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Complete asymptotic expansions of the spectral function
for symbolic perturbations of almost periodic Schrodinger
operators in dimension one

Jeffrey Galkowski

Abstract. In this article we consider asymptotics for the spectral function of Schrédinger oper-
ators on the real line. Let P: L2(R) — L2(R) have the form

P = a2 + W,

T dx?

where W is a self-adjoint first order differential operator with certain modified almost periodic
structure. We show that the kernel of the spectral projector, 1_, ;27(P) has a full asymptotic
expansion in powers of A. In particular, our class of potentials W is stable under perturba-
tion by formally self-adjoint first order differential operators with smooth, compactly supported
coefficients. Moreover, the class of potentials includes certain potentials with dense pure point
spectrum. The proof combines the gauge transform methods of Parnovski—Shterenberg and
Sobolev with Melrose’s scattering calculus.

In memory of Milhail Shubin

1. Introduction

Let
P := D2+ WDy + DyW; + Wp: L*(R) — L*(R),
where W; € C*°(R; R). We study the spectral projection for P, 1_o, ;21(P), when
W;, j =0,1, satisfy certain almost periodic conditions. Denote by e, (x, y) the kernel
of 1(_oo,22)(P).
We assume that there is ® C R countable such that —® = ©, 0 € ©, and for all
k,N > 0 there is Cx x > 0 such that

Wi(x) =Y e wg ;(x), |we,; ()] < Gy lx)FON. (D)
fe®
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Before stating the general conditions on wg (see §3), we give two consequences of
our main theorem (Theorem 3.1). Let w := (w1, ..., wq) € RY. We say w satisfies
the Diophantine condition if there are c, > 0 such that

In-w|>cn|™, nezé\{0}. (1.2)

Theorem 1.1. Suppose v € R4 satisfies the Diophantine condition (1.2) and W; are
asin (1.1)with® =729 . @ and for all k, N > 0 there is Cy y > 0 such that

8 wn.w,; ()] < Cen () Fm)™, nezd j=01,
then, for |x — y| > c,

ex(x, ) ~cos(A(x = 1)) Y A aj(x,y) +sin(A(x = ) Y A7/ bj(x, y),
J J

ep(x,x) ~ Z&j)&jﬂ,
J

(1.3)
where ag = 0 and by = ﬁ Moreover, we have an oscillatory integral expression

for ey (x, y) valid uniformly for (x, y) in any compact subset of R?.

Remark 1.1. It is easy to see that the condition (1.2) is generic in the sense that it is
satisfied for Lebesgue almost every o € [—1, 1]¢.

Next, we state a theorem in the limit periodic case.

Theorem 1.2. Let{m,};°, CZy,and ® =0 U -0 U{0} where @ ={0,}° |,

0p := my/n. Suppose that W; are as in (1.1) such that for all k, N > 0 there is
Cr.N > 0 such that

105w, ; (X)| < Cen(x)Fm)™, n>1,j=01;

then (1.3) holds.

In both Theorems 1.1 and 1.2, one may add any formally self-adjoint first order
differential operator Wiy = a1(x) Dy + b1(x) whose coefficients satisfy |3’;a,- x)] <
Cr(x)7% to W and W + Wiy, will satisfy the assumptions of the theorem. In addi-
tion, Theorems 1.1 and 1.2 include examples with arbitrarily large embedded eigen-
values and Theorem 1.2 includes examples with dense pure point spectrum. (See
Appendix B).

While full asymptotic expansions are known in the case that W is compactly sup-
ported [15, 19] and in the case that W; =0, Wy = ) €'y with vg € C and ©
satisfying the assumptions of Theorem 1.1 (see [13]), to the author’s knowledge, The-
orems 1.1 and 1.2 are the first to allow for both types of behavior. The work [13]
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followed the approach developed in [11, 12] for the study of the integrated density of
states a subject which, for periodic Schroddinger operators, has been the focus of a
long line of articles (see e.g. [4,7,17,18]).

1.1. Discussion of the proof

We choose not to state our general results until all of the necessary preliminaries
have been introduced (see Theorem 3.1). Instead, we outline how our proof draws
on and differs from the work of Parnovski and Shterenberg [11-13] and Morozov,
Parnovski, and Shterenberg [10]. These papers handle the much more difficult higher-
dimensional case of the above problem when W(x, D) is replaced by a potential
V(x) =Y gee o€’ 9x where vg € C and © is assumed to be countable and satisfying
certain Diophantine conditions. The crucial technique used in those articles is the
gauge transform (developed in [14, 17, 18]) i.e. conjugating the operator P by ¢'¢
for some pseudodifferential G constructed so that the conjugated operator takes the
form Hyp + R where H is a constant coefficient differential operator near frequencies
|&] ~ A and away from certain resonant zones in the Fourier variable and where R =
O(A~N)y-~_ g~ . The authors are then able to make a sophisticated analysis of the
operator Hy acting on Besicovitch spaces. This analysis uses in a crucial way that
Hj acts nearly diagonally i.e. that the operator can be thought of as a direct sum of
operators acting on resonant frequencies and is diagonal away from these frequencies.
The authors write a more or less explicit, albeit complicated, integral formula for the
spectral function and then directly analyze this integral.

In this article, we take a somewhat different approach to the second step of the
above analysis. Namely, we start with our operator P and, after conjugation by €,
we are able to reduce to the case of Hy + R, where Hy is a scattering pseudodiffer-
ential operator [9] near the frequencies || ~ A. However, because we have simplified
our problem by working in one dimension, resonant zones do not occur. In particular,
we will prove a limiting absorption principle for Hy at high enough energies and show
that the resulting resolvent operators (Ho — A% F i0) ™! satisfy certain ‘semiclassical
outgoing/incoming’ properties. These, roughly speaking, state that the resolvent trans-
ports singularities in only one direction along the Hamiltonian flow for the symbol of
Hy and that these singularities do not return from infinity. With this in hand, we are
able understand the spectral projector for Hy using the wave method of Levitan [8],
Avakumovi¢ [1], and Hérmander [5] and hence, using an elementary spectral the-
ory argument, to understand the spectral function for P. The crucial fact allowing
the proof of a limiting absorption principle is that Hy may be chosen such that the
‘non-scattering pseudodifferential’ part is identically zero on frequencies near A.
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2. General assumptions

2.1. Pseudodifferential classes

We work with pseudodifferential operators in Melrose’s scattering calculus [9]. Since
we are working in the simple setting of R, we will not review the construction of an
invariant calculus. Instead, we say thata € C“(Rz) lies in S™" if for, all &, B € N,

9% a(x. £)] < Caplx)" " (E)"F. @.1)
We define the seminorms on S™" by
a ﬁ . .
lallgn =" sup[8]ofa(x. £)(x) ™" (g) 7 HE|.
Jj=0k=0

When it is convenient, we will say N = (m,n,a, B) C N* is a choice of a seminorm
on ™",

It will also be convenient to have the standard symbol classes on R. For this, we
say a € C®(R?) lies in S™ if

929F a(x.§)| < Cap (€)™ ".

Note that S™" C S™. We also define the corresponding classes of pseudodifferential
operators:

gt = la(x,hD) | a € S™"}, W™ :={a(x,hD)|a e S™},

where fora € §™,
1 i
a(x,hD)u := —/eﬁ(x_y)ga(xf)u(y)dyd?
2mh

We sometimes write Opj, (a) for the operator a(x, h D).

Our pseudodifferential operators will have polyhomogeneous symbols. That is,
they will be given by a € S™", b € S™ such that there are a; € S™/"~/  h; € S™/
satisfying

N-1 N-1
a(x.§)— > Waj(x.£) e WNS" NN p(x, £) = Y hibi(x.6) e NS
j=0 j=0

We will abuse notation slightly from now and write a € S™", b € S™ to mean that a
and b have such expansions and V™", W for the corresponding operators.
Note that both " and W™ come with well-behaved symbol maps,

Omp: W™ — S™" and 0, V" — S,
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respectively, such that

Om.n

a(x,hD R
1 ( )\Ijm,n Sm,n_)o’

0 — hsm—bn=

Sm_l a(x,hD)

Om

0—h w5 §" 50

are short exact sequences. Moreover,
Omy+ma,ny+ns(AB) = Omyn (A)Omoyns (B), Om(AB) = o, (A)om,(B),

and

Omi4+mo—1,n1+n2—1 (ih_l[A’ B]) = {aml,nl (A)v Omso,na (B)}7
0m1+m2—1(ih_1 [A’ B]) = {Uml (A)’ Omz(B)}’

where
{a,b} ;= 0gadxb — 0gboya.

