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Complete asymptotic expansions of the spectral function

for symbolic perturbations of almost periodic Schrödinger

operators in dimension one

Jeffrey Galkowski

Abstract. In this article we consider asymptotics for the spectral function of Schrödinger oper-

ators on the real line. Let P WL2.R/ ! L2.R/ have the form

P WD � d 2

dx2 CW;

where W is a self-adjoint first order differential operator with certain modified almost periodic

structure. We show that the kernel of the spectral projector, 1.�1;�2�.P / has a full asymptotic

expansion in powers of �. In particular, our class of potentials W is stable under perturba-

tion by formally self-adjoint first order differential operators with smooth, compactly supported

coefficients. Moreover, the class of potentials includes certain potentials with dense pure point

spectrum. The proof combines the gauge transform methods of Parnovski–Shterenberg and

Sobolev with Melrose’s scattering calculus.

In memory of Milhail Shubin

1. Introduction

Let

P WD D2
x CW1Dx CDxW1 CW0WL2.R/ ! L2.R/;

where Wj 2 C1.RI R/. We study the spectral projection for P , 1.�1;�2�.P /, when

Wj , j D 0;1, satisfy certain almost periodic conditions. Denote by e�.x;y/ the kernel

of 1.�1;�2�.P /.

We assume that there is ‚ � R countable such that �‚ D ‚, 0 2 ‚, and for all

k;N � 0 there is Ck;N > 0 such that

Wj .x/ D
X

�2‚

ei�xw�;j .x/; j@k
xw�;j .x/j � Ck;N hxi�kh�i�N : (1.1)
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Before stating the general conditions on w� (see §3), we give two consequences of

our main theorem (Theorem 3.1). Let ! WD .!1; : : : ; !d / 2 Rd . We say ! satisfies

the Diophantine condition if there are c; � > 0 such that

jn � !j > cjnj��; n 2 Zd n ¹0º: (1.2)

Theorem 1.1. Suppose ! 2 Rd satisfies the Diophantine condition (1.2) andWj are

as in (1.1) with ‚ D Zd � ! and for all k;N � 0 there is Ck;N > 0 such that

j@k
xwn�!;j .x/j � Ck;N hxi�khni�N ; n 2 Zd ; j D 0; 1;

then, for jx � yj > c,

e�.x; y/ � cos.�.x � y//
X

j

��jaj .x; y/C sin.�.x � y//
X

j

��j bj .x; y/;

e�.x; x/ �
X

j

Qaj�
j C1;

(1.3)

where a0 D 0 and b0 D 2
�.x�y/

. Moreover, we have an oscillatory integral expression

for e�.x; y/ valid uniformly for .x; y/ in any compact subset of R2.

Remark 1.1. It is easy to see that the condition (1.2) is generic in the sense that it is

satisfied for Lebesgue almost every ! 2 Œ�1; 1�d .

Next, we state a theorem in the limit periodic case.

Theorem 1.2. Let ¹mnº1
nD1 � ZC, and‚D‚C [ �‚C [ ¹0º where‚C D ¹�nº1

nD1;

�n WD mn=n. Suppose that Wj are as in (1.1) such that for all k; N � 0 there is

Ck;N > 0 such that

j@k
xw�n;j .x/j � Ck;N hxi�khni�N ; n � 1; j D 0; 1I

then (1.3) holds.

In both Theorems 1.1 and 1.2, one may add any formally self-adjoint first order

differential operatorWsym D a1.x/Dx C b1.x/whose coefficients satisfy j@k
xai .x/j �

Ckhxi�k to W and W CWsym will satisfy the assumptions of the theorem. In addi-

tion, Theorems 1.1 and 1.2 include examples with arbitrarily large embedded eigen-

values and Theorem 1.2 includes examples with dense pure point spectrum. (See

Appendix B).

While full asymptotic expansions are known in the case thatW is compactly sup-

ported [15, 19] and in the case that W1 D 0, W0 D
P

� e
i�xv� with v� 2 C and ‚

satisfying the assumptions of Theorem 1.1 (see [13]), to the author’s knowledge, The-

orems 1.1 and 1.2 are the first to allow for both types of behavior. The work [13]
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followed the approach developed in [11, 12] for the study of the integrated density of

states a subject which, for periodic Schroödinger operators, has been the focus of a

long line of articles (see e.g. [4, 7, 17, 18]).

1.1. Discussion of the proof

We choose not to state our general results until all of the necessary preliminaries

have been introduced (see Theorem 3.1). Instead, we outline how our proof draws

on and differs from the work of Parnovski and Shterenberg [11–13] and Morozov,

Parnovski, and Shterenberg [10]. These papers handle the much more difficult higher-

dimensional case of the above problem when W.x; D/ is replaced by a potential

V.x/D
P

�2‚ v�e
i�x where v� 2 C and‚ is assumed to be countable and satisfying

certain Diophantine conditions. The crucial technique used in those articles is the

gauge transform (developed in [14, 17, 18]) i.e. conjugating the operator P by eiG

for some pseudodifferential G constructed so that the conjugated operator takes the

formH0 CR whereH0 is a constant coefficient differential operator near frequencies

j�j � � and away from certain resonant zones in the Fourier variable and where R D
O.��N /H �N !H N . The authors are then able to make a sophisticated analysis of the

operator H0 acting on Besicovitch spaces. This analysis uses in a crucial way that

H0 acts nearly diagonally i.e. that the operator can be thought of as a direct sum of

operators acting on resonant frequencies and is diagonal away from these frequencies.

The authors write a more or less explicit, albeit complicated, integral formula for the

spectral function and then directly analyze this integral.

In this article, we take a somewhat different approach to the second step of the

above analysis. Namely, we start with our operator P and, after conjugation by eiG ,

we are able to reduce to the case of H0 C R, where H0 is a scattering pseudodiffer-

ential operator [9] near the frequencies j�j � �. However, because we have simplified

our problem by working in one dimension, resonant zones do not occur. In particular,

we will prove a limiting absorption principle forH0 at high enough energies and show

that the resulting resolvent operators .H0 � �2 � i0/�1 satisfy certain ‘semiclassical

outgoing/incoming’ properties. These, roughly speaking, state that the resolvent trans-

ports singularities in only one direction along the Hamiltonian flow for the symbol of

H0 and that these singularities do not return from infinity. With this in hand, we are

able understand the spectral projector for H0 using the wave method of Levitan [8],

Avakumović [1], and Hörmander [5] and hence, using an elementary spectral the-

ory argument, to understand the spectral function for P . The crucial fact allowing

the proof of a limiting absorption principle is that H0 may be chosen such that the

‘non-scattering pseudodifferential’ part is identically zero on frequencies near �.
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2. General assumptions

2.1. Pseudodifferential classes

We work with pseudodifferential operators in Melrose’s scattering calculus [9]. Since

we are working in the simple setting of R, we will not review the construction of an

invariant calculus. Instead, we say that a 2 C1.R2/ lies in Sm;n if for, all ˛; ˇ 2 N;

j@˛
x@

ˇ

�
a.x; �/j � C˛ˇ hxin�˛h�im�ˇ : (2.1)

We define the seminorms on Sm;n by

kakm;n

ˇ;˛
D

X̨

j D0

ˇX

kD0

sup j@j
x@

ˇ

�
a.x; �/hxi�nCj h�i�mCkj:

When it is convenient, we will say N D .m; n; ˛; ˇ/ � N4 is a choice of a seminorm

on Sm;n.

It will also be convenient to have the standard symbol classes on R. For this, we

say a 2 C1.R2/ lies in Sm if

j@˛
x@

ˇ

�
a.x; �/j � C˛ˇ h�im�ˇ :

Note that Sm;n � Sm. We also define the corresponding classes of pseudodifferential

operators:

‰m;n WD ¹a.x; hD/ j a 2 Sm;nº; ‰m WD ¹a.x; hD/ j a 2 Smº;

where for a 2 Sm,

a.x; hD/u WD 1

2�h

Z
e

i
h

.x�y/�a.x; �/u.y/dyd�:

We sometimes write Oph.a/ for the operator a.x; hD/.

Our pseudodifferential operators will have polyhomogeneous symbols. That is,

they will be given by a 2 Sm;n, b 2 Sm such that there are aj 2 Sm�j;n�j , bj 2 Sm�j

satisfying

a.x; �/�
N �1X

j D0

hjaj .x; �/ 2 hNSm�N;n�N ; b.x; �/�
N �1X

j D0

hj bj .x; �/ 2 hNSm�N :

We will abuse notation slightly from now and write a 2 Sm;n, b 2 Sm to mean that a

and b have such expansions and ‰m;n, ‰m for the corresponding operators.

Note that both ‰m;n and ‰m come with well-behaved symbol maps,

�m;nW‰m;n ! Sm;n and �mW‰m ! Sm;
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respectively, such that

0 ! hSm�1;n�1 a.x;hD/�����! ‰m;n �m;n���! Sm;n ! 0;

0 ! hSm�1 a.x;hD/�����! ‰m �m�! Sm ! 0

are short exact sequences. Moreover,

�m1Cm2;n1Cn2
.AB/ D �m1;n1

.A/�m2;n2
.B/; �m.AB/ D �m1

.A/�m2
.B/;

and

�m1Cm2�1;n1Cn2�1.ih
�1ŒA; B�/ D ¹�m1;n1

.A/; �m2;n2
.B/º;

�m1Cm2�1.ih
�1ŒA; B�/ D ¹�m1

.A/; �m2
.B/º;

where

¹a; bº WD @�a@xb � @�b@xa:

For future use, we define the norms

kuk
H

s1;s2
h

WD khxis2uk
H

s1
h

; kuk
H

s1
h

WD kh�h2@2
xis1=2ukL2 :

We recall the following estimates for pseudodifferential operators.

Lemma 2.1. Let a 2 Sm;n, b 2 Sm. Then

ka.x; hD/uk
H

s1�m;s1�n

h

� Cakuk
H

s1;s2
h

; kb.x; hD/uk
H

s1�m;s2
h

� Cbkuk
H

s1;s2
h

;

The maps Sm;n
a.x;hD/�����! L.H

s1;s2

h
; H

s1�m;s2�n

h
/ and Sm

b.x;hD/�����! L.H
s1

h
; H

s1�m

h
/

are continuous.

In preparation for the gauge transform method, we prove two preliminary lemmas

on exponentials of elements of ‰0.

Lemma 2.2. Let G 2 ‰0 self-adjoint. Then eiG 2 ‰0.

