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Semiclassical Gevrey operators and magnetic translations

Michael Hitrik, Richard Lascar, Johannes Sjöstrand, and Maher Zerzeri

Abstract. We study semiclassical Gevrey pseudodifferential operators acting on the Bargmann
space of entire functions with quadratic exponential weights. Using some ideas from time fre-
quency analysis, we show that such operators are uniformly bounded on a natural scale of
exponentially weighted spaces of holomorphic functions, provided that the Gevrey index is
greater than or equal to 2.

In memory of Misha Shubin

1. Introduction and statement of results

The purpose of this paper is to study continuity properties of semiclassical Gevrey
pseudodifferential operators acting on exponentially weighted spaces of entire holo-
morphic functions on C

n, providing an alternative approach to some of the results
established in the recent work [11]. Let us proceed to describe the assumptions and
state the main results.

Let � � Rm be open and let s � 1. The Gevrey class G s.�/ consists of all func-
tions u 2 C 1.�/ such that for any K � � compact there exist A > 0, C > 0 such
that for all ˛ 2 N

m we have

j@˛u.x/j � AC j˛j.˛Š/s; x 2 K: (1.1)

The class G
1.�/ is the space of real analytic functions on �, while, for s > 1, we

have G
s
0 .�/ WD G

s.�/ \ C 1
0 .�/ ¤ ¹0º, see [15, Theorem 1.3.5]. In this work we

shall specifically be concerned with the subspace G
s
b
.Rm/ � G s.Rm/ of functions

u 2 C 1.Rm/ satisfying the Gevrey condition (1.1) uniformly on all of Rm, for some
s > 1: we have u 2 G

s
b
.Rm/ precisely when there exist A > 0, C > 0 such that for all

˛ 2 N
m,

j@˛u.x/j � AC j˛j.˛Š/s; x 2 R
m: (1.2)
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Let ˆ0 be a strictly plurisubharmonic quadratic form on C
n and let us introduce the

real linear subspace

ƒˆ0
D

°�

x;
2

i

@ˆ0

@x
.x/

�

W x 2 C
n
±

� C
2n D C

n
x � C

n
� : (1.3)

Identifying ƒˆ0
linearly with C

n
x , via the projection map �x Wƒˆ0

3 .x; �/ 7! x 2 C
n
x ,

we may define the Gevrey spaces G
s.ƒˆ0

/, G
s
0 .ƒˆ0

/, G
s
b
.ƒˆ0

/.
Given a 2 G

s
b
.ƒˆ0

/, for some s > 1, and u 2 Hol.Cn/ such that for all N � 0

we have u.x/ D Oh;N .1/hxi�N eˆ0.x/=h, let us introduce the semiclassical Weyl
quantization of a acting on u,

Opw
h .a/u.x/ D

1

.2�h/n

“

�.x/

e
i
h

.x�y/��a
�x C y

2
; �

�

u.y/ dy ^ d�: (1.4)

Here 0 < h � 1 is the semiclassical parameter and �.x/ � C
2n
y;�

is the natural integ-
ration contour given by

� D
2

i

@ˆ0

@x

�x C y

2

�

: (1.5)

The operator Opw
h .a/ extends to a uniformly bounded map

Opw
h .a/ D O.1/W Hˆ0

.Cn/ ! Hˆ0
.Cn/; (1.6)

see [13, 27]. Here Hˆ0
.Cn/ is the Bargmann space defined by

Hˆ0
.Cn/ D Hol.Cn/ \ L2.Cn; e�2ˆ0=hL.dx//; (1.7)

with L.dx/ being the Lebesgue measure on C
n. Now the mapping property (1.6)

follows merely from the fact that rka 2 L1.ƒˆ0
/ for all k 2 N, and the Gevrey

smoothness of a allows us to consider other weights as well. The effect of modifying
the exponential weight has been considered in [11], and the following result has been
established there, see [11, Theorems 3.3 and 3.4].

Theorem 1.1. Let a 2 G
s
b
.ƒˆ0

/, s > 1, and let ˆ1 2 C 1;1.CnI R/ be such that

krk.ˆ1 � ˆ0/kL1.Cn/ �
1

C
h1� 1

s ; k D 0; 1; 2; (1.8)

where C > 0 is large enough. Then, the operator Opw
h .a/ extends to a uniformly

bounded map

Opw
h .a/ D O.1/W Hˆ1

.Cn/ ! Hˆ1
.Cn/: (1.9)

Here, similarly to (1.7), we have set

Hˆ1
.Cn/ D Hol.Cn/ \ L2.Cn; e�2ˆ1=hL.dx//:
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The proof of Theorem 1.1 in [11] proceeds by a contour deformation argument
in (1.4), introducing a Gevrey almost holomorphic extension of a 2 G

s
b
.ƒˆ0

/ and
making use of Stokes’s theorem. A noteworthy aspect of the proof developed in [11]
is that performing a deformation to a contour of the form

� D
2

i

@ˆ0

@x

�x C y

2

�

C
i

C
.x � y/; C > 0; (1.10)

natural in the analytic theory [13,22,27], does not lead to some exponentially accurate
remainder estimates of the form

R D O.1/ exp
�

�
1

O.1/
h� 1

s

�

W Hˆ0
.Cn/ ! L2.Cn; e�2ˆ0=hL.dx//; (1.11)

natural in the Gevrey theory. To overcome this issue, the argument in [11] proceeds
by deforming to a suitable “mixed” contour, using (1.10) in the region

jx � yj �
1

O.1/
h1� 1

s

only. An additional deformation to a “mixed” contour adapted to the weight ˆ1 leads
then to the uniform boundedness in (1.9) in the range s 2 .1; 2� only, and some fur-
ther work, involving another change of contour, is required to recover the mapping
property (1.9) in the full range s > 1. See [11, Theorem 3.4]. Let us also remark that,
as explained in [11], when obtaining a uniformly bounded realization of the operator
in (1.9) for s > 2, via a contour deformation, one has to accept a remainder which is
larger than the one in (1.11).

Our purpose here is to give a direct proof of Theorem 1.1 in the “complement-
ary” region s � 2, avoiding the use of contour deformations entirely. Specifically, the
following is the main result of this work.

Theorem 1.2. Let a 2 G s
b
.ƒˆ0

/, for some s � 2, and let ˆ1 2 C 1;1.CnI R/ be such

that

krk.ˆ1 � ˆ0/kL1.Cn/ �
1

C
h1� 1

s ; k D 0; 1; (1.12)

where C > 0 is large enough. Then, the operator Opw
h .a/ extends to a uniformly

bounded map

Opw
h .a/ D O.1/W Hˆ1

.Cn/ ! Hˆ1
.Cn/: (1.13)

When establishing Theorem 1.2, rather than performing a contour deformation
in (1.4), we shall proceed by following some basic ideas of the time frequency ana-
lysis [7, 9, 28], decomposing the symbol a into a superposition of coherent states of
the form ƒˆ0

3 X 7! e2i�.X;Y /=h�
0
..X � T /=h1=2/, for Y; T 2 ƒˆ0

. Here � is the
complex symplectic form on C

2n
x;�

and �
0

is a fixed function in G
s
b
.ƒˆ0

/, which we
can choose essentially as a real Gaussian. Passing to the Weyl quantizations leads
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to the representation of the operator Opw
h .a/ as a direct integral of certain rank-one

projections expressed in terms of the “magnetic translations” ei�..x;hDx /;Y /=h, for
Y 2 ƒˆ0

, unitary on Hˆ0
.Cn/, whose operator norm on Hˆ1

.Cn/ can be controlled.
Theorem 1.2 follows from these observations, by an application of Schur’s lemma,
when combined with the Wiener type characterization of the Gevrey space G

s
b
.ƒˆ0

/.
We refer to [25, 26] for the original works on the Wiener algebras of pseudodiffer-
ential operators. See also [8, 28], and the references given there. It is perhaps of note
that the time frequency approach to the proof of Theorem 1.2 appears to work for the
Gevrey indices s � 2 only, which is precisely the range where the contour deforma-
tion method of [11] encounters some difficulties. The restriction s � 2 appears at the
very end of the proof of Theorem 1.2 for some seemingly technical reason, and the
question whether the methods developed in the present work could be extended to
obtain the uniform boundedness results in the entire range s > 1 seems interesting to
us, demanding further attention. We hope to be able to address it in some future work.