For future use, we define the norms
. . 292\51/2
ol gsress i= 1y 2ullggors Nl = 1=h202) 2 2.
We recall the following estimates for pseudodifferential operators.
Lemma 2.1. Leta € S™" b € S™. Then
||a(x, hD)M ”HZ]—m.ﬂ—n < Ca ||u ”HZI 852, ||b()€, ]’lD)M ”HZ]—m.sz < Cb ||u ”HZI 2,
,hD _ _ b(x,hD _
The maps S™" aChD) L(H2 H'™27") and S™ beehD), L(H' H'™™)
are continuous.

In preparation for the gauge transform method, we prove two preliminary lemmas
on exponentials of elements of WO,

Lemma 2.2. Let G € VO self-adjoint. Then ¢'¢ e WO,
Proof. Let g € S° such that G = Opy,(g) and Ao(¢) := Opy,(e'*¢). We compute
Di(e™"9 Ao(1)) = €79 (= GAo + Opy(g€''®)) = e "R Opy (1 (1)),

where r; € S~1. Now, suppose that we have B; (1), j =1,...,N —1, B; € W~/ such
that, with Ay_1(1) := Ao(t) + 31, 17 B; (1),

Di(e "% AN (1)) = e hN Op, (rn (1))
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with ry € S™V. Then, putting By (1) = Opy,(— lft 1=y (5)ds), we have

D (e O (An(t) + N By (1)) = e *ChN (Op, (rn (1)) — GBN (t) + D¢ By (1))
= ¢ "N Opy (rv 41 (1))

for some ryy; € STNL Putting A ~ Ao + ZJ- h’ Bj(t), we have
Di(e "6 A(1)) = e G 0y (h™®) g—oo.

In particular, integrating, we have

= A(r) + / e CICR (s)ds, Roo(s) = O(h™)y—oo.
0

Therefore, since for all N, A(): Hh_N — Hh_N and Ro: Hh_N — H}fv are bounded,

the fact that e''%: L2 — L? is bounded implies that for N > 0, ¢/*6: H,; N — H"N.
But then for u,v € C>°,

|(eitG —itG

w,v) 2] = [{u, e ) o | < ullgnlle™ “vllg—n < Cllullgy vllgz—~-
h h h h

In particular, by density, we have ¢'/C: H }f’ — H }f’ is bounded for all N and hence

= A(t) + O(h™®)g—oo.

From the construction, it is clear that since G is polyhomogeneous, so is ¢//C. m

Lemma 2.3. Let G € V° self adjoint, and P € W™,

N—-1

iG p,—iG _ Z kadk oV

e e = T + ( )H}:_>Hg+N—m,
k=0 ’

where adg B = [A, B].

Proof. Note that
(Dt)keltGPB_”G — eltG adl& Pe_”G,

and, in particular,

N-1 k k (I—S)N 1;N )
ltGP —itG __ Z adk P—|—/ (N 1)' 1sG adg Pe_ZSGdS.

Now, adg P € hN'&m=N and, hence, the lemma follows by putting = 1 and recalling
that /56 € WO, =
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2.2. Ellipticity

Next, we recall the notion of the elliptic set for elements of W™ and W™". To this
end, we compactify T*R in the fiber variables to T*R 2 R x [0, 1] for ¥ and
in both the fiber and position variables to *7*R = [—1, 1] x [—1, 1] for ¥ In
particular, the boundary defining functions on *T*R are +x~! near +£x = oo and
+£&71 near ££ = oo and those for T*R are +x~'. We can now define the elliptic set
of A e W™ /W ell)*(A) C **T*R, and ell,(A4) C T*R, respectively, as follows.
We say p € ell}*(A) if there is a neighborhood U C T*R of p such that

(x’igiU(x)_m(E)_"IOm,n(A)(x,E)I > 0.

We say that p € ell,(A) if there is a neighborhood U C T*R of p such that

(xfgr;er<E)_”|0m,n(A)(x, §1>0.

Next, we define the wavefront set for an element of W™, WF,(A4) C T*R and
the scattering wavefront set of A € ™", WF}(A4) C **T*R. For A € ¥, we say
o & WF;,(A) if there is B € W° such that p € ell,(B) and

”BA”Hh_N—>HflV < Cyh?.
For A € U™" we say p ¢ WE;°(A) if there is B € W% such that p € ell{(B) and

| BAll = v < Cyh".

—>Hév’
We can now state the standard elliptic estimates.

Lemma 2.4. Suppose P € ™", A € W00 with WF;°(A) C elli*(P). Then there is
C > 0 such that for all N there is C > 0 such that

| Aullgyse < CllPUl| s i + cNhN||u||Hh_N,_N.

If instead P € W™, A € WO, with WF;,(A) C elly(P), then there is C > 0 such that
forall N > 0 there is Cy > 0 such that

|Aullzy < CllPullgm + Ch™ ]y

2.3. Propagation estimates

We next recall some propagation estimates for scattering pseudodifferential operators.
Since we will work with operators that are fiber classically elliptic, i.e. d(**T*R)g C
ell;*(P), we do not need the full scattering calculus here, and will work with operators
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that are fiber compactly microlocalized. In particular, we say that A € W™" is fiber
compactly microlocalized and write A € W™P-" if there is C > 0 such that

WES(A) N {|E] > C} = 0.

For fiber compactly microlocalized operators, all propagation estimates from the
standard calculus (see e.g. [2, Appendix E.4]) follow using the same proofs but inter-
changing the roles of x and £.

Throughout, we let P € W"" self-adjoint with 0, »(P) = p, and write

@r = exp(t(E) T (x)1 T Hy): ¥ T*R — *T*R
for the rescaled Hamiltonian flow. The next lemma follows as in [2, Theorem E.47].

Lemma 2.5. Let P € W™" self-adjoint and suppose that A, B, By € ™0 Fyp-
thermore, assume that for all p € WE;°(A), there is T > 0 such that

o-1(p) €elly(B). | Ji(p) Celli¥(By).
te[-T,0]

Then for all N there is C > 0 such that for ¢ > 0, u € §' with Bu € H;;’k and
Bi(P —ig(x)"u e HX* "

||Au||H}§k < C||Bu||H’;1\ + Ch Y By(P - iS(X)n)u||H;l',k—n+l
N
+ Cnh ||u||Hh—N,—N.

We will also need the radial point estimates in the setting of fiber compactly
microlocalized operators. The following two lemmas are a combination of [2, The-
orems E.52 and E.54] together with the arguments in [3, Section 3.1].

Lemma 2.6. Let P € V™" self adjoint with n > 0 and let
Le{{(x)"p=0N3CT*R),

be a radial source for p. Let k' > % and fix By € W0 sych that L C ell}(By).

Then there is A € W™O(M) such that L C elli°(A) and for all N, k > k', ¢ > 0,
andu € 8’ such that Byu € H}f’k/ and By (P —ig(x)")u € H}f’k_nﬂ,

-1 . N
”AM”HZI( <Ch ||B1(P — lS()C)n)u||H}sz,k—n+1 + Cnh ||u||Hh—N,—N.
Lemma 2.7. Let P € V™" gs above with n > 0 and let

L e{{x)™p=0}nd* T "R),
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be a radial sink for p Let k < % fix By € Wm0 gych that L C ell*(B1). Then
there are A, B € WO (M) such that L C ell;°(A), WE(B) C ell¥(By) \ L, and
forall N, e >0, andu € S’ such that Bu € H}f’k and Bi(P —ie{x)")u € H}f’k_"ﬂ,

”AM“HZ,I( < C”BM”HZ,A' + Ch7 Y| By(P — l'S()C)n)M“H;l',k—n-H

+—cNhNuunH;NrN.

3. Almost periodic potentials

3.1. Assumptions on the potential

We now introduce the objects necessary for our assumptions on the perturbation W'.
We say that ® C R is a frequency set if ® is countable, ® = —® and 0 € ®. We write
OF=0x---x0

k—2

and

O =0+ - 40,
k—2

For a frequency set ® and a seminorm & on §”", we will need a family of maps
Sk, N: Ok x (§™)© — [0, 00). We denote an element (wg)geo € (S”")® by W. Fix
a seminorm N and define

llwe ll v

%)
son(W)y=1, s;.x(0,W) = 10
o,w (W) Lk ( ) {O 0

70,
=0.