Proof. Let g 2 S0 such that G D Oph.g/ and A0.t/ WD Oph.e
i tg/. We compute

Dt .e
�i tGA0.t// D e�i tG

�
�GA0 C Oph.ge

i tg/
�

D e�i tGhOph.r1.t//;

where r1 2 S�1. Now, suppose that we haveBj .t/, j D 1; : : : ;N � 1,Bj 2‰�j such

that, with AN �1.t/ WD A0.t/C
PN �1

j D1 h
jBj .t/,

Dt .e
�i tGAN .t// D e�i tGhN Oph.rN .t//
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with rN 2 S�N . Then, putting BN .t/ D Oph.�i
R t

0 e
i.t�s/grN .s/ds/, we have

Dt

�
e�i tG.AN .t/C hNBN .t/

�
D e�i tGhN

�
Oph.rN .t//�GBN .t/CDtBN .t/

�

D e�i tGhN C1 Oph.rN C1.t//

for some rN C1 2 S�N �1. Putting A � A0 C
P

j h
jBj .t/, we have

Dt .e
�i tGA.t// D e�i tGOt .h

1/‰�1 :

In particular, integrating, we have

ei tG D A.t/C
tZ

0

ei.t�s/GR1.s/ds; R1.s/ D O.h1/‰�1 :

Therefore, since for allN , A.t/WH�N
h

!H�N
h

andR1WH�N
h

!HN
h

are bounded,

the fact that ei tG WL2 ! L2 is bounded implies that forN � 0, ei tG WH�N
h

! H�N
h

.

But then for u; v 2 C1
c ,

jhei tGu; viL2 j D jhu; e�i tGviL2 j � kukH N
h

ke�i tGvkH �N
h

� CkukH N
h

kvkH �N
h
:

In particular, by density, we have ei tG WHN
h

! HN
h

is bounded for all N and hence

ei tG D A.t/CO.h1/‰�1 :

From the construction, it is clear that sinceG is polyhomogeneous, so is ei tG .

Lemma 2.3. Let G 2 ‰0 self adjoint, and P 2 ‰m,

eiGPe�iG D
N �1X

kD0

ik adk
G P

kŠ
CO.hN /

H s
h

!H
sCN �m
h

;

where adAB D ŒA; B�:

Proof. Note that

.Dt/
kei tGPe�i tG D ei tG adk

G Pe
�i tG ;

and, in particular,

ei tGPe�i tG D
N �1X

kD0

tkik

kŠ
adk

G P C
tZ

0

.t � s/N �1iN

.N � 1/Š
eisG adN

G Pe�isGds:

Now, adN
G P 2 hN‰m�N and, hence, the lemma follows by putting t D 1 and recalling

that eisG 2 ‰0.
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2.2. Ellipticity

Next, we recall the notion of the elliptic set for elements of ‰m and ‰m;n. To this

end, we compactify T �R in the fiber variables to T �R Š R � Œ0; 1� for ‰m and

in both the fiber and position variables to scT �R Š Œ�1; 1� � Œ�1; 1� for ‰m;n. In

particular, the boundary defining functions on scT �R are ˙x�1 near ˙x D 1 and

˙��1 near ˙� D 1 and those for T �R are ˙x�1. We can now define the elliptic set

of A 2 ‰m;n=‰m, ellsc
h .A/ � scT �R, and ellh.A/ � T �R, respectively, as follows.

We say � 2 ellsc
h .A/ if there is a neighborhood U � scT �R of � such that

inf
.x;�/2U

hxi�mh�i�nj�m;n.A/.x; �/j > 0:

We say that � 2 ellh.A/ if there is a neighborhood U � T �R of � such that

inf
.x;�/2U

h�i�nj�m;n.A/.x; �/j > 0:

Next, we define the wavefront set for an element of ‰m, WFh.A/ � T �R and

the scattering wavefront set of A 2 ‰m;n, WFsc
h .A/ � scT �R. For A 2 ‰m, we say

� … WFh.A/ if there is B 2 ‰0 such that � 2 ellh.B/ and

kBAkH �N
h

!H N
h

� CNh
N :

For A 2 ‰m;n, we say � … WFsc
h .A/ if there is B 2 ‰0;0 such that � 2 ellsc

h .B/ and

kBAk
H �N;�N

h
!H N;N

h

� CNh
N :

We can now state the standard elliptic estimates.

Lemma 2.4. Suppose P 2 ‰m;n, A 2 ‰0;0, with WFsc
h .A/ � ellsc

h .P /. Then there is

C > 0 such that for all N there is C > 0 such that

kAuk
H

s;k
h

� CkPuk
H

s�m;k�n
h

C CNh
N kuk

H �N;�N
h

:

If instead P 2 ‰m, A 2 ‰0, with WFh.A/ � ellh.P /, then there is C > 0 such that

for all N > 0 there is CN > 0 such that

kAukH s
h

� CkPukH s�m
h

C CNh
N kukH �N

h
:

2.3. Propagation estimates

We next recall some propagation estimates for scattering pseudodifferential operators.

Since we will work with operators that are fiber classically elliptic, i.e. @.scT �R/� �
ellsc

h .P /, we do not need the full scattering calculus here, and will work with operators
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that are fiber compactly microlocalized. In particular, we say that A 2 ‰m;n is fiber

compactly microlocalized and write A 2 ‰comp;n if there is C > 0 such that

WFsc
h .A/ \ ¹j�j > C º D ;:

For fiber compactly microlocalized operators, all propagation estimates from the

standard calculus (see e.g. [2, Appendix E.4]) follow using the same proofs but inter-

changing the roles of x and � .

Throughout, we let P 2 ‰m;n self-adjoint with �m;n.P / D p, and write

't WD exp.th�i1�mhxi1�nHp/W scT �R ! scT �R

for the rescaled Hamiltonian flow. The next lemma follows as in [2, Theorem E.47].

Lemma 2.5. Let P 2 ‰m;n self-adjoint and suppose that A; B; B1 2 ‰comp;0. Fur-

thermore, assume that for all � 2 WFsc
h .A/, there is T � 0 such that

'�T .�/ 2 ellsc
h .B/;

[

t2Œ�T;0�

't .�/ � ellsc
h .B1/:

Then for all N there is C > 0 such that for " � 0, u 2 � 0 with Bu 2 H
s;k

h
and

B1.P � i"hxin/u 2 H s;k�nC1

h
,

kAuk
H

s;k
h

� CkBuk
H

s;k
h

C Ch�1kB1.P � i"hxin/uk
H

s;k�nC1
h

C CNh
N kuk

H �N;�N
h

:

We will also need the radial point estimates in the setting of fiber compactly

microlocalized operators. The following two lemmas are a combination of [2, The-

orems E.52 and E.54] together with the arguments in [3, Section 3.1].

Lemma 2.6. Let P 2 ‰m;n self adjoint with n > 0 and let

L b ¹hxi�np D 0º \ @.scT �R/x

be a radial source for p. Let k0 > n�1
2

and fix B1 2 ‰comp;0 such that L � ellsc
h .B1/.

Then there is A 2 ‰comp;0.M/ such that L � ellsc
h .A/ and for all N , k > k0, " � 0,

and u 2 � 0 such that B1u 2 H s;k0

h
and B1.P � i"hxin/u 2 H s;k�nC1

h
,

kAuk
H s;k

h

� Ch�1kB1.P � i"hxin/uk
H

s;k�nC1
h

C CNh
N kuk

H �N;�N
h

:

Lemma 2.7. Let P 2 ‰m;n as above with n > 0 and let

L b ¹hxi�np D 0º \ @.scT �R/x



Asymptotic expansions of the spectral function in dimension one 113

be a radial sink for p Let k < n�1
2

, fix B1 2 ‰comp;0 such that L � ellsc
h .B1/. Then

there are A;B 2 ‰comp;0.M/ such that L � ellsc
h .A/, WFsc

h .B/ � ellsc
h .B1/ n L, and

for allN , "� 0, and u 2 �
0 such thatBu 2H s;k

h
andB1.P � i"hxin/u 2H s;k�nC1

h
,

kAuk
H s;k

h

� CkBuk
H s;k

h

C Ch�1kB1.P � i"hxin/uk
H

s;k�nC1
h

C CNh
N kuk

H
�N;�N
h

:

3. Almost periodic potentials

3.1. Assumptions on the potential

We now introduce the objects necessary for our assumptions on the perturbation W .

We say that‚� R is a frequency set if‚ is countable,‚D �‚ and 0 2‚. We write

‚k WD ‚ � � � �
k�2

�‚

and

‚k WD ‚C � � �
k�2

C‚:

For a frequency set‚ and a seminorm N on Sm;n, we will need a family of maps

sk;N W‚k � .Sm;n/‚ ! Œ0;1/. We denote an element .w�/�2‚ 2 .Sm;n/‚ by W . Fix

a seminorm N and define

s0;N .W/ D 1; s1;K.�;W/ D
´

kw� kN

j� j
� ¤ 0;

0 � D 0:

Next, for ˛ 2 Nj with j˛j D k, define ˇi .˛/D
Pi�1

`D1 ˛`. Then, for � 2 ‚k , we write

�˛;i WD .�ˇi .˛/C1; : : : �ˇiC1.˛// 2 ‚˛i . We can now define

s˛;N .�;W/ WD
jY

iD1

s˛i ;N .�˛;i ;W/;

sk;N .�; ;W/ D

8
<
:

1

j
Pk

iD1 �i j

P
p2Sym.k/

P
j˛jDk;˛i �k=2 s˛;N .p.�//

Pk
iD1 �i ¤ 0;

0
P

i �i D 0;

where Sym.k/ denotes the symmetric group on k elements.

The following two lemmas on the behavior of sk;N will be useful below. Their

proofs are elementary and we postpone them to Appendix A.

Lemma 3.1. There are Ck ; Nk > 0 such that, for � 2 ‚k ,

jsk;N .�;W/j � Ck

Qk
iD1 kw�i

kN

inf¹j!jNk j ! 2 ¹�1; 0º C � � � C ¹�k; 0º n 0º : (3.1)
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Lemma 3.2. Suppose that �W 2 .Sm;n/‚n with .�W/�1C���C�n
D zw�1:::�n

such that for

all N there is N
0 satisfying

k zw�1:::�n
kN �

Qn
iD1 kw�i

kN 0

j�i j
:

Then, for all N , there is N
0 such that

sk;N .�1 C � � � C �n; �W/ � snk;N 0..�1; : : : ; �n/;W/:

We say that W 2 ‰1 is admissible if

W D
X

�2‚

ei�xw� .x; hD/ (3.2)

where w� 2 S1;0 and for all 0 � k, N , and N > 0 we have
X

�2‚k

sk;N .�;W/ � Ck;N ; kw� kN < CN;N h�i�N ; (3.3)

where W D .w�/�2‚.