Let us point out that the present work, as well as [11], are largely motivated by
the relevance of results such as Theorem 1.2 in the study of microlocal Gevrey regu-
larity questions for solutions of Gevrey pseudodifferential equations, say. To motivate
this a bit further, let us recall the characterization of the semiclassical wave front
set in the Gevrey framework, see [4]. Let u.h/ be a tempered family in L2.Rn/,
so that ku.h/kL2.Rn/ � O.h�K/, for some K � 0, and let T W L2.Rn/ ! Hˆ0

.Cn/

be a generalized Bargmann transformation with the associated canonical transform-
ation �T , see [13, 27], and also (4.28) below. Given .y0; �0/ 2 T �

R
n D R

2n, we
have .y0; �0/ … WFs;h.u.h//, for some s > 1, precisely when there exists an open
neighborhood V � Cn of x0 D �x.�T .y0; �0// 2 Cn and C > 0 such that

jT u.xI h/j � O.1/e
ˆ0.x/

h exp
�

�
1

C
h� 1

s

�

; x 2 V; 0 < h � 1:

When studying microlocal properties of solutions to a pseudodifferential equation of
the form Opw

h . Qa/u.h/ D 0, say, where Qa 2 G
s
b
.R2n/, rather than looking at high order

derivatives directly, it is therefore natural to work on the Bargmann transform side,
considering deformations ˆ1 of the quadratic weight function ˆ0, letting the conjug-
ated operator Opw

h .a/ D T ı Opw
h . Qa/ ı T

�1 act on the new exponentially weighted
spaces Hˆ1

.Cn/ of holomorphic functions. The result of Theorem 1.2 may therefore
be viewed as the first step in the implementation of this general program in the Gevrey
framework. Let us also emphasize that in the analytic case, this approach has proven
to be quite fruitful, see for instance [22, 23, 27].

We would also like to mention that an interesting class of problems, where oper-
ators such as those considered in Theorem 1.2 occur naturally, comes from the study
of scattering poles for semiclassical Schrödinger operators with Gevrey potentials,
see [19, 20].
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The plan of the paper is as follows. In Section 2, we study mapping properties of
magnetic translations on the weighted spaces Hˆ0

.Cn/, Hˆ1
.Cn/. In Section 3, as a

preparation for the proof of Theorem 1.2, we consider compactly supported Gevrey
symbols a 2 G

s
0 .ƒˆ0

/. In this case, the mapping property (1.13) can be established
in the full range s > 1, by decomposing the operator Opw

h .a/ into a superposition of
magnetic translations directly. Section 4 is devoted to the proof of Theorem 1.2 in the
general case. As alluded to above, an essential role in the proof is played by a decom-
position of the operator Opw

h .a/ into a direct integral of rank-one projections, and we
would like to emphasize that it can be viewed as the Bargmann space analogue of
the corresponding decomposition established in [9] in the real setting. In Appendix A
we recall the composition formulas for the Weyl h-pseudodifferential calculus in the
complex domain, obtained by the method of magnetic translations.

We dedicate this paper to the memory of Misha Shubin and would like to acknow-
ledge his pioneering contributions to the global theory of pseudodifferential operat-
ors [21, 32], of which this work is a more recent descendant.

2. Magnetic translations on weighted spaces

Let ˆ0 be a strictly plurisubharmonic quadratic form on C
n and let ƒˆ0

� C
2n be

defined as in (1.3). The real 2n-dimensional linear subspace ƒˆ0
is I-Lagrangian and

R-symplectic, in the sense that the restriction of the complex symplectic (2,0)-form

� D

n
X

j D1

d�j ^ dxj (2.1)

on C2n D Cn
x � C

n
�

to ƒˆ0
is real and non-degenerate. In particular, ƒˆ0

is maxim-
ally totally real.

Let `.x; �/ be a complex linear form on C
2n so that

`.x; �/ D `0
x � x C `0

� � � D �..x; �/; H`/; H` D `0
� � @x � `0

x � @� : (2.2)

Let us notice that the restriction `jƒˆ0
is real precisely when the Hamilton vector

field H` 2 Tƒˆ0
. Here we identify the holomorphic (constant) vector field H` with

the corresponding real vector field H
�

`
D H` C H`. We have therefore

�`0
x D

2

i

�

.ˆ0/00
xx`0

� C .ˆ0/00
x Nx`0

�

�

D
2

i

@ˆ0

@x
.`0

�/; (2.3)

and we may write

`.x; �/ D �..x; �/; H`/ D �
2

i

@ˆ0

@x
.x�/ � x C x� � �; .x; �/ 2 C

2n; (2.4)

for some unique Cn 3 x� D `0
�
.
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To a complex linear form ` on C
2n, such that `jƒˆ0

is real, we associate the
operator

Opw
h .e�i`=h/ D e�i`.x;hDx/=h; (2.5)

and recall from [27, Proposition 1.4] that

e�i`.x;hDx/=h D e� i
2h

`0
x �x ı �`0

�
ı e� i

2h
`0

x �x: (2.6)

Here �z is the operator of translation by z 2 Cn, .�zu/.x/ D u.x � z/. Throughout
this paper, operators of the form (2.6) will be referred to as magnetic translations,

in view of the fact that such operators appear naturally in the study of Schrödinger
operators with magnetic fields, see [5, 24].

Let us recall from [27] that the first order differential operator `.x; hDx/ is self-
adjoint on the Bargmann space Hˆ0

.Cn/, when equipped with the maximal domain
¹u 2 Hˆ0

.Cn/I`.x;hDx/u 2 Hˆ0
.Cn/º. In particular, the operator in (2.5) is unitary

when acting on Hˆ0
.Cn/. For future reference, it will be convenient for us to start

by doing the exercise mentioned in the proof of [27, Proposition 1.4], verifying the
unitarity directly, using the expression (2.6). See also [28, Section 3].

Given u 2 Hˆ0
.Cn/, we shall show that

j.e�ˆ0=he�i`.x;hDx/=hu/.x/j D j.e�ˆ0=hu/.x � `0
�/j; x 2 C

n: (2.7)

When doing so, let us write using (2.6),

e�i`.x;hDx/=hu.x/ D e
i

2h
`0

x �`0
� e� i

h
`0

x �xu.x � `0
�/: (2.8)

A simpler expression is obtained, by exploiting the natural symmetry in the Weyl
quantization, if we express e�i`.x;hDx/=hu at the point x C `0

�
=2 in terms of u at the

point x � `0
�
=2, which gives that

.e�i`.x;hDx/=hu/
�

x C
`0

�

2

�

D e�i`0
x �x=hu

�

x �
`0

�

2

�

: (2.9)

It follows that

.e� 1
h

ˆ0e�i`.x;hDx/=hu/
�

x C
`0

�

2

�

D e
� 1

h
.ˆ0.xC 1

2
`0

�
/�ˆ0.x� 1

2
`0

�
//

e�i`0
x �x=h.e� 1

h
ˆ0u/

�

x �
`0

�

2

�

: (2.10)

We next observe that

ˆ0

�

x C
1

2
`0

�

�

� ˆ0

�

x �
1

2
`0

�

�

D 2 Re.@xˆ0.x/ � `0
�/; (2.11)
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in view of the following standard consequence of Taylor’s formula:

ˆ0.x/ � ˆ0.y/ D 2 Re
�

@xˆ0

�x C y

2

�

� .x � y/
�

; (2.12)

valid for the real valued quadratic form ˆ0. Moreover, using (2.3), we see that the
right-hand side of (2.11) takes the form

2 Re.@xˆ0.x/ � `0
�/ D 2 Re.@xˆ0.`0

�/ � x/

D � Re
�

i
�

�
2

i
@xˆ0.`0

�/ � x
��

D � Re.i`0
x � x/: (2.13)

Here we have also used the general relation

Re.@xˆ0.x/ � y/ D Re.@xˆ0.y/ � x/; x; y 2 C
n: (2.14)

Combining (2.11) and (2.13), we obtain that

ˆ0

�

x C
1

2
`0

�

�

� ˆ0

�

x �
1

2
`0

�

�

C Re.i`0
x � x/ D 0; (2.15)

and the absolute value of the prefactor in the right-hand side of (2.10) is therefore
equal to 1. We get from (2.10) and (2.15),

ˇ

ˇ

ˇ.e� 1
h

ˆ0e�i`.x;hDx /=hu/
�

x C
`0

�

2

�ˇ

ˇ

ˇ D
ˇ

ˇ

ˇ.e� 1
h

ˆ0/u
�

x �
`0

�

2

�ˇ

ˇ

ˇ;

and (2.7) follows, by replacing x by x � `0
�
=2.