Next, for o € N/ with || = k, define B; (o) = Z’[:ll . Then, for 6 € O, we write
Ouyi 2= (0;(@)+15- - - U; (@) € O%. We can now define

J
Sa. (0. W) = [ 50,5 (Bcis W),

i=1
k
6 Z"il o D pesym(k) 2olal=k,a; <k/2 S, N (P(0)) 3 i_y 6i # 0,
Zi 6; =0,

Sk,eN(g’ ) W) =

where Sym(k) denotes the symmetric group on k elements.
The following two lemmas on the behavior of s 4 will be useful below. Their
proofs are elementary and we postpone them to Appendix A.

Lemma 3.1. There are C, Ny > 0 such that, for 0 € ©%,

TTE, lwe, [l
Q,W <C i i .
sk, (0, W)| = *inf{|w|¥k | @ € {610} + -~ + {6, 0} \ 0}

(3.1)
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Lemma 3.2. Suppose that W e (S™m)On with (%)91+...+9n = Wg, ..., such that for
all N there is N' satisfying

[Ti=1 llwe, [l

|, ...6, lv <
e |6; |

Then, for all N, there is N’ such that
Sk (01 + -+ 6p, W) < spic i (B, 6), W).
We say that W € W! is admissible if

W =" e wy(x, hD) (3.2)
0e®

where wy € S0 and forall 0 < k, N, and N > 0 we have
D st (0. W) < Cew. lwglly < Cun(0)7V. (3.3)
fe@k

where W = (wg)geco.

Remark 3.3. If W is smooth and periodic, i.e. ® = rZ, and ||wg |5 < Cy.u{0)7",
then W is admissible.

Remark 3.4. If W is an approximately almost periodic function of the form

W =" e wy(x,hD)

nezq

with |[wn|lw < Cyu(n)™ and if @ = (w1, wa, ..., wy) satisfies the Diophantine
condition (1.2), then W is admissible. To see this, without loss of generality, we
assume that w € B(0, 1). Then, if 0 € ®, §# = n - @ for some n € 74 In particu-
lar, if

k
Gnl,...,enke®, Zenizzni'a),
i=1 i

and, hence, if ) ; 6y, # 0, then | Zle On,| = C| Y ;mi| 7™
Using this, observe that by (3.1) there are Cy, N such that

k k
e @109 = (T ml) ™ TT Cotml ™ = e [ ooy e
i i=1

i=1

We thus obtain the desired estimate by taking N > Ngu + d and summing over n;,
i=1,...k
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Remark 3.5. Next, we verify that certain approximately limit periodic functions are
admissible. Suppose that {m, }>> ; C Z contains 0 and satisfies {m, }5>; = {—m,}5>
Suppose that

W = Z ¥y (x, hD)

and that ||w, |k < Cn.x (max(n, |m,|/n))~". Then w, satisfies our conditions with
uym = 0. Indeed, in this case, ©® = {m,/n};2,. Now, note that for 0; € ©, 6; =

My, [N,

nlnz nk'

Using this, observe that by (3.1) there are Ck, Ny such that

Sk (01, ..., 0k) < Cr(nyna---np)Ne|lwg, |l -+~ [lwe, |-

In particular, for N > N,

k
Sk, (01, ..., 0k) < Ck l_[ CNn (max(n;,my; /n;))~ 1_[

i=1

We thus obtain the desired estimate by taking N > N + 1 and summing over n;,
i=1,...k.

Theorem 3.1. Suppose that W(x,hD) € W' is self-adjoint and admissible (i.e. (3.2)
and (3.3) hold). Let 0 < § < 1,

P := —h*A + hW(x,hD).

Then there are aj € C2°(R3) such that for all R > 0 there is T > 0 satisfying for all
Eec[1-6,1+6],pecCPR;[0, 1) withp =1o0on[-T,T], andall x,y € B(0, R)
the spectral projector 1(_o, g](P) satisfies

E
om (P =72 [ [ oo e by giydgdrdp

+ O(h®)ceo,

wherea ~ 3 h'a;.

After putting h = A™Y, W(x,hD) = h(Wy(x)hDy + hDWi(x)) + h>Wy(x),
an application of the method of stationary phase, the analysis in Remarks 3.4 and 3.5,
and an application Theorem 3.1 proves Theorems 1.1 and 1.2. (See [6] for a related
problem.)
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4. Gauge transforms
Before gauge transforming our operator, we need the following symbolic lemma
which allows us to solve away errors.
Lemma 4.1. Suppose that a € S*°. Then, there exists b € S0 such that
(Dx+0)b—a=re Sk

and

k,0 k,—N
1650, < Caprl61 M Nallgorss  Irllgo" < Capn 617 lalls sy ia /-

Proof. We consider two cases.

Casel: 0| = 1. Let y € C>°(R) with y = 1 on [—1/3,1/3] and supp x C (—1,1).
Define

1 ooy L= x(0 + 1)
— i(x—y)n
br6)i= 5 [ e A aty. gydydn,

where the integral in y interpreted as the Fourier transform. Then, (D, +0)b —a =r
where

r(6,8) 1=~ [ 6 + naty. vy

1 Lo —
_ 5 ol y)TIX(Q + n)n| NDJ{Va(y,E)dydn.

Since ¢g := y(8)|n — 6|7V is smooth and compactly supported with seminorms
bounded uniformly in |6] > 1,

1 . A
DEDLr(x. 6] = |~ [ € Dds(y = 2) DTN DLa(y. £)dy
2

< Coar [ 1617 1= )M 0) N @ Lalf 1

< ClOI )N EF P lall Sy v

and
anb _ 1 i(x—y)n 1—(x—y)D,, N
DYDEb(x,8)| = |— (T
DEDfb6) = |5 [ (=S =00
1—x(0+n) 1+nDy\2 , 5
D*Dra(y,&)dyd
—; (1+|n|2) yDgaly.§)dydn

<Cn

/ (=) N2+ 0) T B () “||a||ﬁa+2dydn‘

< C1OITHEF TP ) el
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Case 2: |0| < 1. Define L : S¥* — C*®(R?) by
x
La =i / 06 (s, €)ds.
0
Then, (Dx + 0)La = a.
Moreover, if a vanishes at x = 0, then
x
Li=i / [%ei"(s—x)]a(s, £)ds

0
X

. 1
— g /e’e(s_x)Dsd(s,S)ds + ()
0
— —9"'LD.a+07'a.

In particular,
DyLa=a—0La=LD,a.

Now, suppose that A € $%0 and & vanishes to infinite order at x = 0. Then, for
xr > 0 with |x| < |r|,

ILa(x, &) < Irllalkse)*.

For |x| > |r],
La(x.£)] < / (s, £)ds
0
; |9|—1( [ e Daats.as| + lac. )1 +1ac s>|)
< (I + 21017 Hllalls:o )
; |9|—2( [ e piats.opas| + Dt £ + Dac s>|)
< (EF((r] + 2101 )@ + 16172k (C | D2a)kg 2 (r) !
+2||Dxdllg ) h).
Optimizing in r, we obtain |r| = |#|~! and, in particular,

~11k,0 =1y 5k,0
[ Lallge = ClO1 Nlallp,-
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Therefore, since D¢ commutes with L, if b € § k.0 vanishes to infinite order at x = 0,
we have
~k,0 —11~nk,0
ILalsS < cloralks.
Now, consider
DxLa = 07" (~LD2a + Dxa)

and define
+oo

as(€):=i / !9 D2G(s)ds.
0
Arguing as above, we can see that

~ ~nk, —
0faL (&) < Clollally5 () ~.
Fix c4(x) € C2 such that [ c+dx = 1,suppc+ C {£x > 0}. Then,
/e“’Schi(s)ds > ¢|6)?,

and putting

cy(a )  c-(x)a-(§)
[ €% D2c (s)ds [ e'?SD2c_(s)ds’

dmod(xﬁé-) = &(X’S) -

we have
o0 —00
i0s 02 B~ ds = i0s n2 B~ ds =
e DSDEamod(x,é) s = e DSDEamod(s,E) s =0.
0 0

Moreover, since dmoq vVanishes to infinite order at 0, we can integrate by parts to see
that

0o —00
/eiestngmodds — / eiQSDfDégszoddS =0, k=>2.
0 0

Finally, note that, for ¢ > 1,
Dngmod = 9_1(_LDg+ldmod + ngmod),

and we have
x sgn x 0o
‘/eiseDg+1D£dmodds :‘ / eiseD;"’LlDfdmod ds
P

< Cnllallo  (x) ™ (E)* 2.
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To complete the proof we let y € C>°(R) with y = 1 near 0 and put
a=(1—yx)a(x,&), b= Lane. [
We need a lemma which controls scattering symbols after conjugation by elfx

