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Eigenfunction asymptotics and spectral rigidity
of the ellipse

Hamid Hezari and Steve Zelditch

Abstract. Microlocal defect measures for Cauchy data of Dirichlet, resp. Neumann, eigen-
functions of an ellipse E are determined. We prove that, for any invariant curve for the billiard
map on the boundary phase space B* E of an ellipse, there exists a sequence of eigenfunctions
whose Cauchy data concentrates on the invariant curve. We use this result to give a new proof
that ellipses are infinitesimally spectrally rigid among C °° domains with the symmetries of the
ellipse.

In memory of Michael Shubin

1. Introduction

This note is part of a series [12, 13] on the inverse spectral problem for elliptical
domains £ C R2. In [12], it is shown, roughly speaking, that an isospectral deform-
ation of an ellipse through smooth (but not necessarily real analytic) domains which
preserves the Z, x Z, symmetry is trivial. In [13], it is shown that ellipses of small
eccentricity are uniquely determined by their Dirichlet (or Neumann) spectra among
all C*° domains, with no analyticity or symmetry assumptions imposed. In both
[12,13], the main spectral tool is the wave trace singularity expansion and the special
form it takes in the case of ellipses. In this article, we take the dual approach of study-
ing the asymptotic concentration in the phase space B*9E of the Cauchy data u}’
of Dirichlet (or Neumann) eigenfunctions u; of elliptical domains in the unit coball
bundle of the boundary dE. In Theorem 1, we show that, for every regular rotation
number of the billiard map in the “twist interval” (or, equivalently, action « in the
action interval), there exists a sequence of eigenfunctions whose Cauchy data con-
centrates on the invariant curve with that rotation number (resp. action) in B*9E. The
proof uses the classical separation of variables and one-dimensional WKB analysis.
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Before stating the results, we need to introduce some notation and background. An
orthonormal basis of Dirichlet (resp. Neumann) eigenfunctions in a bounded, smooth
Euclidean plane domain 2 is denoted by

(A +A2)p; =0, MMH:/%@W,
Q
vilag =0 (resp. 0v@jlae = 0),

where as usual d, denotes the inward unit normal. The semi-classical Cauchy data is
denoted by

6]

b vjlaq. Neumann,
uj =

)kj_l 0vpjlaq, Dirichlet.

The Cauchy data are eigenfunctions of the semi-classical eigenvalue problem
Nul =u?,

where N (1) (cut-off near the diagonal) is a semi-classical Fourier integral operator
quantizing the billiard map 8: B*0Q2 — B*0Q2 away from the glancing set (see [11]
for the precise statement).

We are interested here in the quantum limits of the Cauchy data (1) of an orthonor-
mal basis of eigenfunctions of an ellipse, i.e. in the asymptotic limits of the matrix

elements -
(Ops(a)u;, u?)
P2 Op(@) 1= —— P I (=1 = A7) )
<”j7uj>

of zeroth order semi-classical pseudo-differential operators Opy, (a) on 0E with respect
to the L2-normalized Cauchy data of eigenfunctions. We note that ,o;’ is normalized
so that p}’ (I) = 1 and is a positive linear functional, hence all possible weak* limits
are probability measures on the unit coball bundle B*9€2. Moreover,

pj (N(A)* Opy,(a)N(1)) = p; (Opy(a)).

so that the quantum limits are quasi-invariant under the billiard map (see [11] for
precise statements). In Theorem 1 we determine the quantum limits of sequences
in (2) for an ellipse. The proof uses many of the prior results on WKB formulae for
ellipse eigenfunctions, especially those of [16,21,26].

In large part, our interest in matrix elements (2) owes to the fact that the Hadamard
variational formulae for eigenvalues of the Laplacian with Dirichlet boundary condi-
tion expresses the eigenvalue variations as the special matrix elements (2) given by

/p|u.,b.|2 ds 3)

JoE
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of the domain variation p (not to be confused with p;) against squares of the Cauchy
data (see Section 5.1). As stated in Corollary 2, the limits of such integrals over all
possible subsequences of eigenfunctions determines the “Radon transform” of p over
all possible invariant curves for the billiard map. Under an infinitesimal isospectral
deformation, all of the limits are zero. We use this result to give a new proof of the
spectral rigidity result in [12]; see Theorem 4 and Corollary 5.

The principal motivation for studying the inverse Laplace spectral problems for
ellipses stems from the Birkhoff conjecture that ellipses are the only bounded plane
domains with completely integrable billiards. Strong recent results, due to A. Avila,
J. de Simoi, V. Kaloshin, and A. Sorrentino [2, 14], have proved local versions of
the Birkhoff conjecture using a weaker notion of integrability known as “rational
integrability,” i.e. that periodic orbits come in one-parameter families, namely invari-
ant curves of the billiard map with rational rotation number. In this article, Bohr—
Sommerfeld invariant curves play the principal role rather than curves of periodic
orbits (see Section 3.4). In Section 1.4 we formulate a “quantum” Birkhoff conjecture
that ellipses are the only quantum integrable billiard tables.