It follows from (2.7) that the operator

e�i`.x;hDx/=hW Hˆ0
.Cn/ ! Hˆ0

.Cn/ (2.16)

is an isometry, and is therefore unitary, since it is a bijection, with the inverse given
by ei`.x;hDx/=hW Hˆ0

.Cn/ ! Hˆ0
.Cn/.

Remark. Magnetic translations play a role also in the theory of Toeplitz operators,
where they appear under the name Weyl operators, see [1].

We shall now consider weights other than ˆ0. To this end, let ˆ1 2 C 1;1.CnI R/,
the space of C 1-functions on Cn with a globally Lipschitz gradient. In particular, we
know, thanks to Rademacher’s theorem, that

r2ˆ1 2 L1.Cn/: (2.17)

Let us also assume that krk.ˆ1 � ˆ0/kL1.Cn/ are small enough, for k D 0; 1. We
would like to consider magnetic translations acting on the weighted space

Hˆ1
.Cn/ D L2.Cn; e�2ˆ1=hL.dx// \ Hol.Cn/: (2.18)



M. Hitrik, R. Lascar, J. Sjöstrand, and M. Zerzeri 60

To this end, viewing the operator in (2.6) as a Fourier integral operator associated to
the complex canonical transformation exp.H`/, we shall first determine the image of
the Lipschitz manifold

ƒˆ1
D

°�

x;
2

i

@ˆ1

@x
.x/

�

W x 2 C
n
±

� C
2n; (2.19)

under the map exp.H`/W C2n 3 � 7! � C H` 2 C2n. Here we may notice that the
manifold ƒˆ1

is I-Lagrangian, in the sense that its almost everywhere defined tangent
plane is Lagrangian with respect to Im � .

We have the following result, where we write ˆ1.x/ D ˆ0.x/ C f .x/.

Proposition 2.1. Let `.x; �/ be a complex linear form on C2n such that `jƒˆ0
is real,

and let us represent ` in the form (2.4). Then,

exp.H`/.ƒˆ1
/ D ƒˆ2

;

where ˆ2 2 C 1;1.Cn/ is given by

ˆ2.x/ D ˆ1.x/ C f .x � x�/ � f .x/; x 2 C
n: (2.20)

Proof. Following the proof of [3, Lemma 2.2], let us consider the real Hamilton–
Jacobi equation

@‰

@t
.x; t/ � Im `

�

x;
2

i

@‰

@x
.x; t/

�

D 0; ‰.x; 0/ D ˆ1.x/; (2.21)

for x 2 C
n, t 2 R, t � 0. Associated to the function ‰.x; t/ 2 C 1;1.Cn � RI R/

in (2.21) is the Lipschitz manifold

L‰ D
°�

t;
@‰

@t
.x; t/; x;

2

i

@‰

@x
.x; t/

�±

� R
2
t;� � C

2n
x;� ; (2.22)

which is Lagrangian with respect to the real symplectic form

d� ^ dt � Im �: (2.23)

The function � � Im` vanishes along L‰ , in view of (2.21), and therefore its Hamilton
vector field, computed with respect to the real symplectic form (2.23), is tangent
to L‰, almost everywhere. Using the general relation

H
�

`
D H � Im �

� Im ` ; (2.24)

valid for any `.x; �/ holomorphic, where H
�

`
D H` C H` is the real vector field

naturally associated to the holomorphic vector field H`, see [18,22], we conclude that
the vector field

@t C H � Im �
� Im ` D @t C H

�

`
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is tangent to L‰. Identifying H
�

`
and H`, we get therefore

ƒ‰.�;t/ D exp.tH`/.ƒˆ1
/; t 2 R:

Referring to [18, Section 1] for the detailed proof of (2.24), let us just indicate that it
is based on the usual pointwise relations

h�; t ^ H`i D hd`; ti; h�; t ^ H`i D 0;

valid for `.x; �/ holomorphic and for all t 2 T .C2n/ ˝ C, as well as the relation

hIm �; t ^ H Im �
Im ` i D hd Im `; ti;

which holds for all real tangent vectors t 2 T .C2n/.
We claim now that the unique C 1;1-solution of (2.21) is given by

‰.x; t/ D ˆ1.x/ C f .x � tx�/ � f .x/ D ˆ0.x/ C f .x � tx�/: (2.25)

Indeed, using (2.25), (2.4), and the fact that `jƒˆ0
is real, we see that

Im `
�

x;
2

i

@‰

@x
.x; t/

�

D Im
�

x� �
2

i

@f

@x
.x � tx�/

�

D �2 Re
�

x� �
@f

@x
.x � tx�/

�

; (2.26)

which agrees with

@‰

@t
.x; t/ D @t .f .x � tx�// D �.x� � f 0

x.x � tx�/ C x� � f 0
Nx.x � tx�//:

This shows (2.25) and completes the proof.

Proposition 2.1 can be viewed as an indication that we have a uniformly bounded
Fourier integral operator,

e�i`.x;hDx/=h D O.1/W Hˆ1
.Cn/ ! Hˆ2

.Cn/: (2.27)

Here the weighted space of holomorphic functions Hˆ2
.Cn/ is defined analogously

to (2.18). In order to give a direct verification of the mapping property (2.27), we
observe that (2.7) gives, for u 2 Hˆ1

.Cn/,

j.e�ˆ2=he�i`.x;hDx/=hu/.x/j D j.e�ˆ1=hu/.x � x�/j; x 2 C
n: (2.28)

Here ˆ2 is given by (2.20). It follows from (2.28) that the operator in (2.27) is an
isometry, and therefore unitary.

The discussion in this section may be summarized in the following result.
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Theorem 2.2. Let `.x; �/ be a complex linear form on C
2n such that `jƒˆ0

is real,

and let us represent ` in the form (2.4). We have the unitary operators

e�i`.x;hDx /=hW Hˆ0
.Cn/ ! Hˆ0

.Cn/; (2.29)

and

e�i`.x;hDx /=hW Hˆ1
.Cn/ ! Hˆ2

.Cn/: (2.30)

Here in (2.30), the weight function

ˆ1 D ˆ0 C f 2 C 1;1.CnI R/

is such that krk.ˆ1 � ˆ0/kL1.Cn/ are small enough, for k D 0; 1, and ˆ2.x/ D

ˆ0.x/ C f .x � x�/.