Lemma 4.2. Suppose that one has B € V"™ and 0 € R, |0| < Ch™!. Then, there is
Bg € V™™ such that
ei@xBe—ti — 39

and WF;*(Bg) = WE*(B). Moreover, if B = b(x,hD), then Bg = bg(x,hD) where

hf( 1)1

bo(x.§) = b(x.€ — ho) ~ Z (6, 0¢)'b.
j=0
In particular,
16— bollz 5™ < DIl 5 hIO1 kIO I~
Proof. Write
B = b(x,hD) + O(h*®)g—co.—co.
Then,

e"*b(x,hD)e™ %% = by(x,hD), by(x,€) = b(x,& — hb).
Now,
10202 by (x. £)] = 19202 b(y. )y =x.y=t+h0]
< Cop(x)™ 1 (g — ho)"~ 1A
< Cop (h0)" 1B (xym =l gyn=1B]
< Cop (x)m71el (g)n~1F]

and the first part of the lemma follows from Taylor’s theorem.
Note also that

0208 (b(x.8) — bp(x.8)) = h/—<a§aﬁ+‘b(x,s—zh9),e>dz

< 1Bl h161(E)" P eyl pgy I, -

Lemma 4.3. Suppose that 0,0, € B(0, Dh™') and that a € S™"™! and b € S™2"2,
Then,

h™'[e'1* Opy,(a), €% Op, (b)]
= ei(91+92)x (h_l[Oph(a), Oph(b)] + |9|C2(X, hD))’
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where the map L: S™1"1 x §m2:n2 _ gmitma=Lnitn (g b) s c, is bounded uni-
formly in h with bound depending only on the constant D.

Proof. Note that
[¢'9* Opy(a). "% Opy, (b)]
= ¢/"1+92%(0p),(a_s,) Op;,(b) — Op(b—p,) Op; (@)
= ¢/ Or+02%([0py (@), Opy (b)) + (Opy (a—g, — @)) Op; (b)
— (Opy,(b—g, — b)) Opy(a))).
We now apply Lemma 4.2 to finish the proof. |

Using Lemma 4.3, we can see that if ®1, ®, C B(0, Dh™1)

G = Zeiexgg(x,hD), gg € ST,
9€®1

4.1
B =Y e%by(x.hD), bgeS"", @D
0e®,
then
hG. Bl = ) &Gty o (x.hD),
0,€0
0; €0,

where, for all m;,n;,i = 1,2 and «, B € N, there are K, C > 0 such that

~ +my—1,n1+ , ,
1oy.0, 174272472 < € (1 4 max(161], 162)) gy I 4 xc D6y 1272,
Thus, applying Lemma 2.3, we have the following lemma:
Lemma 4.4. Let G € V™ self-adjoint and B are as in (4.1) with m; = mp = —00
andny, = ny = 0. Then,

k—1 )
¢OBeTO =B+ Y Y Wl Tt gg o OF) vy

j=1 <I>e®{
) 0e®,
where for any Zi:o N; = N, a, B there are K and Cyqgj such that

J
~ —N,0 —No,0 —N;,0
1Za.6ll55° < Ciap(1+ 10D11boll 53 %0+ & [ T+ i ga, 54 % 0 k-
i=1
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4.1. The gauge transform
We are now in a position to prove the inductive lemma used for gauge transformation.
Lemma 4.5. Suppose that 0 < a < b and
WEW(P — (Po + hQx + B ¥ Wy + hY Ry)) N {|€| € [a,b]} = 0,
where Q € W0 Ry e W=,

We= > ¢ wpi(x,hD),
0e®\0

with {wg x }oco satisfying (3.3) and Wy, Oy self adjoint. Then there is

G e h_8+k(1_8)S_oo’0

self adjoint such that
WE (PG — (Po + hQrt1 + ' Wiy + 1Y Rir)) NHIE| € [a, 0]} = 0,
where Ry € W™,
Qi+1 = Ok +h 10 € W70,
with Qk self adjoint and Wy 41 is self adjoint with

W1 = Z eiexwe,kﬂ(x’hD)
6e® N _1-| \0

k+1
and W = {wg i +1}e satisfies (3.3) with ©, replaced by 6(%_1].
Proof. Let y € C2°(0, 00) such that y = 1 near [1/2,2] and

Py(|hD]) = (Po + hQx + H* Wi — N R x(|hD]) + O(h™®)gos.

We aim to use the fact that Py dominates P to conjugate away Wy. Therefore, we
look for G such that, modulo lower order terms,

ih %[ Py, G] = Wi
To do this, we solve
280xg = 0—co(Wix(|hDY))).

Now,

Wi x(IhD)) =) &' (wox (I€)(x. hD)
0€®\{0}
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where wy € §7°0 satisfy (3.3). Let x; € CX(0,00),i = 1,2, suchthat y, x, =1
near [a, b] and supp y, C supp x, C supp x. By, Lemma 4.1, there is gg € § 00,0
such that
(Dx + 0)go(x.§) —iwgrx,(1])/26 € ST
and
lgolls 3" < Cap 101 1||w9x1||ﬂ e

—ifx

Modifying lower order terms in gy to make e%gy + e g—g self adjoint, we

put
G :=h*Y e gy(x.hD).
0e®\{0}
Then, G € h¥ S~ and, letting k = (k + 1), by Lemma 4.4, for any N;
Ni—1
1,(RD)Ps = 2, (hDD(Po+h0p) + Y S e Timi @057k gl (x 1 D)
j=2 ®c®/
Ni—1 B
+ Z Zhjk-‘rlei(z (I) )x ~2 (x hD)
j=1 ®c0/
Nk N
+ O(h™ )H;,_N—’H/,v + O(h )H;,_N—’H/,v

where for ® € O,

~{ |—N, —N,
1261125 " < Ciapn (1 + 1 Qi I3 % g k) (1+|<1> DI®: |~ lwe, 1, 153 6 ar k42-
B B
i=1

In particular, putting N; = [kN?} and

Ni—1
Wit1 = Z Ze’@, 1 ®0x ik ge(x,hD)
J=2 ®ec®/
> ®;#0
Ni—1 B
+Z Zhjk-i-lei(z (I>)x 2(X hD)
i=1 ¢c®/
X ®; #0
and
Ni—-1 Ni—1
Okrr = Ok + Y. Y Wrega.hD)+ ) Y W gh(x.hD)
J=2 ®c0/ j=1 ¢c@/
> ;=0 > ®;=0

we have by Lemma 3.2 that W, satisfies (3.3) with ® replaced by ® = ® [ 17
[
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The following is now an immediate corollary of the previous lemma.

Corollary 4.6. Let P = —h?>A + hW where W is admissible and 0 < a < b. Then
forall N there is G € W self-adjoint such that

eOPe™C = —R2A+h0 + (1 — y(W*A — 1)W1 — x(B2A = 1)) + O(hY ) g—oco,

where Q € W0 gnd W e U! are self adjoint, and y € C2° with y = 1 on [a, b].

5. Limiting absorption for the gauge transformed operator

Throughout this section, we work with an operator
P = Py+h(l — x(=h*A —1))W(x,hD)(1 — y(—=h*A —1))), (5.1)
with
Py €S20 020(Po) = [E*. 01,1k Im Py) =0,

and where y € C2°(R) with y = 1 in a neighborhood of [—§, §] and W € W!. We
will show that, for E € [1 —§,1 + 8], R+(E) := (P — E Fi0)~! exist as limiting
absorption type limits. Moreover, we will show that Ry (E) satisfy certain outgo-
ing/incoming properties.

Throughout this section, we let X € CX(R),i =1,2,3, with

X; = lnear[—6,8], suppy, C{x,_, =1},i =2,3, suppy, C{x=1},

Yii= (1= g, (h*A = 1), Xi = x,(=h*A=1)).
(5.2)

5.1. Elliptic estimates

We first obtain estimates in the elliptic region where the perturbation of Py is suppor-
ted.