1.1. Statement of results

The first result pertains to concentration of Cauchy data of sequences ¢; of Dirichlet
(resp. Neumann) eigenfunctions on invariant curves of the billiard map of an ellipse.
We denote by E the interior of the ellipse Z—; + Z—; < 1,0 < b < a, and choose the
elliptical coordinates (p, ¢) by

(x,y) = (c cosh pcos B, ¢ sinh p sin ).
Here,
c = m, 0<p<pPmax = cosh_l(a/c), 0<% <2m.
We denote the angular Hamiltonian, which we will also call action, by
1= pl%/c2 + cos? ¥.

The invariant curves of 8 are the level sets of /. The range of / is called action inter-
val. There is a natural measure djt, on each level set I = «, called Leray measure,
which is invariant under 8 and the flow of 7. We refer to Section 2 for detailed defini-
tions and properties involving the billiard map of an ellipse, actions, invariant curves,
and the Leray measure.

Theorem 1. Let E be an ellipse. For any « in the action interval of the billiard map
of E, there exists a sequence of separable (in elliptical coordinates) eigenfunctions
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{@;} of eigenvalue ljz. whose Cauchy data concentrates on the level set {I = «}, in the
sense that, for any zeroth order semi-classical pseudo-differential operator Op;,(a) on
B*0E with principal symbol a,

(Opy, @) [, aodve

hj =471 —0 4
(uf’uf> f1=a dva (j J - )’ “)
where 1
diLy, Dirichlet,
2 2 — cos2
dvy = Vc2(cosh? ppax — cos2 ¥) )

Vc2(cosh? pax — €082 ¥) ditg. Neumann.

In particular, we get the following result.

Corollary 2. In the special case when the symbol a(V, py) = p() is only a function
of the base variable ¥,

faE p|u]b|2 ds N f1=aléd‘)a
Jog W82 ds Ji=a Ve’

where ds = +/c2(cosh? pmax — c0s2 ©) d¥ is the arclength measure.

Remark 3. If we denote by 1 the symplectic dual variable of the arclength s, then
our quantum limit can be expressed as

V1—1n?dus, Dirichlet,
dvyg = 1

—dl’l’ ’
NI

Although the formula in Theorem 1 may appear to have the numerator and denom-

Neumann.

inator reversed, in fact they are not. (See our computation of 1 — |5|? in the proof of
Corollary 18.)

The appearance of the (non-invariant) factors /1 — |7|? and 1/4/1 — |n|? is con-
sistent with the result of [11], where the quantum limits of boundary traces of ergodic
billiard tables are studied.

To our knowledge, Theorem 1 is the first result on microlocal defect measures
of Cauchy data of eigenfunctions in non-ergodic cases. (See Section 1.3 for related
results.) One of the difficulties in determining the limits of (2) is that the Cauchy data
uj’ are not L2 normalized. It is shown in [10, Theorem 1.1] that there exist C,c > 0
so that

¢ < 147 09l 200) < C
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for Dirichlet eigenfunctions of Euclidean plane domains (and more general non-trap-
ping cases). Hence, the L? normalization in (2) is rather mild. On the other hand,
the corresponding inequalities do not hold in general for Neumann eigenfunctions.
As pointed out in [10, Example 7], there are simple counter-examples to any constant
upper bound on the unit disc (whispering gallery modes). On the other hand, there do
exist positive lower bounds for convex Euclidean domains. But, lacking upper bounds,
the L2 normalization in (2) is necessary to obtain limits.

1.2. Spectral rigidity

Before stating the results, we review the main definitions. An isospectral deformation
of a plane domain $2¢ is a one-parameter family 2; of plane domains for which the
spectrum of the Euclidean Dirichlet (or Neumann, or Robin) Laplacian A; is constant
(including multiplicities). The deformation is said a C! deformation through C >
domains if each ; is a C* domain and the map t — 2, is C'. We parameterize the
boundary d€2; as the image under the map

X € 0Q0 = x + pr(X)vy, (6)

where p; € C1([0, tp], C*®(dL2)). The first variation is defined as

d
p(x) 1= —

dr lzopt(x)-

An isospectral deformation is said trivial if Q; = €2¢ (up to isometry) for sufficiently
small ¢. A domain Q is said spectrally rigid if all C > isospectral deformations are
trivial.

In [12] the authors proved a somewhat weaker form of spectral rigidity for ellipses,
with “flatness” replacing “triviality.” Its main result is the infinitesimal spectral rigid-
ity of ellipses among C *° plane domains with the symmetries of an ellipse. We orient
the domains so that the symmetry axes are the x-y axes. The symmetry assumption
is then that p; is invariant under (x, y) — (%£x, £y). The variation is called infinites-
imally spectrally rigid if py = 0.

The main result of [12] is:

Theorem 4. Suppose that Q0 is an ellipse, and that Q; is a C' Dirichlet (or Neu-
mann) isospectral deformation of Q¢ through C° domains with Z, X Z, symmetry.
Let py be as in (6). Then p = 0.