Remark. The purpose of this remark is to outline an alternative approach to the
Hamilton–Jacobi equation (2.21), leading directly the unitarity of the operator in
equation (2.30). To this end, let u 2 Hˆ1

.Cn/, and let us differentiate formally the
scalar product

.e�i t`.x;hDx/=hu; e�i t`.x;hDx/=hu/H‰t
D .u.t/; u.t//H‰t

(2.31)

with respect to t 2 R. Here ‰t 2 C 1;1 is to be chosen so that the time derivative
of (2.31) vanishes. We refer to [10, 12, 14, 29] for other instances of this approach,
which is particularly straightforward in the present linear setting. We get

h@t .u.t/; u.t//H‰t
D h@t

Z

u.t; x/u.t; x/e�2‰t .x/=hL.dx/

D � i.`.x; hDx/u.t/; u.t//H‰t
C i.u.t/; `.x; hDx/u.t//H‰t

�

Z

2@t‰t .x/ju.t; x/j2e�2‰t .x/=hL.dx/:

(2.32)

Using that hDx.u.t; x// D 0, we obtain that

.`.x; hDx/u.t/; u.t//H‰t
D

Z

`.x; hDx/u.t; x/u.t; x/e�2‰t .x/=hL.dx/

D

Z

ju.t; x/j2`t.x; hDx/.e�2‰t.x/=h/L.dx/: (2.33)

Here
`t.x; hDx/ D `.x; �hDx/

is the transpose of the first order differential operator `.x; hDx/, and therefore we get
the quantization-multiplication formula in its exact version, see also [13],

.`.x; hDx/u.t/; u.t//H‰t
D

Z

`
�

x;
2

i

@‰t

@x
.x/

�

ju.t; x/j2e�2‰t .x/=hL.dx/: (2.34)
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Combining (2.32) and (2.34), we get

h@t .u.t/; u.t//H‰t

D �2

Z

�

@t‰t .x/ � Im `
�

x;
2

i

@‰t

@x
.x/

��

ju.t; x/j2e�2‰t .x/=hL.dx/: (2.35)

The unitarity of the map

e�i t`.x;hDx/=hW Hˆ1
.Cn/ ! H‰t

.Cn/; t 2 R;

is therefore implied by the vanishing of the first factor under the integral sign in the
right-hand side of (2.35), which agrees with the Hamilton–Jacobi equation (2.21).

3. Fourier inversion and compactly supported Gevrey symbols

The purpose of this section is to prove Theorem 1.2 in the special case when a 2

G
s
0 .ƒˆ0

/ is compactly supported. Here we shall let s > 1 be arbitrary. When doing
so, let us start by recalling the invariant form of the Fourier inversion formula on a
real symplectic vector space .W; �/ of dimension 2n, see [30]. Let

F u.X/ D Ou.X/ D
1

�n

Z

e2i�.X;Y /u.Y / dY; u 2 �.W /; (3.1)

be the (twisted) Fourier transformation on W . Here dY is the symplectic volume form
on W . Then, F

2 D I on �.W / and the Fourier transformation extends to a unitary
selfadjoint involution of L2.W /. After a change of variables, we get the following
semiclassical version of the Fourier inversion formula:

a.X/ D
1

�nh2n

Z

e2i�.X;Y /=h Oa
�Y

h

�

dY; a 2 �.W /: (3.2)

Specializing (3.2) to the case when W D ƒˆ0
, with the symplectic form given by

� jƒˆ0
, where � is the complex symplectic .2; 0/-form on C2n defined in (2.1), a 2

G
s
0 .ƒˆ0

/, and passing to the Weyl quantizations, we get

aw.x; hDx/ WD Opw
h .a/ D

1

�nh2n

Z

ƒˆ0

Oa
�Y

h

�

e2i�..x;hDx /;Y /=h dY: (3.3)

Here for Y 2 ƒˆ0
, the complex linear form

`Y .x; �/ D �..x; �/; Y /; .x; �/ 2 C
2n (3.4)

is real along ƒˆ0
and Theorem 2.2 provides us therefore with some precise mapping

properties for the magnetic translations e2i�..x;hDx /;Y /=h, for Y 2 ƒˆ0
.
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It is now easy to finish the proof of Theorem 1.2 in the special case of compactly
supported Gevrey symbols. Let ˆ1 D ˆ0 C f 2 C 1;1.CnI R/ be such that

krkf kL1.Cn/ �
1

C
h1� 1

s ; k D 0; 1; (3.5)

for some C > 0. For each Y D .y; �/ 2 ƒˆ0
, in view of Theorem 2.2, we have the

unitary operators

e2i�..x;hDx /;Y /=hW Hˆ1
.Cn/ ! Hˆ2

.Cn/; (3.6)

where ˆ2.x/ D ˆ0.x/ C f .x C 2y/. It follows that

ke2i�..x;hDx /;Y /=hkL.Hˆ1
.Cn/;Hˆ1

.Cn//

� exp
�kˆ2 � ˆ1kL1.Cn/

h

�

D exp
�kf .� C 2y/ � f .�/kL1.Cn/

h

�

: (3.7)

Here

kf .� C 2y/ � f .�/kL1.Cn/ � min.2kf kL1.Cn/; 2krf kL1.Cn/jyj/; (3.8)

and combining (3.5), (3.7), and (3.8), we get with the same constant C > 0 as in (3.5),

ke2i�..x;hDx /;Y /=hkL.Hˆ1
.Cn/;Hˆ1

.Cn//

� exp
� 2

C
h�1=s min.1; jyj/

�

; Y D .y; �/ 2 ƒˆ0
: (3.9)

We claim that the integral in the right-hand side of (3.3) converges in the space
L.Hˆ1

.Cn/; Hˆ1
.Cn//, provided that C > 0 in (3.5) is large enough. To this end,

let us recall from [11, Section 2] the following decay estimate for the (twisted) semi-
classical Fourier transform of a 2 G

s
0 .ƒˆ0

/, see also [15, Lemma 12.7.4]:

ˇ

ˇ

ˇ Oa
�Y

h

�ˇ

ˇ

ˇ � C0 exp
�

�
1

C0

� jyj

h

�1=s�

; Y D .y; �/ 2 ƒˆ0
; C0 > 0: (3.10)

We get, using (3.3), (3.9), and (3.10), for some zC > 0,

k Opw
h .a/kL.Hˆ1

.Cn/;Hˆ1
.Cn//

�
1

�nh2n

Z

ƒˆ0

ˇ

ˇ

ˇ Oa
�Y

h

�ˇ

ˇ

ˇke2i�..x;hDx /;Y /=hkL.Hˆ1
.Cn/;Hˆ1

.Cn// dY

�
zC

h2n

Z

Cn

exp
� 1

h1=s

�

�
1

C0

jyj1=s C
2

C
min.1; jyj/

��

L.dy/: (3.11)
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Here L.dy/ is the Lebesgue measure on C
n. When estimating the integral in the right-

hand side of (3.11), we write, using that min.1; jyj/ � jyj1=s for y 2 Cn, and taking
C > 0 large enough,

1

h2n

Z

Cn

exp
� 1

h1=s

�

�
1

C0

jyj1=s C
2

C
min.1; jyj/

��

L.dy/

�
1

h2n

Z

Cn

exp
� 1

h1=s

�

�
1

C0

jyj1=s C
2

C
jyj1=s

��

L.dy/

D
1

h2n

Z

Cn

exp
�

�
jyj1=s

h1=s

� 1

C0

�
2

C

��

L.dy/

D

Z

Cn

exp
�

�jzj1=s
� 1

C0

�
2

C

��

L.dz/ D O.1/: (3.12)

Combining (3.11) and (3.12), we get

kOpw
h .a/kL.Hˆ1

.Cn/;Hˆ1
.Cn// � O.1/: (3.13)

This completes the proof of Theorem 1.2, in the full range s > 1, in the case when
a 2 G

s
0 .ƒˆ0

/.

4. Wiener conditions and rank-one decompositions

In the beginning of this section, rather than working on ƒˆ0
, for simplicity we shall

work on R
m ' T �

R
n, where m D 2n. Following [25, 26], we shall first establish a

Wiener type characterization of the Gevrey space G
s
b
.Rm/, for s > 1. See also [31].