Lemma 5.1. With v; as in (5.2),
claull gsan < 1V3(P — E Eie)ullpox + Cthlulth—Nv—N- (5.3)
Proof. Observe that
Vi(P — E) = ¥i(Po — E) + h(1 — x(=h*A — 1))W(x,hD)(1 — x(=h*A — 1)),

since

Yi(l = x(=h*A = 1)) = (1 = x(=h*A = 1)).
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Note that WE*(y2) C elli(¥3(Po — E)), and, by Lemma 2.4, for & > 0,
[¥3(P —E+ is)“”H;sk
> Y3 (Py— E + Z'S)u”HZ,k —Ch|(1 - X)u||H;+1,k
= cllYoull oz = CAIA = 0wl gsre = ChN||u||Hh_N,_N

N
> CII1/fzu||fqz+z,k —Ch IIMII%N,-N-

Here, in the last line we have used that (1 — y) = (1 — y)¥». ]

5.2. Propagation estimates

Consider Pg = (x)1/2(Py — E){(x)"/2 so that Pr € W~ is self-adjoint and
02,1(PE) = (x)(§* — E) =: .

Note that
Hjy =28(x)d, — (6> — E)x{x)7",

and therefore, letting,

Ly=|JLyx Lyz:={==%VE x=xoo}
+

Lo=|JL x. L_1:={=FVE x==oo},
+

we have that L 4 are radial sinks for p and L_ 4 are radial sources (see [2, Defini-
tion E.50]).

Lemma 5.2. Let B, B_ € Wm0

Ly Celli(Bx), WES(Bx)NLx =0, {p=E}C(el’(B-)Uell;’(B))
5.4)
and B! € W0 with the same property, and WE(B/.) C ell;*(Bx). Then, for
all ky < —% and k_ > k' > —%, and N there is C > 0 and § > 0 such that for
£>0, E€[l—81+8), andu € S'(R) with B4+(Py — E —ie)u € H"*, and

0,k’_
B_u e Hh s

||Bf,_u||H0,k+ + ||BLM||H;,)'k_ < Ch_1(||B+(P0 —FE - is)u||H0,k++1
h n
+ ||B=(Py — E — is)u”H}?'k——H)

+ ChV [P
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Similarly, for all k4 > k/ >—z andk <— and N there are C > 0and § > 0 such
that fore >0, E € [1 —4,1 —|—8] andu € 8’ (R) with By (Py — E +ig)u € HOki

Ok’
and Byu € H)

B/, . B’ . <Ch Y(|B+(Po—E +1i .
| +u||H£.k++II _ulng,k_ < (I B+(Po +ls)u||H£,k++1
+ ||B—(P0 —E+ 55)””H0,1€_+1)
h
N
+Ch ||u||Hh_N,_N.

Proof. Let B € W™ such that L_ C ell{(B_), WE*(B_) C ell¥*(B_). Then, by
Lemma 2.6 there is A_ € W0 sych that L_ C ell;°(A-) and for all k_ > k’_ > 0,

e>0andv e §'(R) with B_v e H* B_(Pg —ie(x))v e HY,

[A-vl| ()A_ <Ch” 1||B (PE—15< ))v”H;l),/G_ +CNhN||U||Hh—N~—N- (5.5)

Next, let By € Weo™0 such that L4 C ell*(B,) and WES(By) C elli*(By).
Then, by Lemma 2.7 there exist A, B € Wm0 guch that L C ell;’(A+) and

WE(B) C ell“C(B+) \ L4, and, for all k+ <0,e>0andves’(R) with Bve H0 k+
B (Pg —ie(x))v e H0k+
A+l O+ = C|Bv| O+ + Ch™| B4 (Pg —is(x XDVl oky
h
+ Cyh ||v||Hh—N,—N. (5.6)
Finally, let By € Wm0 with WF*(By) C ell*(B4),
{p =0} Cell}°(Bo) Uell;*(BL).

Then, there is Ag € ™0 such that WF(A4¢) N (L+ U L_) = @ and thereis T > 0
with

WE (40) € [ @1 (elly (4-)) N elly (Bo), (5.7)
0=<t<T
{(x)71p = 0} C ell°(Ag) Uell*(A_) Uell(A,). (5-8)

Now, by (5.7) and Lemma 2.5 for all ¢ > 0, and u € §’(R) such that A_v € H}?’k‘,
Bo(Pg —ig(x))v € H}?’k_,

4ol < CllA-ul| oz +Ch™! 1Bo (P — ie(x)vll oz
h h

H,?"E—
+ CNEY o]l -~ . (5.9)
h
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Next, observe that if B; € U°™ with WE;(B1) Celli’(By), then there is Cg s >0
such that for all w € §'(R) with Bow € H}(l),k-i-s,

||Bl(x)sw||H}(l>.k < C||Bzw||H}(l).k+s,

Combining (5.5), (5.6), and (5.9), and using (5.8) and Lemma 2.4 ﬁnlshes the proof
of the first inequality after putting v = (x)~!/2y and letting k = k + 11—k =
ko + 3.
The second inequality follows by replacing P by —P. ]
Now, for each I' C*T*R, let Br € W% such that WF*(Br) C T, ell{(Br) =T"°.
Then, for kr >k, s € R define the norm,

el ggs i s = IBral o =+ ltll

Lemma 5.3. Fork_ > —= k+ <=L T_.T. C*T*R open with

L-cTel"e{y(t*-1)=1}\Ly,

sk k4

there is hg > 0 such that for all u € X ,e>0,and0 < h < hy

||u|| sk—ky < Ch™ 1||(P E—ls)u|| s—2k—+1.k +1.
l" I"
Fork_ < — k+ > —= and [y, T/ C*T*R open with

LyCTy el elg(6P-D=1\L1,

s,k k4

there is hg > 0 such that for all u € X ,e>0,and0 < h < hy

flull skyp— < Ch_1||(P —E —ig)ull, s—2.k;p+1h—+1.
xpy x

4
Ty

Proof. Put f, = (P — E —ig)u.LetT_ €'} € I, € I'" and Ar,, Ar, € weomp:0
such that

I'_ €elly(Ar,) C WEFY(Ar,) C T'y Celly(Ar,) C WE(Ar,) C Iy,
WE(Id—Ar,) N L_ =0, WEF(Id—Ar,) Cell;’(Id —Ar,).
Next, define
B+ = (Id—Ar‘l)Xl, B_ = A[‘ZXI,

/ / (5.10)
B! := (Id—Ar,)X,, B.:=Ar Xa.
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Then, (5.4) is satisfied and by Lemma 5.2 together with the fact that X, P = X5 Py,
IBLull go.x— + IIBlullH}?,u
=< Ch_1(||B+J%||H£,k++1 + 1B fell goe—+1) + Cthlulth—Nv—N
< CH el yoss s+ 1B=Lellyo—s) + ChY ull yowow . (5.1D)
Now, since WF*(Ar;) C ell}(Br- ), we have by Lemma 2.4
1B= fellgri—tr + Ay fell gos—o

= ClIBr fell gpe—t1 + CNhN||Jg||Hh_N,_N

< ClIBre fell ysi—t1 + CN ANl yonn (5.12)

Next, since WF;*(Ar,) N WE(Id—X3) = 0, and WE* (Id —X») C WE*(Id—X3),
we have by (5.10), (5.11), and (5.12) that
A, ull e < Colldr, Xaul o + |Ar, (d=Xa)ull o

<Ch™! ||Br/_fa||Hl(1),k_+1 + ||fg||HI(1),k++1 + ChN”u”Hh—N,—N

<Ch™! 1fell o2kt 1 + ChN||u||Hh_N,_N. (5.13)
T

Now, since WE;°(X3) C ell}(X1),and {p = E} C ell;’(Id —Ar,) Uell}(Ar,),
WE (X2) \ (elly"(Id —Ar,) U elly’(Ar,)) C elli (X (Po — E —ig)),

with uniform bounds in & > 0. Therefore, using (5.11) and (5.12) together with the
elliptic estimate from Lemma 2.4, we have

-1 N
1Xaul o < CHfelgozitrigs + CUXa fell oy + CRY oo

< Ch7 U foll s—2hmtray 41 4+ CAN |Jul| y—n.—n .
X h

So, using (5.3),

||u||H;,k+ < Ch7 Y| f ik ChN||u||Hh_N,_N. (5.14)
For h small enough, the first part of the lemma follows from (5.13) and (5.14), the
fact that WE"(Br_) C ell}(Ar, ), and the elliptic estimate (Lemma 2.4). The second
claim follows from an identical argument. ]
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5.3. The limiting absorption principle and the outgoing property

We are now in a position to prove the limiting absorption principle. For this, we define
R(A) := (P =2 HY - HPK forIm A # 0.

Lemma5.4. LetT'_ be a neighborhood of L_ such that the assumptions of Lemma 5.3
are satisfied, k_ > = k+ <—z,5€R,and E € [1 — 38,1+ 6], the strong limit

R(E +i0): HY*= — xit>h=—1ks

exists and satisfies the bound

IRCE +10) /|| grsasmriy, = Ch‘lllfIIH;.k—.

