continuity of ˛.0/.
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4.1. Quantum limits of Cauchy data and the proof of Theorem 1

By Proposition 13, the modified boundary traces ue=om;n.#/ of the separable eigenfunc-
tions 'e=om;n.�; #/ of � are eigenfunctions of the semi-classical angular Schrödinger
operator ¹Op„.I /º„D„e=omn . It is well known that eigenfunctions of 1D semi-classical
Schrödinger operators localize on level sets of the symbol. Thus, if we fix ˛ in the
action interval and choose a sequence of ¹„e=omnº provided by Lemma 15, then we
know that along this sequence the quantum limit of jue=om;nj2d# is a measure on B�@E
that is supported on I D ˛. We also know, by Egorov’s theorem, that this measure
must be invariant under the flow of I , therefore the quantum limit must be the Leray
measure d�˛ . Since, by Remark 14, in the Dirichlet case the boundary traces .ue=om;n/b

differ from u
e=o
m;n by a factor .c2.cosh2 �max � cos2 #//�1=2 caused by the conformal

transformation from Cartesian to elliptical coordinates, and since

ds D
p

c2.cosh2 �max � cos2 #/ d#;

we get

j.ue=om;n/
b
j
2 ds D

1p
c2.cosh2 �max � cos2 #/

jue=om;nj
2 d#

!
d�˛p

c2.cosh2 �max � cos2 #/
;

which proves Theorem 1 in the Dirichlet case. The Neumann case is essentially the
same; we omit the details.

5. Hadamard variational formulae for isospectral deformations

We consider the Dirichlet (resp. Neumann) eigenvalue problems for a one parameter
family of Euclidean plane domain �t , where �0 D E is an ellipse:´

��'j .t/ D �
2
j .t/'j .t/ in �t ;

'j .t/ D 0 .resp. @�t'j .t/ D 0/ on @�t :
(38)

Here, @�t is the interior unit normal to @�t . When �2j .0/ is a simple eigenvalue, then
under a C 1 deformation the eigenvalue moves in a C 1 curve �2j .t/. When �2j .0/ is a
multiple eigenvalue, then in general the eigenvalue may split into branches. Examples
in [15] show that eigenfunctions do not necessarily deform nicely if the deformation
is not analytic. Hence, we cannot even assume that the eigenfunctions are C 1 if the
deformation is only C 1. However, we assume in this section that the deformation is
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isospectral. In this case, a multiple eigenvalue does not change multiplicity under the
deformation, and therefore there is no splitting into branches.

When an eigenvalue has multiplicity>1, there exists an orthonormal basis (known
as the Kato–Rellich basis) of the eigenspace which moves smoothly under the deform-
ation. The multiple eigenvalue splits under a generic perturbation and one can only
expect a perturbation formula along each path. When we assume that the deforma-
tion is isospectral, hence that the eigenvalue does not split (or even change) along the
deformation, then there exists a Kato–Rellich basis for the eigenspace.

5.1. Hadamard variational formulae

As in the introduction, we parameterize the deformation by a function �t on @E so
that @�t is the graph of �t over @�0 D @E in the sense that

@�t D ¹x C �t .x/�x W x 2 @�0º:

If P� WD d
dt
�t
ˇ̌
tD0
6D 0, then the first order variation of eigenvalues is the same as for

the deformation by x C t P�.x/�x . In this section, we review the Hadamard variational
formula in the case of simple eigenvalues. We refer to [12, Section 1] for background
on the Hadamard variational formula.

When �2j .0/ is a simple eigenvalue (i.e. of multiplicity one) with L2-normalized
eigenfunction 'j , then Hadamard’s variational formula for plane domains is given by

Dirichlet: .�2j /
�
D

Z
@�0

.@�'j /
2
P� ds; (39)

where ds is the induced arc-length measure. Hence, under an infinitesimal isospectral
deformation, for every simple eigenvalue,

Dirichlet:
Z
@�0

.@�'j /
2
P� ds D 0: (40)

Hadamard’s variational formula is actually a variational formula for the variation
of Green’s functions G.�; x; y/ with the given boundary conditions. In the Dirichlet
case, it states that

PG.�; x; y/ D �

Z
@�0

@

@�1
G.�; q; x/

@

@�1
G.�; q; y/ P� ds:

Formula (40) follows if we compare the poles of order two on each side. The same
comparison shows that if the eigenvalue �2j .0/ is repeated with multiplicity m.�j .0//
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and if ¹�jk.t/º
m.�j .0//

jD1 is the perturbed set of eigenvalues, then

d

dt

ˇ̌̌
tD0

m.�j .0//X
kD1

�2jk.t/ D

m.�j .0//X
kD1

Z
@�0

.@�'j;k/
2
P� ds:

Here ¹'j;kº
m.�j .0//

jD1 is any ONB of the repeated eigenvalue �2j .0/.
There exist similar Hadamard variational formulae in the Neumann case. When

the eigenvalue is simple, we have

.�2j /
�
D

Z
@�0

.jr@�0.'j /j
2
� �2j '

2
j / P� ds;

hence
Neumann:

Z
@�0

.jr@�0.'j /j
2
� �2j '

2
j / P� ds D 0: (41)

5.2. Hadamard variational formula for an isospectral deformation

We now assume that the deformation is isospectral. As mentioned above, there exists
a Kato–Rellich basis which moves smoothly under the deformation. In fact, we show
that for an isospectral deformation every eigenfunction has a smooth deformation
along the path. In the following��t denotes the Dirichlet (resp. Neumann) Laplacian
on �t .

Lemma 16. Suppose that �t is a C 1 Dirichlet (resp. Neumann) isospectral deform-
ation. Then any eigenfunction 'j .0/ of ��0 on �0, has a C 1 deformation 'j .t/ of
eigenfunctions of ��t on �t .

Proof. Let �2j .0/ be the eigenvalue of 'j .0/, of multiplicitymj � 1, and  be a circle
in C centered at �2j .0/ such that no other eigenvalues of ��0 are in the interior of 
or on  . We define

Pt D �
1

2�i

Z


Rt .z/ dz;

where Rt .z/ D .��t � z/
�1 is the resolvent of ��t . By the Cauchy integral for-

mula, it is clear that P0 is the orthogonal projector onto the eigenspace of �2j .0/.
Since the eigenvalues ¹�2

j;k
.t/º

mj
kD1

vary continuously in t , for t small these are the
only eigenvalues of ��t in  . Therefore, in general, Pt is the total projector (the
direct sum of projectors) associated with ¹�2

j;k
.t/ºm

kD1
. The operator Pt is C 1 in t ,

since the resolvent (hence, Green’s function) is C 1 in t (see [15, Theorem II.5.4]).
Now assume �t is an isospectral deformation. Since the spectrum is constant along
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the deformation, Pt projects every function on �t onto an eigenfunction of �t of
eigenvalue �2j .0/. Let ft be a C 1 family of smooth diffeomorphisms from �t to �0
with f0 D Id. Then,

'j .t/ WD Pt .f
�
t .'j .0///; .here f �t .'j .0// D 'j .0/ ı ft /

must be an eigenfunction of ��t of eigenvalue �2j .0/.

We are now in position to prove:

Lemma 17. Suppose that �t is a C 1 isospectral deformation. Then for any eigen-
function 'j of �0,8̂̂̂̂

<̂̂
ˆ̂̂̂:

Z
@�0

P�j@�'j j
2
D 0; Dirichet,

Z
@�0

.jr@�0.'j /j
2
� �2j '

2
j / P� ds D 0; Neumann.

(42)

Proof. Let 'j .0/ be any eigenfunction of �0 and 'j .t/ be the C 1 deformation of
eigenfunction of �t provided by Lemma 16. For t > 0, the eigenvalue problem for
the isospectral deformation is pulled back to �0 by a C 1 family diffeomorphisms ft ,
with f0 D Id, and has the form

.z�t C �
2
j / Q'j .t/ D 0;

where z�t and Q'j .t/ are the pullbacks of �t and 'j .t/ to �0, respectively. Taking the
variation gives

Pz�'j .0/C .�0 C �
2
j /
PQ'j .0/ D 0:

Take the inner product with 'k.0/ in the same eigenspace. Integration by parts in the
second term kills the second term. Thus, we get

h P�'j .0/; 'k.0/i D 0:

The variation P� can be calculated (see for example [12]) to obtainZ
@�0

P�.@�'j /.@�'k/ds D 0;

for all 'j ; 'k in the �j -eigenspace of the Dirichlet problem. A similar proof works for
the relevant quadratic form for the Neumann problem.
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6. Proof of Theorem 4

Before we prove our main theorem, we need to study the limits of (42) along sequences
of eigenvalues introduced in Theorem 1.