When doing so, let e1; : : : ; em be a basis of R
m and let

� D

m
M

j D1

Zej (4.1)

be the corresponding integer lattice. Let 0 � �
0

2 C 1
0 .Rm/ be such that

X

j 2�

�
j

D 1; �
j
.x/ D �

0
.x � j /: (4.2)

It was remarked in [25] that we have a 2 S0
0;0.Rm/, the space of C 1 functions on

R
m bounded together with all of their derivatives, precisely when a 2 �

0.Rm/ is such
that

sup
j 2�

jF .�
j
a/.�/j � ON .1/h�i�N ; N D 1; 2; : : : ; � 2 R

m: (4.3)
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Here F stands for the standard Fourier transformation,

F u.�/ D Ou.�/ D

Z

e�ix��u.x/ dx:

When establishing an analogous characterization of the space G
s
b
.Rm/ � S0

0;0.Rm/,
it will be natural to assume that the compactly supported function �

0
in (4.2) satisfies

�
0

2 G
s
0 .Rm/.

Proposition 4.1. Let 0 � �
0

2 G
s
0 .Rm/ be such that (4.2) holds. We have a 2 G

s
b
.Rm/,

for some s > 1, if and only if a 2 � 0.Rm/ has the property that

sup
j 2�

jF .�
j
a/.�/j � O.1/ exp

�

�
1

C
j�j1=s

�

; � 2 R
m; (4.4)

for some C > 0.

Proof. Let us first verify the necessity of (4.4). When doing so, we remark that given
�

0
2 G

s
0 .Rm/, a 2 G

s
b
.Rm/, we have, in view of the Leibniz formula,

j@˛.�
j
.x/a.x//j � C j˛jC1.˛Š/s; x 2 R

m; ˛ 2 N
m; (4.5)

for some C > 0, uniformly in j 2 � . Following an argument in [11, Section 2] and
writing

F
�

.1 � �/
N
2 .�

j
a/

�

.�/ D h�iN
F .�

j
a/.�/; (4.6)

for some even integer N large to be chosen, we get in view of (4.5) and (4.6),

jF .�
j
a/.�/j � h�i�N k.1 � �/N=2.�

j
a/kL1.Rm/ � C N C1h�i�N .N Š/s; (4.7)

uniformly in j 2 � . Choosing N � .j�j=C /1=s, as explained in [11], we get (4.4).
As for the sufficiency of (4.4), let a 2 �

0.Rm/ be such that (4.4) holds. As remarked
above, we then have a 2 S0

0;0.Rm/, and we only need to control the growth of the
derivatives of a. When doing so, let us set Uj .�/ D .1=.2�/m/F .�

j
a/.�/. Let 0 �

Q�0 2 G s
0 .Rm/ be such that Q�0 D 1 near supp �

0
and let us put Q�j .x/ D Q�0.x � j /,

j 2 � . Using the Fourier inversion formula and (4.2), we may write

a.x/ D
X

j 2�

Q�j .x/

Z

eix��Uj .�/ d�; (4.8)

and therefore, when ˛ 2 Nm, we have

D˛a.x/ D
X

j 2�

X

ˇ�˛

�

˛

ˇ

�

.D˛�ˇ Q�0/.x � j /

Z

eix���ˇ Uj .�/ d�: (4.9)
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Using (4.4), we get, passing to polar coordinates and making a change of variables,
ˇ

ˇ

ˇ

ˇ

Z

eix���ˇ Uj .�/ d�

ˇ

ˇ

ˇ

ˇ

� O.1/

Z

j�jjˇ j exp
�

�
1

C
j�j1=s

�

d�

� C
1Cjˇ j
1 �.s.jˇj C m//; (4.10)

for some C1 > 0, uniformly in j . Here �.x/ D
R 1

0
e�t tx�1 dt , x > 0, is the �-func-

tion. Using Stirling’s formula

�.�/ �

r

2�

�

��

e

��

; � ! 1; (4.11)

and the general inequality jˇjŠ � mjˇ jˇŠ, valid for ˇ 2 Nm, we see therefore that
ˇ

ˇ

ˇ

ˇ

Z

eix���ˇ Uj .�/ d�

ˇ

ˇ

ˇ

ˇ

� C 1Cjˇ j.ˇŠ/s; (4.12)

for a (new) constant C > 0, uniformly in j . Combining (4.9) and (4.12), we obtain
that

j@˛a.x/j � C 1Cj˛j.˛Š/s; x 2 R
m: (4.13)

The proof is complete.

Remark. The proof of the sufficiency of the condition (4.4) can alternatively be car-
ried out by staying on the Fourier transform side. Indeed, let � 2 G

s
0 .Rm/, and let us

write, using (4.2),
�a D

X

jI supp �\ supp �
j

¤;

��
j
a; (4.14)

F .�a/ D
1

.2�/m

X

jI supp �\ supp �
j

¤;

F � � F .�
j
a/; (4.15)

where � is the convolution star. Using that

jF �.�/j � O.1/ exp
�

�
1

C
j�j1=s

�

; � 2 R
m; (4.16)

and (4.4), we obtain that

j.F � � F .�
j
a//.�/j �

Z

jF .�/.� � �/jjF .�
j
a/.�/j d�

� O.1/

Z

exp
�

�
1

C

�

j� � �j1=s C j�j1=s
�

�

d�

� O.1/ exp
�

�
1

O.1/
j�j1=s

�

: (4.17)
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Here the last inequality in (4.17) follows by estimating separately the contributions
coming from the regions of integration j� � �j � j�j=2 and j� � �j � j�j=2. Using
equations (4.15) and (4.17), we get

jF �.�/j � O.1/ exp
�

�
1

O.1/
j�j1=s

�

; � 2 R
m: (4.18)

In this estimate we can replace � by any translate of �, and by Fourier’s inversion
formula we can conclude therefore that a 2 G

s
b
.Rm/.

Remark. Let �
0

2 G
s
0 .Rm/ be real valued such that k�

0
kL2 D 1, and let us set

�
t
.x/ D �

0
.x � t/, t 2 R

m. We then have the following natural analog of Propos-
ition 4.1: a 2 G

s
b
.Rm/, for some s > 1, precisely when we have

sup
t2Rm

jF .�
t
a/.�/j � O.1/ exp

�

�
1

C
j�j1=s

�

; � 2 R
m; (4.19)

for some C > 0. Indeed, this follows by arguing as in the proof of Proposition 4.1,
replacing (4.8) by the following consequence of the Fourier inversion formula:

a.x/ D
1

.2�/m

“

eix���
t
.x/F .�

t
a/.�/ d� dt: (4.20)

Here we may also notice that the same characterization of the class G
s
b
.Rm/ remains

valid when �
0
.x/ D 2m=4��m=4e�jxj2 is the L2-normalized real Gaussian. Indeed,

the derivatives of �
0

obey the pointwise bounds

j@˛�
0
.x/j � C 1Cj˛j.˛Š/1=2e�jxj2=C ; x 2 R

m; ˛ 2 N
m; (4.21)

for some C � 1, which is sufficient for the arguments to go through. Let us also remark
that such derivative bounds are well known [16], and can also be obtained directly by
means of the Cauchy inequalities.

Let us proceed to make some additional remarks in the real setting, in preparation
for the discussion on the FBI-Bargmann transform side. Let us set

e0.x/ D C h�n=4e�x2=2h; x 2 R
n; (4.22)

where C > 0 is chosen so that ke0kL2 D 1. The distribution kernel of the orthogonal
projection L2.Rn/ 3 u 7! .u; e0/L2e0 onto Ce0 is given by K.x; y/ D e0.x/e0.y/,
and the semiclassical Weyl symbol of the orthogonal projection has the form

Z

e�iy��=hK
�

x C
y

2
; x �

y

2

�

dy: (4.23)
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A simple computation shows that the integral in (4.23) is given by '0..x; �/=h1=2/,
where

'0.x; �/ D .4�/n=2C 2e�.x2C�2/: (4.24)

See also [26, Section 3].
We shall now pass to work on ƒˆ0

, and to this end let �.x; y/ be a holomorphic
quadratic form on Cn

x � Cn
y such that

Im �00
yy > 0; det �00

xy ¤ 0; (4.25)

and with the property that the associated complex linear canonical transformation

��W C
2n 3 .y; ��0

y.x; y// 7! .x; �0
x.x; y// 2 C

2n (4.26)

satisfies
��.Rm/ D ƒˆ0

: (4.27)