Similarly, for Ty a neighborhood of L4 satisfying the assumptions of Lemma 5.3,
k- < —%, ky > % seR,and E € [1 — 65,1 + 8], the strong limit

R(E —i0): Hy' — et

exists and satisfies the bound

IR(E =i0) f | ot2bpmrie < CHTHf oy
F+ h

Proof. We start by showing that for k_ > %, ki <—3,

R(E +ig):= (P —E—ie)  HY*= - Ht>*s
converges as &€ — 0. First, note that for each fixede > 0, R(E +ie): H hs’k —H, +2.k
is well defined. Let I'_ be a neighborhood of L_ with T_ € T'".

Suppose there is f € H hs’k such that R(E + i¢) f is not bounded in H,,
Then, there are &, — 07 such that, defining u,, := R(E +i&,) f € HS+2 k= we have
||u,,|| s+2 k, — oo.Putting v, = un/||u,,|| s+2 k4 , we have that ||v,,|| s+2ky =1

h

is bounded and that (P — E —igy)v, = f/||uk|| i — 0in H ok

s+2 k+

Since f € H*~, forall e > 0, R(E + ie): H”‘—>H”2" andk_ — 1> kg,

2k_ 1,k Kk 1
S+ +andfexs +*

we have v,, € X . Therefore, by Lemma 5.3 all n,

||vn||H;+2,k+ S C”Un”x‘;_y__zvk__lvk_‘_
—1
<
< CHTS W sz e/ il o2

-1
e M P e
h
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which contradicts the fact that ||v, ||Hs+2,k+ = 1. In particular, u = R(E +i¢)f is

. . 2.k hoo
uniformly bounded in H ;: Riaas , and, arguing as above

U - <Ch! _.
[ ”Xfi“ Lky < ||f||H;,k

Now, we show that R(E + ig) f converges as ¢ — 07 To see this, first take any

: . . +2.k_—1,k
sequence &, — 0T. Then, R(E + i&,) f is bounded in Xli_ * and hence, for
any s’ <s, % <k’ <k_,and k| < k4, we may extract a subsequence and assume
. i s'+2,k"_—1,k’ i
that u, = R(E +ie,)f — u in X *,(P—Eu=f,and u, — u in
s+2,k——1,k4
X3t :

) ) 5’42,k —1,k’
Suppose that there is another sequence which converges to u’ € X +

and satisfies (P — E)u’ = f. But then we have

e — o STH2.K, < Cllu—u| ST 2L =K,
H), Xp_
<Ch'|(P - E)(u-— ”/)||Xs’+2,k/_+1,k’++1 =0,

T
sou = u’. Now, suppose that there is a sequence &,, — 07 such that
upy = R(E +iem)f

. s+2,k——1,k .
does not converge to v in X *. Then, extracting a subsequence we may

7 / /
K +2,k_—1,k+

assume that u,, — u"” € X and hence u = u”, which is a contradic-

tion. In particular, R(E 4+ i¢) f — u in Xfﬂfz’k__l’k*' as ¢ — 07. Boundedness of

the operator follows from the above estimates. Moreover, we see that if f € H }f ’k‘,
for some k_ > %, then R(E +i0) f € X;J_rz’k__l’k’L, for any k4 < —%.
The case of R(E — i¢) follows by an identical argument. ]

Finally, we are in a position to prove that the limiting absorption resolvent satisfies
the outgoing/incoming property.

Lemma 5.5. For f € &'(R),

WFy(R(E £i0)) f C WFy(f) U Jexp(tHgp) (WEa(f) N {IE]* = E}).
+1>0

Proof. First, note that for A € W0 with WF,(4) C ell,(B) Nell,(P), and
N
lAull gis = CllBPull gi—2.s + ChT |lull g—n.—v -
Therefore, letting v+ = R(E £i0) f, we have

WFy(v+) N{|§|*> # E} C WFy(f).
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Next, note that since f € Hh_N’oo, for some N, by Lemma 5.4, vy € X;jv+2’°°’k,

and v— € X Nt2.00k for any k < —% and any "1+ open neighborhoods of L such

+
that '+ N Ly = @. In particular, by Lemmas 2.5-2.7, together with the fact that
X3P € W20,

WE(R(E £10) ) N g = E} < | exp(tH,) (WE (/) N {IEP = E}) U L.
+1>0

Next, since f € &', WE(f) C {|x| < C} and, in particular, WE*( /) = WF,(f).
Therefore, the claim follows. n

Using the outgoing property, we can write an effective expression for the incom-
ing/outgoing resolvent (see also [2, Lemma 3.60]).

Lemma 5.6. Let R > 0. Then there is T > 0 such that for all f € &' supported
in B(0, R) and B € W™~ with WF*(B) C T*B(0, R) N {1/2 < |§| < 2}, and
x € C2(B(0, R)),

+T
¥R(E £i0)B = ZZ / xe "ETEYh B rar 4 0(h™) o coe.
0

Proof. Let y € CZ°(R) such that y = 1 on B(0, R 4 107'). Let

T
v=R(E +i0)Bf —ih™! / ye HP-EVhpriy.
0

Then,
T
(P—E)v=Bf —ih™! /(hD,w + [P, y])e T P=EVhpra;
0 T
— e i TP=E)hp s _ jp=1 /[P, Y-t P=EVhp g
+ O(h®)y—co—co f. 0
Now,

WEy (e " P=EVR By  {(x +2t£,8) | |x] < R.|§] € [1/2.2]}.
In particular, for ¢ € [0, T,
[P, y)e " PTEVRBE = O(h%)ceo

and we have
(P —Eyv = e TE=ENhBf 4+ O(h™)ceo.



Asymptotic expansions of the spectral function in dimension one 131

Since v — R(E 4+ i0)Bf € C°, for any I'_ a neighborhood of L_ satisfying the
assumptions of Lemma 5.3, v € Xlsif_’k* forall s, k_ and k4 < —% and hence

v =R(E +i0)(ye TP=EVIBr L O(h%®)cee).
But then

WFy(v) C {(x +2t£,8) | t > 0, (x,£) € WFy(ye!TP=EV )y
C{x+20t+T)EE) | |x] <R.E€[1/2,2])
C{(x.€) | B(O,R+4T)\ B(0,T —2R),£ € [1/2,2]}.

In particular, for 7 > 3R, yv = O(h®)cge and hence

1

T
YR(E +i0)Bf = /Xe—it(P—E)/thdt O™
0

h

as claimed. The proof for R(E — i0) is identical. ]

6. Completion of the proof of Theorem 3.1

We now complete the proof of the main theorem. Let P = —h?A + hW where W is
admissible (i.e. satisfies (3.2) and (3.3)). Let 0 < § < §’ < 1. Then by Corollary 4.6,
forany N > 0, there is G € WO self adjoint such that

PG =€ Pe™ 0 = —h2A + hQ + (1 — x(h®*A — 1)hW(1 — y(h®>A — 1)) + Ry,

where 0 € U0 ¥/ € W!, are self adjoint, Ry = O(h3N)y—co, and y € C2 with
x = 1on[—4,8]. In particular, Pg := Pg — Ry takes the form (5.1).
Next, note that
L0, £1(P)(x,Y) = (L(—00,E1(P)8x. 1 (—00,E]1(P)8)) 12
= (1(—00,£1(PG)€' 985, 100, £1(PG)€ % 8y) 1 2.

Now, by [13, Lemma 4.2],
(1 (—o0.£)(P6) — Lo, £1(PG)) f |1 12

<2\ Lig—p.E+u(P6) f 12
+ Ch3N N (1 oo,£1(P6) fll2 + (P + 1) f12).

Let f € H ¢ and u = h™. For N, s > £, the last two terms above are bounded by A" .
We need only understand ]l(_oo,E](P(;)eiGSX and ||]1[E_hN’E+hN](P(;)eiGSX lz2-
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Before we examine 1, ] (ﬁ(_;), we consider the distribution ¢ 8. By Lemma?2.2,
¢'9 € §° and hence for any y € R fixed,

) 1 i
@98, = 5 [ RO b ey 6.1)
where b € S° with b ~ Zj hfbj, bj e S~/ . In particular, for [x — y| > 1,and N >
k+1,

. hD
(Do) 08 5) = 3 [ bt P j)N £b(x, £)d

= O(lx —y|7"a" 1),
and hence for y € C2° with y(x) = lon|x| < Randall |[y| < R—1
(1-0(€98,) = 0(h*™)s,
where S denotes the Schwartz class of functions. Therefore,
1o p)(P6)e' 985 = N1a 5)(PG) 1€ C 8 + O(h%)cos.
Next, we consider y 1[4 p) (ﬁ(;) x. Let dE}, be the spectral measure for ﬁG.