Remark 3.3. If W is smooth and periodic, i.e.‚ D rZ, and kw� kN � CN;N h�i�N ,

then W is admissible.

Remark 3.4. If W is an approximately almost periodic function of the form

W D
X

n2Z
d

ein�!xwn.x; hD/

with kwnkN � CN;N hni�N and if ! D .!1; !2; : : : ; !d / satisfies the Diophantine

condition (1.2), then W is admissible. To see this, without loss of generality, we

assume that ! 2 B.0; 1/. Then, if � 2 ‚, � D n � ! for some n 2 Zd . In particu-

lar, if

�n1
; : : : ; �nk

2 ‚;
kX

iD1

�ni
D

X

i

ni � !;

and, hence, if
P

i �ni
¤ 0, then j

Pk
iD1 �ni

j � C j
P

i ni j��:

Using this, observe that by (3.1) there are Ck , Nk such that

sk;N .�1; : : : ; �k/ � Ck

�X

i

jni j
��Nk

kY

iD1

CN hni i�N � Ck

kY

iD1

CN hnii�N CNk�:

We thus obtain the desired estimate by taking N > Nk�C d and summing over ni ,

i D 1; : : : k.
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Remark 3.5. Next, we verify that certain approximately limit periodic functions are

admissible. Suppose that ¹mnº1
nD1� Z contains 0 and satisfies ¹mnº1

nD1 D ¹�mnº1
nD1.

Suppose that

W D
X

n

eimnx=nwn.x; hD/

and that kwnkK � CN;Khmax.n; jmnj=n/i�N . Then wn satisfies our conditions with

�M � 0. Indeed, in this case, ‚ D ¹mn=nº1
nD1. Now, note that for �i 2 ‚, �i D

mni
=ni ,

kX

iD1

�i ¤ 0 H)
ˇ̌
ˇ
X

i

�i

ˇ̌
ˇ � 1

n1n2 � � �nk

:

Using this, observe that by (3.1) there are Ck , Nk such that

sk;N .�1; : : : ; �k/ � Ck.n1n2 � � �nk/
Nk kw�1

kN � � � kw�k
kN :

In particular, for N > Nk ,

sk;N .�1; : : : ; �k/ � Ck

kY

iD1

C k
Nn

Nk

i hmax.ni ; mni
=ni/i�N � CN;k

kY

iD1

hniiNk�N :

We thus obtain the desired estimate by taking N > Nk C 1 and summing over ni ,

i D 1; : : : k.

Theorem 3.1. Suppose thatW.x; hD/ 2 ‰1 is self-adjoint and admissible (i.e. (3.2)

and (3.3) hold). Let 0 < ı < 1,

P WD �h2�C hW.x; hD/:

Then there are aj 2 C1
c .R3/ such that for all R > 0 there is T > 0 satisfying for all

E 2 Œ1� ı; 1C ı�, O� 2 C1
c .RI Œ0; 1�/ with O� � 1 on Œ�T; T �, and all x; y 2 B.0;R/

the spectral projector 1.�1;E�.P / satisfies

1.�1;E�.P /.x; y/ D h�2

EZ

�1

Z
O�.t/ei t.��j�j2/C.x�y/�/=ha.x; y; �I h/d�dtd�

CO.h1/C 1;

where a �
P

j h
j aj .

After putting h D ��1, W.x; hD/ D h.W1.x/hDx C hDxW1.x// C h2W0.x/,

an application of the method of stationary phase, the analysis in Remarks 3.4 and 3.5,

and an application Theorem 3.1 proves Theorems 1.1 and 1.2. (See [6] for a related

problem.)
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4. Gauge transforms

Before gauge transforming our operator, we need the following symbolic lemma

which allows us to solve away errors.

Lemma 4.1. Suppose that a 2 Sk;0. Then, there exists b 2 Sk;0 such that

.Dx C �/b � a D r 2 Sk;�1

and

kbkk;0

ˇ;˛
� C˛ˇk j� j�1kakk;0

ˇ;˛C2
; krkk;�N

ˇ;˛
� C˛ˇN j� j�1kakk;0

ˇ;˛CN C2
f:

Proof. We consider two cases.

Case 1: j�j � 1. Let � 2 C1
c .R/ with � � 1 on Œ�1=3; 1=3� and supp� � .�1; 1/.

Define

b.x; �/ WD 1

2�

Z
ei.x�y/� 1 � �.� C �/

�C �
a.y; �/dyd�;

where the integral in y interpreted as the Fourier transform. Then, .Dy C �/b � aD r

where

r.x; �/ WD � 1

2�

Z
ei.x�y/��.� C �/a.y; �/dyd�

D � 1

2�

Z
ei.x�y/��.� C �/j�j�NDN

y a.y; �/dyd�:

Since �� WD �.�/j� � � j�N is smooth and compactly supported with seminorms

bounded uniformly in j� j � 1,

jD˛
xD

ˇ

�
r.x; �/j D

ˇ̌
ˇ� 1

2�

Z
ei�.x�y/ O�� .y � x/D˛CN

y D
ˇ

�
a.y; �/dy

ˇ̌
ˇ

� CN;M

Z
j� j�1hx � yi�M hyi�˛�N h�ik�ˇ kakk;0

ˇ;˛CN C1
dy

� C j� j�1hxi�˛�N h�ik�ˇ kakk;0

ˇ;˛CN C1
;

and

jD˛
xD

ˇ

�
b.x; �/j D

ˇ̌
ˇ̌ 1
2�

Z
ei.x�y/�

�1 � .x � y/D�

1C jx � yj2
�N

� 1 � �.� C �/

�C �

�1C �Dy

1C j�j2
�2

D˛
yD

ˇ

�
a.y; �/dyd�

ˇ̌
ˇ̌

� CN

ˇ̌
ˇ̌
Z

hx � yi�N h�i�2h�C �i�1h�ik�ˇ hyi�˛kakk;0

ˇ;˛C2
dyd�

ˇ̌
ˇ̌

� C j� j�1h�ik�ˇ hxi�˛kakk;0

ˇ;˛C2
:
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Case 2: j�j � 1. Define L W Sk;` ! C1.R2/ by

L Qa WD i

xZ

0

ei�.s�x/ Qa.s; �/ds:

Then, .Dx C �/L Qa D Qa:
Moreover, if Qa vanishes at x D 0, then

L Qa D i

xZ

0

hDs

�
ei�.s�x/

i
Qa.s; �/ds

D �i��1

xZ

0

ei�.s�x/Ds Qa.s; �/ds C 1

�
Qa.x; �/

D ���1LDx QaC ��1 Qa:

In particular,

DxL Qa D Qa � �L Qa D LDx Qa:

Now, suppose that zA 2 Sk;0 and Qa vanishes to infinite order at x D 0. Then, for

xr � 0 with jxj � jr j,

jL Qa.x; �/j � jr jk Qakk;0
0;0h�ik:

For jxj � jr j,

jL Qa.x; �/k �
ˇ̌
ˇ̌

rZ

0

ei�s Qa.s; �/ds
ˇ̌
ˇ̌

C j� j�1

�ˇ̌
ˇ̌

xZ

r

ei�sDs Qa.s; �/ds
ˇ̌
ˇ̌ C jQa.x; �/j C j Qa.r; �/j

�

� .jr j C 2j� j�1/kQakk;0
0;0h�ik

C j� j�2

�ˇ̌
ˇ̌

xZ

r

ei�sD2
s Qa.s; �/ds

ˇ̌
ˇ̌ C jDx Qa.x; �/j C jDx Qa.r; �/j

�

� h�ik
�
.jr j C 2j� j�1/kQakk;0

0;0 C j� j�2h�ik.CkD2
x Qakk;�2

0;0 hri�1

C 2kDx Qakk;�1
0;0 hri�1/

�
:

Optimizing in r , we obtain jr j D j� j�1 and, in particular,

kL Qakk;0
0;0 � C j� j�1kQakk;0

0;2 :
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Therefore, sinceD� commutes with L, if b 2 Sk;0 vanishes to infinite order at x D 0,

we have

kL Qakk;0
ˇ;0

� C j� j�1kQakk;0
ˇ;2
:

Now, consider

DxL Qa D ��1.�LD2
x QaCDx Qa/

and define

Qa˙.�/ WD i

˙1Z

0

ei�sD2
s Qa.s/ds:

Arguing as above, we can see that

j@ˇ

�
Qa˙.�/j � C j� jk Qakk;0

ˇ;2
h�ik�ˇ :

Fix c˙.x/ 2 C1
c such that

R
c˙dx D 1, supp c˙ � ¹˙x > 0º. Then,

Z
ei�sD2

s c˙.s/ds � cj� j2;

and putting

Qamod.x; �/ D Qa.x; �/� cC.x/ QaC.�/R
ei�sD2

s cC.s/ds
� c�.x/ Qa�.�/R

ei�sD2
s c�.s/ds

;

we have

1Z

0

ei�sD2
sD

ˇ

�
Qamod.x; �/ds D

�1Z

0

ei�sD2
sD

ˇ

�
Qamod.s; �/ds D 0:

Moreover, since Qamod vanishes to infinite order at 0, we can integrate by parts to see

that
1Z

0

ei�sDk
s D

ˇ

�
Qamodds D

�1Z

0

ei�sDk
s D

ˇ

�
Qamodds D 0; k � 2:

Finally, note that, for ˛ � 1,

D˛
xL Qamod D ��1.�LD˛C1

x Qamod CD˛
x Qamod/;

and we have

ˇ̌
ˇ̌

xZ

0

eis�D˛C1
s D

ˇ

�
Qamodds

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌

sgn x1Z

x

eis�D˛C1
s D

ˇ

�
Qamod ds

ˇ̌
ˇ̌

� CN kQakk:0
ˇ;˛C1hxi�˛h�ik�ˇ :
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To complete the proof we let � 2 C1
c .R/ with � � 1 near 0 and put

Qa D .1� �.x//a.x; �/; b D L Qamod:

We need a lemma which controls scattering symbols after conjugation by ei�x .