Corollary 5. Suppose that Qg is an ellipse, and that t — Q, is a C' Dirichlet (or
Neumann) isospectral deformation through Z, X Z, symmetric C*° domains. Then
p: must be flat at t = 0.
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The proof of Theorem 4 in [12] used the variation of the wave trace. In the original
posting (arXiv:1007.1741) the authors used a more classical Hadamard variational
formula for variations of individual eigenvalues A, (), which appears in Section 5.1.
The authors rejected this approach in favor of the one appearing in [12] because it was
thought that this argument was invalid when the eigenvalues were multiple. When a
multiple eigenvalue of a 1-parameter family L, of operators is perturbed, it splits into
a collection of branches which in general are not differentiable in ¢. Moreover, the
authors assumed that the variational formula would express the variation in terms of
special separable eigenfunctions (see Section 3). This created doubt that one could
use the variational formula for individual eigenvalues. Instead, the authors used the
variational formula for the trace of the wave group or equivalently for spectral pro-
jections, which are symmetric sums over all of the branches into which an eigenvalue
splits.

However, as we show in this article, the original variational formulae were in
fact correct even in the presence of multiplicities. The first point is that the non-
differentiability issue does not arise for an isospectral deformation since no splitting
occurs. Second, the vanishing of the variation of eigenvalues implies that the infin-
itesimal variation p is orthogonal to squares of all (Dirichlet) eigenfunctions in the
eigenspace, and in particular the separable ones. More precisely, we prove that

/p|u§’|2 ds = 0.
oE

Then, by Corollary 5, we obtain that for every « in the action interval one has

[ b dvy = 0. )

I=«a

In the final step, we calculate the measure dv, and provide two proofs, one via invert-
ing an Abel transform and another using the Stone—Weierstrass theorem, that (7)
implies p = 0. The proof in the Neumann case is similar and will be provided.

1.3. Related results and open problems

Quantum limits of Cauchy data on manifolds with boundary have been studied in
[7,11] in the case where the billiard map f is ergodic. To our knowledge, they have
not been studied before in non-ergodic cases. Theorem 1 shows that, as expected,
Cauchy data of eigenfunctions localize on invariant curves for the billiard map rather
than delocalize as in ergodic cases.

L? norms of Cauchy data of eigenfunctions are studied in [10] in the Dirichlet case
and in [5] in the Neumann case. Further results on the quasi-orthonormality properties
of Cauchy are studied in [4,9].
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The study of eigenfunctions in ellipses has a long literature and we make sub-
stantial use of it. We quote several articles in the physics literature, in particular
[21,26], and several in mathematics [3, 16], for detailed analyses of eigenfunctions
of the quantum ellipse. There is also a series of articles of G. Popov and P. Topalov
(see e.g. [19,20]) on the use of KAM quasi-modes to study Laplace inverse spectral
problems. In particular, in [20], Popov and Topalov also give a new proof of the rigid-
ity result of [12] and extend it to other settings. The approach in this article is closely
related to theirs, although it does not seem that the authors directly studied Cauchy
data of eigenfunctions of an ellipse.

The multiplicity of Laplace eigenvalues of an ellipse appears to be largely an open
problem. It is a non-trivial result of C. L. Siegel [22] that the multiplicities are either 1
or 2 in the case of circular billiards; multiplicity 1 occurs for, and only for, rotationally
invariant eigenfunctions. The Laplacians of the family of ellipses Z—z + Z—j = 1 form
an analytic family containing the disk Laplacian, and one might try to use analytic
perturbation theory to prove the following,

Conjecture 6. For a generic class of ellipses the multiplicity of each eigenvalue is
<2

1.4. Quantum Birkhoff conjecture

As mentioned above, ellipses have completely integrable billiards, and the classical
Birkhoff conjecture is that elliptical billiards are the only completely integrable Euc-
lidean billiards with convex bounded smooth domains. Despite much recent progress,
the Birkhoff conjecture remains open.

The eigenvalue problem on a Euclidean domain is often called “quantum billiards”
in the physics literature (see e.g. [26]). One could formulate quantum analogues of
the Birkhoff conjecture in several related but different ways. The quantum analogue
of the Birkhoff conjecture is presumably that ellipses are the only quantum integ-
rable billiard tables. A standard notion of quantum integrability is that the Laplacian
commutes with a second, independent, (pseudo-differential) operator; we refer to [24]
for background on quantum integrability. In Section 3, we explain that the ellipse is
quantum integrable in that one may construct two commuting Schrodinger operat-
ors with the same eigenfunctions and eigenvalues. The symbol of the second operator
then Poisson commutes with the symbol of the Laplacian, hence the billiard dynamics
and billiard map are integrable. A related version is that one can separate variables in
solving the Laplace eigenvalue problem. It is not obvious that these two notions are
equivalent; in Section 3 we use both separation of variables and existence of commut-
ing operators in studying the ellipse. Classical studies of separation of variables and
its relation to integrability go back to C. Jacobi, P. Stickel, L. Eisenhart, and others,



H. Hezari and S. Zelditch 30

and E. K. Sklyanin has studied the problem more recently. We do not make use of
their results here.