Lemma 6.1. Let y, € CX° and y € C° withy = 10n [—1,1]. Then, thereis T > 0
such that for E € [1 —§,1 4+ §'], and h small enough,

T

1 (P
X, dEnx, = ﬁ/)(le PG=E)hy (hD) y,dt + O(h*™) pr—ceo.
-T

In particular,

T
1 i 2
_ # (—t(EI°—E)—(x—y.£))
X dER(E)x, = (2nh)2//eh ! Y5 ag(t,x,y, £)dEdt

+ O(h™) g/ ceo
where ag ~ Y h aj g witha; g € C.
Proof. We will use Lemma 5.6. In particular, by Stone’s formula

b
1, b](PG) :” /(R(E +i0)— R(E — iO))dE

a
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so we need to understand
dEp := 2ni) " (R(E +i0) — R(E —i0)).

For this, let y, € C°(B(0, R)) with x, = 1 on supp x,. Then consider

xdEny = —XZ(R(E +i0) — R(E —i0))(¥(hD) + 1 -y (hD))yx,

T
o [ e D)
T
+ — 57X X, (R(E +i0) — R(E —i0))(1 — ¢ (hD))x,.

Letvy = R(E £i0)(1 —vy(hD))y, f Then, since (1 — ¥ (hD))y, f is rapidly
decaying, v+ is semiclassically outgoing/incoming and

(P — Eyvx = (1= y(hD))y, f.

In particular, since WE((1 — ¥ (kD)) x, /) N{p = E} = @, we have WF7(v+) N

{p=E}=0.
Now,

(P —E)(vy —v) =0 = WFy(vy —v)\{p=E} =0.
In particular, since, a priori both terms have WF,(v+) N {p = E} = @, we obtain

WFh(U+ — U_) =0

and hence
%XZ(R(E +i0) — R(E —i0))(1 =y (hD))x, [ = O(h™)¢ee.
Therefore,
| T
Kot dEnty = 5— [ tpe T My (hD) pydt + O(h) prscee.
-T

The lemma follows from the oscillatory integral formula for e’ (P=E)/h (see [20,
Theorem 1.4]). [ ]

As a corollary of Lemma 6.1, we obtain for¢,s € [1 — 6,1 + 4],

|(hDx)*(hDy)? x 1 (s.01(Pg) x, (x. )| < Caph™2t — 5.
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In particular, this implies
ILig_nn gonvy(Pe)e @8l < CHV

for some £ > 0 and hence it only remains to have an asymptotic formula for the

operator Xl]l(_oo’E](ﬁ(;))(l.
Let p € CX((—2T,2T)) with p = 1 on [T, T] and put pj, 1 (t) = h*p(th™F).
Define

Ri(E,x,y) := x,(pnk * L(—001(P6) = 1(coo£1(P6)) 1, (x,y),  (6.2)
Ro(E.x.y) := 1, (pnk — Pn1) * L—o0,1(Pe) 1, (E. X, ). (6.3)
Then, we will show for £ € [1 —§/2,1 4+ §/2]

|(hD)*(hDy)P Ry (E, x, y)| = Oup(h*7?),

(6.4)
|(th)a(hDy)ﬂR2(E’x’y)| — Oaﬁ(hk—Z).

In order to show the first inequality in (6.4) we recall that standard estimates also
show that there is M > 0 such that forz € R
|(hDx)*(hDy)P ¥ L—o1(Pe) 7, (x. 3)| = Caph™ (1)
Then, for E € [1 —4§/2,1+ /2]
|(hD2)*(hDy)? Ri(E, x, y)]

= ‘/h_kp(sh_k)(th)”‘(hDy)‘B){1(]l(E—s,E](ISG)))(1 ds

< ' / W% (sh™ )y~"NCoBh~2|s| ds

Is|<8/2

+

/ o (sh™ YN Coph™M |s|M ds

Is|=8/2

Choosing N large enough, the first inequality in (6.4) follows.
To obtain the second inequality, we observe that, since Pg is bounded below,

E
Ry(E) = 1, f ¥ (o((s — Pe)/ W%y — = (p((s — Po)/ M) x,

1 A _ . (B
sz [ B = 1, E T

= leh(E _hﬁc)xl,
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where

filh) = 5 [ R (1 - payeitiar.

In particular, note that | f,(1)| < Cy(1)™V. Now, let Y € CX(-§,8) with ¢ = 1
near 0. Then,

X fh(E PG)XI

:/fh ?)deEh(S)Xl

— [vE-95(=

/(1 Y (E =) () 1B, )

N
), dEn ()1,

— [ A5 W E = 9B, + 00) oo

1 —it(Pr— w o)
=—E//fh(w)xle 1PG=E+hw)hy (hD) y,dwdt + O(h*™) gr_ceo

T
1 1A — ~ —it(Pe—
=50 [ [ i B = oy P B ) g, e
-T

+ O(h™) /- cee
= 0(h*®) p/—ceo.

Therefore, the second inequality in (6.4) holds.
Together, the inequalities in (6.4) imply that

2100, E1(PG) = pht * L(—00,1(P6)(E)) ), = O(h™) e
and we finish the proof of the main theorem by observing that

X1 * 100 (Pe)(E),

E
1 N c(u_ B
=5 / /p(t))(le”(’“‘ PG)/h)(ldtdu

(2 h)2 / /P(I)X (x)ez(r(u E12)+(x— y)E)/ha(x y, 5))( (y)dEdrdy.,

(6.5)

where a ~ ZJ- ajh/ anda; € C. Conjugating by €'Y and using (6.1) completes the
proof.
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A. Properties of sx

In this appendix, we collect the proofs of the required properties of si .

Proof of lemma 3.1. The case k = 1,0 are clear with Nog = 0, N; = 1. Suppose (3.1)
holds for k = n — 1. Then,

> 19 ‘ ZpESym(k) Zm =k,o; <k/2 S, ~ (p(9)), Zz 1 0i #0,
0, >0 =0.

The statement is trivial when ) ; 6; = 0. Therefore, we assume the opposite. In that
case

Sn,eN(97 ;W) =

J

loz; |
Z Z [T 1wp@)s, e lv
S 9 w | | C ) - i
”*N( )_|Zl 1 l| | ml

peSym(n) |a|=n,a;<n/2 i=1

_|Zl i 3 3 1‘[||w9£||dv1‘[ Gt

peSym(k) |a|=n,a;<n/2 £=1

where

En1 = inf{|w|N|Ot,'| | w € {p(e)ﬂi(a)-i-l?()} + e {p(e)ﬂi+1((¥)70} \ 0}7
N, = inf{Jo|V! | w € {f1,0} + -+ + {H,,0} \ O}

Then, defining N9 = 0, N; = 1, and

Ni = sup{l + ZNlail
i

n
o] = . o] < 2},

we have
IIwe I x
sn,v (0, W) < [Te= 1 ey > l_[qam
peSym(k) |a|=n,a;<n/2 i=1
where
N3 := inf{|o|"* | © € {61,0} + -+ + {6, 0} \ O},
and hence the lemma follows by induction. ]

Proof of Lemma 3.2. For k = 0 the claim is clear. For k = 1, observe that

%o, ...onlla
oy ST g 2 0; # 0,
SIw (01 4+ Oy, Wy = { 1XI=16i] 20 #
0, Y0 =0.
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Note that

~ n
Tyl _ 1 1w, L.

D2 D Y e R ]

S Sn,N/((917 LI} 9")7 W)

Suppose that the claim holds for k — 1 > 1. Then, when } ; Zle (6:); #0

Sk,,/v(el + o+ Oy, :‘TV)

J
DN ( )il Z Z Hsai,w((p(Gl+---+9,,))a,,-,'v~v)
i,j\Yi)j

peSym(k) |a|=k,x;<k/2 i=1

< 5@ () > Hsna,dv«p(el))a,,..<p<9n))a,i),W)
i, J

peSym(k) |a|=k,a;<k/2 i=1

J
s T % s s w
i,j\"tJJ

|p€Sym(nk) la|=nk,a;<nk/2 i=1

=Snk,dv/(91,...,9n,W). ]

B. Examples with infinitely many embedded eigenvalues

We now construct some examples to which our main theorem applies that, neverthe-
less, have arbitrarily large eigenvalues.