Lemma 4.2. Suppose that one has B 2 ‰n;m and � 2 R, j� j � Ch�1. Then, there is

B� 2 ‰n;m such that

ei�xBe�i�x D B� :

and WFsc
h .B� /D WFsc

h .B/:Moreover, if B D b.x; hD/, then B� D b� .x; hD/ where

b�.x; �/ D b.x; � � h�/ �
1X

j D0

hj .�1/j
j Š

h�; @�ij b:

In particular,

kb � b� kn�1;m

˛;ˇ
� kbkn;m

˛;ˇC1
hj� jhhj� jin�jˇ j�1:

Proof. Write

B D b.x; hD/CO.h1/‰�1;�1 :

Then,

ei�xb.x; hD/e�i�x D b�.x; hD/; b�.x; �/ D b.x; � � h�/:

Now,

j@˛
x@

ˇ

�
b� .x; �/j D j@˛

y@
ˇ
� b.y; �/yDx;�D�Ch� j

� C˛ˇ hxim�j˛jh� � h�in�jˇ j

� C˛ˇ hh�in�jˇ jhxim�j˛jh�in�jˇ j

� zC˛ˇ hxim�j˛jh�in�jˇ j

and the first part of the lemma follows from Taylor’s theorem.

Note also that

@˛
x@

ˇ

�
.b.x; �/� b� .x; �// D h

1Z

0

�h@˛
x@

ˇC1

�
b.x; � � th�/; �idt

� kbkn;m

˛;ˇC1
hj� jh�in�jˇ j�1hxim�j˛jhh�in�jˇ j�1:

Lemma 4.3. Suppose that �1; �2 2 B.0;Dh�1/ and that a 2 Sm1;n1 and b 2 Sm2;n2 .

Then,

h�1Œei�1x Oph.a/; e
i�2x Oph.b/�

D ei.�1C�2/x.h�1ŒOph.a/;Oph.b/�C j� jc2.x; hD//;
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where the map LWSm1;n1 � Sm2;n2 ! Sm1Cm2�1;n1Cn2 , .a; b/ 7! c2 is bounded uni-

formly in h with bound depending only on the constantD.

Proof. Note that

Œei�1x Oph.a/; e
i�2x Oph.b/�

D ei.�1C�2/x
�
Oph.a��2

/Oph.b/� Oph.b��1
/Oph.a/

�

D ei.�1C�2/x
�
ŒOph.a/;Oph.b/�C .Oph.a��2

� a//Oph.b/

� .Oph.b��1
� b//Oph.a//

�
:

We now apply Lemma 4.2 to finish the proof.

Using Lemma 4.3, we can see that if ‚1; ‚2 � B.0;Dh�1/

G D
X

�2‚1

ei�xg� .x; hD/; g� 2 Sm1;n1 ;

B D
X

�2‚2

ei�xb� .x; hD/; b� 2 Sm2;n2 ;
(4.1)

then

h�1ŒG; B� D
X

�i 2‚1

�j 2‚2

ei.�1C�2/x Qg�1;�2
.x; hD/;

where, for all mi ; ni , i D 1; 2 and ˛; ˇ 2 N, there are K;C > 0 such that

k Qg�1;�2
km1Cm2�1;n1Cn2

˛ˇ
� C

�
1C max.j�1j; j�2j/

�
kg�1

km1;n1

ˇCK;˛CK
kb�2

km2;n2

ˇCK;˛CK
:

Thus, applying Lemma 2.3, we have the following lemma:

Lemma 4.4. Let G 2 ‰�1 self-adjoint and B are as in (4.1) with m1 D m2 D �1
and n1 D n2 D 0. Then,

eiGBe�iG D B C
k�1X

j D1

X

ˆ2‚
j
1

�2‚2

hj ei.
Pj

iD1
ˆi C�/x Qgˆ;� CO.hk/H �N

h
!H N

h

where for any
Pj

iD0Ni D N , ˛; ˇ there areK and CN˛ˇj such that

k Qgˆ;� k�N;0

ˇ;˛
� Cj˛ˇ .1C j� j/kb�k�N0;0

ˇCK;˛CK

jY

iD1

.1C jˆi j/kgˆi
k�Ni ;0

ˇCK;˛CK
:
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4.1. The gauge transform

We are now in a position to prove the inductive lemma used for gauge transformation.

Lemma 4.5. Suppose that 0 < a < b and

WFh

� zP � .P0 C hQk C h1CkWk C hNRk/
�

\ ¹j�j 2 Œa; b�º D ;;

where Qk 2 ‰�1;0, Rk 2 ‰�1,

Wk D
X

�2‚n0

ei�xw�;k.x; hD/;

with ¹w�;kº�2‚ satisfying (3.3) and Wk;Qk self adjoint. Then there is

G 2 h�ıCk.1�ı/S�1;0

self adjoint such that

WFh

� zPG � .P0 C hQkC1 C h1CkC1WkC1 C hNRkC1/
�

\ ¹j�j 2 Œa; b�º D ;;

where RkC1 2 ‰�1,

QkC1 D Qk C hkC1 zQk 2 ‰�1;0;

with zQk self adjoint andWkC1 is self adjoint with

WkC1 D
X

�2‚d N
kC1

�1en0

ei�xw�;kC1.x; hD/

and W D ¹w�;kC1º� satisfies (3.3) with ‚; replaced by ‚d N
kC1

�1e:

Proof. Let � 2 C1
c .0;1/ such that � � 1 near Œ1=2; 2� and

zP�.jhDj/ D .P0 C hQk C hkWk � hNRk/�.jhDj/CO.h1/‰�1 :

We aim to use the fact that P0 dominates zP to conjugate away Wk . Therefore, we

look for G such that, modulo lower order terms,

ih�1�kŒP0; G� D Wk:

To do this, we solve

2�@xg D ��1.Wk�.jhDj//:

Now,

Wk�.jhDj/ D
X

�2‚n¹0º

ei�x.w��.j�j//.x; hD/
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where w� 2 S�1;0 satisfy (3.3). Let �
i

2 C1
c .0;1/, i D 1; 2, such that �

1
; �

2
� 1

near Œa; b� and supp �
2

� supp �
1

� supp �. By, Lemma 4.1, there is g� 2 S�1;0

such that

.Dx C �/g�.x; �/� iw�;k�1
.j�j/=2� 2 S�1;�1

and

kg� k�N;0

ˇ;˛
� C˛ˇN j� j�1kw��1

k�N;0

ˇ;˛C2
:

Modifying lower order terms in g� to make ei�xg� C e�i�xg�� self adjoint, we

put

G WD hk
X

�2‚n¹0º

ei�xg� .x; hD/:

Then, G 2 hkS�1, and, letting Qk D .k C 1/, by Lemma 4.4, for any N1

�
2
.jhDj/ zPG D �

2
.jhDj/.P0 C hQk/C

N1�1X

j D2

X

ˆ2‚j

ei.
Pj

iD1
ˆi /xhj Qk Qg1

ˆ.x; hD/

C
N1�1X

j D1

X

ˆ2‚j

hj QkC1ei.
Pj

iD1
ˆi /x Qg2

ˆ.x; hD/

CO.hN1
Qk/H �N

h
!H N

h
CO.hN /H �N

h
!H N

h

where for ˆ 2 ‚n,

k Qg`
ˆk�N;0

˛ˇ
�Cj˛ˇN .1C kQkk�N;0

˛CK;ˇCK
/

nY

iD1

.1C jˆi j/jˆi j�1kwˆi
�

1
k�N;0

ˇCK;˛CKC2
:

In particular, putting N1 D
˙

N
kC1

�
, and

WkC1 D
N1�1X

j D2

X

ˆ2‚jP
ˆi ¤0

ei.
Pj

iD1
ˆi /xhj Qk Qg1

ˆ.x; hD/

C
N1�1X

j D1

X

ˆ2‚jP
ˆi ¤0

hj QkC1ei.
Pj

iD1
ˆi /x Qg2

ˆ.x; hD/

and

QkC1 D Qk C
N1�1X

j D2

X

ˆ2‚jP
ˆi D0

hj Qk Qg1
ˆ.x; hD/C

N1�1X

j D1

X

ˆ2‚jP
ˆi D0

hj QkC1 Qg2
ˆ.x; hD/

we have by Lemma 3.2 thatWkC1 satisfies (3.3) with‚ replaced by‚D ‚d N
kC1

�1e:
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The following is now an immediate corollary of the previous lemma.

Corollary 4.6. Let P D �h2�C hW where W is admissible and 0 < a < b. Then

for all N there is G 2 ‰0 self-adjoint such that

eiGPe�iG D �h2�C hQC .1��.h2�� 1//h�W.1��.h2�� 1//CO.hN /‰�1 ;

where Q 2 ‰�1;0 and �W 2 ‰1 are self adjoint, and � 2 C1
c with � � 1 on Œa; b�.

5. Limiting absorption for the gauge transformed operator

Throughout this section, we work with an operator

P D P0 C h.1 � �.�h2� � 1//W.x; hD/.1� �.�h2�� 1///; (5.1)

with

P0 2 S2;0; �2;0.P0/ D j�j2; �1;�1.h
�1 ImP0/ D 0;

and where � 2 C1
c .R/ with � � 1 in a neighborhood of Œ�ı; ı� and W 2 ‰1. We

will show that, for E 2 Œ1 � ı; 1C ı�, R˙.E/ WD .P � E � i0/�1 exist as limiting

absorption type limits. Moreover, we will show that R˙.E/ satisfy certain outgo-

ing/incoming properties.

Throughout this section, we let �
i

2 C1
c .R/, i D 1; 2; 3, with

�
i

� 1 near Œ�ı; ı�; supp�
i

� ¹�
i�1

� 1º; i D 2; 3; supp�
1

� ¹� � 1º;
 i WD .1� �

i
..�h2�� 1///; Xi WD �

i
..�h2�� 1//:

(5.2)

5.1. Elliptic estimates

We first obtain estimates in the elliptic region where the perturbation of P0 is suppor-

ted.

Lemma 5.1. With  i as in (5.2),

ck 2uk
H

sC2;k
h

� k 3.P � E ˙ i"/uk
H

s;k
h

C ChN kuk
H �N;�N

h

: (5.3)

Proof. Observe that

 i .P �E/ D  i .P0 � E/C h
�
1 � �.�h2�� 1/

�
W.x; hD/

�
1 � �.�h2� � 1/

�
;

since

 i .1 � �.�h2� � 1/// D
�
1 � �.�h2�� 1/

�
:
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Note that WFsc
h . 2/ � ellsc

h . 3.P0 � E//, and, by Lemma 2.4, for " > 0,

k 3.P � E ˙ i"/uk
H s;k

h

� k 3.P0 �E ˙ i"/uk
H s;k

h

� Chk.1 � �/uk
H

sC1;k
h

� ck 2uk
H

sC2;k
h

� Chk.1 � �/uk
H

sC1;k
h

� ChN kuk
H

�N;�N
h

� ck 2uk2

H
sC2;k
h

� ChN kuk2

H �N;�N
h

:

Here, in the last line we have used that .1 � �/ D .1� �/ 2.