Quantum integrability is much stronger than classical integrability, and one might
guess that it is simpler to prove the quantum Birkhoff conjecture than the classical
one. Wave trace techniques as in [12, 13] reduce Laplace spectral determination and
rigidity problems to dynamical inverse or rigidity results. The wave trace only “sees”
periodic orbits and is therefore well adapted to results on rational integrability. The
dual approach through eigenfunctions studied in this article gives a different path to
the quantum Birkhoff conjecture, in which rational integrability and periodic orbits
play no role.

2. Classical billiard dynamics

In this section, and in the next one, we review some background definitions and results
on the classical and quantum elliptical billiard. We follow the notation of [21]; see also
[3,26].
An ellipse E is a plane domain defined by
2 2

X Y

—2+ <1, O§b<a.
a

b —
Here, a (resp. b) is the length of the semi-major (resp. semi-minor) axis. The ellipse
has foci at (fc, 0) with ¢ = va? —b? and its eccentricity is e = 7. Its area is
mwab, which is fixed under an isospectral deformation. We define elliptical coordinates
(p. ) by

(x,y) = (c cosh pcos, ¢ sinh psin ).

Here,
0 <0 = Pmax =COSh_1(Cl/C), 0<v <2m.

The coordinates are orthogonal. The lines p = constant are confocal ellipses and the
lines ¥ = constant are confocal hyperbolas. In the special case of the disc, we have
¢ = 0, but we assume henceforth that ¢ # 0.

2.1. Action variables for the billiard flow

The billiard flow on the ellipse E is the (broken) geodesic flow of the Hamiltonian
H = p; + p; on T*E, which follows straight lines inside E and reflects on dE
according to equal angle law of reflection.

Action-angle variables on T*E are symplectic coordinates in which the billiard
flow of the ellipse is given by Kronecker flows on the invariant Lagrangian submani-
folds. We refer to [1] for the general principles and to [21] for the special case of the



Eigenfunction asymptotics and spectral rigidity of the ellipse 31

ellipse. Let p, and py be the symplectic dual variables corresponding to the elliptic
coordinates p and ¥, respectively. The two conserved quantities of the system are the
energy (the Hamiltonian) A and the angular Hamiltonian / (which we also call the
“action”), given in the coordinates (p, p,, ¥, pg) by

Py p;

H = and [
c2(cosh? p — cos2 1) P2+ 1§

pl% cosh? p + pg cos? ¥

In the notation of [23],
I = cos? @ cosh? p + sin? 6 cos? ¥,

where 0 is the angle between a trajectory of the billiard flow and a tangent vector
to the confocal ellipse with parameter p. Note also that by the notation of [21], I =
1+ % where L L5 is the product of two angular momenta about the two foci. The
values of I are restricted to

a2

0<I< 2 = coshz(pmax).
The upper limit / = cosh?(ppay) corresponds to the motion along the boundary and
the lower limit / = O corresponds to the motion along the minor axis. Moreover,
there are two different kinds of motion in the ellipse depending on the sign of /. For
1 < I < cosh?(pmax), the trajectories have a caustic in the form of a confocal ellipse.
For 0 < I < 1, the caustic of the motion is a confocal hyperbola and the trajectories
cross the x-axis between the two focal points. Both kinds of motions are separated by
a separatrix which consists of orbits with I = 1 that go through the focal points of the
ellipse.
In terms of H and I, the canonical momenta are given by

plz) = c?(cosh>p—I)H and p?, = ¢?(I —cos®>¥)H. 8)

Therefore, the action variables are

1 c\/ﬁ
1p=g/ppdp= - /\/costh—ldp, )

cosh? p>1
p=0
1 cvH
Igzz—/plgdﬁz /VI—COSZﬂdﬂ. (10)
T T
cos2 <1
O<p=<m

In fact, these are the actions for the half-ellipse 0 < ¢ < m. The integrals can be
calculated in terms of I using elliptic integrals of first and second kind (See [21]).
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The actions will play a key role in Section 3.4 in the description of Bohr—Sommerfeld
quantization conditions for the eigenvalues of the Laplacian.

2.2. Billiard map, invariant curves, Leray measure, and action-angle variables

The billiard map of an ellipse E (or in general any smooth domain) is a cross section to
the billiard flow on S35 E, which we always identify with B*9E and call phase space
of the boundary. To be precise, the billiard map S is defined on B*9dF as follows:
given (s, n) € T*9E, with s being the arc-length variable measured in the counter-
clockwise direction from a fixed point, say sg, and || < 1, we let (s,¢) € S*E be
the unique inward-pointing unit covector at s which projects to (s, ) under the map
Ty E — T*0E. Then, we follow the geodesic (straight line) determined by (s, {) to
the first place it intersects the boundary again; let s” € JE denote this first intersection.
(If |n] = 1, then we let s’ = s.) Denoting the inward unit normal vector at s’ by vy,
we let ¢’ = ¢ 4 2(¢ - vy) vy be the direction of the geodesic after elastic reflection at
s’, and let 1’ be the projection of ¢’ to 7;7Y . Then we define

B(s,n) = (s". 7).

A theorem of Birkhoff asserts that billiard map preserves the natural symplectic
form ds A dnon B*0E, i.e.

B*(ds Andn) = ds A dn.