Theorem B.1. Ler w € R? satisfy the Diophantine condition (1.2) and ® = 74w
Then there is W € C°(R; R) satisfying the assumptions of Theorem 1.1 and such
that {% | 8 € ®\ {0}} is contained in the point spectrum of —A + W.

Theorem B.2. Let {m,}o>, C Z4 and © as in Theorem 1.2. Then there is W €

2
C®°(R;R) satisfying the assumptions of Theorem 1.2 and such that for all n, ;"”2 is
contained in the point spectrum of —A + W. In particular, if Q N Ry = {m"}
then this operator has dense pure point spectrum.

n=1’

Theorems B.1 and B.2 follow easily from the following theorem.

Theorem B.3. Let {«,};2, be an arbitrary sequence of positive real numbers. Then
there is W € C*®(R;R) such that k2 is an eigenvalue of —A + W. Moreover, we can
find W such that

W = ZeziKnXWZKn (X) + ZE_ZiK"xw—zx,, ()C) + w()(X)
n n
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where wg € C2° and for any N,
|9 w2, ()] < Cv ()N (icn) ™ (x) 7. (B.1)

We follow the construction in [16] with a few modifications to guarantee smooth-
ness. First, we need to replace [16, Theorem 5] to allow for smoothness in V.
Recall that the Priifer angles , ¢(x), are defined by

u'(x) = kA(x) cos(p(x)), u(x) = A(x)sin(¢p(x)),
where —u” + V(x)u = k?u. Then, ¢(x) satisfies
¢'(x) = k — k™ 1V (x) sin?(¢(x)). (B.2)

Forany N > 0,a <b e R.let F: CN([a,b]) x R" x T" — T" to be the generalized
Priifer angles with potential V', ¢; (x; V, k, 0)|x=p, Where ¢; (0; V, k, 0) = 6; and we
putk = k; in (B.2).

Lemma B.1. Fix [a,b] C (0,00), U € (a,b) open, N >0, k1, ...k, > 0 distinct,
0© e T" ande > 0. Then there is § > 0 such that for all angles 6V € T" satisfying
100 — kb —0©) <8,
thereis V. e CX(U) with ||V cv < €and F(V,k,0©) =9,

Proof. Note that
F(0.k, 0% = (6 + kib,...60 + k,b)
and
$i(x:V =0) =0 +k;x.

Therefore, we need only show that the differential (in V') is surjective when restricted
to functions in CZ2°(U). For this, let y € C2°(U) with x = 1 on a nonempty open
interval /. Note that if V, = eyV(x),

e (3 Ve)|emo = =k () V(x) sin?(kix 4+ 0©), 9 (0; Ve)|e=o = 0.

Hence,
3 Fi (Ve)|emo = —k; ! / XV (x)sin?(kix + 0”)dx.

We claim that u; (x) := y(x) sin®(k; x + 9;'(0)) are linearly independent in L2. Indeed,
suppose 0 < kq < --- < k; and Zlel a;u;(x) = 0 a.e. with g # 0 (and hence, by
continuity for all x). Differentiating enough times, we see that ax = 0, a contradic-
tion.

Thus, there are V1, ..., V,, € C* such that (3, F (e xV;))?_, is a basis for R” and
the implicit function theorem finishes the proof. ]
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Proof of Theorem B.3. We work on the half line and find W(x) vanishing to infinite
order at 0 such that there are L2 solutions, u, of

—ul(x) + W()un(x) = i2uy(x), x €1[0,00), u,(0)=0.

The case of the line then follows by extending W to an even function and u, to an
odd function.

Let y € C*°(R) with y =1 on [2, 00), supp y C (1, 00) and define y, (x) :=
x (R, 'x) where R, — 0o, R, > 1, are to be chosen later. We put

(AL () 1= iy T

sin(2k,x + @),

where @, is also to be chosen. We will also find A S, to be smooth function supported
on (27", 27"*1) with [|AS,|lc» < 57 and put
m
Win(x) = Y (ALy + ASp)(x), W(x):= lim Wp(x), Wp =Wy — ASp.
ne1 m—00
Note that by construction ), AS, € C*([0, 1)), >, AS, vanishes to infinite
order at 0, and

AL,(x) = —e?*n%2jk, e”"")( (X)xL 4 e HknX Dy, oI On )(n(x)x_1

In particular,
AL,(x) = ez“‘""wzkn (x) + e_z“‘""w_z,cn (x)

with w4, = F2ikyetion Xn (x)x~!. Thus,
|05 waay, | < Cricn R, (x) 7K. (B.3)

In order to obtain the estimate (B.1), we fix a positive Schwartz function f and choose
R, > S )( . The estimate (B.3) then guarantees that ) , AL, is bounded with
all derivatives. The fact that AS, € C2(27", 27" 1) and | ASy|lcn < 2n guarantees
that wg = Y,y AS, € C°°([0, 1)) and wy vanishes to infinite order at 0.

Now, note that ¢, (§) := F ((-) ™! 1,()) (&) is smooth away from & = 0. Therefore,
for each m # n, we can find ¥, ,, € C£°(0, 1) such that

F (Ynm)(0) = _ZiKn(—d)n(ZKn)eiw” _ ¢n(2Kn)e_i‘p”),
F (WUnm)(E2km) = —2ikn (pm (2(E£km — Kn))eifpn — pn(2(kp Km))e_i‘p"),

Then, letting ¥, , = 0 and defining Z,,,m = AL, — Yy m, there are A, ,, Aim
such that

|Lnml| < Clx|™", Lym = Ay Anm| < Clx|™",

F2ikmx T ’ -1 (B'4)
e Ln,m = (An,m ’ |An,m(x)| S C|x| .
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By the conditions (B.4) and [16, Theorem 3], there is a unique function uf,m)(x)
satisfying
—@™)" + W (U™ = ™,

. . 1 (B.5)
‘Hu,‘{")(-) —sin ((Kn + 5(,0,,) -)(1 +-D” H‘ < 0.
where [|u]]| = [|(1 + x®)u]loo + [|(1 + x?)u'||0o. Similarly, there is a unique function
i (x) satisfying
—@)" + W ()i = sy,
(B.6)
|75 = sin ((in + 3¢a) - )1+ 17| < oo.
Now, we construct AL,, AS, such that
™ = Pl <27, n =12, m -1,
o (B.7)
uy (0)=0, n=1,...,m.
Once we have done this, we can let u,, = lim,, uf,m) (in the ||| - ||| norm) to obtain L?

eigenfunctions with eigenvalue «;,.

Let m > 1 and suppose we have chosen {(R,, 9,)}™=!, and ASy,...ASpy_1 €
C2° with supp AS, C (27",27"*!) and |AS,|lc» < 57 such that (B.7) holds and
Ro = 1/£({)(n)). ) )

By [16, Theorem 3], there are ¢, and R,, such that for all R,, > R,,, and ¢,, €
[0, 27/ (2km)], if | ASm|lco < &m, then

~ —m—1
Mo — "Il < 27"

By Lemma B. 1, there is §,, > 0 small enough such that if |9i(1) — k27T < 8, and
Gi(l) are the Priifer angles of the solutions #", i = 1,...,m at 27!, then there is
ASy €CP(27™,27m+1) with | ASyy || ¢ <min(2™™, &,,) and such that u™ (0) =0.

Therefore, if we can find R,, > Em and ¢, such that |0i(1) —k;27m ) < §,, and

= =g < 27,
the proof will be complete.

Once again, by [16, Theorem 3], for R,, large enough, we have (uniformly in
om € [0,27/ Qica)]), 1™V — @™ || <271 fori = 1,...,m — 1 and the Priifer
angles for ﬁgm) at 27+ satisfy |0i(1) —kibi| < 8fori =1,...m—1).

Finally, we choose ¢y, so that ﬁﬁnm) (0) = 0. The existence of such a ¢, again fol-
lows from [16, Theorem 3]. In particular, note that by part (b) there, we have (B.6)
uniformly over R,, large enough, x large enough, and ¢, € [0, 277/ (2k,,)]. In partic-

ular, the Priifer angles for ftfnm), $m (x) run through a full circle. Therefore, we can
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choose R,, large enough and ¢, such that the qu (R,,) agrees with the Priifer angle of
the solution to u to —u” + Wiy—1(x)u = «2,u, u(0) = 0 and hence, since Wy,—1 = Wy,
on x < Ry, we have that #%,,(0) = 0. n
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