5.2. Propagation estimates

Consider zPE WD hxi1=2.P0 �E/hxi1=2 so that zPE 2 ‰�1;1 is self-adjoint and

�2;1. zPE / D hxi.�2 � E/ DW Qp:

Note that

H Qp D 2�hxi@x � .�2 � E/xhxi�1;

and therefore, letting,

LC D
[

˙

LC;˙; LC;˙ WD ¹� D ˙
p
E; x D ˙1º;

L� D
[

˙

L�;˙; L�;˙ WD ¹� D �
p
E; x D ˙1º;

we have that LC;˙ are radial sinks for Qp and L�;˙ are radial sources (see [2, Defini-

tion E.50]).

Lemma 5.2. Let BC; B� 2 ‰comp;0,

L˙ � ellsc
h .B˙/; WFsc

h .B˙/ \ L� D ;; ¹p D Eº � .ellsc
h .B�/ [ ellsc

h .BC//

(5.4)

and B 0
˙ 2 ‰comp;0 with the same property, and WFsc

h .B
0
˙/ � ellsc

h .B˙/: Then, for

all kC < �1
2

and k� > k0
� > �1

2
, and N there is C > 0 and ı > 0 such that for

" � 0, E 2 Œ1 � ı; 1 C ı�, and u 2 �
0.R/ with B˙.P0 � E � i"/u 2 H

0;k˙

h
, and

B�u 2 H 0;k0
�

h
,

kB 0
Cuk

H
0;kC
h

C kB 0
�uk

H
0;k�
h

� Ch�1
�
kBC.P0 �E � i"/uk

H
0;kCC1

h

C kB�.P0 � E � i"/uk
H

0;k�C1

h

�

C ChN kuk
H �N;�N

h

:
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Similarly, for all QkC > Qk0
C >�1

2
and Qk� <�1

2
, andN there areC > 0 and ı > 0 such

that for " � 0, E 2 Œ1 � ı; 1C ı�, and u 2 �
0.R/ with B˙.P0 �E C i"/u 2 H 0; Qk˙

h
,

and BCu 2 H 0; Qk0
C

h
,

kB 0
Cuk

H
0; QkC
h

C kB 0
�uk

H
0; Qk�
h

� Ch�1.kBC.P0 � E C i"/uk
H

0; QkCC1

h

C kB�.P0 �E C i"/uk
H

0; Qk�C1

h

/

C ChN kuk
H �N;�N

h

:

Proof. Let zB� 2 ‰comp;0 such that L� � ellsc
h .

zB�/, WFsc
h .

zB�/ � ellsc
h .B�/. Then, by

Lemma 2.6 there is A� 2 ‰comp;0 such that L� � ellsc
h .A�/ and for all Qk� > Qk0

� > 0,

" � 0 and v 2 �
0.R/ with zB�v 2 H 0; Qk0

�

h
, zB�. zPE � i"hxi/v 2 H 0; Qk�

h
,

kA�vk
H

0; Qk�
h

� Ch�1k zB�. zPE � i"hxi/vk
H

0; Qk�
h

C CNh
N kvk

H
�N;�N
h

: (5.5)

Next, let zBC 2 ‰comp;0 such that LC � ellsc
h .

zBC/ and WFsc
h .

zBC/ � ellsc
h .BC/.

Then, by Lemma 2.7 there exist AC; B 2 ‰comp;0 such that LC � ellsc
h .AC/ and

WFsc
h .B/� ellsc

h .
zBC/ nLC, and, for all QkC<0, "� 0 and v2�

0.R/with Bv2H 0; QkC

h
,

zBC. zPE � i"hxi/v 2 H 0; QkC

h
,

kACvk
H

0; QkC
h

� CkBvk
H

0; QkC
h

C Ch�1k zBC. zPE � i"hxi/vk
H

0; QkC
h

C CNh
N kvk

H �N;�N
h

: (5.6)

Finally, let B0 2 ‰comp;0 with WFsc
h .B0/ � ellsc

h .BC/,

¹ Qp D 0º � ellsc
h .B0/ [ ellsc

h .B
0
�/:

Then, there is A0 2‰comp;0 such that WFsc
h .A0/\ .LC [L�/D ; and there is T > 0

with

WFsc
h .A0/ �

[

0�t�T

't .ellsc
h .A�//\ ellsc

h .B0/; (5.7)

¹hxi�1 Qp D 0º � ellsc
h .A0/ [ ellsc

h .A�/ [ ellsc
h .AC/: (5.8)

Now, by (5.7) and Lemma 2.5 for all " � 0, and u 2 �
0.R/ such that A�v 2 H 0; Qk�

h
,

B0. zPE � i"hxi/v 2 H 0; Qk�

h
,

kA0vk
H

0; Qk�
h

� CkA�uk
H

0; Qk�
h

C Ch�1kB0. zPE � i"hxi/vk
H

0; Qk�
h

C CNh
N kvk

H �N;�N
h

: (5.9)



J. Galkowski 126

Next, observe that ifBi 2‰comp;0 with WFsc
h .B1/�ellsc

h .B2/, then there is Ck;s>0

such that for all w 2 � 0.R/ with B2w 2 H 0;kCs

h
,

kB1hxiswk
H 0;k

h

� CkB2wk
H

0;kCs
h

;

Combining (5.5), (5.6), and (5.9), and using (5.8) and Lemma 2.4 finishes the proof

of the first inequality after putting v D hxi�1=2u and letting QkC D kC C 1
2

D, Qk� D
k� C 1

2
:

The second inequality follows by replacing zP by � zP .

Now, for each �� scT �R, let B� 2‰0;0 such that WFsc
h .B�/� x� , ellsc

h .B�/D�o.

Then, for k� �k, s2R define the norm,

kuk
X

s;k� ;k

�

WD kB�uk
H

s;k�
h

C kuk
H

s;k
h

:

Lemma 5.3. For k� > �1
2

, kC < �1
2

, ��; �
0
� � scT �R open with

L� � � b � 0
b ¹�

3
.j�j2 � 1/ � 1º nLC;

there is h0 > 0 such that for all u 2 X
s;k�;kC

�;C , " > 0, and 0 < h < h0

kuk
X

s;k� ;kC
��

� Ch�1k.P � E � i"/uk
X

s�2;k�C1;kCC1

�0
�

:

For k� < �1
2

, kC > �1
2

and �C; �
0
C � scT �R open with

LC � �C b � 0
C b ¹�

3
.j�j2 � 1/ � 1º n L�;

there is h0 > 0 such that for all u 2 X
s;k�;kC

�;� , " > 0, and 0 < h < h0

kuk
X

s;kC ;k�

�C

� Ch�1k.P � E � i"/uk
X

s�2;kCC1;k�C1

�0
C

:

Proof. Put f" D .P � E � i"/u. Let �� b �1 b �2 b � 0
� and A�1

, A�2
2 ‰comp;0

such that

�� b ellsc
h .A�1

/ � WFsc
h .A�1

/ � �1 � ellsc
h .A�2

/ � WFsc
h .A�2

/ � �2;

WFsc
h .Id �A�i

/ \ L� D ;; WFsc
h .Id �A�1

/ � ellsc
h .Id �A�2

/:

Next, define
BC WD .Id �A�1

/X1; B� WD A�2
X1;

B 0
C WD .Id �A�2

/X2; B 0
� WD A�1

X2:
(5.10)
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Then, (5.4) is satisfied and by Lemma 5.2 together with the fact that X2P D X2P0,

kB 0
�uk

H
0;k�
h

C kB 0
Cuk

H
0;kC
h

� Ch�1.kBCf"k
H

0;kCC1

h

C kB�f"k
H

0;k�C1

h

/C ChN kuk
H �N;�N

h

� Ch�1.kf"k
H

0;kCC1

h

C kB�f"k
H

0;k�C1

h

/C ChN kuk
H �N;�N

h

: (5.11)

Now, since WFsc
h .A�i

/ � ellsc
h .B� 0

�
/, we have by Lemma 2.4

kB�f"k
H

s;k�C1

h

C kA�1
f"k

H
s;k�C1

h

� CkB� 0
�
f"k

H
s;k�C1

h

C CNh
N kf"k

H �N;�N
h

� CkB� 0
�
f"k

H
s;k�C1

h

C CNh
N kuk

H �N;�N
h

: (5.12)

Next, since WFsc
h .A�2

/\ WFsc
h .Id�X3/D ;, and WFsc

h .Id�X2/� WFsc
h .Id�X3/,

we have by (5.10), (5.11), and (5.12) that

kA�1
uk

H
s;k�
h

� CskA�1
X2uk

H
0;k�
h

C kA�1
.Id �X2/uk

H
s;k�
h

� Ch�1kB� 0
�
f"k

H
0;k�C1

h

C kf"k
H

0;kCC1

h

C ChN kuk
H �N;�N

h

� Ch�1kf"k
X

s�2;k�C1;kCC1

�0
�

C ChN kuk
H �N;�N

h

: (5.13)

Now, since WFsc
h .X2/ � ellsc

h .X1/, and ¹p D Eº � ellsc
h .Id �A�2

/ [ ellsc
h .A�1

/,

WFsc
h .X2/ n .ellsc

h .Id �A�2
/[ ellsc

h .A�1
// � ellsc

h .X1.P0 � E � i"//;

with uniform bounds in " � 0. Therefore, using (5.11) and (5.12) together with the

elliptic estimate from Lemma 2.4, we have

kX2uk
H

0;kC
h

� Ch�1kf"k
X

s�2;k�C1;kCC1

�0
�

C CkX1f"k
H

0;kC
h

C ChN kuk
H �N;�N

h

� Ch�1kf"k
X

s�2;k�C1;kCC1

�0
�

C ChN kuk
H �N;�N

h

:

So, using (5.3),

kuk
H

s;kC
h

� Ch�1kf"k
X

s�2;k� C1;kCC1

�0
�

C ChN kuk
H

�N;�N
h

: (5.14)

For h small enough, the first part of the lemma follows from (5.13) and (5.14), the

fact that WFsc
h .B��/ � ellsc

h .A�1
/, and the elliptic estimate (Lemma 2.4). The second

claim follows from an identical argument.
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5.3. The limiting absorption principle and the outgoing property

We are now in a position to prove the limiting absorption principle. For this, we define

R.�/ WD .P � �/�1WH s;k

h
! H

sC2;k

h
for Im� ¤ 0.