Associated to the quadratic form � is the generalized Bargmann transformation

T u.x; h/ D C h�3n=4

Z

ei�.x;y/=hu.y/ dy; (4.28)

where C > 0 is chosen suitably so that the map T is unitary,

T W L2.Rn/ ! Hˆ0
.Cn/; (4.29)

see [13, 17, 27].
Let a 2 G

s
b
.ƒˆ0

/ be uniformly Gevrey, for some s > 1, and let us set

�
0

D '0 ı ��1
� 2 �.ƒˆ0

/;

where '0 is given in (4.24). Put also �
T

.X/ D �
0
.X � T /, T 2 ƒˆ0

. The discussion
above, see (4.19), shows that

jF .�
T

a/.Y /j � O.1/ exp
�

�
1

C0

jY j1=s
�

; Y 2 ƒˆ0
; (4.30)

for some C0 > 0, uniformly in T 2 ƒˆ0
. Here F is the symplectic Fourier transform-

ation on ƒˆ0
, introduced in (3.1). Letting Fh be the semiclassical symplectic Fourier

transformation on ƒˆ0
, given in (A.1), we can write, in view of the Fourier inversion

formula,

�
T

.X/a.X/ D
1

.�h/n

Z

ƒˆ0

e2i�.X;Y /=h
Fh.�

T
a/.Y / dY: (4.31)
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Multiplying (4.31) by �
0
..X � T /=h1=2/ D '0.��1

� .X � T /=h1=2/ and integrating
with respect to T 2 ƒˆ0

, we get

M.h/a.X/ D
1

.�h/n

“

ƒˆ0
�ƒˆ0

e2i�.X;Y /=h�
0

�X � T

h1=2

�

Fh.�
T

a/.Y / dY dT;

(4.32)
where

M.h/ D

Z

ƒˆ0

�
0
.T /�

0

� T

h1=2

�

dT � hn: (4.33)

We would like to pass to the Weyl quantizations in (4.32), and to this end we shall
first take a closer look at the Weyl quantization of the Schwartz function

ƒˆ0
3 X 7! b.X/ D bY;T .X/ D e2i�.X;Y /=h�

0

�X � T

h1=2

�

; Y; T 2 ƒˆ0
:

Let us start with some preliminary observations and computations, closely related
to [28, Section 3]. Let ` be a complex linear form on C2n such that `jƒˆ0

is real,
so that H` 2 ƒˆ0

, and let a 2 �.ƒˆ0
/. A straightforward computation using (A.15)

shows that

.ei`=h # a/.X/ D ei`.X/=ha
�

X C
H`

2

�

; (4.34)

and similarly we find

.a # ei`=h/.X/ D ei`.X/=ha
�

X �
H`

2

�

: (4.35)

It follows from (4.34), (4.35) that

.ei`=h # a # ei`=h/.X/ D e2i`.X/=ha.X/; (4.36)

.ei`=h # a # e�i`=h/.X/ D a.X C H`/: (4.37)

Following equation (3.4), let us write `Y .X/ D �.X;Y /, for Y 2 ƒˆ0
, and notice that

H`T
D T . Using (4.36) and (4.37), we get

b.X/ D e2i�.X;Y /=h�
0

�X � T

h1=2

�

D
�

ei`Y =h # e�i`T =h # �
0

� �

h1=2

�

# ei`T =h # ei`Y =h
�

.X/; (4.38)

and therefore

bw.x; hDx/ D ei`Y .x;hDx /=h ı e�i`T .x;hDx/=h ı �w

0

�.x; hDx/

h1=2

�

ı ei`T .x;hDx /=h ı ei`Y .x;hDx/=h: (4.39)
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Using (A.4), we infer that

ei`Y .x;hDx/=h ı e�i`T .x;hDx/=h D ei`Y �T .x;hDx/=hei�.Y;�T /=2h

D ei`Y �T .x;hDx/=hei�.T;Y /=2h; (4.40)

ei`T .x;hDx/=h ı ei`Y .x;hDx/=h D ei`T CY .x;hDx/=hei�.T;Y /=2h; (4.41)

and, combining (4.39), (4.40), and (4.41), we get

bw.x; hDx/Dei�.T;Y /=hei�..x;hDx /;Y �T /=h ı �w

0

� .x; hDx/

h1=2

�

ı ei�..x;hDx /;Y CT /=h:

(4.42)
An application of the exact Egorov theorem [13, 27] gives that

�w

0

� .x; hDx/

h1=2

�

D T ı 'w
0

� .x; hDx/

h1=2

�

ı T
�1; (4.43)

and we conclude therefore that the operator in (4.43) is a rank-one orthogonal projec-
tion on Hˆ0

.Cn/, given by

�w

0

�.x; hDx/

h1=2

�

u D .u; v0/v0; u 2 Hˆ0
.Cn/: (4.44)

Here v0 D T e0 and .�; �/ stands for the scalar product in Hˆ0
.Cn/. Let us mention

explicitly that we owe the idea of using Gaussians to pass to rank-one projections
to [9].

For future reference, let us also notice that an application of the exact (quadratic)
stationary phase together with (4.22), (4.28) allows us to conclude that

v0.x/ D .T e0/.x; h/ D C h�n=2eig.x/=h; C ¤ 0; (4.45)

where g is a holomorphic quadratic form on C
n. The strict positivity of the complex

Lagrangian plane � D iy, y 2 C
n, associated to the state e0 in (4.22) implies that

ˆ0.x/ C Im g.x/ � jxj2; x 2 C
n; (4.46)

see [2, Theorem 2.1].
Using (4.42) and (4.44), we get, using the unitarity of magnetic translations on

Hˆ0
.Cn/,

bw.x; hDx/u

D ei�.T;Y /=hei�..x;hDx /;Y �T /=h ı �w

0

�.x; hDx/

h1=2

�

ı ei�..x;hDx /;Y CT /=hu

D ei�.T;Y /=h.u; e�i�..x;hDx/;Y CT /=hv0/ei�..x;hDx /;Y �T /=hv0: (4.47)
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Passing to the Weyl quantizations in (4.32), we obtain therefore, in view of (4.47),

M.h/aw.x; hDx/u D
1

.�h/n

“

ƒˆ0
�ƒˆ0

e
i�.T;Y /

h Fh.�
T

a/.Y /.u; e� i�..x;hDx /;Y CT /
h v0/

� e
i�..x;hDx /;Y �T /

h v0 dY dT:

(4.48)

Making the change of variables Y 0 D Y � T , T 0 D �Y � T , and using that 2�.T;Y / D

�.Y 0; T 0/, we obtain, after dropping the primes,

M.h/aw.x; hDx/u D
C

hn

“

.ƒˆ0
/2

e
i�.Y;T /

2h Fh.�
� Y CT

2

a/
�Y � T

2

�

� .u; e
i�..x;hDx/;T /

h v0/e
i�..x;hDx /;Y /

h v0 dY dT:

(4.49)

Here we have incorporated the non-vanishing constant Jacobian into the (new) con-
stant C ¤ 0. We have therefore represented the operator aw.x;hDx/ as a superpositi-
on of rank-one kernels. The decomposition (4.49) can be regarded as the Bargmann
transform side analogue of the corresponding decomposition in the real setting, estab-
lished in [9].

Let us next record the following observation, closely related to the computations
in Section 2.

Lemma 4.2. Let `.x; �/ be a complex linear form on C2n such that the restriction

`jƒˆ0
is real, and let us represent ` in the form (2.4),

`.x; �/ D �
2

i

@ˆ0

@x
.x�/ � x C x� � �;

for some unique x� 2 C
n. There exists Cx�;h 2 C with jCx�;hj D 1, such that

ei`.x;hDx/=hu.x/

D Cx�;he�2i Im.ˆ00
0;xx

x��x/=hei�.X;X�/=2he.ˆ0.x/�ˆ0.xCx�//=hu.x C x�/: (4.50)

Here u 2 Hˆ0
.Cn/, and X 2 ƒˆ0

, X� D H` 2 ƒˆ0
are the points in ƒˆ0

above x,

x� 2 C
n, respectively.