In the literature, the coordinates (s, 8) are commonly used for phase space of the
boundary, where 6 € [0, ] is the angle that { makes with the positive tangent direction
at 5. In these coordinates,

ds Adn=sinfdf Ads.

An invariant set in B*0FE is a set C such that f(C) = C. An invariant curve is a
curve (connected or not) on the phase space that is invariant. The phase space B*dF
of the ellipse E is in fact foliated with invariant curves. More precisely:

Lemma 7. The invariant curves of the billiard map B : B*0E — B*0FE are level sets
of I: B*0E — R defined by

2
1 =p—g+coszz9.
c

Proof. 1t follows quickly from the second equation of (8) and from the fact that H =1
on S*OE. [
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Figure 1. Invariant curves and caustics.

Although Ty is the classical angular action on B*0E, we shall call I the action,
as it is more convenient and is related to Iy via the one-to-one correspondence (10).
As is evident from the Figure 1, the separatrix curve I = 1 divides the phase space
into two types of open sets, the exterior corresponding to trajectories with confocal
elliptical caustics (1 < I < cosh? pmay) and the interior to trajectories with confocal
hyperbolic caustics (0 < I < 1).

2.2.1. Leray measure. On each level set / = « of I, there is a natural measure d iy
called Leray measure which in invariant under 8 and the flow generated by /. In the
symplectic coordinates (¢, py), and on I = «, it is given by

dd A dpg

a = —17

Since dd AdI = %dﬁ A dpg, we obtain that
dig = | dav = %(a — cos? 9)71/2dv. (11)

Here, x4 = x if x > 0 and is zero otherwise. Up to a scalar multiplication, dp is a
unique measure that is invariant under 8 and the flow of /.
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2.2.2. Action-angle variables and rotation number. The billiard map has a Birk-
hoff normal form around each invariant curve in B*dE. That is, in the symplectically
dual angle variable ¢ to 7, the billiard map has the form g(/,t) = (1,1 + r(I)), where
r is often called the rotation number of the invariant curve. An explicit formula for it
is given in [23, eq. (3.5)] , [6, Section 4.3 (11)],and [17]. If 0 < I < 1,

2 tanh(pyax ) v €0sh? prax — I
= T (aresin( 2R Pm) VEOK P =1y 7

cosh? Pmax — I + 1 tanh? Prmax

where .
dt b1
F(z,k):/—, F(k)=F(=.k).
, 1 —k2sin’t ( 2 )
Also,if 1 < I < coshz(pmax), then

1

b4
r(l) = —F(arcsin(
) 2F(1/T) cosh? pmax — I + I tanh? ppay

)

Definition. We define the range of the action variable / as the action interval, i.e. the

2 tanh(pmax ) v/ €0sh? ppax — I 1
VI (Pmax) v p ) )

interval [0, cosh?(pmax)], and the range of (1) as the rotation interval.

3. Quantum elliptical billiard

The Helmholtz equation in elliptical coordinates takes the form

_( 02 02

9 TN 420 2 2
¥ + 8192)(p A%c%(cosh? p — cos® ). (12)

The quantum integrability of A owes to the fact that this equation is separable. We
put
¢(p.7) = F(p)G(D), (13)

and separate variables to get the coupled Mathieu equations

2
ZI—ZF”(p) + cosh? pF(p) = aF(p) DBC (resp. NBC),
(14)

h2
—C—ZG”(z‘}) +cos?9G(¥) = aG(®) PBC.

where # = 17! and « is the separation constant. Here, PBC stands for “periodic
boundary conditions,” while DBC (resp. NBC) stands for “Dirichlet boundary condi-
tions” (resp. “Neumann boundary conditions”). Thus, we consider pairs (%, «) where
there exists a smooth solution of the two boundary problems.
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Each of the angular and radial equations above is an eigenvalue problem for a
semi-classical Schrodinger operator with boundary conditions on a finite interval.
These commuting operators are given by

Opy(J):  J =—p;/c® + cosh®(p); (15)
Opi(I): I = p3/c?+ cos*(¥). (16)

The boundary conditions on F take the form
F(pmax) = 0 (Dirichlet), F'(Pmax) = 0 (Neumann). (17)

As G(—7) is a solution whenever G (1) is, we restrict our attention to 27 -periodic
solutions to the angular equation which are either even or odd. One can then see that:

Remark 8. In order to obtain solutions well defined on the line segment joining the
foci, i.e. at p = 0, solutions to the radial equation must satisfy the boundary condition
F’(0) = 0 in case the solution G is even and F(0) = 0 in case G is odd. In these cases
the solutions F' are also respectively even and odd functions.