Lemma 5.4. Let�� be a neighborhood ofL� such that the assumptions of Lemma 5.3

are satisfied, k� >
1
2

, kC < �1
2

, s 2 R, and E 2 Œ1 � ı; 1C ı�, the strong limit

R.E C i0/WH s;k�

h
! X

sC2;k��1;kC

��

exists and satisfies the bound

kR.E C i0/f k
X

sC2;k��1;kC
��

� Ch�1kf k
H

s;k�
h

:

Similarly, for �C a neighborhood of LC satisfying the assumptions of Lemma 5.3,

k� < �1
2

, kC > 1
2

, s 2 R, and E 2 Œ1 � ı; 1C ı�, the strong limit

R.E � i0/WH s;kC

h
! X

sC2;kC�1;k�

�C

exists and satisfies the bound

kR.E � i0/f k
X

sC2;kC�1;k�

�C

� Ch�1kf k
H

s;kC
h

:

Proof. We start by showing that for k� >
1
2

, kC < �1
2

,

R.E C i"/ WD .P � E � i"/�1WH s;k�

h
! H

sC2;kC

h

converges as "! 0C. First, note that for each fixed "> 0,R.EC i"/WH s;k
h

!H
sC2;k
h

is well defined. Let � 0
� be a neighborhood of L� with �� b � 0

�.

Suppose there is f 2 H s;k�

h
such that R.E C i"/f is not bounded in H

sC2;kC

h
.

Then, there are "n ! 0C such that, defining un WDR.EC i"n/f 2H sC2;k�

h
, we have

kunk
H

sC2;kC
h

! 1. Putting vn D un=kunk
H

sC2;kC
h

, we have that kvnk
H

sC2;kC
h

D 1

is bounded and that .P � E � i"n/vn D f=kukk
H

s;kC
h

! 0 in H s;k�

h
.

Since f 2 H s;k�

h
, for all " > 0, R.E C i"/WH s;k

h
! H

sC2;k
h

, and k� � 1 > kC,

we have vn 2 X
sC2;k��1;kC

��
and f 2 X

s;k�;kCC1

� 0
�

. Therefore, by Lemma 5.3 all n,

kvnk
H

sC2;kC
h

� Ckvnk
X

sC2;k��1;kC
��

� Ch�1kf k
X

sC2;k�;kCC1

�0
�

=kukk
H

sC2;kC
h

� Ch�1kf k
H

s;k�
h

=kukk
H

sC2;kC
h

! 0
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which contradicts the fact that kvnk
H

sC2;kC
h

D 1. In particular, u D R.E C i"/f is

uniformly bounded in H
sC2;kC

h
, and, arguing as above

kuk
X

sC2;k��1;kC
��

� Ch�1kf k
H

s;k�
h

:

Now, we show that R.E C i"/f converges as " ! 0C. To see this, first take any

sequence "n ! 0C. Then, R.E C i"n/f is bounded in X
sC2;k��1;kC

��
and hence, for

any s0 < s, 1
2
< k0 < k�, and k0

C < kC, we may extract a subsequence and assume

that un D R.E C i"n/f ! u in X
s0C2;k0

��1;k0
C

��
, .P � E/u D f , and un * u in

X
sC2;k��1;kC

��
.

Suppose that there is another sequence which converges to u0 2 X s0C2;k0
��1;k0

C

��

and satisfies .P � E/u0 D f . But then we have

ku � u0k
H

s0C2;k0
C

h

� Cku � u0k
X

s0C2;k0
��1;k0

C
��

� Ch�1k.P � E/.u� u0/k
X

s0C2;k0
�C1;k0

CC1

�0
�

D 0;

so u D u0. Now, suppose that there is a sequence "m ! 0C such that

u00
m WD R.E C i"m/f

does not converge to u in X
sC2;k��1;kC

��
. Then, extracting a subsequence we may

assume that u00
m ! u00 2 X

s0C2;k0
��1;k0

C

��
and hence u D u00, which is a contradic-

tion. In particular, R.E C i"/f ! u in X
sC2;k��1;kC

��
as " ! 0C. Boundedness of

the operator follows from the above estimates. Moreover, we see that if f 2 H s;k�

h
,

for some k� >
1
2

, then R.E C i0/f 2 X
sC2;k��1;kC

��
, for any kC < �1

2
.

The case of R.E � i"/ follows by an identical argument.

Finally, we are in a position to prove that the limiting absorption resolvent satisfies

the outgoing/incoming property.

Lemma 5.5. For f 2 E 0.R/,

WFh.R.E ˙ i0//f � WFh.f / [
[

˙t�0

exp.tHj�j2/
�
WFh.f / \ ¹j�j2 D Eº

�
:

Proof. First, note that for A 2 ‰0;comp with WFh.A/ � ellh.B/ \ ellh.P /; and

kAuk
H k;s

h

� CkBPuk
H k�2;s

h

C ChN kuk
H �N;�N

h

:

Therefore, letting v˙ D R.E ˙ i0/f , we have

WFh.v˙/\ ¹j�j2 ¤ Eº � WFh.f /:
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Next, note that since f 2 H�N;1
h

, for some N , by Lemma 5.4, vC 2 X
�N C2;1;k
��

,

and v� 2 X
�N C2;1;k
�C

, for any k < �1
2

and any �˙ open neighborhoods of L˙ such

that �˙ \ L� D ;. In particular, by Lemmas 2.5–2.7, together with the fact that

X3P 2 ‰2;0,

WFsc
h .R.E ˙ i0/f / \ ¹j�j2 D Eº �

[

˙t�0

exp.tHp/
�
WFsc

h .f / \ ¹j�j2 D Eº
�

[L˙:

Next, since f 2 E
0, WFsc

h .f / � ¹jxj � C º and, in particular, WFsc
h .f / D WFh.f /.

Therefore, the claim follows.

Using the outgoing property, we can write an effective expression for the incom-

ing/outgoing resolvent (see also [2, Lemma 3.60]).

Lemma 5.6. Let R > 0. Then there is T > 0 such that for all f 2 E 0 supported

in B.0;R/ and B 2 ‰comp;�1 with WFsc
h .B/ � T �B.0;R/ \ ¹1=2 � j�j � 2º, and

� 2 C1
c .B.0;R//,

�R.E ˙ i0/B D i

h

˙TZ

0

�e�i t.P �E/=hBfdt CO.h1/D 0!C 1
c
:

Proof. Let  2 C1
c .R/ such that  � 1 on B.0;RC 10T /. Let

v D R.E C i0/Bf � ih�1

TZ

0

 e�i t.P �E/=hBfdt:

Then,

.P �E/v D Bf � ih�1

TZ

0

.hDt C ŒP;  �/e�i t.P �E/=hBfdt

D  e�iT .P �E/=hBf � ih�1

TZ

0

ŒP;  �e�i t.P �E/=hBfdt

CO.h1/‰�1;�1f:

Now,

WFh.e
�i t.P �E/=hB/ � ¹.x C 2t�; �/ j jxj � R; j�j 2 Œ1=2; 2�º:

In particular, for t 2 Œ0; T �,

ŒP;  �e�i t.P �E/=hBf D O.h1/C 1
c

and we have

.P � E/v D  e�iT .P �E/=hBf CO.h1/C 1
c
:
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Since v � R.E C i0/Bf 2 C1
c , for any �� a neighborhood of L� satisfying the

assumptions of Lemma 5.3, v 2 X
s;k�;kC

��
for all s; k� and kC < �1

2
and hence

v D R.E C i0/
�
 e�iT .P �E/=hBf CO.h1/C 1

c

�
:

But then

WFh.v/ � ¹.x C 2t�; �/ j t � 0; .x; �/ 2 WFh. e
iT .P �E/=hB/º

� ¹.x C 2.t C T /�; �/ j jxj � R; � 2 Œ1=2; 2�º
� ¹.x; �/ j B.0;RC 4T / n B.0; T � 2R/; � 2 Œ1=2; 2�º:

In particular, for T > 3R, �v D O.h1/C 1
c

and hence

�R.E C i0/Bf D i

h

TZ

0

�e�i t.P �E/=hBfdt CO.h1/C 1
c

as claimed. The proof for R.E � i0/ is identical.

6. Completion of the proof of Theorem 3.1

We now complete the proof of the main theorem. Let P D �h2�C hW where W is

admissible (i.e. satisfies (3.2) and (3.3)). Let 0 < ı < ı0 < 1. Then by Corollary 4.6,

for any N > 0, there is G 2 ‰0 self adjoint such that

PG WD eiGPe�iG D �h2�C hQC .1� �.h2�� 1//h�W.1� �.h2�� 1//CRN ;

whereQ 2 ‰�1;0, �W 2 ‰1, are self adjoint, RN D O.h3N /‰�1 , and � 2 C1
c with

� � 1 on Œ�ı0; ı0�. In particular, zPG WD PG �RN takes the form (5.1).

Next, note that

1.�1;E�.P /.x; y/ D h1.�1;E�.P /ıx; 1.�1;E�.P /ıyiL2

D h1.�1;E�.PG/e
iGıx; 1.�1;E�.PG/e

iGıyiL2 :

Now, by [13, Lemma 4.2],

k.1.�1;E/. zPG/ � 1.1;E�.PG//f kL2

� 2k1ŒE��;EC��. zPG/f kL2

C Ch3N��1
�
k1.�1;E�. zPG/f kL2 C k. zPG C 1/�sf kL2

�
:

Let f 2H�` and �D hN . ForN;s > `, the last two terms above are bounded by hN .

We need only understand 1.�1;E�. zPG/e
iGıx and k1ŒE�hN ;EChN �. zPG/e

iGıxkL2 :
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Before we examine 1Œa;b�. zPG/, we consider the distribution eiGıx . By Lemma 2.2,

eiG 2 S0, and hence for any y 2 R fixed,

.eiGıy/.x/ D 1

2�h

Z
e

i
h

.x�y/�b.x; �/d� (6.1)

where b 2 S0 with b �
P

j h
j bj , bj 2 S�j . In particular, for jx � yj � 1, and N >

k C 1,

..hDx/
keiGıy/.x/ D 1

2�h

Z
e

i
h

.x�y/� .�hD�/
N

jx � yjN �kb.x; �/d�

D O.jx � yj�NhN �1/;

and hence for � 2 C1
c with �.x/ � 1 on jxj < R and all jyj < R � 1

.1 � �/.eiGıy/ D O.h1/� ;

where � denotes the Schwartz class of functions. Therefore,

1Œa;b�. zPG/e
iGıx D 1Œa;b�. zPG/�e

iGıx CO.h1/C 1 :

Next, we consider �1Œa;b�. zPG/�. Let dEh be the spectral measure for zPG .