Proof. This result follows by a direct computation, using (2.3), (2.7), (2.8), as well
as the following general expression for the complex symplectic (2,0)-form � on C

2n,
restricted to ƒˆ0

,

�.X; X�/ D �4 Im.ˆ00
0; Nxxx � x�/; X; X� 2 ƒˆ0

:
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Remark. Let u; v 2 Hˆ0
.Cn/. It follows from Lemma 4.2 that the scalar product

.ei`.x;hDx/=hu;v/Hˆ0
, viewed as a function of x� 2 Cn, or equivalently as a function

of X� 2 ƒˆ0
, can be regarded as the twisted convolution of the functions e�ˆ0=hu,

e�ˆ0=hv 2 L2.Cn/ in the sense of (A.7), after these have been modified by some
unimodular factors. It follows, in particular, that

C
n 3 x� 7! .ei`.x;hDx/=hu; v/Hˆ0

2 L2.Cn/;

see [30]. Ignoring the unimodular factors in (4.50), we get the more elementary point-
wise estimate,

j.ei`.x;hDx/=hu; v/Hˆ0
.x�/j �

Z

Cn

e�ˆ0.xCx�/=hju.x C x�/je�ˆ0.x/=hjv.x/jL.dx/;

(4.51)
which will be sufficient in what follows.

We now come to complete the proof of Theorem 1.2. When doing so, let us write,
using (4.49), (4.50), and (4.51),

M.h/jaw.x; hDx/u.x/je�ˆ0.x/=h

�
O.1/

h2n

•

.Cn/3

U

�y � t

h

�

e�ˆ0.zCt/=hjv0.z C t/je�ˆ0.xCy/=hjv0.x C y/j

� ju.z/je�ˆ0.z/=hL.dy/L.dt/L.dz/;

(4.52)

where, in view of (4.30),

U.y/ D exp
�

�
1

C0

jyj1=s
�

; y 2 C
n: (4.53)

Letting ˆ1 D ˆ0 C f 2 C 1;1.CnIR/ be such that (3.5) holds, we obtain next, making
use of (4.33), (4.45), (4.46), and (4.52),

jaw.x; hDx/u.x/je�ˆ1.x/=h �

Z

Cn

K.x; z/ju.z/je�ˆ1.z/=hL.dz/; (4.54)

where

K.x; z/ �
O.1/

h4n

“

Cn�Cn

U

�y � t

h

�

e�jzCt j2=C he�jxCyj2=C he.f .z/�f .x//=hL.dt/L.dy/:

(4.55)

We would like to show that the kernel K.x; z/ is dominated pointwise by an L1

convolution kernel, in order to be able to apply Schur’s lemma to (4.54). To this end
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let us consider the t-integration in (4.55) first, estimating the integral

1

h2n

Z

Cn

U

�y � t

h

�

e�jzCt j2=C hL.dt/

D
1

h2n

Z

Cn

U

� t

h

�

e�jzCy�t j2=C hL.dt/ D I1 C I2: (4.56)

Here

I1 D
1

h2n

Z

jzCy�t j�jzCyj=2

U

� t

h

�

e�jzCy�t j2=C hL.dt/ � kUkL1e�jzCyj2=4C h;

(4.57)
and, in view of (4.53), we have

I2 D
1

h2n

Z

jzCy�t j�jzCyj=2

U

� t

h

�

e�jzCy�t j2=C hL.dt/

�
1

h2n

Z

jzCy�t j�jzCyj=2

U

� t

h

�

L.dt/ � O.1/ exp
�

�
1

C0

� jz C yj

h

�1=s�

: (4.58)

Here we have also used that jz C yj � 2jt j in the region of integration in (4.58).
Combining (4.55), (4.56), (4.57), and (4.58), we see that

K.x; z/ � K1.x; z/ C K2.x; z/; (4.59)

where

K1.x; z/ � e.f .z/�f .x//=h O.1/

h2n

Z

Cn

e�jzCyj2=C he�jxCyj2=C hL.dy/

D e.f .z/�f .x//=h O.1/

h2n

Z

Cn

e�jyj2=C he�jz�xCyj2=C hL.dy/; (4.60)

and

K2.x; z/ � e.f .z/�f .x//=h O.1/

h2n

Z

Cn

exp
�

�
1

C0

� jz C yj

h

�1=s�

e�jxCyj2=C hL.dy/

D e.f .z/�f .x//=h O.1/

h2n

Z

Cn

exp
�

�
1

C0

� jz � x C yj

h

�1=s�

e�jyj2=C hL.dy/:

(4.61)
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When estimating the contribution K1.x;z/ in (4.60), we notice that considering separ-
ately the regions of integration jz � x C yj � jz � xj=2 and jz � x C yj � jz � xj=2,
and using that

1

hn

Z

Cn

e�jyj2=C hL.dy/ D O.1/;

we get

O.1/

hn

Z

Cn

e�jyj2=C he�jz�xCyj2=C hL.dy/ � O.1/e�jx�zj2=C h; (4.62)

and therefore,

K1.x; z/ �
O.1/

hn
e.f .z/�f .x//=he�jx�zj2=C h: (4.63)

Alternatively, the estimate (4.62) can be obtained by an application of the exact sta-
tionary phase to the integral in the left-hand side of (4.62). Arguing similarly, we find
that

O.1/

hn

Z

Cn

exp
�

�
1

C0

� jz � x C yj

h

�1=s�

e�jyj2=C hL.dy/

� O.1/ exp
�

�
1

C0

� jz � xj

h

�1=s�

C O.1/e�jx�zj2=C h: (4.64)

Combining (4.59), (4.63), (4.61), and (4.64), we get

K.x; z/ �
O.1/

hn
e.f .z/�f .x//=he�jx�zj2=C h

C
O.1/

hn
e.f .z/�f .x//=h exp

�

�
1

C0

� jz � xj

h

�1=s�

: (4.65)

To handle the second term in the right-hand side of (4.65), we write, following (3.8)
and using (3.5),

f .z/ � f .x/ �
1

O.1/
h1� 1

s min.1; jz � xj/ �
1

O.1/
h1� 1

s jz � xj1=s: (4.66)

The Schur norm of the second term in the right-hand side of (4.65) is therefore O.1/,
provided that the implicit constant in (4.66) is large enough, and we only need to
estimate the Schur norm of the first term in the right-hand side of (4.65). Using (4.66),
we see that it suffices to control the L1-norm

1

hn

Z

Cn

e�jxj2=C h exp
�h1� 1

s jxj

O.1/h

�

L.dx/ D I1 C I2; (4.67)
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where

I1 D
1

hn

Z

jxj� zC h1� 1
s

e�jxj2=C h exp
�h1� 1

s jxj

O.1/h

�

L.dx/; (4.68)

and

I2 D
1

hn

Z

jxj� zC h1� 1
s

e�jxj2=C h exp
�h1� 1

s jxj

O.1/h

�

L.dx/: (4.69)

Taking the constant zC > 0 sufficiently large, we get

I1 �
1

hn

Z

exp
�

�
jxj2

O.1/h

�

L.dx/ D O.1/: (4.70)

Furthermore,

I2 �
� 1

hn

Z

jxj� zC h1� 1
s

e�jxj2=C hL.dx/
�

exp
� zC h2� 2

s

O.1/h

�

� O.1/.O.1/h1� 2
s /: (4.71)

Recalling that s � 2, we conclude, in view of (4.65), (4.66), (4.67), (4.70), and (4.71),
that the Schur norm of the kernel K.x; z/ is O.1/. Applying Schur’s lemma to (4.54),
we get therefore,

Opw
h .a/ D O.1/W Hˆ1

.Cn/ ! Hˆ1
.Cn/:

The proof of Theorem 1.2 is complete.

Remark. The purpose of this remark is to verify that the decomposition (4.49) can
also be used to give a direct proof of the L2-boundedness result for the Wiener algebra
of pseudodifferential operators, established in [25, 26]. Indeed, the fact that decom-
positions such as (4.49) are useful to this end is well known in the real setting [9], and
the observation here is that working on the FBI–Bargmann transform side seems to
make the computations and estimates particularly natural. See also [26, Section 5].