Corollary 18. Let P� be the first variation of a Dirichlet (or Neumann) isospectral
deformation of an ellipse E. Then, for all 0 � ˛ � cosh2.�max/,Z

ID˛

P�p
cosh2 �max � cos2 #

d�˛ D 0:

Proof. The Dirichlet case follows immediately from Theorem 1 and Lemma 17. For
the Neumann case, we observe that by Theorem 1 the quantum limit of

��2j jr@�0.'j /j
2
� '2j ;

along a sequence of eigenfunctions that concentrates on the invariant curve I D ˛ is

.j�j2 � 1/d�˛:

Therefore, in the Neumann case we getZ
ID˛

.j�j2 � 1/
p

c2.cosh2 �max � cos2 #/ P� d�˛ D 0: (43)

We recall that � is the symplectic dual of the arclength variable s. From the equation
�ds D p#d# , we find that in the .#; p#/ coordinates, � is given by

� D
p#p

c2.cosh2 �max � cos2 #/
:

Since on I D ˛, p2
#
D c2.˛ � cos2 #/,

j�j2 � 1 D
˛ � cosh2 �max

cosh2 �max � cos2 #
:

The corollary follows in the Neumann case by taking out the constant ˛ � cosh2 �max

from the integral (43).

Theorem 4 now reduces to:

Proposition 19. The only Z2 � Z2 invariant function P� satisfying the equations of
Corollary 18 is P� D 0 for ˛ 2 .0; 1/, i.e. for levels inside the separatrix. Simil-
arly, the same statement holds if we only know equations of Corollary 18 for ˛ 2
.1; cosh2 �max/, i.e. levels outside the separatrix.
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Proof. Since P�.#/ is Z2 � Z2 invariant we can put

P.cos2 #/ WD
P�.#/p

cosh2 �max � cos2 #
:

By our explicit formula (11) for the Leray measure d�˛ , and by the Z2 � Z2 sym-
metry, we have

�
2Z
0

P.cos2 #/p
.˛ � cos2 #/C

d# D 0 for all 0 � ˛ � cosh2 �max:

Splitting this equation into ˛ � 1 and ˛ � 1 cases, we obtain
�
2Z

cos�1.
p
˛/

P.cos2 #/
p
˛ � cos2 #

d# D 0 for all 0 � ˛ � 1; (44)

�
2Z
0

P.cos2 #/
p
˛ � cos2 #

d# D 0 for all 1 � ˛ � cosh2 �max: (45)

It is sufficient to show that P � 0, given (44) or (45).

Proof using invariant curves inside the separatrix. We change variables to uD cos#
and also set x D

p
˛. Then the integral (44) becomes

xZ
0

P.u2/
p
x2 � u2

du
p
1 � u2

D 0 for all 0 � x � 1: (46)

Writing f .u/ D P.u2/
p
1�u2

; this becomes

xZ
0

f .u/
p
x2 � u2

du D 0 for all 0 � x � 1: (47)

The transform

Af .x/ D

xZ
0

f .u/
p
x2 � u2

du

is closely related to the Abel transform. We claim that the left inverse Abel transform
is given by

A�1g.u/ D
2

�

d

du

uZ
0

xg.x/
p
u2 � x2

dx:
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The key point is the integral identity

I.u; v/ WD

uZ
v

x dx
p
u2 � x2

p
x2 � v2

D
�

2
.v � u/:

It follows that if Bg.u/ is the integral in the purported inversion formula

BAf .u/ D
2

�

d

du

uZ
0

xAf .x/
p
u2 � x2

dx

D
2

�

d

du

uZ
0

xZ
0

x
p
u2 � x2

f .v/
p
x2 � v2

dv dx

D
2

�

d

du

uZ
0

I.u; v/f .v/ dv

D
d

du

uZ
0

f .v/ dv D f .u/:

Since A is left invertible, it follows that ker A D ¹0º. Since f .u/ D P.u2/
p
1�u2

lies
in its kernel, we have P D 0 and hence P� D 0.

Proof using invariant curves outside the separatrix. The proof of the second asser-
tion of Proposition 19 is similar to the final steps in the proofs of spectral rigidity
results of [8], [12], and [25], for the ellipse in various settings. We need to show
that (45) implies P D 0. We change variables by u D cos2 # and this time we set
f .u/ D P.u/

p
u.1�u/

. Then,

1Z
0

f .u/
p
˛ � u

du D 0 for all 1 < ˛ � cosh2 �max:

Since the left-hand side as a function of ˛ is smooth at cosh2 �max, all its Taylor
coefficients at this point must vanish. Thus,

1Z
0

f .u/.cosh2 �max � u/
�n� 12 du D 0 for all n 2 N:

By the Stone–Weierstrass theorem, f D 0, hence P D 0.
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6.1. Infinitesimal rigidity and flatness

In Section 3.2 of our earlier paper [12], we proved that infinitesimal rigidity implies
flatness, which completes the proof of Corollary 5.
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