Lemma 6.1. Let �
1

2 C1
c and  2 C1

c with  � 1 on Œ�1; 1�. Then, there is T > 0

such that for E 2 Œ1 � ı0; 1C ı0�, and h small enough,

�
1
dEh�1

D 1

2�h

TZ

�T

�
1
e�i t. zPG�E/=h .hD/�

1
dt CO.h1/D 0!C 1

c
:

In particular,

�
1
dEh.E/�1

D 1

.2�h/2

TZ

�T

Z
e

i
h

.�t.j�j2�E/�hx�y;�i/aE .t; x; y; �/d�dt

CO.h1/D 0!C 1
c

where aE �
P

j h
j aj;E with aj;E 2 C1

c .

Proof. We will use Lemma 5.6. In particular, by Stone’s formula

1Œa;b�. zPG/ D 1

2�i

bZ

a

�
R.E C i0/�R.E � i0/

�
dE;
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so we need to understand

dEh WD .2�i/�1
�
R.E C i0/� R.E � i0/

�
:

For this, let �
2

2 C1
c .B.0;R// with �

2
� 1 on supp�

1
. Then consider

�dEh� D 1

2�i
�

2

�
R.E C i0/� R.E � i0/

��
 .hD/C 1 �  .hD/

�
�

2

D 1

2�h

TZ

�T

�
2
e�i t.P �E/=h .hD/�

C 1

2�i
�

2

�
R.E C i0/�R.E � i0/

�
.1 �  .hD//�

2
:

Let v˙ D R.E ˙ i0/.1�  .hD//�
2
f: Then, since .1 �  .hD//�

2
f is rapidly

decaying, v˙ is semiclassically outgoing/incoming and

. zPG � E/v˙ D .1 �  .hD//�
2
f:

In particular, since WFsc
h ..1 �  .hD//�

2
f / \ ¹p D Eº D ;, we have WFsc

h .v˙/ \
¹p D Eº D ;:

Now,

. zPG �E/.vC � v�/ D 0 H) WFh.vC � v�/ n ¹p D Eº D ;:

In particular, since, a priori both terms have WFh.v˙/ \ ¹p D Eº D ;, we obtain

WFh.vC � v�/ D ;

and hence

1

2�i
�

2

�
R.E C i0/�R.E � i0/

�
.1 �  .hD//�

2
f D O.h1/C 1

c
:

Therefore,

�
2
idEh�2

D 1

2�h

TZ

�T

�
2
e�i t.P �E/=h .hD/�

2
dt CO.h1/D 0!C 1

c
:

The lemma follows from the oscillatory integral formula for ei t.P �E/=h (see [20,

Theorem 1.4]).

As a corollary of Lemma 6.1, we obtain for t; s 2 Œ1� ı; 1C ı�,

j.hDx/
˛.hDy/

ˇ�
1
1.s;t�. zPG/�1

.x; y/j � C˛ˇh
�2jt � sj:
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In particular, this implies

k1ŒE�hN ;EChN �. zPG/e
iGıxkL2 � ChN �`

for some ` > 0 and hence it only remains to have an asymptotic formula for the

operator �
1
1.�1;E�. zPG/�1

.

Let O� 2 C1
c ..�2T; 2T // with O� � 1 on Œ�T; T � and put �h;k.t/ D h�k�.th�k/:

Define

R1.E; x; y/ WD �
1
.�h;k � 1.�1;��. zPG/� 1.�1;E�. zPG//�1

.x; y/; (6.2)

R2.E; x; y/ WD �
1
.�h;k � �h;1/ � 1.�1;��. zPG/�1

.E; x; y/: (6.3)

Then, we will show for E 2 Œ1� ı=2; 1C ı=2�

j.hDx/
˛.hDy/

ˇR1.E; x; y/j D O˛ˇ .h
k�2/;

j.hDx/
˛.hDy/

ˇR2.E; x; y/j D O˛ˇ .h
k�2/:

(6.4)

In order to show the first inequality in (6.4) we recall that standard estimates also

show that there is M > 0 such that for t 2 R

j.hDx/
˛.hDy/

ˇ�
1
1.�1;t �. zPG/�1

.x; y/j � C˛ˇh
�M htiM :

Then, for E 2 Œ1 � ı=2; 1C ı=2�

j.hDx/
˛.hDy/

ˇR1.E; x; y/j

D
ˇ̌
ˇ̌
Z
h�k�.sh�k/.hDx/

˛.hDy/
ˇ�

1
.1.E�s;E�. zPG//�1

ds

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌

Z

jsj�ı=2

h�khsh�ki�NC˛ˇh
�2jsj ds

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌

Z

jsj�ı=2

h�khsh�ki�NC˛ˇh
�M jsjM ds

ˇ̌
ˇ̌:

Choosing N large enough, the first inequality in (6.4) follows.

To obtain the second inequality, we observe that, since zPG is bounded below,

R2.E/ D �
1

EZ

�1

h�k.�..s � zPG/=h
k/ � h�1.�..s � zPG/=h//�1

D 1

2�i

Z
t�1 O�.thk�1/.1� O�.t//�

1
ei t.E� zPG/=h�

1
dt

D �
1
fh

�E � zPG

h

�
�

1
;
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where

fh.�/ D 1

2�i

Z
t�1 O�.thk�1/.1� O�.t//ei t�dt:

In particular, note that jfh.�/j � CN h�i�N : Now, let  2 C1
c .�ı; ı/ with  � 1

near 0. Then,

�
1
fh

�E � zPG

h

�
�

1

D
Z
fh

�E � s

h

�
�

1
dEh.s/�1

D
Z
 .E � s/fh

�E � s

h

�
�

1
dEh.s/�1

C
Z
.1 �  .E � s//fh

�E � s
h

�
�

1
dEh�1

.s/

D
Z
fh

�E � s

h

�
 .E � s/�

1
dEh.s/�1

CO.h1/D 0!C 1
c

D � 1

2�

TZ

�T

Z
fh.w/�1

e�i t. zPG�EChw/=h .hD/�
1
dwdt CO.h1/D 0!C 1

c

D 1

2�

TZ

�T

Z
i t�1 O�.thk�1/.1� O�.t//�

1
e�i t. zPG�E/=h .hD/�

1
dt

CO.h1/D 0!C 1
c

D O.h1/D 0!C 1
c
:

Therefore, the second inequality in (6.4) holds.

Together, the inequalities in (6.4) imply that

�
1
.1.�1;E�. zPG/ � �h;1 � 1.�1;��. zPG/.E//�1

D O.h1/D 0!C 1
c

and we finish the proof of the main theorem by observing that

�
1
�h;1 � 1.�1;��. zPG/.E/�1

D 1

2�h

EZ

�1

Z
O�.t/�

1
ei t.�� zPG/=h�

1
dtd�

D 1

.2�h/2

EZ

�1

Z
O�.t/�

1
.x/ei.t.��j�j2/C.x�y/�/=ha.x; y; �/�

1
.y/d�dtd�;

(6.5)

where a �
P

j ajh
j and aj 2 C1

c . Conjugating by eiG and using (6.1) completes the

proof.
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A. Properties of sk;N

In this appendix, we collect the proofs of the required properties of sk;N .

Proof of lemma 3.1. The case k D 1; 0 are clear with N0 D 0, N1 D 1. Suppose (3.1)

holds for k D n � 1. Then,

sn;N .�; ;W/ D

8
<
:

1

j
Pk

iD1 �i j

P
p2Sym.k/

P
j˛jDk;˛i �k=2 s˛;N .p.�//;

Pk
iD1 �i ¤ 0;

0;
P

i �i D 0:

The statement is trivial when
P

i �i D 0. Therefore, we assume the opposite. In that

case

sn;N .�;W/ � 1

j
Pn

iD1 �i j
X

p2Sym.n/

X

j˛jDn;˛i �n=2

jY

iD1

Cj˛i j

Qj˛i j

`D1
kwp.�/ˇi .˛/C`

kN

N1

� 1

j
Pn

iD1 �i j
X

p2Sym.k/

X

j˛jDn;˛i �n=2

nY

`D1

kw�`
kN

jY

iD1

Cj˛i j

N2

;

where

N1 WD inf¹j!jNj˛i j j ! 2 ¹p.�/ˇi .˛/C1; 0º C � � � C ¹p.�/ˇiC1.˛/; 0º n 0º;
N2 WD inf¹j!jNj˛i j j ! 2 ¹�1; 0º C � � � C ¹�n; 0º n 0º:

Then, defining N0 D 0, N1 D 1, and

Nk WD sup
°
1C

X

i

Nj˛i j

ˇ̌
ˇ j˛j D n; j˛i j � n

2

±
;

we have

sn;N .�;W/ �
Qn

`D1 kw�`
kK

N3

X

p2Sym.k/

X

j˛jDn;˛i �n=2

jY

iD1

Cj˛i j;

where

N3 WD inf¹j!jNk j ! 2 ¹�1; 0º C � � � C ¹�n; 0º n 0º;

and hence the lemma follows by induction.

Proof of Lemma 3.2. For k D 0 the claim is clear. For k D 1, observe that

s1;N .�1 C � � � C �n; �W/ D

8
<
:

k zw�1:::�n kN

j
Pn

iD1 �i j
;

P
i �i ¤ 0;

0;
P

i �i D 0:
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Note that

k zw�1:::�n
kN

j
Pn

iD1 �i j
� 1

j
Pn

iD1 �i j

nY

iD1

kw�i
kN 0

j�i j
� sn;N 0..�1; : : : ; �n/;W/:

Suppose that the claim holds for k � 1 � 1. Then, when
P

i

Pk
j D1.�i/j ¤ 0

sk;N .�1 C � � � C �n; �W/

D 1

j
P

i;j .�i/j j
X

p2Sym.k/

X

j˛jDk;˛i �k=2

jY

iD1

s˛i ;N ..p.�1 C � � � C �n//˛;i ; �W/

� 1

j
P

i;j .�i/j j
X

p2Sym.k/

X

j˛jDk;˛i �k=2

jY

iD1

sn˛i ;N ..p.�1//˛;i ; : : : .p.�n//˛;i/;W/

� 1

j
P

i;j .�i/j j
X

p2Sym.nk/

X

j˛jDnk;˛i �nk=2

jY

iD1

s˛i ;N ..p.�1; : : : �n//˛;i/;W/

D snk;N 0.�1; : : : ; �n;W/:

B. Examples with infinitely many embedded eigenvalues

We now construct some examples to which our main theorem applies that, neverthe-

less, have arbitrarily large eigenvalues.