Let us therefore replace (4.30) by the weaker assumption,

jF .�
T

a/.Y /j � U.Y /; Y 2 ƒˆ0
; (4.72)

uniformly in T 2 ƒˆ0
. Here U 2 L1.ƒˆ0

/. Setting

F.T / D .u; e
i�..x;hDx/;T /

h v0/Hˆ0
; T 2 ƒˆ0

' C
n; (4.73)

we get, in view of (4.51) and the Young inequality,

kF kL2.ƒˆ0
/ � O.1/kukHˆ0

ke�ˆ0=hv0kL1 � O.hn=2/kukHˆ0
: (4.74)
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Here we have also used (4.45), (4.46). An application of Schur’s lemma together
with (4.72) and (4.74) allows us next to conclude that the function

G.Y / WD
C

hn

Z

ƒˆ0

e
i�.Y;T /

2h Fh.�
� .Y CT /

2

a/
�Y � T

2

�

F.T / dT 2 L2.ƒˆ0
/ (4.75)

and we have

kGkL2.ƒˆ0
/ � O.1/kF kL2.ƒˆ0

/ � O.hn=2/kukHˆ0
: (4.76)

Using (4.49), (4.73), and (4.75), we can write

M.h/aw.x; hDx/u.x/ D

Z

ƒˆ0

G.Y /e
i�..x;hDx /;Y /

h v0.x/ dY; (4.77)

and an application of Lemma 4.2 gives the pointwise estimate,

M.h/jaw.x; hDx/u.x/je�ˆ0.x/=h �

Z

ƒˆ0

jG.Y /je�ˆ0.xCy/=hjv0.x C y/j dY: (4.78)

Here we have written Y D .y; �/ 2 ƒˆ0
. Applying the Young inequality once more

we get, using also (4.76),

M.h/kawukHˆ0
� kGkL2ke�ˆ0=hv0kL1 � O.hn=2/kGkL2

� O.hn/kukHˆ0
: (4.79)

Recalling finally (4.33), we conclude that

kawukHˆ0
� O.1/kukHˆ0

; u 2 Hˆ0
.Cn/; (4.80)

provided that (4.72) holds. We have therefore recovered the L2-boundedness result
of [25, 26] in the Hˆ0

-setting.

A. Weyl composition of symbols

Let .W; �/ be a real symplectic vector space of dimension 2n and let

Fhu.X/ D
1

hn
F u

�X

h

�

D
1

.�h/n

Z

e2i�.X;Y /=hu.Y / dY; u 2 �.W /; 0 < h � 1;

(A.1)
be the semiclassical (twisted) Fourier transformation on W . Here the map F is given
in (3.1). We have F 2

h
D I on � 0.W /.
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We shall carry out a familiar computation composing two semiclassical Weyl
quantizations, see [6, Chapter 7] for such computations on the real side. Let a; b 2

�
0.ƒˆ0

/ be such that F a, F b 2 L1.ƒˆ0
/ and let us write, following (3.3),

aw.x; hDx/ D
1

.�h/n

Z

ƒˆ0

e2i�..x;hDx /;Y /=h
Fha.Y / dY; (A.2)

bw.x; hDx/ D
1

.�h/n

Z

ƒˆ0

e2i�..x;hDx /;Y /=h
Fhb.Y / dY: (A.3)

Using the composition law for magnetic translations

e2i�..x;hDx /;Y /=he2i�..x;hDx /;Z/=h D e2i�..x;hDx /;Y CZ/=he2i�.Y;Z/=h; (A.4)

see [6, (7.11)] for the corresponding result in the real domain, and making the change
of variables .Y; Z/ 7! .Y C Z; Z/, we get that the composition

aw.x; hDx/ ı bw.x; hDx/

of the operators in (A.2), (A.3), is given by

1

.�h/2n

“

ƒˆ0
�ƒˆ0

e2i�..x;hDx /;Y CZ/=he2i�.Y;Z/=h
Fha.Y /Fhb.Z/ dY dZ

D
1

.�h/n

Z

ƒˆ0

e2i�..x;hDx /;Y /=h
Fhc.Y / dY D cw.x; hDx/: (A.5)

Here

Fhc.X/ D
1

.�h/n

Z

ƒˆ0

e2i�.X;Z/=h
Fha.X � Z/Fhb.Z/ dZ 2 L1.ƒˆ0

/: (A.6)

We shall now compute the semiclassical Fourier transform of the expression in the
right-hand side of (A.6), leading to an integral representation formula for the symbol
c D a # b 2 L1.ƒˆ0

/ \ C.ƒˆ0
/. To this end, following [30], it will be convenient

to introduce the (non-commutative) twisted convolution product on ƒˆ0
,

.u �� v/.X/ D

Z

ƒˆ0

e2i�.X;Y /=hu.X � Y /v.Y / dY; (A.7)

where u; v 2 L1.ƒˆ0
/, so that

Fh.a # b/ D
1

.�h/n
Fha �� Fhb: (A.8)



Semiclassical Gevrey operators and magnetic translations 79

We have the following result, due to [30], whose proof we give for the convenience
of the reader only.

Proposition A.1. If u; v 2 L1.ƒˆ0
/, then

Fh.u �� v/ D .Fhu/ �� v: (A.9)

Proof. Using (A.1), (A.7), let us write

Fh.u �� v/.X/ D
1

.�h/n

Z

ƒˆ0

e2i�.X;Y /=h.u �� v/.Y / dY

D
1

.�h/n

“

ƒˆ0
�ƒˆ0

e2i�.X;Y /=he2i�.Y;Z/=hu.Y � Z/v.Z/ dY dZ:

(A.10)

On the other hand, we compute

..Fhu/ �� v/.X/ D

Z

ƒˆ0

e2i�.X;Z/=h.Fhu/.X � Z/v.Z/ dZ

D
1

.�h/n

“

ƒˆ0
�ƒˆ0

e2i�.X;Z/=he2i�.X�Z;Y /=hu.Y /v.Z/ dY dZ:

(A.11)

Making the change of variables .Y; Z/ 7! .Y � Z; Z/, we can rewrite (A.11) as fol-
lows:

..Fhu/ �� v/.X/

D
1

.�h/n

“

ƒˆ0
�ƒˆ0

e2i�.X;Z/=he2i�.X�Z;Y �Z/=hu.Y � Z/v.Z/ dY dZ:

(A.12)

Here

�.X; Z/ C �.X � Z; Y � Z/ D �.X; Z/ C �.X; Y / � �.X; Z/ � �.Z; Y /

D �.X; Y / C �.Y; Z/;

and therefore the expressions (A.10) and (A.12) agree.

Combining Proposition A.1 and (A.8) with the fact that F
2

h
D I , we get

c D a # b D
1

.�h/n
a �� Fhb; (A.13)
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and therefore, assuming for simplicity that a; b 2 �.ƒˆ0
/,

c.X/ D
1

.�h/n

Z

ƒˆ0

e2i�.X;Y /=ha.X � Y /Fhb.Y / dY

D
1

.�h/2n

“

ƒˆ0
�ƒˆ0

e2i�.X;Y /=he2i�.Y;Z/=ha.X � Y /b.Z/ dY dZ

D
1

.�h/2n

“

ƒˆ0
�ƒˆ0

e2i�.X�Z;Y /=ha.X � Y /b.Z/ dY dZ: (A.14)

We obtain finally, after a change of variables,

c.X/ D .a # b/.X/ D
1

.�h/2n

“

ƒˆ0
�ƒˆ0

e�2i�.Y;Z/=ha.X C Y /b.X C Z/ dY dZ:

(A.15)

Remark. The integral representation formula (A.15) can also be inferred from the
corresponding expression for the Weyl symbol of the composition aw.x; hDx/ ı

bw.x; hDx/ in the real domain [33, Chapter 4], thanks to the metaplectic invariance
of the Weyl calculus [13, 27].

Acknowledgement. We are grateful to the referee for interesting questions and help-
ful suggestions.
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