3.1. Mathieu and modified Mathieu characteristic numbers

For each fixed #, the angular problem is a Sturm—Liouville problem and thus there
exist real valued sequences {a,, (7)}°>, and {b; (7)}°2, so that it has 2m-periodic
non-trivial solutions — even solutions if &« = a, (%) and odd solutions if « = b, (%).
Here, even or odd is with respect to ¢} — —1, or equivalently y — —y. We represent
the corresponding solutions by Gy, (%, #) and G, (¢, ), respectively. The even indices
correspond to m-periodic solutions, thus they must be invariant under ¢ — 7 — ¢, or
equivalently be even with respect to x — —x. Solutions with odd indices have anti-
period 7 and correspond to odd solutions in the x variable. The sequences a,, (%) and
b;,(h) are related to the standard Mathieu characteristic numbers of integer orders

an(q) and b, (q) by

=3+ 20 pa=le 20 =2 ay

Thus, using the well-known properties of a,, and b,,, for # > 0 we have
ag(h) < by(h) < ay(h) <by(h) < ay(h) < by(h) <---, (19)
b1 (h) —al,(h) = Ou(e™C/™), C > 0. (20)

The sequence (19) is precisely the spectrum of the angular Schrédinger operator on
the flat circle R/ (27 Z).
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Similarly for the radial problem (say with Dirichlet boundary condition given by
F(pmax) = 0), for each #, there exist sequences {4, (h)}5_, and {B,, (7)}5_, such
that the radial problem has a non-trivial even solution Fy, (p, %) if « = A}, (), and a
odd solution F (p, #) if « = Bj, (f). The sequences of A, (#) and B,, (%) are related
to modified Mathieu characteristic numbers A, (q) and By, (q) (see [18]) by the same
relations as in (18). They form the spectrum of the radial semi-classical Schrodinger
operator on the interval [—pmax, Pmax] With Dirichlet boundary condition and satisfy

Ay(h) < Bi(h) < A} (h) < By(h) < A5(h) < B3(h) < --- . 21

3.2. Eigenvalues of E: Intersection of Mathieu and modified Mathieu curves

In order to find eigenfunctions of the ellipse £, one has to search specific values of 7
such that both radial and angular Sturm-Liouville problems possess non-trivial solu-
tions for the same value of «. By Remark 8, we only consider the separable solutions

Fi(p. mGS(®.) and  Fg(p.h)Go(D.h).

Thus, the frequencies of E with Dirichlet boundary condition' are of the form

1

Agpn = 7— d A, = .
where %5,, and s, are, respectively, solutions to
ay(h) = A, (h) and by (h) = By,(h). (22)

The existence of the point of intersection of the curves a, (7) with A, (%), and b}, (%)
with B, (h) are guaranteed by:

Theorem 9 (Neves [18]). For each (m,n), there is a unique positive solution q to
each of the equations an(q) = Am(q) and b, (q) = Bm(q).

Hence, the same statement holds for (22) by the correspondence (18). The fre-

[

quencies A; of E are obtained by sorting {AS,,, AS,,; (m,n) € N2} in increasing

order.

3.3. Symmetries classes

The irreducible representations of the Z, x Z, symmetry group are real one-dimen-
sional spaces, so that there exists an orthonormal basis of eigenfunctions of the ellipse
which are even or odd with respect to each Z, symmetry, i.e. have one of the four

'In the Neumann case, A, and B,, are different from the ones for the Dirichlet case.
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even in x, even in y

even in x, odd in y odd in x, odd in y

Figure 2. Symmetries classes of Dirichlet eigenfunctions corresponding to the first four eigen-
values, shown by their probability densities.

symmetries
(even, even), (even, odd), (odd, even), (odd, odd),

where the first and the second entries correspond to symmetries with respect to x —
—Xx and y — —Y, respectively. Given the above discussion, the symmetric eigenfunc-
tions are

(even, even): ¢, o = Fy(p. 7)G5; (9, 7); h=h, o
(even, odd): ¢ . = Fp(p.7)G3, (@, h); h="hy o

(23)

(odd, even): (pren,2k+1 = F,fl(,o,h)ngH(l?, h), h= hfn,zk+1’

(odd, 0dd): ¢ o = Folp, )G (0, 7); h = h(r)n,2k+1’

Figure 2 shows the symmetries classes of eigenfunctions distinguished by their
probability densities. It is possible that two symmetric eigenfunctions correspond to
the same eigenvalue, or it is possible that they correspond to different eigenvalues.

3.4. Semi-Classical actions and Bohr—-Sommerfeld quantization conditions for
the ellipse

Graphs of the one-dimensional classical potentials are given in [26, Figure 1]. The
potential — cosh? p for Op; (/) in (15) is a potential barrier with a single local max-
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imum which is symmetric around the vertical line through the local maximum. The
classical potential cos? ¢ underlying Op;, (1) in (16) is a double-well potential on the
circle. Thus, there exists a separatrix curve corresponding to the two local maxima of
the potential, which divides the two-dimensional phase space into two regions. Inside
the phase space curve, the level sets of the potential are “circles” paired by the left-
right symmetry across the vertical line through the local maximum at 7. Outside the
separatrix, the level sets have non-singular projections to the base, i.e. are roughly
horizontal.

As will be seen below, the Bohr—Sommerfeld levels inside the separatrix are
invariant under the up-down symmetry and have two components exchanged by the
left-right symmetry. The levels outside the separatrix are invariant under the left-right
symmetry and are exchanged under the up-down symmetry.