Theorem B.1. Let ! 2 Rd satisfy the Diophantine condition (1.2) and ‚ D Zd � !.

Then there is W 2 C1.RI R/ satisfying the assumptions of Theorem 1.1 and such

that ¹ �2

4
j � 2 ‚ n ¹0ºº is contained in the point spectrum of ��CW .

Theorem B.2. Let ¹mnº1
nD1 � ZC and ‚ as in Theorem 1.2. Then there is W 2

C1.RI R/ satisfying the assumptions of Theorem 1.2 and such that for all n,
m2

n

4n2 is

contained in the point spectrum of �� CW . In particular, if Q \ RC D ¹mn

n
º1

nD1,

then this operator has dense pure point spectrum.

Theorems B.1 and B.2 follow easily from the following theorem.

Theorem B.3. Let ¹�nº1
nD1 be an arbitrary sequence of positive real numbers. Then

there isW 2 C1.RI R/ such that �2
n is an eigenvalue of ��CW . Moreover, we can

findW such that

W D
X

n

e2i�nxw2�n
.x/C

X

n

e�2i�nxw�2�n
.x/Cw0.x/
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where w0 2 C1
c and for any N ,

j@k
xw˙2�n

.x/j � CN hni�N h�ni�N hxi�k : (B.1)

We follow the construction in [16] with a few modifications to guarantee smooth-

ness. First, we need to replace [16, Theorem 5] to allow for smoothness in V .

Recall that the Prüfer angles ; �.x/, are defined by

u0.x/ D kA.x/ cos.�.x//; u.x/ D A.x/ sin.�.x//;

where �u00 C V.x/u D k2u. Then, �.x/ satisfies

�0.x/ D k � k�1V.x/ sin2.�.x//: (B.2)

For anyN � 0, a < b 2 R. let F WCN .Œa; b�/� Rn � Tn ! Tn to be the generalized

Prüfer angles with potential V , �i .xIV; k; �/jxDb, where �i .0IV; k; �/ D �i and we

put k D ki in (B.2).

Lemma B.1. Fix Œa; b� � .0;1/, U b .a; b/ open, N > 0, k1; : : : kn > 0 distinct,

� .0/ 2 Tn, and " > 0. Then there is ı > 0 such that for all angles � .1/ 2 Tn satisfying

j� .1/ � kb � � .0/j < ı;

there is V 2 C1
c .U / with kV kC N < " and F.V; k; � .0// D � .1/:

Proof. Note that

F.0; k; �0/ D .�
.0/
1 C k1b; : : : �

.0/
n C knb/

and

�i .xIV D 0/ D �
.0/
i C kix:

Therefore, we need only show that the differential (in V ) is surjective when restricted

to functions in C1
c .U /. For this, let � 2 C1

c .U / with � � 1 on a nonempty open

interval I . Note that if V" D "�V.x/,

@"�
0
i .xIV"/j"D0 D �k�1

i �.x/V .x/ sin2.kix C �
.0/
i /; @"�i .0IV"/j"D0 D 0:

Hence,

@"Fi .V"/j"D0 D �k�1
i

Z
�.x/V .x/ sin2.kix C �

.0/
i /dx:

We claim that ui .x/ WD �.x/ sin2.kixC �
.0/
i / are linearly independent in L2. Indeed,

suppose 0 < k1 < � � � < kn and
PK

iD1 ˛iui.x/ D 0 a.e. with ˛K ¤ 0 (and hence, by

continuity for all x). Differentiating enough times, we see that ˛K � 0, a contradic-

tion.

Thus, there are V1; : : : ; Vn 2 C1 such that .@"F."�Vi //
n
iD1 is a basis for Rn and

the implicit function theorem finishes the proof.
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Proof of Theorem B.3. We work on the half line and find W.x/ vanishing to infinite

order at 0 such that there are L2 solutions, un of

�u00
n.x/CW.x/un.x/ D �2

nun.x/; x 2 Œ0;1/; un.0/ D 0:

The case of the line then follows by extending W to an even function and un to an

odd function.

Let � 2 C1.R/ with � � 1 on Œ2;1/, supp � � .1;1/ and define �
n
.x/ WD

�.R�1
n x/ where Rn ! 1, Rn � 1, are to be chosen later. We put

.�Ln/.x/ WD 4�n

�
n
.x/

x
sin.2�nx C 'n/;

where 'n is also to be chosen. We will also find�Sn to be smooth function supported

on .2�n; 2�nC1/ with k�SnkC n � 1
2n and put

Wm.x/ D
mX

nD1

.�Ln C�Sn/.x/; W.x/ WD lim
m!1

Wm.x/; �Wm WD Wm ��Sm:

Note that by construction
P

n �Sn 2 C1.Œ0; 1//,
P

n �Sn vanishes to infinite

order at 0, and

�Ln.x/ D �e2i�nx2i�ne
i'n�

n
.x/x�1 C e�2i�nx2i�ne

�i'n�
n
.x/x�1:

In particular,

�Ln.x/ D e2i�nxw2�n
.x/C e�2i�nxw�2�n

.x/

with w˙2�n
D �2i�ne

˙i'n�
n
.x/x�1: Thus,

j@k
xw˙2�n

j � Ck�nR
�1
n hxi�k: (B.3)

In order to obtain the estimate (B.1), we fix a positive Schwartz function f and choose

Rn � 1
f .h�nihni/

. The estimate (B.3) then guarantees that
P

n �Ln is bounded with

all derivatives. The fact that�Sn 2 C1
c .2�n; 2�nC1/ and k�SnkC n � 1

2n guarantees

that w0 D
P

n�Sn 2 C1.Œ0; 1// and w0 vanishes to infinite order at 0.

Now, note that �n.�/ WD F ..�/�1�
n
.�//.�/ is smooth away from � D 0. Therefore,

for each m ¤ n, we can find  n;m 2 C1
c .0; 1/ such that

F . n:m/.0/ D �2i�n.��n.2�n/e
i'n � �n.2�n/e

�i'n/;

F . n;m/.˙2�m/ D �2i�n.�m.2.˙�m � �n//e
i'n � �n.2.�n ˙ �m//e

�i'n/:

Then, letting  n;n D 0 and defining zLn;m WD �Ln �  n;m, there are An;m, A˙
n;m

such that
j zLn;mj � C jxj�1; zLn;m D A0

n:m; jAn;mj � C jxj�1;

e˙2i�mx zLn;m D .A˙
n;m/

0; jA˙
n;m.x/j � C jxj�1:

(B.4)
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By the conditions (B.4) and [16, Theorem 3], there is a unique function u.m/
n .x/

satisfying
�.u.m/

n /00 CWm.x/u
.m/
n D �2

nu
.m/
n ;

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇu.m/

n .�/ � sin
��
�n C 1

2
'n

�
�
�
.1C j � j/�1

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ < 1:

(B.5)

where jjjujjj D k.1C x2/uk1 C k.1C x2/u0k1: Similarly, there is a unique function

Qu.m/
n .x/ satisfying

�. Qu.m/
n /00 C �Wm.x/ Qu.m/

n D �2
n Qu.m/

n ;
ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ Qu.m/

n .�/ � sin
��
�n C 1

2
'n

�
�
�
.1C j � j/�1

ˇ̌
ˇ
ˇ̌
ˇ
ˇ̌
ˇ < 1:

(B.6)

Now, we construct�Ln, �Sn such that

jjju.m/
n � u

.m�1/
n jjj � 2�m; n D 1; 2; : : : ; m � 1;
u

.m/
n .0/D 0; n D 1; : : : ; m:

(B.7)

Once we have done this, we can let un D limm u
.m/
n (in the jjj � jjj norm) to obtain L2

eigenfunctions with eigenvalue �n.

Let m � 1 and suppose we have chosen ¹.Rn; 'n/ºm�1
nD1 , and �S1; : : : �Sm�1 2

C1
c with supp�Sn � .2�n; 2�nC1/ and k�SnkC n � 1

2n such that (B.7) holds and

Rn � 1=f .hnih�ni/.
By [16, Theorem 3], there are "m and zRm such that for all Rm � zRm, and 'm 2

Œ0; 2�=.2�m/�, if k�SmkC 0 � "m, then

jjjum
i � Qum

i jjj � 2�m�1:

By Lemma B.1, there is ım > 0 small enough such that if j� .1/
i � �i2

�mC1j < ım and

�
.1/
i are the Prüfer angles of the solutions Qum

i , i D 1; : : : ; m at 2�mC1, then there is

�Sm 2C1
c .2�m; 2�mC1/ with k�SmkC m �min.2�m; "m/ and such that u.m/

i .0/D0.

Therefore, if we can find Rm � zRm and 'm such that j� .1/
i � �i2

�mC1j < ım, and

jjjum�1
i � Qum

i jjj � 2�m�1;

the proof will be complete.

Once again, by [16, Theorem 3], for Rm large enough, we have (uniformly in

'm 2 Œ0; 2�=.2�m/�/, jjju.m�1/
i � Qu.m/

i jjj < 2�m�1 for i D 1; : : : ;m� 1 and the Prüfer

angles for Qu.m/
i at 2�mC1 satisfy j� .1/

i � �ibi j < ı for i D 1; : : :m � 1).

Finally, we choose 'm so that Qu.m/
m .0/ D 0. The existence of such a 'm again fol-

lows from [16, Theorem 3]. In particular, note that by part (b) there, we have (B.6)

uniformly over Rm large enough, x large enough, and 'm 2 Œ0; 2�=.2�m/�. In partic-

ular, the Prüfer angles for Qu.m/
m , Q�m.x/ run through a full circle. Therefore, we can
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chooseRm large enough and 'm such that the Q�m.Rn/ agrees with the Prüfer angle of

the solution to u to �u00 CWm�1.x/uD �2
mu, u.0/D 0 and hence, sinceWm�1 D �Wm

on x � Rn, we have that Qum.0/ D 0.
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