It is more important for our purposes to determine the lattice of semi-classical
eigenvalues in terms of classical and quantum action variables. The WKB (or EKB)
quantization for the actions are given in [21, eq. (33)] (see also [16] for the original
reference). Up to O (?), terms they have the form

3

[>1: Ip:(m+-)h, Iy =+ Dh, mn=0,1,2,...,
oddin y 4 1

I<1: I,=(m+ h, 1,9=(n+5)h, mon=0,12,...,

3

I>1: Ip=<m+z)h, Iy = nh, m,n=20,1,2,...,
even in y ) !

I <1 Ipz(m+§)h, 11,=(n+§)h, mon=0,1,2,...

24
There is a discontinuity at / = 1 due to the separatrix curve, but it is not important
for our problem and we ignore it.

3.4.1. Semi-Classical action. In fact, for each of the eight Bohr—Sommerfeld quant-
ization condition above, there is a version which is valid to all orders in # which
are essentially given by the quantum Birkhoff normal form around each orbit under
consideration. To be precise, there exist eight so-called “semi-classical actions”

+
S;/OJ !p/ﬂ(a)’

where the choices of e/o corresponds to even or odd in the y (equivalently in the 9)
variable, of 1T or 17 to / > 1 or I < 1, and p or ¥ to actions in the p or ¥ variable,
respectively. Each of the eight semi-classical actions has an % asymptotic expansion
of the form

S(@) = So(@) + AS1(a) + > Sp(a) + -,
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e/o, 1% and

where Sy (o) is the correspondlng classical action which is I,|;=4 for S;
Iy|1=a for S; efo.1 (See equations (10) and (9) for formulae for the class1cal actions
in terms of I = «.) Then the Bohr—Sommerfeld Quantization Conditions (BSQC) to

all orders are given by

S§/0’1+’p(a51/0’1+”’(h)) = mh, valid uniformly for o € [1 + &, cosh? ppax — €],

(25)
e/o1t. 8, e/o, 11,9 _ . : 2
S (ay, (h)) = nh, valid uniformly for @ € [1 + &, cosh” ppax — €]
(26)
S:/O’r’p(afn/"’l_’p(h)) = mh, valid uniformly for o € [¢,1 — ¢], 27
S;f/o’l_’ﬁ(afl/"’l_’ﬁ(h)) = nh, valid uniformly for o € [¢,1 — ¢], (28)

where ¢ > 0 is arbitrary, however the remainder estimates in the asymptotic expan-
sions depend on ¢. There are versions of BSQC in the literature that are valid uni-
formly near the separatrix, but we do not them here. We also point out that the Maslov
indices are not ignored, but absorbed in the corresponding subleading terms S ().

Remark 10. By our notations of Section 3.1 on the Mathieu and modified Mathieu
characteristic values, away from the separatrix level we have

{a;;,li,p(h):m =0,1,2,...} ={A,,(h):m =0,1,...},
(@G 5P (h):m = 0,1,2,...} = {Bl,(h):m = 1,2,...},
o™ (h):n =0,1,2,...} = {a,(h):n = 0,1,...},
(@ 50 (hyin = 01,2, ) = (bl (h):n = 1,2, },
The eigenvalues of E are determined by intersecting the above analytic curves as
SEP(h) = a0 M), g () = 0 (), @)

the solutions of which are precisely #5,, and %},

o.n» respectively, that we introduced in
Section 3.2.

3.5. Keller-Rubinow algorithm

In this section we explore the procedure of finding #¢,, corresponding to eigenvalues
associated to invariant curves outside the separatrix (i.e. 11 case) whose eigenfunc-
tions are even in the ¢} variable. All other cases follow a similar procedure and we
shall drop the superscripts for convenience.
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We are in search of solutions to equation (29) which, in our convenient notation,
are given by
o (h) = ay (h), (30)

where the left and the right-hand sides satisfy the BSQC (25) and (26),
S (@p () = mh, S} (@) (h)) = nh, 31)
respectively. Following [16], we divide these two equations to obtain

SPa)  Iy(a)—2h+ Y2, SP@hk  m
A = h = 4 k=2"k . 32
e P () Ig(@) + Y02, S (a)h* n (32)

The expression Aj(«) has a classical # expansion with principal term

Ip(a)
Iy(a)’

which is a positive monotonic function on the interval [1, cosh? Pmax] (See [16, p. 41]).

A()(Ol) =

(33)

Hence, if we choose r in the range of A¢(«) on the domain [1 + 2e, cosh? Pmax — 2€],
then for # sufficiently small there is a unique solution « to the equation Az(x) = r
in the slightly larger interval [1 + &, cosh? pmay — €], accepting an # expansion of the
form

alh,r) = Za(k)(r)hk. (34)
k=0

It is manifestly the inverse function of Ay (o) and its formal power series coefficients
(k) (r) are smooth functions of r. The principal term (g is the inverse function of
Ap(a). By this definition, the solution to (32) is (%, m/n) whenever m/n belongs to
Ao[l + 2¢, cosh? ppa, — 2¢], which is a bounded closed interval in (0, o). In partic-
ular, m/n is bounded above and below by positive constants K7 and K5:

(m.n)eN%: K, <2 <K (35)
n

This is the eligible sector of lattice points for our eigenvalue problem outside the sep-
aratrix. Plugging « (%, m/n) into the angular BSQC, i.e. the second equation of (31)
(the radial one follows immediately from the angular one and (32)), we arrive at the
quantization condition for the eigenvalues of E:

O(h,m,n) = %S;?(a(h,m/n)) = h. (36)

We claim that, for m and n sufficiently large, this equation has a unique solution %,
in a sufficiently small interval [0, %¢], or equivalently the function Q(-, m, n) has a



Eigenfunction asymptotics and spectral rigidity of the ellipse 41

unique fixed point. Now, since

_ Iy(a(m/n)) 90

Q0(0,m,n) " , %(O,m,n) =0,

for ¢ sufficiently small and n sufficiently large, Q(-, m,n) maps [0, A¢] into itself
and %—%(h, m,n) < % in this interval. The claim follows by the Banach contraction
principle.

Remark 11. Since there are many functions « used, it is important to highlight their
relations and differences. If we evaluate « (%, r), defined in (34), at A = hy, , and
r= %, we get the common value of (30). In short,

oz(hmn, %) = af (hmn) = oci,’(hmn)-

We also note that the function o) (r), with parentheses around 0, is the principal term
of a(#, r) and should not be confused with a} (%) or ag (h).

In fact, the above procedure provides an asymptotic for A,,, = 1/Ay, and gives
a sharper result than previously known:

Proposition 12. The frequencies )&fn/,‘; of E associated to invariant curves outside the
separatrix curve, and & away from it, correspond to lattice points (m,n) € N2 in the

sector
1
min{ p(Ol) ca e[l +e, cosh? Pmax — 8]}
Iy ()
1
<7 max{ o(@) ra € [1 + &, cosh? pray — 8]},
n Ty (c)

and satisfy the asymptotic property

elo_ __n 1
= Taemm T OG)

The same asymptotic formula holds for the frequencies )Lfn/,(,) associated to invariant
curves inside the separatrix curve, except in this case the sector of lattice points is

. {Ip(a). Ip(a).
min : :
Iy (a) Iy (a)
The effects of even/odd are only reflected in the remainder term O (1/n), which in

addition depends on the distance ¢ from the separatix. Note that the explicit formulae
for Iy and I, (hence for o)) in terms of elliptic integrals are different for the inside

ae[s,l—s]}fﬂ
n

fmax{ o€ [8,1—8]}.

and outside the separatrix curve. (See for example [21].)
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4. Localization of boundary values of separable eigenfunctions on
invariant curves. Proof of Theorem 1

We relate semi-classical asymptotics of eigenfrequencies )Le’o =1/ h‘“”" and of the

associated separated eigenfunctions <pe/°

defined by (23) along “ladders > or “rays”
in the action lattice (m,n) € N2. In particular, different rays correspond to different
invariant Lagrangian submanifolds for the billiard flow. It is simpler to use the billiard
map and then to relate rays in the joint spectrum to invariant curves for the billiard
map. Given an invariant curve, inside or outside the separatrix, we wish to find a
ray in the joint spectrum for which the associated eigenfunctions concentrate on the
curve. Since the WKB method is highly developed in dimension one, it suffices for
our purposes to locate the ray in N2 which corresponds to the invariant curve. The
corresponding eigenfunctions will then concentrate on the corresponding Lagrangian
submanifolds.

e/o

Proposition 13. Let ¢,,, 5, (p, V) be a separable Dirichlet (resp. Neumann) eigenfunc-
tion defined in (23). Then the “modified boundary trace”

0l (0. 9) | p=pumae- Neumann,

/
Unn @) =1 968/, 9)

){ fn/z 8,0 P = Pmax

, Dirichlet,

is an eigenfunction of the angular Schrodinger operator {Opy (1 )}h=h;£,”,,’ whose
eigenvalue o is determined by

(Ops (ugl% uel%) 1208

, (37)
(uel%, um/n)Lz(aE)
which is Ote/o " (h) ifitis > 1 and oze/o 1 (h) ifitis < 1.
Proof. The proof is obvious by equations (23), (14), and (16). [ ]

Remark 14. It is important to note that, although in the Neumann case, our modified
boundary trace um/ ¢ is the same as the boundary trace (ue/ )P defined by (1), but

they are slightly different in the Dirichlet case, as in this case

1 e/o

(Me/o )b u
\/(:2(cosh2 Pmax — €082 1) e

which is due to the relation

0 1 0

v V€2 (cosh? ppax — cos? ) 9p p=Pmax.




Eigenfunction asymptotics and spectral rigidity of the ellipse 43

Our goal is to show that, for any invariant curve / = « of the billiard map lying
inside or outside the separatrix curve, there exists a ladder of separable eigenfunctions
(pf},/ % whose Cauchy data (ufn/f;,)b concentrates on the invariant curve in B*0E. In

order to prove this we first need the following lemma.
Lemma 15. For any o € [0, cosh? pmay], there exists a subsequence of
{n¢/0: (m,n) € N?}

(for either Dirichlet or Neumann boundary conditions) along which the eigenvalues

of the semi-classical angular operator {Opy,(I)}|, _se/0 converges to o. He